F5230 # MAGNETICAL AND METEOROLOGICAL # OBSERVATIONS MADE AT # THE ROYAL OBSERVATORY, GREENWICH, IN THE YEAR 1847: UNDER THE DIRECTION OF GEORGE BIDDELL AIRY, ESQ. M.A. ASTRONOMER ROYAL. PUBLISHED BY ORDER OF THE BOARD OF ADMIRALTY, IN OBEDIENCE TO HER MAJESTY'S COMMAND. LONDON: PRINTED BY PALMER AND CLAYTON, CRANE COURT, FLEET STREET, SOLD BY J. MURRAY, ALBEMARLE STREET. M.DCCC.XLIX. # ERRATA. # GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS FOR 1845. PAGE 39 Last word in last line, for March, read December. # GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS FOR 1846. - xvi Line 9 from bottom, for bisects the cross of the micrometer-wire, read bisects the magnet-cross by the micrometer-wire. - xx First line, for The mean angle of the value of Torsion, read The mean value of the angle of Torsion. - xliii Last line, 8th column of Table, for 0 .00088, read 0 .00288. - xliv Line 6 from top in 7th column of upper Table, for 19:6, read 16:6. - xliv Line 18 from top in 8th column of upper Table, for 0.00574, read 0.00674. - xliv Line 10 from bottom in 8th column of lower Table, for 0.00341, read 0.00241. - xlviii Line 5 from top in 2nd column of Table, for 1.0.24, read 1 0024. - (118) Aug. 1. Reading of No. 2 Rain Gauge, for 0.03, read 0.95. - 99 In the line preceding Table XI., for 0 000948, read 0 009948. - 135 First line, Heading to Table XXIX., for Mean Reading, read Mean Monthly Reading. - 136 Heading to Table XXXII., for Mean Reading, read Mean Monthly Reading. - 172 Table XC. In the 4th column ranging with April, for 3:200, read 3:100. DACE - 172 Table XC. In the 4th column ranging with June, for 0.670, read 0.660. - 172 Table XC. In the 3rd column ranging with August, for 3 17, read 4 09. - 172 Table XCI. In the 4th column, ranging with Spring, for 6 015, read 5 915. - 172 Table XCI. In the 3rd column, ranging with Summer, for 5.01, read 5.93. - 172 Table XCI. In the 4th column, ranging with Summer, for 6.615, read 6.605. - 173 Line 4 from top, in Heading of 3rd column of Table, for Gauges, read Gauge. - 173 Line 6 from top, ranging with In Spring, for 111, read 109. - 173 Line 7 from top, in 3rd column of Table, for 84, read 98. - 173 Line 12 from top, for 22 .63, read 23 .55. - 173 Line 13 from top, for 25 .86, read 25 .75. - 174 June 4^d. 2^h. 14^m, last column, for The, read The. Index, page 2, last word, line 13 from top, for Pane, read Plane. # GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS FOR 1847. (280) First line, heading of Table, for Table LII. continued, read Table XLIX. continued. . • # GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1847. # INTRODUCTION. In consequence of a representation of the Board of Visitors of the Royal Observatory to the Lords Commissioners of the Admiralty, an additional space of ground on the southeast side of the existing boundary of the Observatory grounds was inclosed from Greenwich Park for the site of a Magnetic Observatory, in the summer of 1837. In the spring of 1838 the Magnetic Observatory was erected. Its nearest angle is about 230 feet from the nearest part of the Astronomical Observatory, and about 170 feet from the nearest out-It is built of wood: iron is carefully excluded. Its form is that of a cross with four equal arms, nearly in the direction of the cardinal magnetic points: the length within the walls, from the extremity of one arm of the cross to the extremity of the opposite arm, is forty feet: the breadth of each arm is twelve feet. The height of the walls inside is ten feet, and the ceiling of the room is about two feet higher. The northern arm of the cross is separated from the central square by a partition, so as to form an ante-room. meridional magnet (placed in its position in 1838) is mounted in the southern arm; the bifilar-magnet, for variations of horizontal force (erected at the end of 1840), is mounted in the eastern arm; and the balance-magnetometer, for variations of vertical force (erected in 1841), in the western arm. The mean-time clock is in the southern arm, near its union with the western arm; the standard barometer is near it, in the western arm; the siderealtime clock is fixed to the wall which divides the central square from the ante-room, and is nearer to the balance-magnetometer than to the bifilar; the "check-clock," or "watchman's clock," is in the ante-room affixed to the dividing wall nearer to the bifilar-magnet than to the balance-magnet; the alarum-clock is in the north-east corner of the ante-room; and the fire-grate near the middle of its west side. These are all the fixtures which contain iron; but as the ante-room is used as a computing room in the day, and as a room for occa- GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1847. (b) Á sional repose at night, it is impossible to avoid introducing into it iron in small quantities. On the outside near the north-east corner of the ante-room, a pole 79 feet in height is fixed, for the support of the conducting wires to the electrometers; the electrometers, &c., are planted in the window-seat at the north end of the ante-room; and, in the re-entering angle, between the north and east arms, the stand for carrying the thermometers was fixed till 1846, July 20. On July 22 the stand was removed to a position situated 23 feet south of the south-west angle of the south arm of the Magnetic Observatory. The Magnetic Observatory remained in this state to the middle of 1847. On 1847, June 2, the self-registering apparatus for recording the movements of the magnets by a photographic trace was first brought into action for the declination-magnet; and on August 22 a similar apparatus was made available for the horizontal-force-magnet. For this purpose, camphine lamps (as will be hereafter described) were supported by projections from the stands of the two instruments, and the light which they cast upon concave mirrors carried by the suspension-pieces of the magnets was reflected to a revolving barrel turned by a watch movement mounted at the internal projection of the south-eastern re-entering angle of the building. The path of the light from each instrument to the barrel is through large rectangular tubes of zinc, supported on tressels. I shall now proceed to describe the instruments, their adjustments and constants of calculation, and the modes of using them, so far as relates to observations with the eye and telescope. Of all that relates to the photographic record, a more detailed account will be given at the end of this Introduction. # § 1. Declination Magnet, and Apparatus for Observing it. The theodolite with which the meridional magnet is observed is by Simms: the radius of its horizontal circle is 8.3 inches: it is divided into 5', and read to 5" by three verniers, carried by the revolving frame of the theodolite. The fixed frame stands upon three footscrews, which rest in brass channels let into a stone pier, that is firmly fixed in the ground and unconnected with the floor. The revolving frame carries the Y's (with vertical adjustment at one end) for a telescope with transit-axis: the length of the axis is ten inches and a half: the length of the telescope twenty-one inches: the aperture of the object-glass two The Y's are not carried immediately by the T head which crosses the vertical axis of the revolving frame, but by pieces supported by the ends of that T head, and projecting horizontally from it: the use of this construction is to allow the telescope to be pointed sufficiently high to see & Ursæ Minoris above the pole. The eye-piece of the telescope carries only one fixed horizontal wire, and one vertical wire moved by a micrometer-screw. The stone pier is fixed nearly in the line which divides the southern arm of the cross from the central square: in the roof of the building an opening is made (closed by shutters), in the direction of the Astronomical meridian passing through the pier, through which circumpolar stars can be observed as high as δ Ursæ Minoris above the pole, and as low as β Cephei below the pole. For supporting the magnet, a braced wooden tripod-stand is provided, resting on the ground and unconnected with the floor. Upon the cross-bars of the stand rests a double rectangular box (one box completely inclosed within another), both boxes being covered with gilt paper, on their exterior and interior sides. On the southern side of the principal upright piece of the stand is a moveable upright bar, turning in the vertical E. and W. plane, upon a pin in its center, which is fixed in the principal upright, and which carries at its top the pulleys for suspension of the magnet; this construction is adopted in order to give an E. and W. movement to the point of suspension, by giving a motion to the lower end of the The top of the upright piece carries a brass frame with two pulleys: one of these pulleys projects beyond the north side of the principal upright, and from it depends the suspension skein: the other pulley projects on the south side: the suspension skein being brought from the magnet up to the north pulley is carried over it and over the south pulley, and is then attached to a leathern strap, which passes downwards to a small windlass, carried by the lower part of the moveable upright. The intention of this construction is, to make it easy to alter the height of the magnet without the trouble of The height of the two pulleys above the floor is about climbing to the top of the frame. eleven feet nine inches, and the height of the magnet is about three feet; so that the length of the free suspending skein is about eight feet nine inches. The magnet was made by Meyerstein, of Göttingen: it is a bar two feet long, one inch and a half broad, and about a quarter of an inch thick: it is of hard steel throughout. The suspension-piece was also made by Meyerstein, but it has since been altered under my direction by Simms. The magnet is not now inserted endways in its support, but sideways, a double square hook
being provided for sustaining it; and the upper part of the suspension-piece is simply hooked into the skein. The suspending skein is of silk fibre, in the state in which it is first prepared by silk manufacturers for further operations; namely, when seven or more fibres from the cocoon are united by juxtaposition only (without twist) to form a single thread. It was reeled for this purpose at my request by Mr. Vernon Royle, of Manchester. The skein is strong enough to support perhaps six times the weight of the magnet, &c. I judged this strength to be necessary, having found that a weaker skein (furnished by Mr. Meyerstein) broke ultimately even with a smaller weight. Upon the magnet there slide two brass frames, firmly fixed in their places by means of pinching-screws. One of these contains, between two plane glasses, a cross of delicate cobwebs; the other holds a lens, of thirteen inches focal length and nearly two inches aperture. This combination, therefore, serves as a collimator without a tube: the cross of cobwebs is seen very well with the theodolite-telescope, when the suspension bar of the magnet is so adjusted as to place the object-glass of the collimator in front of the object-glass of the theodolite, their axes coinciding. The wires are illuminated by a lamp and lens in the night, and by a reflector in the day. In order to diminish the extent of vibrations of the magnet, a copper bar, about one inch square, is bent into a long oval form, intended to contain within itself the magnet (the plane of the oval curve being vertical). A lateral bend is made in the upper half of the oval, to avoid interference with the suspension-piece of the magnet. The effect of this copper bar is very striking. It appears, from rough experiments, that every second vibration of the magnet (that is, when a direct and reverse swing have been finished) is reduced in the proportion of 5:2 nearly. On mounting the photographic apparatus in June, 1847, the old torsion-circle and suspension-stirrup were removed, and a new suspension-stirrup was mounted, firmly united with an upright rod, 7.9 inches in length, the top of which is connected by an adjustible excular horizontal movement (firmly clamped while in use) to an upright frame $5\frac{1}{4}$ inches high, to which are attached the necessary clips for carrying a concave mirror, 5 inches in diameter, with its face vertical, and its lower edge 4 inches above the exterior wooden box. At the top of this frame is a torsion-circle with a hook, which is simply hooked into the end of the silk skein. The skein is necessarily shortened several inches, and the weight of the suspending apparatus is considerably increased. The support of the magnet by this new apparatus does not in any degree interfere with the facilities of observing with the telescope in the ancient method. Observations relating to the permanent Adjustments of the Declination Magnet and its Theodolite. 1. Determination of the inequality of the pivots of the theodolite-telescope. 1846, December 22. Observer, Mr. Glaisher. The theodolite was clamped, so that the transit axis was at right angles to the Astronomical meridian. The illuminated end of the axis of the telescope was first placed to the East: the level was applied, and its scale was read; the level was then reversed, and its scale was again read; it was then again reversed, and again read; and so on successively six times. The illuminated end of the telescope was then placed to the West, and the level was applied and read as before. The above process was repeated four times, and the following are the results. The West end of the axis in the successive observations was apparently the highest by the following quantities:— ``` With illuminated end of axis East, — 20·4 """ West, — 15·9 """ East, — 21·5 """ East, — 21·4 """ West, — 17·2 """ East, — 22·9 """ West, — 15·8 ``` Hence that end of the level which is placed on the illuminated end is too high- | | | | | | | | div. | |---------------------|--|----|---|---|---|--|-------| | By 1st and 2nd Sets | | | | | | | 2 .25 | | By 3rd and 4th Sets | | ٠. | | | | | 2 .40 | | By 5th and 6th Sets | | | | | | | 2 ·10 | | By 7th and 8th Sets | | | _ | _ | _ | | 3 .55 | The mean of these numbers is 2.58 div. In the volumes for 1843, 1844, and 1845, are the details of the observations by which this inequality had been previously determined, from which it appeared that the end of the level which was placed on the illuminated end was too high by 2.85 div. The angles of the level forks and those of the Y's are nearly 90°; therefore we may conclude that, when the level indicates the axis to be horizontal, the axis at the illuminated end is too low by the half of these numbers. The value which has been taken into account in the reduction of all the observations with the theodolite, for the determination of the theodolite-reading for the astronomical meridian, is 1.43 div., being the same value as that used in the preceding years. One division of the level-scale was found by Mr. Simms to be equal to 1".0526. ### 2. Value of one revolution of the micrometer-screw of the theodolite-telescope. 1846, December 23. The magnet was made to rest on blocks of wood, and the collimator was used as a fixed mark at an infinite distance. The micrometer was placed in different positions, and the telescope of the theodolite was then turned till the micrometer-wire bisected the cross. Observer, Mr. Glaisher. ``` Micrometer set at 92. Reading of Theodolite 247. 6. 20 of for 23 rev. 36. 12 of Corresponding value for 1 rev. 1. 34 of the Micrometer set at 92. Reading of Theodolite 246. 30. 11 of for 23 rev. 36. 12 of Corresponding value for 1 rev. 1. 34 of the Micrometer set at 92. Reading of Theodolite 246. 30. 11 of for 23 rev. 36. 6 of Corresponding value for 1 rev. 1. 34 of the Micrometer set at 92. Reading of Theodolite 247. 6. 10 ``` ``` Micrometer set at 92. Reading of Theodolite 247. 6.20.7 Difference 36. 5.7 Corresponding 1.34.2 Reading of Theodolite 246.30.15.0 115. Reading of Theodolite 247. 6.15.7 {Difference Reading of Theodolite 246.30.22.7 {for 23 rev.} 35.53.6 {Corresponding value for 1 rev.} 1.33.6 Micrometer set at 92. 115. ,, Reading of Theodolite 247. 6.18.3 {Difference Reading of Theodolite 246.30.25.0 {Difference for 23 rev.} 35.53.3 {Corresponding value for 1 rev.} 1.33.6 Micrometer set at 92. 115. Reading of Theodolite 247. 6.21.7 Difference 36. 1.7 Corresponding Value for 1 rev. 1.34.0 Micrometer set at 92. 115. Reading of Theodolite 247. 6. 19.0 Difference 35. 55.7 Corresponding reading of Theodolite 246. 30. 23.3 for 23 rev. 35. 55.7 value for 1 rev. Micrometer set at 92. 115. Reading of Theodolite 247. 6. 20.0 { Difference Reading of Theodolite 246. 30. 18.3 { for 23 rev. } 36. 1.7 { Corresponding value for 1 rev. } 1.34.0 Micrometer set at 92. ``` Therefore, the mean value of one revolution was 1'. 33". 98. In the volume for 1842, from the mean of seven results of observations made on January 1 of the year 1842, between 92 rer. and 115 rer., and of six results obtained on January 3 of the same year, it appeared that the value of one revolution was 1'. 34". 271. The value used in the year 1841 was 1'. 34". 07. These several determinations being so nearly of the same value, it did not seem necessary to construct new tables, and the value 1'. 34". 07 has been used during the year 1847. 3. Determination of the micrometer-reading for the line of collimation of the theodolite-telescope. 1846, December 23. The vertical axis of the theodolite had been adjusted to verticality, and the transit axis was made horizontal. The declination magnet was made to rest on blocks, and the cross-wires carried by it were used as a collimator for determining the line of collimation of the telescope of the theodolite. The telescope was reversed after each observation. Observer, Mr. Glaisher. | Position
of
Micrometer Head. | Micrometer
Reading. | Position
of
Micrometer Head. | Micrometer Reading. | |------------------------------------|------------------------|------------------------------------|---------------------| | ${f E}$ | 100 .711 | E | 100 ·850 | | \mathbf{W} | 100 ·345 | W | 100 -220 | | E | 100 -775 | E | 100 .830 | | \mathbf{W} | 100 •275 | w | 100 -220 | | E | 100 .765 | E | 100 .820 | | \mathbf{W} | 100 .225 | w | 100 .275 | | E | 100 .817 | E | 100 .820 | | \mathbf{W} | 100 •218 | w | 100 •230 | | E | 100 .900 | E | 100 .890 | | W | 100 •225 | W | 100 ·192 | | Position
of
Micrometer Head. | Micrometer
Reading. | Position
of
Micrometer Head. | Micrometer
Reading. | |------------------------------------|------------------------|------------------------------------|------------------------| | ${f E}$ | 100 .880 | w | 100 -222 | | \mathbf{W}^{-1} | 100 • 250 | E | 100 880 | | E | 100 .880 | w | 100 ·215 | | \mathbf{W} | 100 ·192 | E | 100 .842 | | E | 100 .875 | W | 100 .241 | | \mathbf{W} | 100 • 252 | E | 100 .852 | | E | 100 .830 | W | 100 ·215 | | \mathbf{w} | 100 .295 | E | 100 .885 | | ${f E}$ | 100 .838 | w | 100 ·200 | The mean of these readings is 100°.538, and this value has been used as the reading for the line of collimation for the year 1847. 4. Determination of the effect of the mean-time clock on the declination magnet. The observations by which this has been determined are detailed in the volumes for 1840, 1841, 1844, and 1845. It appears that it is necessary to add 9".41 to every reading of the theodolite. 5. Determination of the compound effects of the vertical force magnet and the horizontal force magnet on the declination magnet. The details will be found in the volumes for 1840, 1841, 1844, and 1845. It appears that it is necessary to subtract 55".22 from all readings of the theodolite. 6. Determination of the error of collimation for the plane glass in front of the boxes of the declination magnet. 1846, December 23. The magnet was made to rest entirely on blocks. The
micrometer-head of the telescope was to the East. The plane glass has the word "top" engraved on it, and this word is always kept upwards. The cross-wire carried by the collimator of the magnet was observed with the marked side of the glass alternately inside and outside the box. Observer, Mr. Glaisher. | Marked Side of the Glass. | Micrometer Reading. | Marked Side of the Glass. | Micrometer Reading. | |---------------------------|---------------------|---------------------------|---------------------| | Out of the box | 100 .850 | Out of the box | 100 .864 | | In the box | 100 .624 | In the box | 100 .625 | | Out of the box | 100 .852 | Out of the box | 100 .850 | | In the box | 100 .624 | In the box | 100 .620 | | Marked Side of the Glass. | Micrometer
Reading. | Marked Side of the Glass. | Micrometer Reading. | |---------------------------|------------------------|---------------------------|---------------------| | Out of the box | 100 ·844 | Out of the box | 100 .848 | | In the box | 100 .612 | In the box | 100 .612 | | Out of the box | 100 .850 | Out of the box | 100 .840 | | In the box | 100 ·615 | In the box | 100 .610 | | Out of the box | 100 .830 | Out of the box | 100 .846 | | In the box | 100 .602 | In the box | 100 ·592 | | Out of the box | 100 -837 | Out of the box | 100 ·832 | | In the box | 100 ·595 | In the box | 100 ·604 | | Out of the box | 100 .850 | Out of the box | 100 .825 | | In the box | 100 .600 | In the box | 100 .610 | | Out of the box | 100 ·870 | Out of the box | 100 .832 | | In the box | 100 -595 | In the box | 100 ·592 | | Out of the box | 100 .864 | Out of the box | 100 ·850 | | In the box | 100 ·610 | In the box | 100 .610 | | Out of the box | 100 ·850 | Out of the box | 100 ·865 | | In the box | 100 .620 | In the box | 100 ·595 | The mean of all the numbers when the marked side of the glass was outside of the box is 100°.846, and the mean of all the readings when the marked side was inside of the Half of the difference of these numbers is 0".119, which when converted into arc is 11".2; this value combined with all the previous results found in preceding years, according to the number of experiments upon which each result depended, gives 10".2; and this value has been used as the error caused by the plane glass throughout the year 1847. As the micrometer-head of the telescope is always kept East, and the glass is always kept with its marked side outwards, the correction of the error is subtractive; and 10".2 has consequently been subtracted from all readings for the bisections of the magnet cross during the year 1847. 7. Determination of the error of collimation of the magnet-collimator, with reference to the magnetic axis of the magnet. A small magnet, whose time of vibration is 5 seconds, was 1846, December 26. suspended in the shed erected for Deflexion Experiments: a reflector was attached to its center, and a telescope with a wire in its focus was directed to the reflector. A scale of numbers was fixed just above the object-glass of the telescope. The distance of the scale from the reflector was 4 feet 7 inches: one foot of the scale corresponded to 30div.9 exactly; and, consequently, the value of one division of the scale was 12'.8".21. One observer, Mr. Lovelace, observed this magnet at intervals of 5°; while another, Mr. Glaisher, observed the declination-magnet at such pre-arranged times that the mean of the times for both sets of observations was the same, then reversed it in its stirrup, and again observed it, and so on. The illuminated end of the axis of the theodolite-telescope was, as usual, East. The results are contained in the following table:- | Day,
1847. | Position of Cross of Collimator. | Mean Micrometer Reading for Declination Magnet. | Mean Reading of Scale for Temporary Magnet. | Micrometer
Reading
for
Declination
Magnet
reduced to Arc. | | Excess of Micrometer Reading reduced to Arc, increased by 5°, over Scale Reading reduced to Arc. | diminished by
Excess with
Collimator | Half Difference, or Error of Collimation. | |---------------|----------------------------------|---|---|--|------------------------|--|--|---| | Dec. 26. | . W | 100 ·270
106 ·854 | 33 ·017
33 ·066 | 2. 37. 12 · 4
2. 47. 31 · 8 | 6. 40. 43
6. 41. 15 | 56. 29 ·4
66. 16 ·8 | 9. 47 · 4 | 4. 53 ·7 | | | W
E | 98 ·762
103 ·168 | 32 ·976
32 ·841 | 2. 34. 50 ·6
2. 41. 45 ·1 | 6. 40. 13
6. 38. 31 | 54. 37 ·6
63. 10 ·1 | 8. 32 ·5 | 4. 16 ·3 | | | W
E | 98 ·974
103 ·379 | 32 ·772
32 ·799 | 2. 35. 10 ·5
2. 42. 4 ·9 | 6. 37. 45
6. 38. 4 | 57. 25 · 5
64. 0 · 9 | 6. 35 ·4 | 3. 17 •7 | | | W
E | 97 ·791
103 ·895 | 32 ·803
32 ·893 | 2. 33. 19·2
2. 42. 53·4 | 6. 38. 7
6. 39. 13 | 55. 12 ·2
63. 40 ·4 | 8. 28 ·2 | 4. 14 · 1 | | | W | 99 .070 | 32 ·880
32 ·755 | 2. 35. 19 · 5
2. 42. 13 · 4 | 6. 39. 3
6. 37. 32 | 56. 15 · 5
64. 41 · 4 | 8. 25 ·9 | 4. 13 ·0 | | | W
E | 103 ·469
98 ·134
102 ·896 | 32 ·793
32 ·793
32 ·794 | 2. 42. 13 4
2. 33. 51 ·5
2. 41. 19 ·5 | 6. 38. 0
6. 38. 1 | 55. 51 ·5
63. 18 ·5 | 7. 27 ·0 | 3. 43 .5 | The mean of the values in the last column is 4'.6".4, which, combined with all the previous results, gives 3'.52".5: and when the collimator is West of the magnet, as it was during the year 1847, the readings are too small by this amount; therefore 3'.53" has been added to all observations during the year 1847. In the volume for 1841, observations are exhibited shewing that the oval copper bar, or damper, had but little or no effect: the same bar has encircled the magnet throughout the year 1847. In the volume for 1841, observations are exhibited shewing that the effect of the grate in the ante-room is insensible. In the volume for 1842, observations are exhibited shewing that the iron attached to the electrometer pole has little or no effect on the magnet. 8. Calculation of the constant used in the reduction of the observations of the declination-magnet, the micrometer-head of the theodolite-telescope being East. # x Introduction to Greenwich Magnetical Observations, 1847. | • | | 0 | , ,, | | |---|---|------|--------------|----| | Micrometer equivalent for reading for line of collimation, 100 538 | _ | 2. 3 | 7. 37 | •7 | | Correction for the plane glass in front of the box, in its usual position | _ | | 10 | •2 | | Correction due to the compound effect of the horizontal force magnet and | | | | | | the vertical force magnet | | | 55 | ·2 | | | _ | 2. 3 | 8. 43 | .1 | | Correction for the effect of the mean time clock | + | | 9 | •4 | | | _ | 2. 3 | 8, 33 | .7 | | The collimator West of the magnet. Correction for Error of collimation. | + | | 3. 53 | •0 | | | | 2. 3 | 34.40 | .7 | The value used in the reduction of the observations for the year 1846 was $-2^{\circ}.34'.45''.5$, and this constant has been used throughout the year 1847. 9. Fraction expressing the proportion of the torsion force to the earth's magnetic force. In the previous volumes the results of experiments to determine the value of $\frac{\text{torsion force}}{\text{earth's magnetic force}}$ are exhibited; and in the volume for 1845 the mean of 55 results obtained between 1840, August, and 1847, June, was found to be, that the torsion force = $\frac{1}{187}$ of the earth's magnetic force. The accordance of the results shewed that there was no sensible change in the value of the torsion force of the suspension skein between these times. 1847, June 1. The suspension thread was shortened for the purpose of carrying, in addition to the magnet and its apparatus as before, a mirror which is used for the self-registration of the changes of the position of the magnet by the photographic process; and the following experiments were made to determine the proportion of the torsion force to the earth's magnetic force. 1847, June 3. The suspension skein was without torsion, when the torsion circle read 17°. The torsion circle was then turned through different angles on either side of this reading, and the theodolite was read for the position of the magnetic cross in each position of the torsion circle. Observer, Mr. Glaisher. | | | 0 | | 0 | , | " | | |---|-----------------------------|---------|------------------------|--------------|-------------|-----------|----| | V | Vith torsion-circle reading | 17, the | theodolite-reading was | 249. | 30 . | 52 | •8 | | | ~ | 107 | ** | 248 . | | | | | | ,, | 17 | ,, | 24 9. | 32. | 23 | .6 | | | • | 317 | ,, | 25 0. | 6. | 42 | ·6 | ``` With torsion-circle reading 17, the theodolite-reading was 249.30.58.4 107 248.37.30.8 17 249.30.7.1 ,, 250. 3.36.0 317 ,, ,, 17 249. 29. 22 .7 Therefore, from the 1st pair the difference for 90 of torsion was 51. 5.8 2nd pair 52. 36 .6 90 3rd pair 60 34. 19 .0 4th pair 60 35. 44 ·2 5th pair 53. 27 .6 90 6th pair 90 52. 36 ·3 7th pair 33. 28 .9 60 8th pair 60 34. 13 ·3 And the torsion force from the 1st pair is \frac{1}{105} of the earth's magnetic force 2nd pair is \frac{1}{104} ``` ``` 3rd pair is \frac{1}{106} 4th pair is \frac{1}{102} 5th pair is \frac{1}{100} 6th pair is \frac{1}{103} 7th pair is \frac{1}{108} 8th pair is \frac{1}{106} ``` 1848, January 6. The suspension skein was without torsion, when the torsion circle read 33°. 20', and the following experiments were made in the usual way. Observer, Mr. Glaisher. | | 0 | 1 | | o | , | " | |--|-------|---------|----------------------|------------------|-------------
----| | With torsion-circle reading | g 33. | 20, the | theodolite-reading v | vas 249 . | 46. | 37 | | • •• | 0. | 0 | | 250. | 5. | 57 | | ,, | 100. | 0 | ,, | 249. | 4. | 44 | | ,, | 120. | 0 | ,, | 248. | 52. | 28 | | ,, | 140. | 0 | ,, | 248. | 39. | 14 | | ,, | 10. | 0 | ** | 249. | 59 . | 48 | | ,, | 150. | 0 | ,, | 248. | 31. | 19 | | ,, | 160. | 0 | ,, | 248. | 26. | 19 | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 180. | 0 | ,, | 248. | 17. | 14 | | ,, | 200. | 0 | ,, | 248. | 7. | 15 | | ,, | 110. | 0 | 27 | 249. | 5. | 31 | | | | (c) 2 | | | | | ``` Therefore, from the 1st pair the difference for 33.20 was 19.20 2nd pair 100. 0 was 61.13 3rd pair 20. 0 was 12.16 ,, 4th pair 20. 0 was 13.14 5th pair 130. 0 was 80.34 ,, 6th pair 140. 0 was 88.29 10. 0 was 5. 0 7th pair ,, 8th pair 20. 0 was 9. 5 20. 0 was 9.59 9th pair ,, 10th pair 90. 0 was 58.16 ``` And the torsion force from the 1st pair is $\frac{1}{103}$ of the earth's magnetic force ``` 2nd pair is \frac{1}{98} 3rd pair is \frac{1}{98} 4th pair is \frac{1}{90} 5th pair is \frac{1}{96} 6th pair is \frac{1}{98} 7th pair is \frac{1}{120} 8th pair is \frac{1}{131} 9th pair is \frac{1}{100} ,, 10th pair is \frac{1}{93} ``` 1848, January 27. The following experiments were made for the determination of the Observer, Mr. Glaisher. torsion force of the suspension skein. ``` With torsion-circle reading 200, the theodolite-reading was 248. 7. 6.1 250. 1. 8.8 20 200 248. 6.39 .2 ,, 20 249. 59. 16 ·1 248. 5.46.0 200 ,, 20 249, 58. 30 .5 200 248. 5.25 1 ,, 20 249.57.32.3 ``` ``` Therefore, from the 1st pair the difference for 180 was 1.54. 3 2nd pair 180 was 1.54.30 ,, ,, 3rd pair 180 was 1.52.37 ,, 4th pair 180 was 1. 53. 30 ,, ,, 5th pair 180 was 1.52.45 ,, 180 was 1.53. 5 6th pair ,, 7th pair 180 was 1.52, 7 ,, ``` And the torsion force from the 1st pair is $\frac{1}{95}$ of the earth's magnetic force ``` 2nd pair is \frac{1}{94} ,, 3rd pair is \frac{1}{96} ,, 4th pair is \frac{1}{96} ,, 5th pair is \frac{1}{96} ,, 7th pair is \frac{1}{96} ,, ``` There was therefore evidently no change in the value of the torsion force between 1847, June 2, and 1848, January 27. On March 5, 1848, this skein broke. The mean of the 25 results gives the torsion force $\frac{1}{100}$ of the earth's magnetic force, and this value applies from 1847, June 2, to 1848, March 5. Determination of the Readings of the Horizontal Circle of the Theodolite corresponding to the Astronomical Meridian. The error of the level is determined by application of the spirit-level at the time of observation: due regard being paid, in the reduction, to the inequality of pivots already found. One division of the level is considered = 1'' 0526. The azimuth-reading is then corrected by this quantity; Correction = Elevation of W. end of axis x tan star's altitude. The readings of the azimuth circle increase as the instrument is turned from N. to E., S., and W.; from which it follows that the correction must have the same sign as the elevation of the W. end. The correction for the azimuth of the star observed has been computed independently in every observation, by a peculiar method, of which the principle is fully explained in the volumes for 1840, 1841, 1843, 1844, 1845. The formula and table used are the following. ``` Let A_{\prime\prime} = seconds of arc in star's azimuth, C_{\epsilon} = seconds in time of star's hour-angle, a_{\prime\prime} = seconds of star's N.P.D. for the day of observation, Then log. A_{\prime\prime} = log C_{\epsilon} + log. E + log. (a_{\prime\prime} + F) + log. \cos \phi. The values of log. E, F, and log. \cos \phi, are given in the following table:— ``` Tabulated Values of Log. Cos ϕ , for Different Values of C_s , and of the Quantities Log. E and F, for the Stars Polaris and δ Ursæ Minoris. | Hour | Log. Cos φ for | | | | | | | | | | |--------|------------------|-----------------|------------------|------------------|--|--|--|--|--|--| | Angle. | Polaris. | δ Ursæ Minoris. | Polaris S.P. | δ Ursæ Min. S.P. | | | | | | | | m
1 | 9 •99999 | 9 ·99999 | 9 ·99999 | 9 .99999 | | | | | | | | 2 | 999 | 999 | 999 | 999 | | | | | | | | 3 | 999 | 999 | 999 | 999 | | | | | | | | 4 | 998 | 998 | 998 | 998 | | | | | | | | 5 | 996 | 996 | 997 | 997 | | | | | | | | 6 | 994 | 994 | 996 | 996 | | | | | | | | 7 | 992 | 992 | 994 | 995 | | | | | | | | 8 | 990 | 989 | 992 | 993 | | | | | | | | 9 | 988 | 986 | 990 | 991 | | | | | | | | 10 | 985 | 983 | 988 | 989 | | | | | | | | 11 | 981 | 979 | 985 | 987 | | | | | | | | 12 | 978 | 975 | 982 | 984 | | | | | | | | 13 | 974 | 971 | 979 | 981 | | | | | | | | 14 | 970 | 966 | 975 | 978 | | | | | | | | 15 | 966 | 961 | 972 | 975 | | | | | | | | 16 | 961 | 955 | 968 | 971 | | | | | | | | 17 | 956 | 950 | 964 | 968 | | | | | | | | 18 | 951 | 944 | 959 | 964 | | | | | | | | 19 | 945 | 937 | 955 | 960 | | | | | | | | 20 | 939 | 930 | 950 | 956 | | | | | | | | 21 | 932 | 923 | 945 | 951 | | | | | | | | 22 | 926 | 915 | 939 | 946 | | | | | | | | 23 | 919 | 908 | 933 | 941 | | | | | | | | 24 | 912 | 900 | 928 | 936 | | | | | | | | 25 | 904 | 891 | 922 | 930 | | | | | | | | 26 | 896 | 882 | 915 | 925 | | | | | | | | 27 | 888 | 873 | 909 | 919 | | | | | | | | 28 | 880 | 863 | 902 | 912 | | | | | | | | 29 | 871 | 853 | 894 | 906 | | | | | | | | 30 | 9 •99862 | 9 ·99843 | 9 •99887 | 9 .99900 | | | | | | | | Log. E | 6 .09721 | 6 · 13638 | -6 ·03899 | -6·00717 | | | | | | | | F | <u>_186" ·79</u> | -944" .71 | +181" .57 | +886" .86 | | | | | | | The following table contains the whole of the operations for determining the readings for the astronomical meridian in 1847:— Š Observations with the Magnetic Theodolite at the Royal Observatory, Greenwich, for ascertaining the Reading of its Horizontal Circle corresponding to the Astronomical Meridian. | Observer. | 5 | G 7 | H H | 'n | е н | |---|--|--|---|--|---| | Corrected
Reading
for North
Meridian. | 89. 49. 23. 5 G н | 89. 48. 45 ·6 д. в | 9,8 | 89.49.15 1 | 89. 49. 31 .4 с н | | Corrected
Reading
for North
Meridian. | 9.49. | 9.48. | 89. 49. |). 49. | .49. | | | 67. | 4.3 | 9. 8 | | 8.0 | | W. end Corresof
of ponding
Level Correc-
High. tion. | 0 + | 4 | 8 | + 1.8 | 0 + | | W. end
of
Level
High. | div. 0 ·2 | -3.4 | -3.1 | 1 | 1 | | ▼ 22円 | div div 49, 23 ·4 + 0 ·2 | 6. | | ÷ | 0+9 | | Mean. | , 8. | . 49 | 49, 14 .2 | .13 | . 30 | | ž | 39.49 | 89. 49. 5.4
89. 48. 56.1
89. 49. 10.1
89. 48. 19.7
89. 49. 11.3
89. 48. 36.4
89. 48. 30.0 | င္တဲ့ | 89.48. 5.6
89.49.29.8
89.49.24.0
89.49.25.7
89.49.23.5
89.49.34.5 | 89, 49, 30 ·6 + 0 ·7 | | for to an. | 89. 49. 20. 2
89. 49. 20. 2
89. 49. 22. 3
89. 49. 32. 6
89. 49. 33. 7
89. 49. 17. 5
89. 49. 19. 6
89. 49. 12. 0 | 89. 49. 5.4
89. 48. 56.1
89. 49. 10.1
89. 49. 11.3
89. 49. 11.3
89. 48. 36.4
89. 48. 30.0 | 89.49. 6.7
89.49.15.1
89.49. 20.0
89.49. 5.7
89.49.20.7
89.49.14.0
89.49.21.3 | 89.48.5.6
89.49.29.8
89.49.24.0
89.49.22.7
89.49.23.5 | 89. 49. 24. 2
89. 49. 57. 5
89. 49. 14. 6
89. 49. 57. 5
89. 49. 30. 4
89. 48. 36. 4 | | Resulting
Reading for
North
Meridian. | - 449.22
449.33
449.13 | 89. 49. 5.4
89. 48. 56 1
89. 49. 10 1
89. 48. 19 7
89. 48. 19 7
89. 48. 36 4
89. 48. 30 0 | 89, 49, 67
89, 49, 15 1
89, 49, 20 0
89, 49, 5 7
89, 49, 20 7
89, 49, 14 0
89, 49, 21 3
89, 49, 10 1 | 48.5
49.5
49.5
49.3 | 49.5
49.5
49.3
48.3 | | Reg R | 0 | | 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | 1 | | Correction
to
Meridian
in Azimuth. | + 16.11 :9
+ 12. 5 :6
+ 1.42 :6
- 0.39 :1
- 10.34 :2
- 11.57 :0 | - 3.47 ·9
- 5.55 ·5
- 7.21 ·6
- 9.23 ·6
-10.40 ·4
-12.38 ·6
-14.56 ·7 | +12.49:3
+ 8. 1.4
+ 5. 4:0
+ 2.28:0
- 1.36:0
- 5.14:7
-10.10:7 | +12.53.9
+11. 9.8
+ 9.45.7
+ 8.33.7
+ 6.46.9
+ 5.31.2 | - 3.50 8
- 8. 4 2
- 15.58 7
- 20.35 8
- 25.24 6 | | Correction to Meridian | | - 3.
- 7.
- 10.
- 14. | + + + + 12.
+ + + 8.
- 1.2.
- 10. | + 12.
+ 11.
+ 9.
+ 6. | 20.3
25.29 | | | 1 | 4 | | 2 | | | N. P. D
of
Object. | 1.30 | 1.30 | 3.24 | 1.30 | 3. 24. 24 | | | 4. 14 | 4. 7 | 1. 23 | 4. | 21.28 | | R. A.
of
Object. | a; | ä | 11. 46 18, 21, 23 3, 24, 2
15, 22
17, 35
19, 32
22, 35
25, 19
29, 1 | - | <u>&</u> | | real | 44 12. 37. 40
29 12. 44. 25
30 13. 1. 26
22 13. 5. 18
27 13. 18. 23
37 13. 21. 33
53 13. 23. 49
17 13. 26. 13 | 45 89, 52, 53 3 13, 9, 11 13, 10, 20
45 89, 54, 51 7 13, 12, 40 13, 13, 49
25 89, 56, 31 7 13, 15, 51 13, 17, 0
35 89, 57, 43 3 13, 18, 21 13, 19, 30
45 89, 59, 51 7 13, 21, 27 13, 22, 36
5 90, 1, 15 0 13, 23, 41 13, 24, 50
20 90, 3, 26 7 13,
27, 28 13, 28, 37 | 6. 11. 46
6. 15. 22
6. 17. 35
6. 19. 32
6. 22. 35
6. 25. 19
6. 29. 1 | $\begin{array}{c} 7089.35.11 7712.41.4112.42.56 \\ 1089.38.20012.44.3211245.47 \\ 3089.39.38 3912.46.5011248. 5 \\ 4089.4099012 484812.50.59 \\ 2589.42.36 7712.51.4312.52.58 \\ 5589.44.3 312.53.4712.55.2 \end{array}$ | 6.24.21
6.27.31
6.33.27
6.36.55
6.40.32
6.43.23 | | Sidereal
Time. | 44 2, 37, 40
29 2, 44, 25
30 3, 1, 26
22 13, 5, 18
27 13, 18, 23
37 13, 21, 23
17 13, 26, 13 | 13. 13. 13. 13. 13. 13. 23. 23. 23. 23. 23. 23. 23. 23. 23. 2 | 6,6,6,6,6 | 12.4
12.4
12.5
12.5
12.5 | 6.24.
6.27.
6.33.
6.40.
6.43. | | ck
ne. | 16.44
13.29
13.29
14.22
17.27
17.27
10.37
12.53 | 9.11
2.40
5.51
8.21
1.27
3.41 | 6, 10, 36
6, 14, 12
6, 16, 25
6, 18, 22
6, 21, 25
6, 24, 9
6, 27, 51
6, 30, 50 | 1.41
4.32
6.50
8.48
1.43
3.47 | 6.22.54
6.26.4
6.32.0
6.35.28
6.39.5 | | Clock
Time. | 4 2 2 2 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 | 13. 13. 13. 13. 13. 2 13. 2 13. 2 | 6. 10. 3
6. 16. 1
6. 16. 2
6. 21. 2
6. 27. 5
6. 30. 5 | 12.4
12.4
12.4
12.5 | 6.6.6.6 | | | 089.33, 8 312.36,4412.37,40
089.37,16 712,43,2912,44,25
589.47,43 313, 0.3013, 1.26
089.56,11 713, 4,2213, 5,18
689.56,15 013,17,13,18,23
089.51,713,20,3713,21,33
090, 1,16 713,22,5313,23,43 | 53 ·3
51 ·7
81 ·7
81 ·7
51 ·7
15 ·0 | 17 · 3
13 · 7
16 · 0
37 · 7
56 · 7
28 · 7
32 · 0 | 89. 35. 11 · 7 12. 41. 41
89. 38. 20 · 0 12. 44. 32
89. 39. 38. 312. 46. 50
89. 40 · 0 12. 48. 43
89. 42. 36 · 7 12. 51. 43
89. 44. 3 · 3 12. 53. 47 | 89. 53. 15.0
89. 58. 1.7
90. 5. 13.3
90. 10. 33.3
90. 14. 55.0 | | Mean, | 33.
37.
47.
50.
58.
1. | 52.
54.
56.
57.
59.
3. | 36.
41.
44.
50.
54.
59. | 4 4 4 9 38 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 53.
58.
10.
17. | | ا د ایـ | 60 89.33. 8 312.36.44 [2.37.40] 10 89.37.16 712.43.29 [2.44.25] 25 89.47.43.313. 0.30 [3. 1.26] 10 89.50.11 713. 4.22 [3. 5.18] 55 89.59.17 [3. 20.37] 10 90. 1.16 7 [3. 22.53] [3. 23.49] 30 90. 2.36 7 [3. 25.17] [3. 26.13] | 45 89.5
25 89.5
25 89.5
35 89.5
45 89.5
5 90. | 3 89, 36, 17; 3
68 89, 41, 13; 7
10 89, 44, 16; 0
30 89, 46, 37; 7
50 89, 50, 56; 7
23 89, 54, 28; 7
28 89, 59, 32; 0
15 90, 3, 19; 3 | 70 89. 35. 11.7 12. 41. 41
10 89. 38. 20 0 12. 44. 32
38. 39. 39. 38. 312. 46. 50
40 89. 40. 49. 0 12. 48. 43
25 89. 42. 36. 7 12. 51. 43
55 89. 44. 3 3 12. 53. 47 | 5 89, 53, 15, 0
55 89, 58, 1, 7
75 90, 5, 13, 3
20 90, 10, 33, 3
50 90, 14, 55, 0
40 90, 17, 48, 3 | | of
niers. | : 00000000 | 0000000 | 0 10 0 20 0 10 0 | 202220 | 0 10 10 10 0 | | Reading of ircle Verniers. | 26 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 72
20
20
20
40
40
40
40
40
40
40
40
40
40
40
40
40 | 43 23 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 86268 | 40
85
90
65
75 | | Rez
Jircle | . 32.
. 37.
. 37.
. 50.
. 58.
. 59.
. 1. | 7.52.
7.54.
7.56.
7.59.
7.3. | 3. 59. 36. 3. 59. 3. 59. 3. 59. 3. 59. 3. 59. 3. 59. 3. 59. 3. 59. 3. 59. 3. 59. 3. 59. 3. 59. 3. 59. 3. 59. 3. 59. 3. 59. 59. 59. 59. 59. 59. 59. 59. 59. 59 | 9.34.
9.38.
9.40.
9.42. | 9. 53.
9. 57.
9. 10.
9. 14.
9. 17. | | ည်း
အ | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 | 888888888 | 88
82 82 82 82 82 82 82 82 82 82 82 82 82 8 | <u>ක් කු කු කු නු නු න</u> ු 1 | 86
86
86
86
86
86
86
86
86
86
86
86
86
8 | | Reading of Micro-meter Wire. | . 00 | 6.00 | . 00 | 900.2 | 9. 001 | | | | | a.
S | | | | ect. | Polaris S.P | S. P. | Min. | si l | Min. | | Object. | olaris | olaris | Jr.sæ | olarii | rsæ | | | | <u>a</u> | 15 & Ursæ Min. S.P. 100 ·538 89. 36. 40
89. 40. 98 89. 44. 36
89. 46. 60 80
89. 54. 53 1
89. 54. 53 1
89. 59. 53 1 | o 1 | ν
Σ | | Day,
1847. | Feb. 1 | Feb. 11 | Feb. 15 | Feb. 16 | Mar. 3 | | | 124 | <u> </u> | <u>.</u> [1 | I. | | February 11. The star was very tremulous and it was frequently obscured by haze: the observations on this day have not been used in deducing the adopted reading for the astronomical meridian. February 15. The correction to Mr. Breen's vernier-readings before these observations was 3".3 additive, and it was 13".4 subtractive afterwards: a correction of 5".00 subtractive has been applied to the above observations. Observations with the Magnetic Theodolite at the Royal Observatory, Greenwich, for ascertaining the Reading of its Horizontal Circle corresponding to the Astronomical Meridian-continued. | Observer. | | E O | E 3 | 0.1 T D | 89. 49. 15 ·6 а н | G H | T D | |--|-----------------------------------|---|---|--|---|---|---| | ed the | , | 84. 49. 25 •2 с н | 89. 49. 19 · 2 с н | 0.1 | 9. 9 | 89. 49. 26 -4 с н | 5.2 T D | | Corrected
Reading
for North
Meridian. | _ | 9.2 | 9.18 | 9. | 9.1 | 9.8 | | | Cor.
Res
Mer | ٥ | 4.4 | 9.4 | 89. 49. | 9.4 | 9.4 | 89. 49. | | | | | | | | | | | Corres-
ponding
Correc-
tion. | * | 7 -3 | 1.0 | 0 · 1 | -10.4 | 4
52 | 4 · 9 | | <u> </u> | | + | ll | + | 7 | 1 | 1 | | W. end Corresof
of ponding
Level Correction. | div. | 8. | 8.0- | | -8.3 | -3.4 | -3.9 | | ¥.7,₹ | | 89, 49, 14 · 9
89, 49, 23 · 8
89, 49, 15 · 8
89, 49, 35 · 4
89, 49, 37 · 6
89, 49, 18 · 5
89, 49, 18 · 5
89, 49, 2 · 1 | Ĩ | 0.0 + 0.1 | 1 | Ĭ | <u> </u> | | , | , | 0 | 49. 20 •2 | 0.0 | 89. 49. 25 ·5
89. 49. 22 ·9
89. 49. 28 ·3 89. 49. 25 ·9
89. 49. 30 ·6
89. 49. 22 ·4 | 89, 49, 28 · 3
89, 49, 32 · 7
89, 49, 29 · 2 89, 49, 30 · 6
89, 49, 33 · 8
89, 49, 29 · 3 | 89. 49. 10 -2 | | Mean | • | 1.6 | 19.2 | 6 | 19.5 | 6.3 | 19.1 | | Σ | 0 | 39.4 | 39.4 | 39.4 | 39.4 | 39.4 | 39.4 | | for
n. | 89. 49. 30 ·2 | 89. 49. 14 ·9 89. 49. 23 ·8 89. 49. 15 ·8 89. 49. 35 ·4 89. 49. 37 ·6 89. 48. 55 ·7 89. 49. 18 ·5 | 89, 49, 36 · 5
89, 48, 50 · 7
89, 48, 50 · 7
89, 49, 25 · 6
89, 49, 16 · 5
89, 49, 16 · 5
89, 49, 16 · 5
89, 49, 18 · 51 · 8 | 89, 49, 18 2
89, 49, 4 ·
3
89, 48, 53 · 3
89, 48, 28 · 8
89, 48, 52 · 7
89, 49, 34 · 5 | က် ထဲ လူ ထဲ 🛧 | <u> </u> | | | tesultin
sading
North
feridia | .30 | 33.35 | | . 18
. 48
. 28
. 28
. 52
. 34 | 23,82 | 38888 | 2.25 | | Resulting
Reading for
North
Meridian. | 9.49
9.49 | 24.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6 | 45.45.65.45.45.45.45.45.45.45.45.45.45.45.45.45 | 2.45
9.45
9.48
9.48
9.49 | 24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0 | 89. 49. 28 · 3
89. 49. 32 · 7
89. 49. 29 · 2
89. 49. 33 · 8
89. 49. 39 · 3 | 89, 48, 59 · 3
89, 49, 21 · 8
89, 49, 11 · 1
89, 49, 8 · 5 | | _ <u> </u> | 86 86 | | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | Correction
to
Meridian
in Azimuth. | , "
-32.36.5
-35.2.5 | 7.58.2
5.50.5
4.29.1
1.58.7
0.32.4
3. 6.0
6.29.6 | 1. 4 · 9
3. 6 · 0
4. 19 · 4
7. 20 · 4
9. 8 · 5
10. 7 · 9 | + 5.53.2
+ 1.34.3
- 2.11.7
- 4.31.8
- 6.31.2
- 8.57.3 | + 18.40 5
+ 16.36 2
+ 15.26 6
+ 14.13 9
+ 12.55 7 | 9.41.7
8.17.7
6.48.2
4.38.1
2.47.6 | + 10. 27. 6
+ 7. 38. 4
+ 4. 34. 5
+ 1. 12. 5 | | to
to
leric
Azin | 32.3 | 6.4.1.0 | + | 3.4.9.9.
6.3.3. | 8.05.4.2
2.24.2 | 9.80.4.9 | 7.3 | | | ĨĨ | ++++1111 | +111111 | ++ | | ++++ | | | N. P. D.
of
Object. | 1.24 | | . 30, 12 | .30.16 | 1.31 | 1.30.31 | .31 | | N. P. D
of
Object. | 2.2 |
 | 1.30 | | 1. 30. | 3 | 1.30. | | | 6.45.57 18.21.28 3.24.24 6.48.47 | 3, 53 1, 30, 1 | 3.51 | 3.48 | 4 | rg. | 9 | | R. A.
of
Object. | m
21. | က် | က် | e. | 4 | 4 | 4 | | _ 0 | и 8. | - | - | - | - i | - | -i | | real
re. | 57 | 0 10 89, 41, 16 7 12, 49, 27 12, 50, 51 1
5 25 89, 43, 33 3 12, 52, 56 12, 54, 20
0 40 89, 44, 46 7 12, 55, 912, 56, 33
0 30 89, 47, 36, 7 12, 59, 1513, 0, 39
0 70 89, 50, 10 0 13, 3, 22 13, 4, 46
5 55 89, 52, 1 7 13, 10, 12 13, 11, 36
5 5 89, 55, 31, 7 13, 13, 613, 14, 30 | 5 25 89. 48. 31.7 [13. 0, 47] 13. 2. 5 1. 3
5 45 89. 50. 51. 7 [13. 4, 37] 13. 5. 55
0 50 89. 51. 56. 7 [13. 7, 37] 13. 10. 55
0 35 89. 55. 41. 7 [13. 14, 33] 13. 10. 55
15 89. 56. 41. 7 [13. 14, 33] 13. 15. 51
0 50 89. 59. 51. 7 [13. 19, 40] 13. 20. 58
5 30 90. 1, 40. 0 [13. 23. 30] 13. 24. 48 | 20 89.43.25 · 0 12.53.39 12.54.11 25 89 47.30 · 013. 0.42 13. 1.14 60 89.51. 5 · 013. 6.51 13. 7.23 15 89.53. 20 · 013. 10.45 13. 13. 15 15 89.55. 0 · 013. 13. 55 13. 14. 27 45 89.57. 50 · 013. 17.54 13. 18. 26 45 90. 1.35 · 013. 22.54 13. 23. 26 | 35 89, 30, 45 ·0 12, 36, 23 12, 33, 34
40 89, 32, 46 ·7 12, 39, 47 12, 36, 58
45 89, 34, 17 12, 41, 41 12, 38, 52
10 89, 35, 16 ·7 12, 41, 41 12, 38, 52
20 89, 36, 26 ·7 12, 45, 48 12, 42, 59 | 40 89, 39, 46, 7 12, 51, 7 12, 48, 17 589, 41, 15, 012, 53, 24, 12, 50, 34, 25, 50, 12, 55, 50, 12, 53, 00, 94, 25, 712, 25, 22, 12, 56, 32, 30, 89, 46, 41, 7, 13, 2, 22, 12, 59, 32, 30, 89, 46, 41, 7, 13, 2, 22, 12, 59, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32 | 20 89, 38, 31, 7 12, 49, 55 12, 47, 3
30 89, 41, 43, 31 2, 54, 31 12, 51, 39
20 89, 44, 36, 71 2, 59, 31 12, 56, 39
43 89, 47, 56, 0 13, 5, 0 13, 2, 8 | | Sidereal
Time. | h п
6.45
6.48 | 2 | 42.42.44 | 2,0,0,0,0,0 | 88844 | 4 5 5 5 5 | 2. 51.
2. 56.
3. 2. | | | • 98 | 62888967 | 37 11 37 11 30 11 30 11 11 11 11 11 11 11 11 11 11 11 11 11 | 0010044 | 22208 | V 4 6 8 8 | 3222 | | Clock
Time. | a 4.7. | 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 0.4.0.4.7.0.8 | 20000000 | 8.02 ± 8.02
1.02 ± 1.02
1.02 ± 1.02
1.03 ± 1.03
1.03 1.03 ± 1.03
1.03 ± 1.03
1.03 ± 1.03
1.03 ± 1.03
1.03 ± 1.03
1.03 ± 1.03 ± 1.03
1.03 ± 1.03 ± 1.03
1.03 ± 1.03 ± 1.03
1.03 ± 1.03 ± 1.03 ± 1.03
1.03 ± 1.0 | 2.6.5.6.6. | 5.50 | | C | b m s
6.44.30
6.47.20 | 2222222 | 5. | 20 89, 43, 25 · 0 12, 5
25 89, 47, 30 · 0 13,
60 89, 51, 5 · 0 13,
189, 53, 20 · 0 13, 1
55 89, 55, 0 · 0 13, 1
45 89, 57, 50 · 0 13, 1
45 90, 1, 35 · 0 13, 2 | 12. 36. 23
12. 39. 47
12. 41. 41
12. 43. 40
12. 45. 48 | 40 89, 39, 46, 7 12, 51.
589, 41, 15, 0 12, 53, 25, 89, 42, 41, 0 12, 55, 50, 89, 44, 55, 7 12, 59, 50, 89, 46, 41, 7 13, 2, 5 | 20 89. 38. 31. 7 12. 49. 55 12. 30 89. 41. 43. 31 12. 54. 31 12. 20 89. 44. 36. 7 12. 59. 31 12. 43 89. 47. 56. 0 13. 5. 0 13. | | | "
6.7
6.7 | V. W. V. O. V. V. | 25 89. 48.31.7
45 89. 50. 51. 7
50 89. 51. 56. 71
35 89. 53. 41.71
15 89. 59. 51. 7
50 89. 59. 51. 7
30 90. 1.40.01 | 999999 | ウンンンン | V00VV | 0.737 | | Mean. | 60 90. 22. 6.7
50 90. 24. 56.7 | 1 8 4 8 1 1 8 | 6.0.2.4.9.2.4 | 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 35 89. 30. 45 · 0
40 89. 32. 46 · 7
45 89. 34. 1 · 7
10 89. 35. 16 · 7
20 89. 36. 26 · 7 | 41424 | 6.4.8.3 | | M | 0.0 | 444453333 | 9.99.99.99 | 4.6.00.00 | 00000 | 200000 | 6.00
4.44 | | # O | 200 | _ | X # 5 % X # 5 6 8 | 8885555 | 22228
22228 | 3 to 15 5 5 | 8888 | | of
niers | 50° % | 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 15
335
40
40
10
10
10
10
10
10
10 | 10
15
15
15
15
15
15
15
15
15
15
15
15
15 | 50.50.00 | 80848 | 25 55 5
55 55 55 55 55 55 55 55 55 55 55 | | Reading of Circle Verniers. | 4 | 0000000 | | 404 | 0,0,0,0 | 10 00 00 00 00 00 00 00 00 00 00 00 00 0 | 10.000 | | teadi
cle | , "
1.90
4.80 | 3.6.4.
3.0.9.0.5.
3.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0. | 3.55
3.76
3.56
3.56
3.56 | 3.46
3.46
1.80
1.80 | 22.83.33 | 6.28
6.28
6.28 | 9.1.4.7 | | Circ | 0.21
0.24 | 444446 | 9.55 | 9. 54.
9. 55.
9. 57.
1. 57. | 99999 | 8.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4 | 6.00 | | | <u> </u> | 80 80 80 80 80 80 80 80 80 80 80 80 80 8 | <u>\$\infty</u> | <u>88</u> 88 88 88 88 88 88 | 88
98
98
98
98
98
98
98
98
98
98
98
98
9 | 80 80 30 80 80
80 | 1 80 80 80 80
1 80
1 80 | | Reading of Micro-meter Wire. | 3.5 | 3.0 | . 6 | ·9. 0 | 0 .5: | 0 .5. | 0 -5 | | K K " " " | ğ | 9 | 14 Polaris S. P 100 ·538 89, 48, 55
89, 50, 75
89, 51, 80
89, 53, 70
89, 56, 65
89, 59, 65
89, 59, 65
90, 1, 65 | 9 | Š. | <u>ē</u> | <u> </u> | | | S.P | a. | | | | | | | Object. | Min. | zi
zi | Ś | S | S. | S. | S. | | Oth | 8 | aris | aris | aris | aris | aris | aris | | | Un | Pol | Pol | Pol | Pol | Pol | Pol | | | 8 | 9 | 7 | 68 | 8 | 12 | 3 | | Day,
1847. | Mar. 3 | Mar. 10 | Mar. 14 | Mar. 29 | May 20 | May 21 | May 22 | | | 2 | 2 | ≥ | 2 | A | ≥: | ≥ | March 29. In deducing the adopted reading for the astronomical meridian, half weight only was given to the result from the observations on this day. Observations with the Magnetic Theodolite at the Royal Observatory, Greenwich, for ascertaining the Reading of its Horizontal Circle corresponding to the Astronomical Meridian-continued. | | | | 1 = | , , , | | | | | |---|-------------------------|--|---|---|---|--|---|--| | | 92dO | 5 | 5 | 5 | <u> </u> | <u>5</u> | 0 | <u> </u> | | Corres- Corrected ponding Reading for | North
Meridian. | 89.48.46.5 С н | 89. 48. 26 -9 с н | 89.48.35 -9 с н | 89. 47. 52 ·3 T D | 89. 48. 36 ·8 с н | 89. 48. 45 -4 G н | 89.48.42.7 T D | | W. end Corres-
of ponding | Correc-
tion. | 1.9 + | -10 .6 | -11 -0 | 9.4 | 7.5
+ | - 2.1 | - 2:1 | | W. end | Level
High. | div. | -7.1 | 1-7.4 | 6.9- | +2.3 | -1.5 | 5.1- | | | Mean. | 89.48.39.6 | 89. 48. 37 ·5 | 89, 48, 46 ·9 | 89.48. 1.7 | 89. 48. 33 ·6 | 89.48.47 ·5 | 89. 48. 44 .8 | | Resulting
Reading for | | 89.48. 6·3
89.48. 4.2
89.49.15 889.48.39 8 + 4·5
89.48.41 6
89.48.51 1 | 89.48.16.9
89.48.35.6
89.48.36.4
89.48.55.7
89.48.42.6 | 9.5 89.48.42.2
14. 89.48.42.3
19.7 89.48.42.3
17. 89.48.3 3.0
17. 89.48.3 3.0 | 89.47. 7 0
89.48.35 5
89.48.32 7 89.48. 1 7 -
89.48.30 5
89.47.22 8 |
89, 48, 43 · 0
89, 48, 34 · 2
89, 48, 22 · 989, 48, 33 · 6 + 2 · 3
89, 48, 42 · 6
89, 48, 25 · 4 | 89, 48, 42 · 8
89, 49, 1 · 9
89, 48, 39 · 4 89, 48, 47 · 5
89, 49, 0 · 9
89, 48, 32 · 4 | | | Correction
to | Meridian
in Azimuth. | + 4. 3.0
+ 8.27.5
+ 12.45.8
+ 14.43.3
+ 17.17.8 | +10.2
+13.2
+17.1
+19.4
+22.5 | -27.10·1
-21.29·5
-18.4·4
-13.49·7
-11.13·7 | - 3.58·0
+ 1.18·8
+ 5.47·7
+ 9. 5·5
+ 17.41·1 | + 9.58 0
+11.24 2
+12.37 9
+13.50 9
+15.7 1 | -19. 3.9
-15.36.4
-13.58.9
-12.17.4
-10. 2.6 | -15.59.0
-13.49.7
-12.31.0
-10.33.1
- 9.20.8
- 6.33.8
- 5.10.3 | | N. P. D. | of
Object. | * O | 9 | 3, 23, 54 | 3. 23. 54 | 5.23 1.30.21 | 5.32 1.30.11 | 5. 32 1. 30. 10 | | , | of
Object. | h m s
18.21.54 | 18, 30, 50 18, 28, 35 18, 21, 54 3, 24, 18, 32, 5118, 30, 36 18, 35, 1618, 33, 1 18, 36, 5618, 34, 41 18, 38, 57, 18, 36, 42 | 18. 21. 48 3. 23. 54 | 18.21.47 | -i | i | i i | | Sidereal | Time. | h m s
18.24.31
18.27.22
18.30.9
18.31.25 | 18. 28. 35
18. 30. 36
18. 33. 1
18. 34. 41
18. 36. 42 | 15.46 7 18. 6.24 18. 4.12 10. 11.718.10. 518. 7.53 6.46 718.12.1818.10. 6.240 018.15. 318.12.51 0.16 7 18.16.44 18.14.32 | 18. 19. 13
18. 22. 38
18. 25. 32
18. 27. 40
18. 33. 14 | 1. 20. 37
1. 22. 49
1. 24. 42
1. 26. 34
1. 28. 31 | 0.36.16
0.41.36
0.44.6
0.46.42
0.50.9 | 0.41. 1
0.44.20
0.46.21
0.49.22
0.51.13
0.55.29
0.57.37
1.0.30 | | Clock | Time. | 18.26.28
18.29.19
18.32.6
18.33.22
18.33.22 | 18.30.50
18.32.51
18.35.16
18.36.56
18.38.57 | 18. 6.24
18.10. 5
18.12.18
18.15. 3
18.15. 3 | 18.21.42
18.25.7
18.28.1
18.30.9 | 1. 24. 18
1. 26. 30
1. 28. 23
1. 30. 15
1. 32. 12 | 0.41.24
0.46.44
0.49.14
0.51.50
0.55.17 | 0.46.15
0.49.34
0.51.35
0.54.36
0.56.27
1.06.43
1.2.51
1.5.44 | | | Mean. | 55 89.44. 3·318.26. 2818. 24. 3118. 21. 54 3. 24. 56 89. 39. 56 7718. 29. 1918. 27. 22 808. 36. 30. 018. 32. 618. 30. 9 50. 89. 33. 58. 318. 33. 22. 18. 33. 25 89. 31. 33. 31. 25 25 89. 31. 33. 31. 8. 35. 21. 8. 33. 55 | 0 50 89.37.56 7 18.30.50 18.28.35 18
0 65 89.35. 8 3 18.32.5118.30.36
0 15 89.31.25 0 18.35.1618.33. 1
0 65 89.29.10 0 18.36.5618.34.41
5 40 89.25.50 0 18.38.57 18.36.42 | 90. 15. 46 7 18. 6. 24 18. 4. 12
90. 10. 11. 718. 10. 5118. 7. 53
90. 6. 46 7 18. 12. 1818. 10. 6
90. 2. 40 9018. 15. 318. 12. 6
90. 0. 16. 7 18. 16. 44 18. 14. 32 | 5589.51. 5 0 18.21.42 18.19.13 10 89.47.16 718.25. 718.22.38 35 89.42.45 0 18.28. 118.25.32 15 89.39.25 0 18.30. 918.27.40 35 89.29.41 718.35.43 18.33.14 | 35 89. 38. 45 · 0
60 89. 37. 10 · 0
35 89. 35. 45 · 0
45 89. 34. 51 · 7
5 89. 33. 18 · 3 | 35 90. 7.46·7
30 90. 4.38·3
30 90. 2.38·3
5 90. 1.18·3
25 89.56.35·0 | 35 90. 4, 46 7
10 90. 2. 20 0
55 90. 1. 5 0
50 89. 58. 16 7
5 89. 55. 15 0
5 89. 52. 15 0 | | · s | ٥ | 25088 | 02 52 12 5 4
8 8 8 8 8 8 | 40 90.
65 90.
40 90.
30 90.
10 90. | 35
35
35
35
35 | 8888 c | 8 8 8 8 8 | 35 90.
10 90.
10 89.
50 89.
50 89.
50 89.
50 89. | | g of
nier | В | 240
240
20
20
20
20 | 4 2 4 2 8 | . 10 to to to | 30858 | 1033333 | 88898 | 0 2 2 0 2 0 0 0 | | Reading of
Circle Verniers. | Y | 89.43.80
89.39.80
89.36.55
89.33.85 | 89.37.80
89.34.90
89.31.50
89.28.95 | 90. 15. 70
90. 9. 95
90. 6. 70
90. 2. 65
90. 0. 40 | 89.50.90
89.47.40
89.42.70
89.39.50
89.29.65 | 89.38.70
89.35.70
89.35.70
89.34.75
89.33.40 | 90. 7.75
90. 4.65
90. 2.65
90. 1.40
89.58.60 | 90. 4.75
90. 2.45
90. 2.45
89.59.40
89.57.85
89.57.85
89.55.40
89.52.40 | | Reading of Miero. | meter. | | | | | | 100 -538 | 100 .538 | | Oliver | Onject. | 7 8 Ursæ Minoris 100 ·538 | 8 Ursæ Minoris 100 ·538 | 1 | | , | , | Polaris | | Day, | 1847. | June 15 | June 22 | eo 1 | | . 1 | . [| Oct. 7 | August 3. The results are discordant; no use has been made of them. Oct. 7. The readings of the circle verniers were all two minutes less than those above: half weight has been given to the final result in the determination of the adopted reading. Observations with the Magnetic Theodolite at the Royal Observatory, Greenwich, for ascertaining the Reading of its Horizontal Circle corresponding to the Astronomical Meridian-concluded. | Server. | 90 | _ | | • | Ξ | _ | | | _ | | , | | _ | 1 | _ | _ | Ω | - | _ | _ | |---|-------------------------------|----------|---|--------------|--|--------------|--------------------------|---------------------|-----------|--|----------|----------|-------------------------------|-------------------|-----------|---------------------|----------------|----------|----------|--------------------------------| | 4 | | | | _ | ₩ 9.8 | _ | | | | _ | <u>_</u> | _ | | 屵 | | | 89.48.37 ·8 T | | _ | | | sted
g fo | : <u>.</u> | | | | œ | | | | | c | 7 | | | | | | 37 | | | | | din S | | | | | 4 9 | | | | | 9 | ċ | | | 1 | | | 4 8 | | | | | ပြည္ဆီ | Meridian | 0 | | | 68 | | | | | 0 | 6 | | | 1 | | | 39 | | | | | - 80 G | ٠. إ | | | _ | ₹ | _ | | Ī | _ | | · | | _ | i- | | | _ | _ | _ | | | orre
ndi | tion | * | | | ÷ | | | | | ç | ? | | | | | | .9 | | | | | W. end Corres- Corrected of ponding Reading for | 5 | _ | | | + | | | _ | _ | | + | | | _ | | | + | _ | | | | N. end of | High. | div. | | | • | | | | | 9 | | | | İ | | | 4 | | | | | W. | i E | ۳, | | | + | | | | | 2 | + | | | | | | + | | | | | | | " | | | 3.3 | | | | | _ | 5 | | | | | | : | | | | | Moon | | ` | | | | | | | | | ä | | | | | | .3 | | | | | Ž | 1 | ۰ | | | .4. | | | j | | • | ž. | | | | | | .48 | | | | | | | Ľ | _ | 7# | <u>4</u> | 90 | 0 | | on. | 2 | 6 | _ | 0 | <u> </u> | | (5 | <u>88</u> | ~ | _ | | | ing
r fo | an. | = | | 60 | 4. | ب | 6 | 5. | <u></u> | 5 | | ö | = | 1. 1 | 8 | 3 | ٠
9 | 7. | 5. | <u>5</u> | | Resulting
Reading for | idi. | - | 9.5 | 89, 48, 59 4 | 89.49. 4.489.49. 5.3 +2.4 + 3.4 89.49. | 6 | 8. | 89.49.15.9 | 9. | 8. | 8.5 | 6 | 89.49.11.2 | 89.48.17.7 | 89.49.8.6 | 8.4 | 8.4 | 80 | 8.3 | 89.47.42.9 | | Res
teac | Me | | 9.4 | 9.4 | 9.4 | 9.4 | 9.4 | 9.4 | 9.4 | 9.4 | 9.4 | 9.4 | 9.4 | 9.4 | 9.4 | 9.4 | 9.4 | 9.4 | 4.6 | 9.4 | | Correction Resulting to Reading for | Object. in Azimuth. Meridian. | | 5. 25 1. 29. 55 - 19. 22 ·3 89. 49. 27 ·7 | <u> </u> | <u></u> | œ. | ος. | 30 | <u>30</u> | +14. 0.9 89.48.10.2 0. 0. 0.0. 0.0. 0.0. 0.0. 19.0 | <u></u> | δĊ | œ. | <u>ئة ا</u> | ŏ | -13.11 4 89.48.43 6 | <u> </u> | <u>∞</u> | <u>ळ</u> | <u>86</u> | | tio | nut] | " | 6 2 | s
S | 6.1
6.3 | ŝ | 7.5 | 6.0 | 7:1 | ç | 8 | 7. | £ .5 | 2 .3 | 7. | 1:4 | 9.0 | 9 | 9 | 0.4 | | Correction
to
Maridian | Zir | | 9.2 | 7.2 | -15.52.3 | 4.3 | 3. | 1.29.54 +10.20.9 | 2.7 | | 5.1 | 6.2 | +17.34.5 | 1.29.53 - 17.52.3 | 4.2 | 3.1 | ٠.
دن | ŝ | 5.2 | 4. | | ပ္ပ | n A | | Ĩ | 7 | 7 | Ť | 7 | =+ | ;;
+ | Ť | = | ∓ | : | 7 | Ť | 7 | 7 | 1 | ı | ī | | R. A. N. P. D. | نب | - | 55 | | | <u> </u> | | 54 | _ | ÷ | _ | | | 53 | · | ÷ | ÷ | - | ÷ | <u></u> | | و. تو | . Š. | - | 53 | | | | | 53 | | | | | | 65 | | | | | | | | <u>z</u> | | ۰ | = | | | | | = | | | | | | - | | _ | | | | | | ن. | Object. | #
| 25 | | | | | 5.25 | | | | | | 5.23 | | | | | | | | R. A | . je. 1 | Ħ | ņ | | | | | | | | | | | 5 | | | | | | | | | 0 | _ | <u>-</u> | | _ | | | <u>-ا</u> | | | | _ | | -: | | | | _ | _ | | | Sidereal | e e | * | .35 | 88 | 0 | . 58 | . 59 | 1. 18. 33 1. 21. 19 | . 18 | .58 | .46 | 35 | 88 | 52 | 8. | 9. | 9. | 34 | 3 | .43 | | ider | Time. | Ħ | 35 | 88 | 41 | 42 | 44 | 2 | 24 | 56 | 28 | 8 | 32 | 3 | 42 | 45 | .49 | 51 | 55 | 58 | | | | 4 | 0 | 0 | 0 | - | 0 | - | _ | _ | _ | _ | _ | 0 | 0 | <u> </u> | 0 | 0 | 0 | • | | Clock | ě | • | . 52 | 55 | 7 | Ξ: | . 16 | 8 | 32 | ىد. | ં. | 4.9 | .42 | = | .43 | .3 | <u>.</u> | 55 | .50 | œ. | | l ĕ | Time. | Ħ | .32 | 35 | 38 | 8 | 42 | i ²⁸ | 21 | 24 | 26 | 27 | 29 | 3 | 39 | 42 | .46 | 48 | 52 | 26 | | <u> </u> | • • | а | 8.30.0 0.32.52 0.35.35 1. | 0 | 0 | 0 | . 2. 6.7 0.42.16 0.44.59 | <u> -</u> | _ | _ | Ë | | 25 89.31.36 7 1.29.42 1.32.28 | 0 | 0 | o | Ö | 0 | 0 | 0 5589.52. 3.3 0.56. 8 0.58.43 | | Ī | <u>.</u> | = | 0.0 | ê | 2.9 | | 2.9 | 45,89.38.55.0 | 2.9 | 9 | 2.9 | 3.3 | 2.9 | 9 | 0.0 | 5.0 | 1.7 | 2.9 | 2.0 | | | 7,007 | E S | _ | 8.3 | 6.2 | 4.5 | 3.4 | ં | 5.5 | 5. | | 3.4 | 4. | ٠ <u>.</u> | يَّا | ٠.
ي | .5 | 2 | ,
2 | ٠. | o. | | * | E | ۰ | ~ | <u>۔</u> | | | <u>:</u> | <u>ب</u> | .3 | Š | .3 | .3 | .3 | _ًا | ن | - | .55 | .5 | . 55 | . 55 | | | | | <u>.</u> 60 | 590 | 50 90. | 0.0 | 960 | 186 | 585 | 585 | 983 | 9,83 | 58 | 18 | 9 | 30 | <u>88</u> | 583 | 589 | 88 | | f
ers | 0 | <u> </u> | | | ņ | e. | | 4 | | | | | | 9 | র | 4 | <u> </u> | == | చ | īģ. | | Reading of
Circle Verniers | B | - | 15 | 2 | 40 | 30 | 09 | \$ | 40 | 55 | 35 | 30 | 8 | | _ | - | | _ | | . ~ | | din | | = | 55 | 20 | 80 | 65 | 8 | 18 | 8 | 88 | 75 | 20 | 65 | 3 | 55 | 80 | 20 | 55 | 9 | 35 | | Rea | - | - | œ | 9 | 4 | က | ij | 38 | 36. | 33. | 33. | 32 | 31. | 3 | က် | -: | 29 | 57. | 54. | 51. | | ြင် | | .0 | 90. | 96 | 90. | 99 | 90 | 8 | 68 | 8 | 68 | 89 | 89.31.65 | Š. | 8 | 9 | 30 | 3 | 39 | 39 | | - bo | | - | 90 | | _ | | _ | 100 | _ | _ | _ | | | 00 | _ | | | _ | _ | | | Reading
of
Micm- | eter. | | 100 538 | | | | | ્રિ | | | | | | <u>نځ</u> | | | | | | | | Re K | Ĕ | _~ | 2 | | _ | | | 12 | | | | | | 2 | | | | | | | | | | | _ | | _ | | | Polaris 100 :538 | | | | _ | | 100 .538 | _ | _ | _ | _ | _ | | | | ; | | : | | | | | : | | | | | | : | | | | | | | |
)
Pigg | 356 | | | | | | | 82 | | | | | | أ ا | | | | | | | | ح ا | 5 | | lari | | | | | <u> </u> | | | | | | aris | | | | | | | | | | | Po | | | | | 2 | | | | | | 2 | | | | | | | | | | F | Nov. 18 Polaris | | _ | | | • | | _ | | | | Nov. 24 Polaris . | _ | | _ | | _ | | | Day, | 1847. | | ₩. | | | | | Nov. 19 | | | | | | ž | | | | | | | | П | - | _ | ž | | | | | ž | | | | _ | | ž | | | | | | | | | | | - | | | | _ | _ | - | - | - | - | _ | _ | - | _ | - | _ | _ | | Nov. 24. The results are discordant; they have not been used in subsequent calculations. observations from which each was deduced. The first period extends from January to the end of May; the second period extends from June 1 to October 16; and the third from October 15 to the end of the year, during which intervals The following mean readings were obtained by combining all the results in each period according to the number of of time no certain difference existed in the readings. # Adopted Mean Readings for Astronomical South Meridian. The following is a description of the method of making and reducing the observations:—A fine horizontal wire is fixed in the field of view of the theodolite-telescope and another fine vertical wire is fixed to a wire-plate, moved right and left by a micrometer screw. On looking into the telescope the cross of the magnetometer is seen; and, during the vibration of the magnet, this cross is seen to pass alternately right and left. The observation is made by turning the micrometer till its wire bisects the image of the magnet-cross at the pre-arranged times, and reading the micrometer. The verniers of the horizontal circle are always read in the regular daily observations, and occasionally in the term observations, and in extra observations. The mean-time clock is kept very nearly to Göttingen mean time (its error being ascertained each day), and the clock-time for each determination is arranged beforehand. The first observation is made by the observer applying his eye to the telescope about one minute before the pre-arranged time, and, if the magnet is in a state of vibration, he bisects the magnet-cross by the micrometer-wire at 45°, and again at 15° before that time, also at 15° and 45° after that time. The intervals of these four observations are therefore the same as the time of vibration of the magnet, and the mean of all the times is the same as the Göttingen mean time which is recorded in the printed tables of observations. The mean of each pair of adjacent readings of the micrometer is taken (giving three means), and the mean of these three is adopted as the result. In practice, this is done by adding the first and fourth readings to the double of the second and third, and dividing the sum by six. If the magnet be in a state of rest at the time of first looking through the telescope, then at 15° before the time recorded in the printed tables of observation, the cross of the magnet is bisected by the micrometer-wire; and at 30° afterwards the observer notes whether the cross continues bisected, and if it does, the corresponding reading is adopted as the result. The number of instances in which the magnet was observed in a state of vibration during the year 1847 is very small. The adopted result is converted into arc, supposing $1^r = 1'.34''\cdot07$ (see page vi), and the quantity thus deduced is added to the mean of the vernier-readings, from which is subtracted the constant given in article 8 of the permanent adjustments; the difference between this number and the adopted reading for the Astronomical South Meridian is taken; and thus is deduced the magnetic declination, which is printed in the tabular observations. In reading the verniers of the theodolite, it was found that Mr. Breen differed from the other observers; this difference was generally in defect, but it was frequently found to be in excess; at times it amounted to 20" or 30"; its general amount, however, was about 10". Corrections have been, therefore, deduced to apply to his observations; in the Daily Observations his reading of the verniers has been compared with that of any of the other observers, the telescope not having been moved; in reducing the Term Observa- tions his reading has never been used; and in Extra Observations the correction has been that which, under the circumstances, and by consulting the comparisons made both before and after, appeared to be the best. In all cases, wherever Mr. Breen's readings have been used, a correction has been applied. The Extraordinary Observations have consisted of pairs of readings of the micrometer, separated by the time of vibration of the magnet, at times when the magnet has been vibrating; and of single observations at all other times, the observer satisfying himself, by inspection, that the magnet was at rest. This method of observation continued till December 17^d, after which time all the values in the section of Extraordinary Observations were deduced from the photographic self-registering apparatus. # § 2. Horizontal Force Magnet, and Apparatus for Observing it. The horizontal force magnet is of the same dimensions as the declination magnet. its support, a tripod stand is planted in the eastern arm of the magnetic observatory, resting immediately on the ground, and not touching the floor. This tripod supports an upright plank, to the top of which a brass frame is attached, carrying two brass pulleys in front of the plank and two at the back of the plank. A small windlass is attached to the back of the plank at a convenient height. The suspension-frame of the magnet is supported by the two halves of a skein of silk, which, rising from the magnet, pass over the two front pulleys, then over the two back pulleys, and then under a single large pulley, whose axis is attached to a string that passes down to the windlass. The magnet is inserted in a suspension-piece, of which the upper part is a vertical plate, having five pairs of small pulleys attached to it (those which are nearest together being highest), and the lower part of the silk skein is passed under the two pulleys of one pair; only the upper pair, however, has been used in 1847. The vertical plate is connected with the torsion-circle; it turns with reference to the magnet-cell (being held by stiff friction), and the readings of the circle-graduations are indicated by a pointer carried by the magnet-cell. On the lower side of the magnet-cell is a mirror, whose frame turns with reference to the magnet-cell (being held by stiff friction), but has no graduated circle. The magnet, &c., swings freely in a rectangular box with double sides, covered with gilt paper similar to that used for the declination magnet, a small portion of one of whose sides is of glass; the vertical plate of the suspension-piece passes through a hole in the top of the box. The height of the upper brass pulleys above the floor is 11th.5in.; that of the highest pair of the lower pulleys is 3^t.8^{in.}; and that of the center of the mirror is about 2^t.11^{in.} The distance between the upper portions of the half skeins of silk, where they pass over the upper pulleys, is 1ⁱⁿ.48; at the lower part, for the first pair of rollers, the distance between them is 0ⁱⁿ.92. The scale, which is observed by means of this mirror, is fixed to the South wall of the East arm of the magnetic observatory. The numbers of the scale increase from East to West, so that, when the magnet is inserted in the magnet-cell with its marked end towards the West, increasing readings of the scale (as seen with a fixed telescope directed to the mirror which the magnet carries) denote an increasing horizontal force. A normal from the magnet-mirror to the scale meets it at the division 40 nearly. The telescope is fixed to a wooden tripod stand, whose feet pass through the floor without touching it, and are firmly connected with piles driven into the ground. Its position is such that an observer, sitting in a chair at a convenient place for observing the declination magnet with the theodolite, can, by turning his head, look into the telescope which is directed to the mirror of this instrument. The angle between the normal to the scale (which usually coincides nearly with the normal to the magnet) and the axis of the telescope, is about 54°, and the plane of the mirror is therefore inclined to the axis of the magnet about 27°. On August 21, the suspension for the photographic apparatus was mounted. The form of this suspension is so exactly similar to that for the declination magnet (the sole differences being that the mirror is 4 inches in diameter, and that the suspending skein passes under two pulleys, as above described), that it is unnecessary here to give any further description of it. Observations relating to the permanent Adjustments of the Horizontal Force Magnet. 1. Determination of the angle of torsion when the magnet is suspended by the first pair of rollers. 1846, December 28^d. Observer, Mr. Glaisher. From the observations for the time of vibration of the magnet (recorded below). With the marked end of the magnet to the West, and scale-reading 54 96, the torsion circle read 317.5 With the marked end of the magnet to the East, and scale-reading 54 96, the torsion-circle read 40.5 (This number is found by interpolation among those actually observed.) The half difference is 41°.30′ for the angle of torsion. 1846, December 29^d. Observer, Mr. Glaisher. ``` Introduction to Greenwich Magnetical Observations, 1847. xxii The magnet was inserted in the stirrup, with marked end to the West. The division of the scale bisected by the vertical wire The magnet was inserted, with marked end to the East. The division of the scale bisected by the vertical wire The brass bar was inserted. The division bisected by the vertical wire of the tele- And the angle of torsion from these experiments is 41°. 25'. The magnet was again inserted, with its marked end to the West. The division bisected by the vertical wire
of the tele- scope was 52:5 Torsion-circle reading 317. 0 The magnet was inserted, with its marked end to the East. The division bisected by the vertical wire of the tele- scope was...... 52.5 Torsion-circle reading 39.52 The half difference is 41°. 26' for the angle of torsion. The magnet was again inserted, with its marked end to the West. The division bisected by the vertical wire of the tele- scope was...... 54.8 Torsion-circle reading 317. 0 The magnet was inserted, with its marked end to the East. The division bisected by the vertical wire of the tele- scope was 54.8 Torsion-circle reading 40. 6 The half difference is 41°. 33'. Therefore, from the 1st set of experiments the value was 41.30 41.25 2nd set 41.26 3rd set ,, ``` The mean value of the angle of torsion was, therefore, 41°, 28′, 4th set 41.33 The previous determinations of this element have been as follows:— | | | U | , | |----|----------------|-------|----| | In | 1841, January | . 41. | 3 | | | 1842, January | . 42. | 0 | | | 1842, April | . 41. | 43 | | | 1843, January | . 41. | 29 | | | 1843, May | . 40. | 51 | | | 1843, December | . 41. | 35 | | | 1844, December | . 41. | 29 | | | 1845. December | . 41. | 25 | So that no certain change has taken place in the value of the angle of torsion since the date of the first of these determinations. 1847, August 11^d. The suspension-skein was shortened, and after this time a new pair of pulleys was fixed at the top of the stand for the support of the upper end of the skein, and the lower end of the skein passed under the new pulleys connected with the photographic mirror and apparatus for self-registration. Determination of the angle of torsion when the magnet was suspended from the new pulleys, &c. 1847, August 18^d. Observer, Mr. Glaisher. From the observations for the time of vibration (recorded below). With the marked end of the magnet to the West, and scale-reading 60, the torsion-circle read... 36. 26 With the marked end of the magnet to the East, and scale-reading 60, the torsion-circle read... 317. 16 (These numbers are found by interpolation among those actually observed.) The half difference is 39°. 35′ for the angle of torsion. 1847, August 19^d. Observer, Mr. Glaisher. The magnet was inserted in the stirrup, with marked end to the East. The magnet was inserted, with marked end to the West. And the angle of torsion from these experiments was 39°. 33'. ``` Introduction to Greenwich Magnetical Observations, 1847. xxiv The magnet was again inserted, with its marked end to the East. The division of the scale bisected by the vertical wire Torsion-circle reading 316, 47 The magnet was inserted, with its marked end to the West. The division of the scale bisected by the vertical wire of the telescope was Torsion-circle reading 36. 0 And the angle of torsion from these experiments was 39°. 38'. The position of the mirror was altered, and the magnet was inserted, with its marked end to the West. The division of the scale bisected by the vertical wire 42.3 Torsion-circle reading 36. 0 of the telescope was..... The magnet was inserted, with its marked end to the East. The division of the scale bisected by the vertical wire div. And the angle of torsion from these experiments was 39°.36′. The position of the mirror was again altered, and the magnet was inserted in the stirrup, with its marked end to the East. The division of the scale bisected by the vertical wire div. Torsion-circle reading 316.40 The magnet was inserted, with its marked end to the West. The division of the scale bisected by the vertical wire of the telescope was Torsion-circle reading 36. 5 And the angle of torsion from these experiments was 39°. 43'. The magnet was inserted again, with its marked end to the West. The division of the scale bisected by the vertical wire Torsion-circle reading 36.56 The magnet was inserted, with its marked end to the East. The division of the scale bisected by the vertical wire div. Torsion-circle reading 317.30 of the telescope was ``` (e) ``` The brass bar was inserted. ``` And from these experiments the angle of torsion was 39°. 43'. 1847, August 21. Observer, Mr. Glaisher. The brass bar was inserted. The magnet was inserted, with its marked end to the West. The magnet was inserted, with its marked end to the East. And from these experiments the angle of torsion was 39°.45'. ``` Therefore, from the 1st set of experiments the value was 39. 35 ,, 2nd set ,, 39. 38 ,, 3rd set ,, 39. 38 ,, 4th set ,, 39. 36 ,, 5th set ,, 39. 43 ,, 6th set ,, 39. 43 ,, 7th set ,, 39. 45 ``` The mean value of the angle of torsion was, therefore, considered to be 39°. 39′, and this value was used in the reduction of the observations after August 22. 2. Determination of the times of vibration and of the different readings of the scale for different readings of the torsion-circle, and deduction of the readings of the torsion-circle when the magnet was transverse to the magnetic meridian. ``` GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1847. ``` xxvi Introduction to Greenwich Magnetical Observations, 1847. Observer, Mr. Glaisher. | | | | Magnet sus | ended fron | n First Pa | ir of Roller | ·s. | | | |---------|---|--|--|--|--|---|--|--|--| | 1846, | | Its mark | ed end West. | | Its marked end East. | | | | | | Day. | Torsion-
circle
Reading. | Scale
Reading. | Difference of Scale Readings for 1° of Torsion. | Mean
of the Times
of
Vibration. | Torsion-
circle
Reading. | Scale
Reading. | Difference of
Scale Readings
for 1° of
Torsion. | Mean
of the Time
of
Vibration. | | | Dec. 28 | 312
313
314—
315
316
317+
318+
319—
320+
321 | 5 · 26 13 · 87 23 · 52 32 · 75 44 · 83 54 · 96 63 · 78 69 · 99 78 · 66 84 · 76 | 8 · 61
9 · 65
9 · 23
12 · 08
10 · 13
8 · 82
6 · 21
8 · 67
6 · 10 | 22 · 0
22 · 6
21 · 6
21 · 6
21 · 4
21 · 0
21 · 0
21 · 0
21 · 2
20 · 3 | 35
36 +
37
38
39
40
41
42 +
43
44 | div. 7 · 44 20 · 83 26 · 45 31 · 90 44 · 75 54 · 15 63 · 63 73 · 40 83 · 47 92 · 35 | div. 13 ·39 5 ·62 5 ·45 12 ·85 9 ·40 9 ·48 9 ·77 10 ·07 8 ·88 | 19·5
19·7
19·6
19·7
20·0
19·9
20·1
19·9
19·9
19·8 | | From this set of experiments it appears that, with a reading of 317° of the torsion-circle when the marked end was West, the scale-reading was 54^{div.}96; and that when the marked end was East, with a torsion-circle reading of 40°, the scale reading was 54^{div.}15; so that, with the respective readings of 317° of torsion-circle in one position of the magnet and of 40° in the other, the scale-readings were nearly identical. The time of one vibration at 40° was 1^{s.}1 less than at 317°. Throughout the year 1847 the marked end of the magnet was towards the West, and till August 11 the torsion-circle reading was 317°, and the time of vibration was considered to be 20^{s.}8. The mean difference of the scale-readings for a difference of 1° in the readings of the torsion-circle, from these experiments, was, with the marked end West, 8^{div.}83; and with the marked end East, it was 9^{div.}43. All the determinations of these elements, from the first suspension of this magnet in 1841 to the time of the alterations for the adaptation of photography in 1847, August 11, are as follows:— With the marked end of the magnet West, and the torsion-circle reading 317°: ``` 14. The scale-reading was 91 .78; the time of vibration was 20 .8 1841, March The scale-reading was 61:36; the time of vibration was 20:7 1842, January The scale-reading was 60 '42; the time of vibration was 20 '8 1843, January The scale-reading was 50 .85; the time of vibration was 20 .3 1843, May 1. The scale-reading was 54 .95; the time of vibration was 21 .1 1843, December 26. The scale-reading was 54.90; the time of vibration was 20.9 1844, December 27. The scale-reading was 49 ·43; the time of vibration was 21 ·0 1845, December 27. 1846, December 29. The scale-reading was 54 .96; the time of vibration was 21 .0 ``` With the marked end of the magnet East on the same days respectively: | | 0 | | div. | | 8 | |--------------------|-------------------|-------------------|-------------------|---------------------------|-----------| | The torsion-circle | reading was 40; t | the scale-reading | was 91 ·12; the t | i m e of vibration | was 20 ·2 | | ,, | 41; | ,, | 61 ·28; | ,, | 20 •4 | | ,, | 40; | ,, | 59 .65; | ,, | 20 · 5 | | ,, | 38½; | ,, | 50 ·51 ; | ,, | 20 ·2 | | ,, | 40; | ,, | 52 ·20; | ,, | 20 ·3 | | ,, | 40; | ,, | 53 ·51 ; | ,, | 20 ·4 | | ,, | 40; | ,, | 53 .92; | ,, | 19 · 7 | | ,, | 40; | ,, | 54 ·15; | ,, | 19 · 9 | The mean differences of the scale-readings for differences of 1° in the readings of the torsion-circle have been found to be as follows:— | | | | | | div• | |----------------|---------|---------------|-------------------|---------------|--------| | 1841, March | 14, wit | h the marked | end of the magnet | West it wa | s 9·18 | | 1841, March | 24, | • | | ,, | 9 .67 | | 1842, January | 2, | ,, | | ,, | 9 ·24 | | 1843, January | 2, | ,, | | ,, | 9 ·27 | | 1843, May | 1, | ,, | | ,, | 9 · 19 | | 1843, December | 26, | ,, | | ,, | 9 ·32 | | 1844, December | 27, | ,, | | ,, | 8 .89 | | 1845, December | 27, | ,, | | ,, | 9 . 28 | | 1846, December |
29, | ,, | | ,, | 8 .83 | | | | | | | div• | | 1841, March | 14, wit | th the marked | end of the magne | t East it was | 8 .74 | | 1841, March | 24, | ,, | | ,, | 8 .71 | | 1842, January | 2, | ,, | | 23 ** | 9 .21 | | 1843, January | 2, | ,, | | ,, | 9 ·31 | | 1843, May | 1, | " | | ,, | 9 ·32 | | 1843, December | 26, | ,, | | ,, | 8 .93 | | 1844, December | 27, | ,, | | ,, | 8 .81 | | 1845, December | 27, | ,, | | ,, | 9 ·28 | | 1846, December | 29, | ,, | | ,, | 9 •43 | | | | | | | | The mean of all the values, with the marked end of the magnet West, is 9^{div.}21; and with the marked end East, it is 9^{div.}08. 1847, August 11. The new suspension-piece for this magnet, which is prepared to carry a large mirror, &c., was ready for use. To its torsion-circle one pair of pulleys only is attached, whose distance is such that the threads which pass beneath them are at a distance of 0.75 inch. With this arrangement at the lower part of the suspension-skein, the upper part remaining as before, it was found that the angle of torsion was about $31\frac{1}{2}^{\circ}$ only; therefore, xxviii Introduction to Greenwich Magnetical Observations, 1847. it was determined to place the upper pulleys nearer together, so as to increase the angle of torsion. On removing the brass frame from the top of the upright plank, it was found that the two front brass pulleys were loose, and it seemed probable that in experiments upon the value of the angle of torsion they may at times have been more or less twisted, and may have caused the small differences exhibited above between the results of experiments at different times. 1847, August 16. A new brass carrying-piece was made, one of the pulleys of which was fixed, and the other was moveable by an adjusting screw. The distance between the upper portions of the half skeins of silk, as resting in the grooves of these pulleys, was 1·1 inches. The following experiments were then made; the magnet having attached to it all the apparatus which is used in the photographic registration. Determination of the times of vibration and of the different readings of the scale for different readings of the torsion-circle, the distance between the upper pulleys being 1.1 inches, and the magnet being loaded with the photographic mirror and apparatus. | | The marked end of the Magnet | | | | | | | | | | | | | |---------------|---|---|--|--|---|--|--|--|--|--|--|--|--| | | | V | Vest. | | East. | | | | | | | | | | 1847,
Day. | Torsion
circle
Reading. | Scale
Reading. | Difference of Scale Readings for 1° of Torsion. | Mean
of the Times
of
Vibration. | Torsion-
circle
Reading. | Scale
Reading. | Difference of Scale Readings for 1° of Torsion, | Mean
of the Times
of
Vibration. | | | | | | | Aug. 17 | 42
41
40
39
38
37
36+
35
34 | div.
7 · 69
17 · 11
27 · 97
36 · 99
46 · 80
56 · 40
63 · 85
71 · 24
80 · 50
91 · 10 | 9 · 42
10 · 86
9 · 02
9 · 81
9 · 60
7 · 45
7 · 39
9 · 26
10 · 60 | 21 ·3
21 ·2
20 ·7
20 ·5
20 ·1
20 ·4
20 ·0
19 ·9
19 ·8
19 ·6 | 314
315
316
317
318
319
320
321
322
323
324 | 98·37
88·97
78·11
68·73
59·78
50·42
40·24
31·03
23·02
14·06
5·19 | 9 · 40
10 · 86
9 · 38
8 · 95
9 · 36
10 · 18
9 · 21
8 · 01
8 · 96
8 · 87 | 20 · 25
20 · 00
19 · 96
19 · 80
19 · 56
19 · 60
19 · 15
19 · 40
19 · 00
18 · 95 | | | | | | From this set of experiments it appears that the angle of torsion would be about 39°.18'. 1847, August 18. The distance between the centers of the grooves of the pulleys was reduced to 1.07 inch very nearly, being the smallest the adjustment allows. All was left tight. | ' | | | Th | e marked e | nd of the N | I agnet | | | |---------------|--|--|--|--|--|---|--|--| | | | V | Vest. | | | | East. | | | 1847,
Day. | Torsion-
circle
Reading. | Scale
Reading. | Difference of
Scale Readings
for 1° of
Torsion. | Mean
of the Times
of
Vibration. | Torsion-
circle
Reading. | Scale
Reading. | Difference of
Scale Readings
for 1° of
Torsion. | Mean
of the Times
of
Vibration. | | Aug. 18 | 39
38 +
37
36
35
34
33
32 | 6:00
18:34
25:91
37:68
44:34
54:73
64:90
71:86
80:75
89:89
98:60 | div. 12 · 34 7 · 57 11 · 77 6 · 66 10 · 39 10 · 17 6 · 96 8 · 89 9 · 14 8 · 71 | 21 · 4
21 · 2
21 · 3
21 · 0
21 · 0
20 · 5
20 · 3
20 · 2
20 · 2
20 · 0
20 · 0 | 314
315
316+
317
318+
319
320
321
322
323 | div.
90 · 28
80 · 04
69 · 08
62 · 37
53 · 26
43 · 45
35 · 17
25 · 54
16 · 25
8 · 83 | div. 10 ·24 10 ·96 6 ·71 9 ·11 9 ·81 8 ·28 9 ·63 9 ·29 7 ·42 | 20 · 2
20 · 3
19 · 9
19 · 9
20 · 0
19 · 6
19 · 8
19 · 7
19 · 2
19 · 2 | From this set of experiments it appears that, with a reading of 37° of the torsion-circle, when the marked end was West, the scale-reading was 54^{div.}73; and that when the marked end was East, with a torsion-circle reading of 318°, the scale-reading was 53^{div.}26: and thus, with the respective reading of 37° in one position of the magnet, and of 318° in the other, the scale-readings were nearly identical. The time of vibration, at 318°, was about half a second less than at 37°. From August 18 to August 21 other experiments were made. From the latter day to the end of the year the marked end of the magnet was towards the West, and the torsion-circle reading was 37°.45'. The time of vibration was considered to be 20°.35. The mean difference of the scale freadings for a difference of 1° in the readings of the torsion-circle, from these experiments, was, with the marked end West, 9^{div.}36; and with the marked end East, 9^{div.}05. 97 3. Determination of the compound effect of the vertical force magnet and the declination magnet on the horizontal force magnet, when suspended from the first pair of rollers, with its marked end towards the West. The details of the experiments will be found in the volumes for 1841, 1842, 1843, 1844, 1845. The effect was to increase the readings by 0^{div} 487. The correction necessary for this disturbance has been taken into account by shifting the scale by the above amount. 4. Computation of the angle corresponding to one division of the scale, and of the variation of the horizontal force (in terms of the whole horizontal force) which moves the magnet through a space corresponding to one division of the scale. It was found by accurate measurements at the end of the year 1840, that the distance from 40div. on the scale to the center of the face of the mirror is 8ft.5in.1, and that the length of 30^{div.}9 of the scale is exactly 12 inches; consequently, the angle at the mirror subtended by one division of the scale is 13'.12".32, or, for one division of the scale, the magnet is turned through an arc of 6'.36".16. With the first pair of rollers, which was used till August 11, 1847, the adopted angle of torsion was 41°.2′.50", being the same as that in the previous years, the experiments with the same rollers exhibited in Article 1 of this section, shewing that no change was necessary; consequently, the variation of horizontal force for a disturbance through one division of the scale, computed by the formula, "Cotan. angle of torsion x value of one division in terms of radius," is 0.002206. The number actually used till August 11 was 0.002214. 1847, August 20. Mr. Glaisher very carefully measured the distance between the division 40 on the scale and the center of the mirror as follows:— A rod of wood was supported so that its square end was at division 40 on the scale, and its other end was within 0.1 inch of the plate glass in front of the box, and opposite to the center of the mirror; by means of this rod the distance from the glass to the scale was then measured by a tested rule, and found to be 8 feet exactly: the thickness of the glass is 0:14 inch, and the distance from the inner surface of the glass to the face of the mirror was found to be 4.95. Therefore the whole distance is 8^{tt}. 5^{in.} 09. This distance was again measured, and it is believed to be within 0.01 inch of the truth. Each division of the scale = $\frac{12}{30.9}$ inch, and, consequently, the value of one division of the scale is 13'.12"'32, or, for one division of the scale, the magnet is turned through an arc of 6'.36"'16. The adopted angle of torsion was 39°.39';
consequently, the variation of horizontal force in terms of the whole horizontal force for a disturbance through one division of the scale, computed by the formula, "Cotan. angle of torsion x value of one division in terms of radius," is 0.0023175. This number was used from August 22 to the end of the year in the reduction of the Observations. 5. Determination of the correction for the effect of temperature on the horizontal force magnet. In the month of April, 1843, an apparatus was erected for observation of deflexions in the form proposed by Dr. Lamont. A graduated circle (formerly used as the settingcircle of the transit instrument) is attached to a fixed tripod-stand, with its plane horizontal; upon a pin in the center turns horizontally a plank; upon the center of the plank is fixed the box and suspension-apparatus for the magnet which is to be deflected (the magnet carrying a mirror); at one end of the plank is fixed a telescope (with a wire in its focus) and a short scale, to be viewed by reflexion in the mirror (only one adopted division, however, of the scale being used); and on the other end is placed, at arbitrary distances, a copper trough, having a proper resting-place for the deflecting magnet, which trough can be filled with water of any desired temperature. Thus (in turning the plank) the deflecting magnet, the telescope, the scale, and the suspending-skein, all turn together; and, the observation being always made by turning the plank till the adopted division of the scale is seen under the wire of the telescope, the relative position of the magnets and the torsion of the skein are always the same. It is evident that several causes of doubt, both theoretical and practical, are thus entirely removed. The deflexion of the magnet, or (which is the same thing) the angular movement of the plank, is measured by means of two micrometer-microscopes, fixed to the plank and reading the divisions of the graduated circle. The proportion of the deflecting force of the magnet to the directive force of terrestrial horizontal magnetism, is evidently the same as that of the sine of the angle of deflexion to radius. In the following observations, the deflecting magnet was always placed with its end towards the deflected magnet, and was on its eastern side (sometimes north of the East and sometimes south of the East). The position of the deflected magnet for no deflecting force was determined from time to time by making similar observations when the deflecting magnet was removed. The changes of declination were obtained from simultaneous observations of the declination magnet. The adopted reading for no deflecting force was found by taking the mean of all the circle readings when the deflecting magnet was away in these, and in other experiments which were made at about the same time. Observations of the Deflexion of a 2-Foot Magnet by the Horizontal Force Magnet, at Different Temperatures, in Lamont's Method. | 1846,
Day. | Position of
marked End of
Horizontal
Force Magnet. | of | Temperature
of Hori-
zontal Force
Magnet. | Circle Reading Corrected for Changes of Declination, | Adopted
Reading for
no
Deflecting
Force. | Deflexion. | Its
Natural
Sine. | Its Natural Sine Corrected. | |---------------|---|---------|--|--|--|-----------------------------------|-------------------------|-----------------------------| | Dec. 30 | Away | ft, in. | 0 | 24. 3. 1.35 | 24. 2.20 | 0 / # | | | | | W | 4.0 | 99 · 5 | 51. 57. 51 .00 | 1 | 27. 55. 31 | 0 .46832 | 0 ·46403 | | | \mathbf{W} | 4.0 | 75 .0 | 52. 5. 33 ·49 | | 28. 3.13 | 0 •47030 | 0 .46601 | | | \mathbf{W} | 4.0 | 60.0 | 52. 8. 25 · 92 |] | 28. 6. 6 | 0 .47104 | 0 ·46675 | | | W | 4.0 | 46.0 | 52. 10. 11 ·19 | | 28. 7.51 | 0 · 47149 | 0 ·46720 | | | Away | | | 24. 1.15.14 | 1 | | | | | | \mathbf{W} | 4.0 | 110.0 | 51. 53. 16 ·25 | 1 1 | 27 . 50 . 56 | 0 .46714 | 0 ·46346 | | | \mathbf{W} | 4.0 | 108.0 | 51.55. 5.09 | 1 | 27. 52. 45 | 0 .46761 | 0 ·46393 | | | \mathbf{W} | 4. 0 | 76 .0 | 52. 3.18·07 | } | 28. 0.58 | 0 .46972 | 0 .46604 | | | Away | | | 24. 3.11.90 | | | | | | | \mathbf{W} | 4.0 | 33 · 0 | 52. 10. 28 ·74 | 1 | 28. 8. 9 | 0 .47156 | 9 · 46788 | xxxii Introduction to Greenwich Magnetical Observations, 1847. | D | Position of
Marked End of
Horizontal | of Centers
of | Temperature
of Vertical
Force | Circle Reading Corrected for Changes | Adopted
Reading for
no
Deflecting | Deflexion. | Its
Natural
Sine. | Its
Natural
Sine
Corrected, | |---------|--|------------------|-------------------------------------|--------------------------------------|--|--------------------------|-------------------------|--------------------------------------| | | Force Magnet. | magnets. | Magnet. | of Declination. | Force. | | | Corrected, | | Jan. 1 | Away | ft. in. | 0 | 24. 6. 2.72 | 24. 2.20 | 0 / # | | | | | E | 4.0 | 33 ·0 | 357, 30, 59 .41 | 1 | 26. 31. 21 | 0 .44655 | 0 ·44661 | | | \mathbf{W} | 4.0 | 32 ·5 | 52. 3. 35 . 93 | [] | 28. 1.16 | 0 •46980 | 0 :46807 | | | Away | | | 24. 3.54.09 | { | om = 1 10 | 0 40074 | 0 . 400 47 | | | W | 4.0 | 78.0 | 51. 57. 9 24 | 1 | 27. 54. 49 | 0 ·46814
0 ·44508 | 0 ·46641
0 ·44514 | | | E | 4.0 | 75.0 | 357, 36, 38 ·44 | 1 | 26, 25, 42 | 0 44000 | 0 44514 | | | Away
E | 4. 0 | 106 •0 | 24. 1. 55 ·05
357. 53. 33 ·75 | | 26. 8.46 | 0 •44066 | 0 ·44072 | | | w | 4.0 | 98.0 | 51. 45. 58 61 | 1 1 | 27.43.39 | 0 · 46527 | 0 ·46354 | | 1 | Away | 1.0 | 00 0 | 24. 2. 10 .73 | | _,, _,, | | | | | \mathbf{W}^{J} | 4.0 | 107 .0 | 51. 45. 33 ·06 | | 27.43.13 | 0 ·46516 | 0 •46323 | | | ${f E}$ | 4.0 | 103 ·0 | 357. 48. 39 ·11 | 1 | 26. 13. 41 | 0 ·44195 | 0 ·44116 | | | Away | | | 24. 1. 0.42 | [| | | 0.440** | | 1 | E | 4.0 | 79 .0 | 357. 38. 37 .83 | | 26, 23, 42 | 0 .44456 | 0 .44377 | | 1 | \mathbf{W} | 4.0 | 77.0 | 51. 55. 16 .88 | | 27, 52, 57 | 0 ·46766 | 0 •46573 | | İ | Away
W | 4.0 | 32 .0 | 24. 2.36·88
52. 6. 5·61 | | 28. 3.46 | 0 ·47044 | 0 ·46851 | | 1 | E | 4.0 | 32.0 | 357. 25. 52 ·83 | | 26. 36. 27 | 0 ·44788 | 0 ·44709 | | | Ē | 4.0 | 82.0 | 357. 38. 59 ·28 | 1 | 26. 23. 21 | 0 .44447 | 0 .44368 | | | $\tilde{\mathbf{w}}$ | 4.0 | 78.0 | 51. 54. 8.04 | 1 1 | 27. 51. 48 | 0 .46736 | 0 ·46543 | | 1 | Away | | | 24. 2. 16 ·22 | | | | | | Jan. 11 | Away | | | 24. 1.54.86 | 24. 1.40 | | | 0.44555 | | | E | 4.0 | 30.0 | 357.34. 8.71 | | 26. 27. 31 | 0 .44555 | 0 ·44555
0 ·46836 | | | \mathbf{w} | 4.0 | 30 .0 | 51. 57. 20 •17 | 1 | 27. 55. 40 | 0 ·46836 | 0 40000 | | | Away
W | 4. 0 | 43 .0 | 24. 3. 50 ·00
51. 56. 36 ·52 | 1 1 | 27. 54. 57 | 0 ·46817 | 0 .46817 | | į | E | 4.0 | 42.0 | 357. 34. 46 ·73 | 1 1 | 26, 26, 53 | 0 44539 | 0 .44539 | | | $\widetilde{\mathbf{E}}$ | 4. 0 | 52·0 | 357. 30. 6.59 | | 26, 25, 33 | 0 .44504 | 0 •44504 | | | $\tilde{\mathbf{w}}$. | 4.0 | 51 ·5 | 51. 54. 24 .37 | | 27.52.44 | 0 .46760 | 0 ·46760 | | | \mathbf{W} | 4. 0 | 62 .0 | 51. 51. 57 •32 | | 27. 50. 17 | 0 ·46697 | 0 ·46697 | | | \mathbf{w} | 4.0 | 62 .0 | 51. 51. 27 ·64 | [[| 27. 49. 4 8 | 0 '46685 | 0 .46685 | | ļ | E | 4.0 | 61 .0 | 357. 36. 5·87 | 1 | 26. 25. 34 | 0 .44504 | 0 •44504 | | ŀ | E | 4.0 | 66 .0 | 357. 35. 49 19 | | 26, 25, 51 | 0 .44512 | 0 ·44512
0 ·46643 | | | $f W \\ f W$ | 4. 0
4. 0 | 63 · 5 | 51. 49. 50 · 21 | 1 | 27. 48. 10 | 0 ·46643
0 ·46495 | 0 .46495 | | | E | 4. 0 | 84 ·0
84 ·0 | 51. 44. 6 · 35
357. 40. 39 · 80 | | 27. 42. 26
26. 21. 0 | 0 44385 | 0 ·44385 | | 1 | E | 4.0 | 93.0 | 357. 41. 24 .74 | | 26. 20. 15 | 0 44366 | 0 • 44366 | | | $\mathbf{\tilde{w}}$ | 4.0 | 90.0 | 51. 41. 39 ·29 | | 27. 39. 59 | 0 .46432 | 0 ·46432 | | | \mathbf{W} | 4.0 | 111 .0 | 51. 35. 39 ·10 | | 27. 33. 59 | 0 ·46278 | 0 ·46278 | | | \mathbf{E} | 4.0 | 108 .0 | 357.46. 5.18 | | 26. 15. 35 | 0 ·44244 | 0 · 44244 | | | E | 4.0 | 97 .0 | 357. 42. 22 .78 | | 26. 19. 17 | 0 ·44341 | 0.44321 | | | W | 4.0 | 93 .0 | 51. 42. 20 .89 | | 27. 40. 41 | 0 .46450 | 0 ·46457 | | | Away | 1 4 0 | 70.0 | 23. 59. 39.09 | 1 | OF 40 00 | 0 .46525 | 0 .46532 | | | \mathbf{E} | 4.0 | 78·0
74·5 | 51. 45. 16 ·26
357. 40. 26 ·97 | | 27. 43. 36
26. 21. 13 | 0 .44391 | 0 44371 | | | E | 4.0 | 61.0 | 357. 40. 26 97
357. 36. 3 · 70 | | 26. 25. 36 | 0 44505 | 0 .44485 | | | $\ddot{\mathbf{w}}$ | 4.0 | 61.0 | 51, 50, 28 .83 | | 27. 48. 49 | 0 .46660 | 0 .46666 | | | $\dot{\mathbf{w}}$ | 4.0 | 44 .5 | 51. 54. 10 .90 | , | 27. 52. 31 | 0 .46755 | 0 ·46761 | | | E | 4.0 | 44 .0 | 357. 32, 54 .66 | | 26. 28. 45 | 0 .44587 | 0 .44567 | | | \mathbf{W} | 4.0 | 30 .8 | 51. 57. 41 .66 | | 27. 56. 2 | 0 ·46845 | 0 46852 | | 1 | \mathbf{E} | 4.0 | 30 .2 | 357. 28. 47 .20 | 1 | 26. 32. 53 | 0 .44695 | 9 .44675 | | D | Position of
Marked End of
Horizontal
Force Magnet. | of Centers
of | Temperature
of Hori-
zontal Force
Magnet, | Circle Reading
Corrected
for Changes of
Declination, | Adopted
Reading for
no
Deflecting
Force. | Deflexion, | Its
Natural
Sine. | Its Natural Sine Corrected. | |---------|---|-------------------------|--|---|--|-----------------------------------|-------------------------|-----------------------------| | Jan. 11 | E
E | ft. in.
4. 0
4. 0 | 30°·5
30°·5 | 357. 28. 47 ·20
357. 30. 38 ·48 | 24. 1.40 | 26. 32. 53
26. 31.
2 | 0 ·44695
0 ·44647 | 0 ·44675
0 ·44627 | | | $\tilde{\mathbf{E}}$ | 4. 0 | 67.5 | 357. 33. 9.86 | | 26. 28. 30 | 0 .44581 | 0 .44543 | | | $\overline{\mathbf{w}}$ | 4.0 | 64.0 | 51. 47. 24 .98 | | 27. 45. 45 | 0 .46581 | 0 .46569 | | | \mathbf{w} | 4.0 | 78·0 | 51. 46. 53 .48 | | 27. 45. 13 | 0 .46567 | 0 .46556 | | 1 | E | 4. 0 | 76 ·0 | 357. 40. 0·59 | l | 26. 21. 39 | 0 .44402 | 0 ·44364 | | | E | 4.0 | 63 .0 | 357. 37. 48 .26 | | 26. 23. 52 | 0 .44460 | 0 .44422 | | | \mathbf{w} | 4.0 | 61 .0 | 51. 52. 55 17 | | 27. 51. 15 | 0 .46722 | 0 ·46711 | | | Away | | | 24. 1.14.53 | | | | | | Jan. 12 | Away | | | 24. 2.57·59 | 24. 2. 6 | | | | | 1 | \mathbf{w}^{*} | 4, 0 | 27 ·0 | 52. 1. 23 · 7 6 | ļ | 27. 59. 18 | 0.46929 | 0 .46812 | | | E | 4.0 | 27 .0 | 357. 27. 48 ·55 | [| 26. 34. 17 | 0 .44731 | 0 '44641 | | | E | 4.0 | 51 .5 | 357. 30. 28 .94 | ĺ | 26. 31. 37 | 0 ·44662 | 0 ·44571 | | | \mathbf{W} | 4, 0 | 50·0 | 51. 59. 54 .02 | , | 27. 57. 4 8 | 0 ·46891 | 0 .46774 | | | \mathbf{W} | 4, 0 | 78·0 | 51 . 53 . 28 .25 | | 27. 51. 22 | 0 ·46725 | 0 ·46609 | | | E | 4, 0 | 77 .0 | 357. 36. 21 .5 8 | | 26. 25. 44 | 0 ·44509 | 0 .44418 | | | E | 4.0 | 80 .0 | 357. 39. 52 ·64 | | 26 . 22 . 13 | 0 ·44417 | 0 .44327 | | | \mathbf{W} | 4.0 | 87.0 | 51. 50. 20 .74 | | 27. 48. 15 | 0 .46645 | 0 ·46528 | | 1 | W | 4.0 | 112 ·0 | 51. 39. 11 ·21 | | 27. 37. 5 | 0 .46358 | 0 .46241 | | ! | E | 4.0 | 107 .0 | 357. 44. 36 · 36 | | 26. 17. 30 | 0 ·44294 | 0 •44204 | | | E | 4.0 | 93 .0 | 357. 40. 3 · 52 | | 26, 22, 2 | 0 .44412 | 0 .44351 | | | \mathbf{W} | 4.0 | 84 • 0 | 51. 48. 40 ·89 | | 27. 46. 35 | 0 .46602 | 0 ·46540 | | | \mathbf{W} | 4.0 | 72 ·0 | 51. 50. 59 ·92 | ļ | 27. 48. 54 | 0 ·46662 | 0 ·46599 | | | E | 4.0 | 69 .0 | 357. 35. 30 ·37 | | 26, 26, 36 | 0 ·44531 | 0 .44470 | | | Е | 4.0 | 58 ·0 | 357. 33. 14 ·70 | } | 26. 28, 51 | 0 ·44590 | 0 .44528 | | 1 | W | 4.0 | 56·0 | 51. 54. 57 ·58 | | 27. 52. 52 | 0 .46764 | | | | \mathbf{w} | 4.0 | 45 .0 | 51. 57. 23 ·83 | | 27. 55. 18 | 0 .46826 | 0 46764 | | l i | E | 4.0 | 44 .0 | 357. 31. 14·01 | | 26, 30, 52 | 0 .44642 | 0 .44581 | | | Away | | | 24. 1.18.46 | | | 1 | | | (| E | 4.0 | 30 .0 | 357. 27. 39·70 | 1 | 26. 34. 26 | 0 .44735 | 0 .44674 | | 1 | W | 4.0 | 30.0 | 51. 58. 27 90 | | 27. 56. 22 | 0 .46854 | 0 .46791 | | | Away | | | 24. 2. 0.88 | | | 1 | İ | The difference between the deflections with marked end East and marked end West, may arise from unsymmetrical distribution of the magnetism of the deflecting bar, or from a small error in the horizontal adjustments of the apparatus, which allowed the magnet to swing nearer to the deflecting bar in one position than in the other. It is unimportant in this investigation. From these observations the expression for the temperature correction was found as follows:— First. The observations for each end of the magnet were divided into groups, extending either from low temperatures to high temperatures, or from high temperatures to low temperatures, and it was assumed that all the observations in each of these groups were made under the same general circumstances (except only in the change of temperature), but possibly under different circumstances from those of other groups. Secondly. The mean of the natural sines and the mean of corresponding temperatures in each group were taken, and one of these groups (the first of January 11) was adopted as a standard. Corrections (founded on an approximate determination of the thermometrical correction) were then applied to the mean of natural sines of each group for the difference between its mean temperature and the mean temperature of the standard group. In this way was obtained for every group, a corrected mean of natural sines corresponding to the mean temperature of the standard group. Thirdly. The difference between this corrected mean of natural sines in each group and the corresponding mean of natural sines in the standard group, was considered as a correction applicable to every individual natural sine in that group. By the application of this correction the corrected numbers in the last column of the preceding table were formed; and these were then considered as a series of natural sines admitting of being reduced as one general group, deduced from observations made under the same circumstances throughout (except only in the change of temperature). Fourthly. The means of these corrected natural sines, corresponding to neighbouring temperatures, for both positions of the magnet, were taken in groups, and four equations were formed of the following form. $$w \times \text{nat. sine} = w x + w t y + w t^2 z$$ where t represents (thermometer reading -32°), and these, when treated by the method of minimum squares, gave from the observations, when the marked end of the magnet was West, ``` x = 0.468114 y = -0.00003334 z = -0.0000004195; ``` from which the correction for temperature, in terms of the whole horizontal force at the temperature of 32°, is $$0.00007137 (t - 32^{\circ}) + 0.000000898 (t - 32)^{2}$$ And from the observation when the marked end of the magnet was East ``` x = 0.446378 y = -0.0000403 z = -0.0000002787; ``` from which the correction for temperature, in terms of the whole horizontal force at the temperature of 32°, is $$0.00009050 (t - 32^{\circ}) + 0.000000626 (t - 32^{\circ})^{2}$$ Tables were formed from both these expressions, and the mean of the results was adopted for the reduction of the observations to the temperature of 32°, and used from the beginning of the year 1847. The method of observing with the horizontal force magnet is the following:— A fine vertical wire is fixed in the field of view of the telescope, which is directed to the mirror carried by the magnet. On looking into the telescope, the graduations of the fixed scale are seen; and, during the oscillations of the magnet, the divisions of the scale are seen to pass alternately right and left across the wire. The clock-time, for which the position of the magnet is to be determined (usually 2^m.30^s after the time for the determination with the declination magnet), having been calculated, the first observation is made by the observer applying his eye to the telescope 40^s before that time, and, if the magnet is in a state of vibration, he observes the next four extreme points of vibration of the scale, and the mean of these is adopted in the same manner as for the declination-observations; but if it is at rest, then at 2^m.20^s after the time recorded in the printed tables of observation, he notes the division of the scale bisected by the wire; and 20^s afterwards he notes whether the same division continues bisected, and if it does, that reading is adopted as the result. The number of instances when the magnet was observed in a state of vibration during the year 1847, is very small. From the adopted scale-reading 49^{div}·20 was subtracted till August 21. From August 21 the scale-reading was used without alteration. Within the double box is suspended a thermometer, which is read at every hour of observation. In Article 5 the formula is given which exhibits the difference between the energy of the magnet at any temperature of observation and at the temperature of 32°. The corresponding correction has been applied, according to the reading of the inclosed thermometer, to every observation, so that the observations are all reduced to what they would have been if made at the temperature of 32° Fahrenheit. # § 3. Vertical Force Magnet, and Apparatus for Observing it. The vertical force magnet is of the same dimensions as the other two magnets. It is supported upon a block, connected with a tripod-stand which passes through the floor and rests immediately on the ground in the western arm of the Magnetic Observatory. Its position is as nearly as possible symmetrical with that of the horizontal force magnet in the eastern arm. The magnet is inserted in a brass frame, to which two steel knife-edges are attached, similar to the knife-edges of a balance or pendulum, by which it vibrates upon agate plates. A proper apparatus is provided for raising it a small height above the agate supports. On the upper part of the brass frame is a mirror, whose plane makes with the axis of the magnet an angle of 54° nearly. The height of this mirror above the floor is the same as that of the horizontal force magnet. The axis of the magnet is as nearly as possible transverse to the magnetic meridian. Near the ends of the magnet are two holes in which are inserted brass pieces carrying screws, by which the elevation of the center of gravity and the inclination of the magnet in its position of rest can be altered. The whole is inclosed in a double rectangular box covered with gilt paper, similar to those used for the declination magnet and the horizontal force magnet. This box is based upon the block of wood above mentioned, and in it the magnet can vibrate freely in the vertical plane. A small portion of one of the sides of the box is of glass. The telescope is fixed to a wooden tripod stand, whose feet pass through the floor without touching it, and are firmly connected with piles driven into the ground. Its position is symmetrical with that of the telescope by which the horizontal force magnet is observed; so that a person seated in a position proper for observing the declination magnet can, by an easy motion of the head right and left, observe the vertical force and horizontal force magnets. The scale is vertical: it is fixed to the stand which carries the telescope, and is at a very small distance from the object-glass of the telescope. The wire in the field of view of the telescope is horizontal. The telescope being directed towards the mirror, the observer sees in it the divisions of the scale
passing upwards and downwards over the fixed wire as the magnet vibrates. The numbers of the scale increase from top to bottom; so that, when the magnet is placed with its marked end towards the East, increasing readings (as seen with the fixed telescope) denote an increasing vertical force. ### Observations relating to the permanent Adjustments of the Vertical Force Magnet. 1. Determination of the compound effect of the declination magnet, the horizontal force magnet, and the iron affixed to the electrometer pole, on the vertical force magnet. The experiments applying to the magnets are given in the volumes for 1840—1841 to 1845: and those applying to the electrometer pole in the volume for 1842. It appears that no sensible disturbance is produced. 2. Determination of the time of vibration of the vertical force magnet in the vertical plane. During the year the magnet was in all positions for scale-readings between 46^{div.} and 67^{div.}, and the following times of vibration, which were observed every day, had been taken at nearly every division between these, and found to be accordant at the same scale-readings during the period; each mean result is the mean of about ten vibrations. | Division
of
Scale. | Mean of Times of
Vibration in
Mean Solar Time. | Number
of
Mean Results. | Division
of
Scale. | Mean of Times of
Vibration in
Mean Solar Time. | Number
of
Mean Results. | |--------------------------|--|-------------------------------|--------------------------|--|-------------------------------| | div.
46 | 22.6 | 5 | div.
57 | 23.9 | 9 | | 47 | 22 .9 | 6 | 58 | 24 ·3 | 5 | | 48 | 22 ·8 | 13 | 59 | 24 '2 | 4 | | 49 | 22 ·8 | 19 | 60 | 24 4 | 7 | | 50 | 23 · 1 | 20 | 61 | 24 .6 | 11 | | 51 | 23 · 0 | 14 | 62 | 25 .2 | 11 | | 52 | 23 ·2 | 11 | 63 | 25 · 1 | 7 | | 53 | 23 · 1 | 9 | 64 | 25 · 3 | 1 | | 54 | 23 · 5 | 6 | 65 | 24 .5 | 1 | | 55 | 23 · 3 | 7 | 66 | 25 .5 | 3 | | 56 | 23 .7 | 9 | 67 | 25 .6 | 1 | The number adopted as the mean time of vibration was 23°1, and this value was used throughout the year 1847. 3. Determination of the time of vibration of the vertical force magnet in the horizontal plane. 1847, January 18. Observer, Mr. Glaisher. The magnet was suspended from a tripod in the Library, its broad side being in a plane parallel to the horizon; therefore, its moment of inertia was the same as when it is in observation. A telescope, with a wire in its focus, was directed to the reflector carried by the magnet. A scale of numbers was placed on the floor of the Library, at right angles to the long axis of the magnet, or parallel to the mirror. The magnet was observed only at times when it was swinging through a small arc. From 74 vibrations the mean time of one vibration was 24'.92 and From 62 vibrations the mean time of one vibration was 24'.79. 1847, June 19. Observer, Mr. Glaisher. Observations were taken in a similar manner. From 109 vibrations the mean time of one vibration was found to be 24.94. The magnet was in the hands of Mr. Barrow between January 22^d and January 28^d; on its return to the Observatory it was again suspended in the usual way, and Mr. Glaisher found from 500 vibrations that the mean time of one vibration was 24^s·9658. The value 24.97 was used as the mean value of one vibration throughout the year 1847. 4. Computation of the angle through which the magnet moves for a change of one division of the scale; and calculation of the disturbing force producing a movement through one division, in terms of the whole vertical force. XXXVIII INTRODUCTION TO GREENWICH MAGNETICAL OBSERVATIONS, 1847. The distance from the scale to the mirror is 151.2 inches, and each division of the scale $=\frac{12}{30.9}$ inches. Hence the angle which one division subtends, as seen from the mirror, is 8'.49''.79; and therefore the angular movement of the normal to the mirror, corresponding to a change of one division of the scale, is half this quantity, or 4'.24''.90. But the angular movement of the normal to the mirror is not the same as the angular movement of the magnet; but is less, in the proportion of unity to the cosine of the angle which the normal to the mirror makes with the magnet, or in the proportion of unity to the sine of the angle which the plane of the mirror makes with the magnet. This angle has been found to be 54° : therefore, dividing the result just obtained by sine 54° , we have, for the angular motion of the magnet corresponding to a change of one division of the scale, 5'.27''.43. From this, the value, in terms of the whole vertical force, of the disturbing force producing a change of one division, is to be computed by the formula, "Value of Division in in terms of radius \times cotan. dip $\times \frac{T'^2}{T^2}$," where T' is the time of vibration in the horizontal plane, and T time of vibration in the vertical plane. The dip has been assumed to be 69°.0' throughout the year. Throughout the year 1847 T' was assumed = $24^{\circ}.97$, T = $23^{\circ}.1$; consequently, the change of vertical force (in terms of the whole vertical force) corresponding to a change of one division of the scale, was 0.000712, and this number has been used in the reduction of the observations. #### 5. Investigation of the temperature-correction of the vertical force magnet. The following observations for the effect of temperature on the vertical force magnet were made in the same manner as those for the horizontal force magnet, page xxxi. | 1847,
Day. | Position of Marked End of Vertical Force Magnet. | Distance
of
Centers
of
Magnets. | Tempera-
ture of
Vertical
Force
Magnet. | Circle Reading Corrected for Changes of Declination. | Adopted Reading for no Deflecting Force. | Deflexion. | Its
Natural
Sine, | Its
Natural
Sine
Corrected. | |---------------|--|---|---|--|--|------------|-------------------------|--------------------------------------| | Jan. 2 | Away | ft. in. | 0 | 24. 3. 39·21 | 24. 3. 2 | 0 / # | | | | | E | 4.0 | 33 ·8 | 6. 4.20.36 | | 17. 58. 42 | 0 .30866 | 0 .30613 | | | \mathbf{w} | 4.0 | 33 .0 | 42. 16. 9.67 | | 18. 13. 8 | 0 ·31265 | 0.31049 | | | Away | | | 24. 2.33 .80 | | | | | | | \mathbf{W} | 4.0 | 90 · 5 | 42. 1.26.95 | | 17. 58. 25 | 0 .30858 | 0 .30642 | | | E | 4.0 | 89 .0 | 6. 18. 33 42 | | 17. 44. 29 | 0.30472 | 0.30219 | | | Away | | | 24. 4. 19 12 | 1 | | | | | | E | 4. 0 | 110 .0 | 6. 27. 0 64 | | 17. 36. 1 | 0 .30237 | 0 .29984 | | | \mathbf{w} | 4. 0 | 100 .0 | 41. 56. 45 .97 | 1 | 17. 53. 44 | 0 .30728 | 0 .30512 | | | Away | | | 24. 2.32.11 | 1 | | | | | | \mathbf{w} | 4.0 | 32 · 0 | 42. 16. 47 ·55 | | 18. 13. 46 | 0 .31282 | 0.31041 | | 1847
Day | | Position of
Marked End
of
Vertical
Force Magnet. | Distance
of
Centers
of
Magnets. | Temperature of Vertical Force Magnet. | Circle Reading Corrected for Changes of Declination. | Adopted
Reading for
no
Deflecting
Force, | Deflexion. | Its
Natural
Sine. | Its
Natural
Sine
Corrected. | |-------------|---|--|---|---------------------------------------|--|--|--------------------------|-------------------------|--------------------------------------| | Jan. | 2 | E | ft. in.
4. 0 | 3°2 · 0 | 6. 7. 36 ·94 | 24. 3. 2 | 17. 55. 35 | 0 · 30779 | 0 ·30526 | | | | Away | | | 24. 2.33 66 | | | | | | | | W | 4.0 | 70 0 | 42. 8.47 ·57 | | 18. 5.46 | 0 ·31061 | 0 ·30820 | | | | E | 4.0 | 66 .0 | 6. 12. 44 .67 | 1 | 17. 50. 17 | 0 .30633 | 0 · 30380 | | | | E | 4.0 | 58.0 | 6. 7. 18 49 | | 17.55.44 | 0:30784 | 0.30531 | | | | W | 4.0 | 58:0 | 42. 12. 20 .17 | • | 18. 9.18 | 0 · 31159 | 0 · 30918 | | | | Away
W | 4.0 | 96.0 | 24. 2.30·87
41.57.16·77 | | 17. 54. 15 | 0 ·30743 | 0 ·30501 | | | | E | 4.0 | 90.0 | 6. 21. 37.66 | 1 | 17. 41. 24 | 0 .30387 | 0.30134 | | | | Away | 4.0 | 50 0 | 24. 3. 2.59 | | 17. 11. 21 | | | | Jan. | 4 | Away | | | 24. 7. 8.72 | 24. 7.30 | | 0.000#0 | 0.90560 | | | | E | 4.0 | 33 .0 | 6. 8. 34 .77 |] | 17. 58. 55 | 0.30872 | 0 ·30569
0 ·31001 | | | | W | 4.0 | 34:0 | 42. 16. 59 .56 | | 18. 9.30 | 0.31164 | 0.21001 | | | | Away
W | 4. 0 | 77.5 | 24. 3. 20 ·26
42. 8. 15 ·22 | | 18, 0.45 | 0 ·30922 | 0 .30759 | | | | E | 4.0 | 77.0 | 6. 18. 6 ·58 | | 17, 49, 23 | 0 .30608 | 0 .30305 | | | | Away | 1.0 | ,,, | 24. 6. 19 .04 | | 1 | | | | | | E | 4.0 | 91.0 | 6. 19. 45 .91 | | 17. 47. 44 | 0.30562 | 0 ·30259 | | | | $\overline{\mathbf{w}}$ | 4.0 | 87 .5 | 42. 5. 56 ·26 | } | 17. 58. 26 | 0 ·30858 | 0 ·30695 | | | | Away | | | 24. 7.10.95 | | | 0.005 | 0.00400 | | | | \mathbf{w} | 4.0 | 108 .0 | 41. 55. 33 .08 | | 17.48. 3 | 0.30571 | 0 .30408 | | | | E | 4.0 | 105 0 | 6. 29. 0.35 | | 17. 38. 30 | 0 .30306 | 0 .30003 | | | | Away | 10 | 79.0 | 24. 7. 51 ·28
6. 22. 21 ·83 | | 17. 45. 8 | 0 .30490 | 0 .30279 | | | | \mathbf{w} | 4. 0
4. 0 | 76.0 | 42. 8. 33 · 33 | 1 | 18. 1. 3 | 0.30931 | 0 .30739 | | | | Away | 4.0 | 10 0 | 24. 7. 12 31 | | 20. 20 | | | | | | W | 4.0 | 55.0 | 42. 12. 43 .69 | 1 | 18. 5. 14 | 0 ·31046 | 0 .30854 | | | | E | 4.0 | 55 .0 | 6. 16. 24 .01 | | 17. 51. 6 | 0 .30655 | 0 ·30444 | | | | Away | | | 24. 6.55.66 | 1 | | 0.00004 | 0.00479 | | | | E | 4.0 | 32.0 | 6. 15. 21 .63 | | 17. 52. 8 | 0 ·30684
0 ·31127 | 0 ·30473
0 ·30935 | | | | W | 4.0 | 32.0 | 42. 15. 38 .76 | | 18. 8. 8 | 0 31127 | 0 30333 | |
 | Away
E | 4.0 | 68 .0 | 24. 7. 45 ·46
6. 21. 4 ·26 | | 17. 46. 26 | 0 .30526 | 0 .30384 | | | | w | 4.0 | 67.0 | 42. 10. 15 · 35 | | 18, 2.45 | 0.30978 | 0 .30878 | | | | Away | 2.0 | 0. 0 | 24. 6.48 26 | 1 | | | | | | | W | 4.0 | 105 .0 | 41. 56. 15 .48 | 1 | 17.48.45 | 0 .30590 | 0.30490 | | | | E | 4.0 | 101 .0 | 6, 31, 51 .38 | | 17. 35. 39 | 0 30227 | 0 .30085 | | | | E | 4.0 | 75.0 | 6. 24. 6 10 | | 17. 43. 24 | 0.30442 | 0 ·30300
0 ·30719 | | | | W | 4.0 | 72.0 | 42. 4.29.57 | } | 17.57. 0 | 0 .30819 | 0.90719 | | | | Away | 4.0 | 90.0 | 24. 7. 8·22
42.15.33·76 | { | 18. 8. 4 | 0 .31 125 | 0 ·31025 | | | | W
E | 4. 0
4. 0 | 32·0
32·0 | 6. 33. 15 47 | | 17. 54. 15 | 0 30743 | 0 .30601 | | | | Away | 4.0 | 02 0 | 24. 7. 22 29 | | | - | | | Jan. | 5 | Away | | | 24. 2.43.73 | 24. 3.21 | 1W FO 40 | 0.00000 | 0.90020 | | | | E | 4. 0 | 32 .0 | 6. 4.39 21 | | 17.58.42 | 0 ·30866
0 ·31081 | 0 ·30658
0 ·31035 | | | | W | 4.0 | 32.0 | 42. 9. 48 .73 | | 18. 6.28
17.46.26 | 0.31081 | 0 '31035 | | | | W
E | 4.0 | 112.0 | 41. 49. 47 ·38
6. 28. 38 ·79 | | 17. 46. 20
17. 34. 42 | 0 30320 | 0 29993 | | | | Away | 4.0 | 110.0 | 24. 4. 56 58 | | 2,,01,12 | | | | | | | | } | -1. 1.00 00 |] | ļ | | | | 18 4 7,
Day. | Position of
Marked End
of
Vertical
Force Magnet. | Distance
of
Centers
of
Magnets. | Temperature of Vertical Force Magnet. | Circle Reading Corrected for Changes of Declination. | Adopted
Reading for
no
Deflecting
Force. | Deflexion. | Its
Natural
Sine. | Its
Natural
Sine
Corrected. | |------------------------|--|---|--|--|--|---|--|--| | Jan. 5 | E
W | ft. in.
4. 0
4. 0 | 32 ·0
32 ·0 | 6. 5. 27 ·11
42. 14. 55 ·24 | 24. 3.21 | 17. 57. 54
18. 11. 34 | 0 ·30844
0 ·31222 | 0 ·30798
0 ·31205 | | | Away
E
W | 4. 0
4. 0 | 115 ·0
112 ·0 | 24. 3. 29 · 15
6. 42. 17 · 77
41. 41. 34 · 95 | | 17. 21. 3
17. 38. 14 | 0 ·29822
0 ·30299 | 0 ·29776
0 ·30282 | | ;• | Away
E
W
Away | 4. 0
4. 0 | 32 ·0
32 ·0 | 24. 3. 41 ·41
6. 13. 18 ·92
42. 9. 13 ·85
24. 3. 35 ·75 | | 17. 50. 2
18. 5. 53 | 0 ·30626
0 ·31064 | 0 ·30567
0 ·30989 | | | E
W
Away | 4. 0
4. 0 | 121 ·0
115 ·0 | 6. 33. 7 · 44
41. 51. 51 · 30
24. 3. 18 · 06 | | 17. 30. 14
17. 48. 30 | 0 ·30077
0 ·30583 | 0 ·30018
0 ·30508 | | | W
E
Away | 4. 0
4. 0 | 32·0
32·0 | 42. 9.33.92
6.12.52.74
24. 1.40.92 | | 18. 6. 13
17. 50. 28 | 0 ·31074
0 ·30638 | 0 ·309 99
0 ·305 7 9 | | Jan. 13 | A way
W | 4.0 | 31 ·0 | 24. 4. 55 ·30
42. 6. 33 ·35 | 24. 3. 0 | 18. 3.33 | 0 ·31000 | 0 ·31000 | | | E
E
W | 4. 0
4. 0
4. 0 | 31 ·0
45 ·0
45 ·0 | 6. 13. 35 ·05
6. 17. 13 ·42
42. 3. 37 ·90 | | 17. 49. 25
17. 45. 47
18. 0. 38 | 0 · 30609
0 · 30508
0 · 30919 | 0 ·30609
0 ·30508
0 ·30919 | | | W
E
E | 4. 0
4. 0
4. 0 | 63 · 0
63 · 0
77 · 0 | 42. 3. 6 ·01
6. 21. 12 ·49
6. 25. 19 ·14 | | 18. 0. 6
17. 41. 48
17. 37. 41 | 0 ·30904
0 ·30398
0 ·30284 | 0 ·30904
0 ·30398
0 ·30284 | | | W
W
E
E | 4. 0
4. 0
4. 0
4. 0 | 75·0
92·0
89·0 | 41. 59. 44 ·87
41. 53. 44 ·27
6. 27. 52 ·66 | | 17. 56. 45
17. 50. 44
17. 35. 8 | 0 · 30812
0 · 30645
0 · 30213 | 0 · 30812
0 · 30645
0 · 30213 | | | W
W
E | 4. 0
4. 0
4. 0
4. 0 | 109 · 0
108 · 5
90 · 0
88 · 0 | 6. 33. 58 ·95
41. 44. 16 ·91
41. 53. 58 ·46
6. 26. 27 ·59 | | 17. 29. 1
17. 41. 17
17. 50. 58
17. 36. 32 | 0 ·30043
0 ·30383
0 ·30652
0 ·30252 | 0 · 30043
0 · 30383
0 · 30628
0 · 30226 | | | E
W
W | 4. 0
4. 0
4. 0 | 62 · 0
61 · 0
49 · 0 | 6. 20. 33 ·05
42. 2, 9 ·12
42. 4. 26 ·55 | | 17. 42. 27
17. 59. 9
18. 1. 27 | 0 ·30416
0 ·30878
0 ·30942 | 0 ·30390
0 ·30855
0 ·30918 | | | E
E
W | 4.0
4.0
4.0 | 48 ·5
31 ·0
31 ·0 | 6. 18. 10 ·09
6. 12. 45 ·23
42. 6. 17 ·01 | | 17. 44. 50
17. 50. 15
18. 3. 17 | 0 ·30482
0 ·30632
0 ·30993 | 0 · 30456
0 · 30606
0 · 30969 | | | Away
W
E | 4.0 | 45 ·0
45 ·0 | 24. 3. 13 ·91
42. 4. 40 ·02
6. 16. 58 ·03 | | 18. 1.40
17.46. 2 | 0 ·30948
0 30515 | 0 ·30940
0 ·30496 | | | E
W
W
E | 4. 0
4. 0
4. 0
4. 0 | 63 · 5
62 · 5
94 · 0 | 6. 21. 35 · 39
42. 2. 28 · 34
41. 53. 11 · 04 | | 17. 41. 25
17. 59. 28
17. 50. 11 | 0 ·30387
0 ·30887
0 ·30630 | 0 ·30368
0 ·30879
0 ·30622 | | | E
W
Away | 4.0
4.0
4.0 | 93 ·0
107 ·0
106 ·0 | 6. 27. 21 ·46
6. 31. 34 ·84
41. 44. 28 ·95
24. 4. 51 ·26 | | 17. 35. 39
17. 31. 25
17. 41. 29 | 0 ·30227
0 ·30110
0 ·30389 | 0 ·30208
0 ·30090
0 ·30381 | | Jan. 14 | Away
W | 4.0 | 29 ·0 | 24. 5. 13 ·63
42. 6. 51 ·37 | 24. 3. 0 | 18. 3.51 | 0 ·31008 | 0 ·31059 | | | Е | 4.0 | 29 •0 | 6. 12. 22 .93 | | 17. 50. 37 | 0 ·30642 | 0 ·30580 | | 1847,
Day. | Position of
marked End
of
Vertical | Distance
of
Centers
of | Tempera-
ture of
Vertical
Force | Circle Reading Corrected for Changes of Declination. | Adopted
Reading for
on
Deflecting | Deflexion. | Its
Natural
Sine. | Its Natural Sine Corrected. | |---------------|---|---------------------------------|--|--|--|--|--|--| | Jan. 14 | Force Magnet. E W | ft. in.
4. 0
4. 0 | Magnet. 53.0 52.0 | 6. 17. 5 01
42. 2. 2 99 | Force. 24. 3. 0 | 17. 45. 55
17. 59. 3 | 0 ·30512
0 ·30975 | 0 ·30450
0 ·30926 | | | W
E
E | 4. 0
4. 0
4. 0 | 67·5
66·0
79·0 | 41. 59. 28 · 33
6. 20. 58 · 16
6. 21. 41 · 97 | | 17. 56. 28
17. 42. 2
17. 41. 18 | 0 ·30804
0 ·30404
0 ·30384 | 0 ·30854
0 ·30343
0 ·30322 | | | W
W
E | 4. 0
4. 0
4. 0 | 76 · 0
90 · 0
88 · 0 | 41. 56. 12 · 57
41. 51. 33 · 87
6. 24. 50 · 21 | | 17. 53. 13
17. 48. 34
17. 38. 10 | 0 · 30714
0 · 30585
0 · 30297 | 0 ·30764
0 ·30636
0 ·30236 | | | E
W
W
E | 4. 0
4. 0
4. 0
4. 0 | 112 · 0
109 · 0
90 · 0
88 · 0 | 6. 31. 57 ·71
41. 41. 0 ·90
41. 48. 38 ·49
6. 25. 26 ·83 | | 17. 31. 2
17. 38. 1
17. 45. 38
17. 37. 33 | 0 ·30099
0 ·30293
0 ·30504
0 ·30280 | 0 · 30038
0 · 30343
0 · 30622
0 · 30189 | | | W
W
E | 4. 0
4. 0
4. 0 | 87 ·0
77 ·0
76 ·5 | 41. 48. 53 ·65
41. 54. 10 ·26
6. 20. 55 ·97 | | 17. 45. 54
17. 51. 10
17. 42. 4 | 0 ·30511
0 ·30657
0 ·30405 | 0 ·30629
0 ·30775
0 ·30314 | | | E
W
W | 4. 0
4. 0
4. 0
4. 0 | 66 · 0
65 · 0
55 · 0 | 6. 18. 59 ·20
41. 55. 27 ·34
41. 57. 41 ·40 | | 17. 44. 1
17. 52. 27
17. 54. 41
17. 46. 36 | 0 ·30459
0 ·30693
0 ·30754
0 ·30531 | 0 ·30368
0 ·30811
0 ·30872
0 ·30440 | | | E
E
W
Away | 4. 0
4. 0
4. 0 | 55 · 0
32 · 0
32 · 0 | 6. 16. 24 ·44
6. 10. 11 ·34
42. 1. 29 ·39
23. 59. 1 ·14 | | 17. 40. 30
17. 52. 49
17. 58. 29 | 0·30331
0·30703
0·30860 | 0 ·30612
0 ·30977 | | | W
E
E | 4.0
4.0
4.0 | 56 ·0
54 ·0
66 ·5 | 41.55. 9·12
6.18.21·79
6.20.56·90 | | 17. 52. 9
17. 44. 38
17. 42. 3 | 0 ·30685
0 ·30476
0 ·30405 | 0 ·30849
0 ·30449
0 ·30377 | | | W
W
E
E | 4. 0
4. 0
4. 0
4. 0 | 65 · 5
75 · 0
73 · 0
91 · 0 | 41, 53, 30 · 49
41, 51, 57 · 38
6, 23, 21 · 19
6, 28, 14 · 40 | | 17. 50. 30
17. 48. 57
17. 39. 39
17. 34. 46 | 0 ·30639
0 ·30596
0 ·30338
0 ·30203 | 0 ·30803
0 ·30760
0 ·30311
0 ·30175 | | · | W
W
E | 4. 0
4. 0
4. 0 | 89·0
111·0 | 41. 48. 9 ·02
41. 40. 29 ·86
6. 33. 33 ·35 | | 17. 45. 9
17. 37. 30
17. 29. 27 | 0 ·30491
0 ·30279
0 ·30055 | 0 ·30655
0 ·30443
0 ·30028 | | | Away | | | 24. 0.37.25 | | | | | The method of reduction of these observations is precisely similar to that described for the horizontal force magnet, page xxxiii; the standard group being the first portion of the observations on January 13, ending with that observation made at the temperature 108°.5. The results are, from the observations when the marked end of the Magnet was West, $$x = + 0.310219$$ $y = -0.00003911$ $z = -0.0000005004$; from which the correction for temperature, in terms of the whole vertical force, was found to be $$0.00012652 \times (t-32^{\circ}) + 0.000001619 \times (t-32^{\circ})^{2}$$ And, from the observations when the marked end of the magnet was East, x = + 0.305994 y = -0.0000578z = -0.000000221; from which the correction for temperature, in terms of the whole vertical force, was found to be $$0.00018979 \times (t - 32^{\circ}) + 0.0000007257 (t - 32^{\circ})^{2}$$ Tables were formed from both these extremes, and the means of the results at the same temperatures were adopted for the reduction of the observations to the temperature of 32° of Fahrenheit, and used from the beginning of the year 1847. Every observation, therefore, expressed in terms of the whole vertical force, has been reduced to what it would have been if made at the temperature of 32° Fahrenheit, by applying
the correction, according to the reading of the thermometer enclosed within the double box. # Adjustments of the Vertical Force Magnet. The scale has not been moved since it was first put up in the year 1840. The adopted scale-readings are converted into the number required to express the proportion of the variable force to the mean vertical force, by means of tables containing the multiples of the value of one division of the scale. 1847, January 19^d to 21^d, Mr. Glaisher was engaged in endeavouring to adjust the magnet, but he found that it was impracticable, the results for different positions of the adjusting screws being inconsistent with each other. On January 22 it was sent to Mr. Barrow, who reground the knife edges, and it was received from him on January 28. On January 29 and 30, Mr. Glaisher performed all the necessary adjustments; and the magnet after this time was untouched to the end of the year. The method of observation with the vertical force magnet is precisely similar to that described for the horizontal force magnet, except that the adopted clock-time is 2^m.30^s before that for the declination magnet, and that the eye is directed to the telescope at an interval of time, equal to twice the adopted time of one vibration, before that time. If the magnet is in a state of rest, the eye is again directed to the telescope at an interval, equal to half the time of one vibration, before the pre-arranged time, and the division bisected is noted: and at the time of one vibration afterwards the observer notes whether the same division is bisected as before, and, if it is still bisected, the corresponding reading is adopted as the result, and it is converted into a number expressing the proportion of the variable force to the mean vertical force, by the numbers obtained from the formulæ in Article 4 of this section. The numbers in the printed columns are those numbers reduced to the uniform temperature of 32° of Fahrenheit as above mentioned. # § 4. Dipping Needle and Method of observing the Magnetic Dip. The instrument with which all the observations of the Dip have been made was constructed by Robinson, and it is one of the last instruments completed by that artist before his death. The inner diameter of the vertical circle is 9.59 inches, and the circle is divided to ten minutes; so that every two divisions are 0^{in.}014 apart at their inner extremities. The divisions appear to be sensibly perfect. The diameter of the horizontal circle, measured between the points where the extremity of the index meets the graduations, is 5.43 inches. The graduation is to half degrees, and the vernier subdivides to single minutes. There is only one reading. The vertical circle is graduated upwards and downwards to 90° from the two extremities of the horizontal diameter. The horizontal circle is graduated from 0° to 180°, and then from 0° to 180° again in the same direction; so that had the circle been divided from 0° to 360° (a more natural and convenient method), the readings 180° to 360° would have occupied the part of the circle now occupied by the second set of divisions. The instrument has two needles marked at one end A 1 and A 2 respectively. The length of A 1 is 9.56 inches. The length of A 2 is 9.55 inches. The lengths of the needles, therefore, are respectively only 0in.03 and 0in.04 less than the inner diameter of the circle. The needles usually swing quite round the circle without touching, proving that the circle is nearly perfect, and that the upper surfaces of the agate planes on which the cylindrical terminations of the axle rest, are so placed as to be below the center of the vertical circle by a distance equal to half the thickness of the axle at its bearing points. The surfaces of the agate planes are 1ⁱⁿ·09 apart; the whole length of each of the axles of the needles is 1ⁱⁿ·20, of which a length 0ⁱⁿ·88 is nearly 0ⁱⁿ·1 in diameter; a portion, 0ⁱⁿ·02 in length on each side, is of less thickness, and this part of each rests in the Y's when the needle is raised from the agate planes; the remainder 0ⁱⁿ·14 on each side is the cylindrical termination of the axles, and its diameter is about 0ⁱⁿ·02: both needles are of the same dimensions in these respects, and no certain difference exists in the diameters of their axles. The coincidence of planes of the two agates, and the general accuracy of their surfaces, have been occasionally examined by placing on them, sometimes the plane glass of an artificial horizon, and sometimes a small level in different positions; and no reason has been found for doubting the perfect accuracy of the workmanship. The observations were made in a house built for the purpose entirely of wood, with copper and brass fastenings, at a distance of 64 feet S.S.E. from the nearest part of the Magnetic Observatory. The observations of the Dip have been made as follows:— The horizontal circle is levelled, so that the bubble keeps the same position in all positions of the vertical circle. For ascertaining the reading of the horizontal circle when the vertical circle is nearly in the plane of the magnetic meridian, an instrument is occasionally inserted, consisting of a small steel point above, a brass steadying weight below, and two brass arms by means of which this instrument rests upon the Y's; upon the steel point a free horizontal magnet is mounted with an inverted agate cup in the usual manner; and the whole apparatus is turned till the plane of the vertical circle passes through the free needle. This method has several times been combined with that of corresponding inclinations in two positions of the vertical circle nearly perpendicular to the Magnetic Meridian: and also with that of turning the instrument on its axis until the dipping needle has assumed a vertical position, and inferring the reading for meridional position of the vertical circle by applying 90° to the reading corresponding to this position: the differences have been always found of small amount. The needle is then placed on the Y supports, and lowered gradually on to the agate planes, with its marked side on the same side with the divided circle, both being towards the East, and the divisions of the vertical circle at the two ends of the needle are read. The instrument is then turned 180° in azimuth, and the observation is repeated, the marked side of the needle and the graduated face of the instrument being towards the West. The needle is then reversed on its axle so that its face is to the East, the face of the instrument being still towards the West, and similar observations are made. The instrument is then turned 180° in azimuth, so that its graduated face is towards the East, and the marked side of the needle towards the West, and the observations are repeated. To eliminate the effect of the want of coincidence of the center of gravity of the needle with the axis of rotation, the poles of the needle are then reversed by means of about twenty double strokes of two 9-inch bar magnets on each side of the center of the needle; it is assumed that it is completely saturated by this means, and then step by step the observation is made as before. In each position of the needle the axle is raised off the agate planes, lowered, and the readings taken again; and this is repeated two, three, or four times, according to the degree of uncertainty, and the mean of all that is adopted. The resulting dip is that corresponding to the mean of the eight observed results. With the view of ascertaining whether partial results obtained on one day could be combined with other partial results obtained on other days, and also whether a needle left at rest would shew the diurnal changes, the needle A I was left for some time in 1843 on the agate planes, and observations were made at short intervals, which appear in the volume for 1843. From those observations it appeared that partial observations on one day cannot be safely combined with other partial observations taken on another day, nor can the diurnal change be shewn by reading the needle repeatedly on the same day without touching it. # § 5. Observations for the Absolute Measure of the Horizontal Force of Terrestrial Magnetism. The apparatus with which these observations are made is the same which has been used in the investigation of corrections for temperature. A wooden frame, with four horizontal arms which travel with an azimuthal revolution by rollers upon a wooden framed ring, carries at its center an erection to which the magnet (the subject of deflexion) is suspended by a few fibres of silk; and carries, at the extremity of one of the horizontal arms, a telescope, and also a graduated scale which is viewed with the telescope by reflection in a small mirror attached to the frame which clasps the suspended magnet. The deflecting magnet is placed sometimes upon one arm, sometimes upon another; but upon whichever it is placed, it, as well as the telescope and graduated scale, are turned round by the observer in observation so far that, upon looking into the telescope, the same division of the scale is seen in the center of the field as when the deflecting magnet is removed and the wooden frame is in its ordinary position. When this condition is obtained, the relative positions of the deflected magnet and the wooden frame are the same as before, and the deflecting magnet, if placed at first in a direction accurately transverse to the magnetic meridian, is now in a direction accurately transverse to that of the deflected magnet. The measure of the magnetic effort to deflect the magnet is the sine of the angle through which the frame has been turned. For the measure of this angle, a graduated circle is attached to the fixed pedestal, and its divisions are viewed by two micrometer-microscopes connected with the revolving frame. In the exhibition of the results, the details of micrometer-readings, values of runs, &c., are omitted. The deflections have in all cases been observed
with the magnet placed successively on opposite arms of the wooden frame. The intention of this arrangement was, to eliminate all errors arising from a possibly erroneous position of the point of suspension. The whole distance from the place of the center of the deflecting magnet in one position to the center of the same magnet when placed in the opposite position, has been measured with great care. The two distances between the centers of the magnets used in all these observations are 1 foot and 1 foot 6 inches. It is unnecessary here to enter upon the theoretical considerations which shew that, when the measure of the deflecting effort is expressed by a series $$\frac{a}{(\text{distance})^3} + \frac{b}{(\text{distance})^5} + \&c.$$ in descending powers of the distance between the centers of the magnets, the coefficient a is that upon which the measure of terrestrial magnetism will depend. It is proper, however, to mention that, in practice, there is always some uncertainty in the determination of b, and therefore I have thought it best to determine b separately from every series, to adopt the mean of all these values of b as one value applicable in every case, and then, substituting this as a known value in the two equations given by each pair of deflections, to add together the two equations, and thus to form one advantageous equation for determining the value of a. The observations made with the deflecting magnet North or South of the deflected magnet, are intended only as a check on the others. If the law of attractive and repulsive magnetic forces inversely as the square of the distance be correct, and if the observations be accurate, then the value obtained for a' (which corresponds to a as deduced from the other measures) ought to be exactly one-half of that obtained for a. The near agreement of the numbers with this proportion shews that the observations are entirely trustworthy. The next point is to ascertain the time of vibration of the deflecting magnet when itself subjected to the action of terrestrial magnetism. For this purpose, the deflecting magnet is mounted in the same carrying-piece, and its vibrations are observed by means of the telescope and scale, the times being noted by a solar chronometer whose rate is small. The arc of vibration never exceeds 0°.30′, so that no correction is necessary for the extent of arc. Experiments made in 1848, January 10, for the purpose of determining the proportion of the torsion-force of the thread to the terrestrial directive-force, gave the following values: $$\frac{1}{3157}$$, $\frac{1}{2093}$, and $\frac{1}{2903}$, and the results previously obtained from unrecorded observations were less than the preceding. On account of the smallness and the discordance of these values, no correction for torsion is applied. It is important either that the temperature be the same in the observations or that the corrections for temperature be accurately known. Investigations of the correction for 1° of Fahrenheit made at different times from 32° to 99° gave the following results:— | • | | | | | |-----------|-------------|---------|-----------|--------------| | At 32 | the natural | sine of | deflexion | was 0 ·13452 | | 50 | ,, | | ,, | 0 ·13437 | | 79 | ,, | | ,, | 0 ·13420 | | 99 | ,, | | ,, | 0 ·13403 | It is evident that the temperature-correction for this magnet is very small, and its magnitude is so uncertain, that I have judged it best to omit it both in these deflexion- observations, and in the vibration-observations unaccompanied with deflexions which follow them. The next step is, to ascertain the moment of inertia of the magnet and frame as suspended during the observation of vibrations. The weight of the magnet was ascertained by Mr. Barrow to be 507.302 grains: its length, by observations made by Mr. Glaisher, with scales furnished by Mr. Simms, was 3.630 inches, or, 0.3025 foot: its diameter 0.300 inch, or 0.025 foot: its moment of inertia therefore (adopting the grain and the foot as the units of weight and linear measure) is 3.88826. The weight of the embracing-frame and mirror was 108.242 grains: and, on examining the distribution of this weight, I thought it probable that its moment of inertia would be nearly the same as if it were uniformly distributed over the mirror, whose horizontal length is 0.79 inch = 0.0658 foot: its moment of inertia is therefore 0.03905. The weight of the suspending-stalk with a pulley was 39.377 grains: I estimated its moment as probably the same as if it had been condensed in the pulley whose diameter = 0.28 inch = 0.0233 foot: this gives for moment of inertia 0.00135. The total moment of inertia is 3.92866. The two smaller terms of this are liable to some uncertainty. Adopting now the notation in the Report of the Committee of the Royal Society, namely, m The magnetic moment of the deflecting magnet, X The absolute measure of horizontal force, K The moment of inertia of the suspended magnet, stirrup, and pulley, π The circumference of circle to diameter 1, T The time of vibration, the result for the terrestrial horizontal force has been found by the formulæ, $$\frac{m}{X} = \frac{1}{2} a; \text{ and } m X = \frac{\pi^2 K}{T^2}$$ and the separate results are given in the Abstracts. For the purpose of obtaining a series of absolute measures at intermediate times, without the trouble of making complete deflexion-observations, the vibrations of the same magnet have been observed at intermediate times. These vibrations (no correction for temperature being applied, for the reason mentioned above,) will give an absolute measure of horizontal force, provided we know the magnetic moment of the magnet. Now the deflexion-observations give us a series of determinations of the magnetic moment whose value, it appears, diminishes slowly. Between these, magnetic moments are interpolated for the times of vibration-observations, and then the absolute measure of horizontal force is immediately obtained, subject to uncertainty of only insignificant amount. # § 6. Meteorological Instruments. #### BAROMETER. The barometer is a standard, by Newman, and is fixed on the South wall of the West cross of the Magnetic Observatory. The graduated scale which measures the height of the mercury is made of brass, and to it is affixed a brass rod, passing down the inside of one of the upright supports, and terminating in a conical point of ivory; this point in observation is made just to touch the surface of the mercury in the cistern, and the contact is easily seen by the reflected and the actual point appearing just to meet each other. The rod and scale are made to slide up and down by means of a slow-motion screw. The scale is divided to 0ⁱⁿ·05. The vernier subdivides the scale divisions to 0ⁱⁿ002; it is moved by a slow-motion screw, and in observation is adjusted so that the ray of light passing under the back and front of the semi-cylindrical plate carried by the vernier, is a tangent to the highest part of the convex surface of the mercury in the tube. The tube is $0^{in} 565$ in diameter; the correction for the effect of capillary attraction is therefore only $+ 0^{in} 002$. The cistern is of glass. At the bottom of the instrument are three screws, turning in the fixed part of the support, and acting on the piece in which the lower pivot of the barometer-frame turns, for adjustment to verticality: this adjustment is examined weekly. The readings of this barometer are considered to be coincident with those of the Royal Society's flint-glass standard barometer. All observations of this barometer have been corrected for the difference of temperature of the mercury in the tube at the time of observation from 32°, by the application of the corrections contained in the table for barometers whose scales are engraved upon a rod of brass reaching from the level of the mercury to the vernier. (See the report of the Committee of Physics and Meteorology approved by the Royal Society.) No correction is required for the difference of capacities of the tube and the cistern; for, as the mercury rises or falls in the cistern by the falling or rising of the mercury in the tube, so the termination of the scale is adjusted to the surface of the mercury in the cistern, and the distance between the surfaces of the mercury in the cistern and the tube is at once measured. The height of the cistern above the mean level of the sea is 159 feet. This element is founded upon the determination of Mr. Lloyd, in the Phil. Trans., 1831; the elevation of the cistern above the brass piece inserted in a stone in the transit room (to which Mr, Lloyd refers) being 5th.2ⁱⁿ. #### DRY THERMOMETERS. The following is a comparison of the Royal Observatory standard thermometer with a standard thermometer by Ronchetti, made with great care, and in the possession of Mr. Bennett. Between April and July, 1847, the Royal Observatory standard was found to read:— From 22 comparisons between 30 and 40, the same as Mr. Ronchetti's standard From 55 comparisons between 40 and 50, higher than Mr. Ronchetti's standard by 0.2 From 85 comparisons between 50 and 60, higher than Mr. Ronchetti's standard by 0.2 From 59 comparisons between 60 and 70, higher than Mr. Ronchetti's standard by 0.3 From 7 comparisons between 70 and 80, higher than Mr. Ronchetti's standard by 0.2 The Royal Observatory standard is a mercurial thermometer, made by Newman; its scale is divided to 0°.5. #### DRY-BULB THERMOMETER. The dry-bulb thermometer, used in conjunction with the wet-bulb thermometer, is mercurial; its scale is divided to 0°.5. The following are comparisons of the dry-bulb thermometer with the Royal Observatory's standard thermometer. | Day
1847 | | The Dry Thermome- ter reads morethanthe Greenwich Standard. | Range
of
Temperature. | Number
of
Com-
parisons. | Mean
Tempera-
ture. | Day,
1847. | The Dry Thermome- ter reads more than the Greenwich
Standard. | Range
of
Temperature. | Number
of
Com-
parisons. | Tempera | |-------------|----|---|-----------------------------|-----------------------------------|---------------------------|---------------|---|-----------------------------|-----------------------------------|---------| | Jan. | 11 | -°0·5 | 28 ·0 to 35 · | 3 | 30.3 | June | $-\mathring{0}\cdot 2$ | 44.0 to 63.4 | 12 | 55 .8 | | van. | | -0·1 | 40 ·7 to 45 · | , - | 42.6 | 2 | - (| 57 ·8 to 75 ·0 | 4 | 64 .6 | | . | _ | | | | 21.0 | July | 5 0.0 | 51 ·8 to 82 ·2 | 12 | 65 .8 | | Feb. | 1 | -0.2 | 29 ·0 to 36 · | | 31.7 | 19 | 2 +0.1 | 61 ·7 to 84 ·6 | 9 | 73.3 | | | 8 | " | 19 7 to 29 | | 24 6 | 1: | | 50.5 to 65.6 | 8 | 60 .4 | | | | | 42.0 to 52. | | 46.0 | 20 | | 50 ·0 to 74 ·1 | 11 | 61 .7 | | | 22 | +0.2 | 44 ·0 to 46 · | 12 | 45 .2 | | 1 | | | - | | | | | | | | Aug. | 2 -0.5 | 58 ·6 to 83 ·3 | 3 | 68 .2 | | Mar. | 1 | +0.2 | 32 ·2 to 38 ·6 | 3 7 | 36 .2 | | -0.1 | 56.6 to 66.7 | 6 | 57.2 | | | 8 | +0.1 | 35 ·0 to 47 · | | 41 .6 | 10 | 0.0 | 61.0 to 69.7 | 5 | 62 .2 | | | 15 | +0.2 | 33 ·0 to 55 · | I | 44.5 | 2 | 3 -0 ·1 | 51 ·8 to 61 ·0 | 3 | 54 .8 | | | 22 | -0.3 | 32 ·7 to 59 ·9 | | 45.4 | | | | | ļ | | | 29 | 0 0 | 32 ·8 to 44 ·9 | - 1 | 37.6 | Sep. | 6 +0.1 | 41.8 to 59.1 | 9. | 51.3 | | | 20 | | 02 0 10 11 1 | | | 20 | 0 -0 3 | 50 ·5 to 59 ·8 | 7 | 55 .0 | | | | | | | | 2 | 7 -1 4 | 39.6 to 61.0 | 3. | 46 .8 | | A pril | 5 | 0.0 | 41 ·5 to 53 ·6 | | 47.2 | | | | 1 | | | | 12 | +0.1 | 52 · 0 to 60 · 0 | - | 53 9 | Oct. 1 | 1 -0 3 | 57 · 2 to 63 · 5 | 3 | 57.9 | | | 19 | 0.0 | 40 ·7 to 52 · | - | 44 .5 | | | | | | | | 26 | +0.1 | 39 6 to 55 S | 7 | 48 .4 | Nov. | 1 +0.1 | 51 .7 to 62 .0 | 7 | 56.0 | | | | | | | | 1. | | 51 ·1 to 57 ·5 | 9 | 54 .3 | | May | 9 | -0.1 | 41 ·2 to 48 · | 3 3 | 43 .7 | _ | 2 + 0.2 | 41 ·0 to 48 ·6 | 10 | 44 .7 | | ay | - | -0.1 | 53 ·7 to 68 · | | 57.9 | _ | | | | | | | 17 | +0.3 | 52 ·0 to 64 · | . | 57.5 | Dec. 1 | 3 +0.3 | 43 · 2 to 45 · 0 | 3 | 44 .0 | | | 31 | 0.0 | 49 ·0 to 79 · | - 1 | 63 .9 | 8 | 0 + 0.1 | 32 ·2 to 41 ·2 | 12 | 38 ·1 | # Introduction to Greenwich Meteorological Observations, 1847. The next table is formed by collecting and arranging the preceding results in the order of temperature. | Temp. | below 3 | 2°. | Temp. | bety | ween 32° | een 32° & 60°. T | | | Temp. between 50° & 60°. | | | | Temp. above 60°. | | | | |---------------|--------------|-------|-------|-----------------------|---------------------|------------------|-------|---------------|--------------------------|-----|----------|-------|---------------------|-----|---------|------| | Day,
1847. | Excess. | Mean. | • | Day,
1847. Excess. | | Mean. | 1 | Day,
1847. | | Eve | | Mean. | Day,
1847. | | Excess. | Mean | | Jan. 11 | -° ·5 | 0 | Jan. | 25 | _°0·1 | • | April | 12 | +0.1 | o | May | 31 | 8.0 | 0 | | | | Feb. 1 | -0·2
-0·9 | 0 .2 | Feb. | | -0·2
+0·2 | | May | 10
17 | -0·1
+0·3 | | June | | | | | | | | | | Mar. | 1
8 | +0·2
+0·1 | | June | 7 | 0 -2 | | July | | 0·0
+0·1
+0·3 | -0. | | | | | | | | 15
22
29 | +0·2
-0·3
0·0 | | Aug. | 9
23 | $-0.1 \\ -0.1$ | 0.0 | A | | -0·1
-0·5 | | | | | | | | April | 5 | 0.0 | 0.0 | Sep. | 6
20 | +0.1 | | Aug. | 16 | 0.0 | | | | | | | | | 19
26 | 0·0
+0·1 | | Oct. | 11 | -0.3 | | | | | | | | | | | | May | | -0·1 | | Nov. | 1
15 | +0.3 | | | | | | | | | | | | • | | -1 ·4 | | | | | | | | | | | | | | | | | | +0.3 | | | | | | | | | | | | Therefore Below 32 the dry-bulb thermometer reads 0.5 less than the standard. Between 32 and 60 the readings are the same. Above 60 the dry-bulb thermometer reads 0.1 less than the standard. No corrections have been applied to the readings of the dry-bulb thermometer throughout the year. ## WET-BULB THERMOMETER. The wet-bulb thermometer is mercurial; its scale is divided to $0^{\circ}.5$. The following results of comparison of the readings of the dry-bulb thermometer with the wet-bulb thermometer, when both thermometers were under the same circumstances, were found by Mr. Glaisher. | | | 0 | | 0 | | 0 | |---|-----------|-----------|-----|-----------|---|-------| | When the reading of the wet thermometer was | between | 13 | and | 35, | { its readings were lower than those } of the dry-bulb thermometer by } | 0 ·1 | | ** | between | 35 | and | 40 | ,, | 0 ·2 | | • | between | 40 | and | 45 | , | 0 .3 | | ,, | between | 45 | and | 55 | ,,, | 0 •4 | | ,, | between | 55 | and | 65 | ,, | 0 .2 | | ,, | between | 65 | and | 75 | ,, | 0.6 | | ,, | between | 75 | and | 80 | ,, | 0.7 | | ,,, | between | 80 | and | 85 | ,, | 0 .8 | | ,, | between | 85 | and | 90 | ,, | 0 .9 | | . ,, | between | 90 | and | 95 | ,, | 0.0 | | ,, | between | 95 | and | 100 | ,,, | 1 · 1 | | ,, | between : | 100 | and | 116 | " | 1 .2 | The numbers in the printed columns from February 18^d.2^h are the readings from the scale increased by these numbers. The bulb is covered with a piece of fine muslin; immediately under it is placed a small cistern of rain-water. A piece of cotton lamp-wick is connected with the muslin, and its end dips into the cistern of water; the water ascends the wick by capillary action, and keeps the muslin on the thermometer constantly wet. In frosty weather the muslin is moistened for a sufficient length of time before each observation, to allow the water to have become frozen, and the evaporation from the surface of the ice to have commenced, at the time of making the observation. #### DEW-POINT APPARATUS. The dew-point apparatus is that commonly known as Daniell's hygrometer, consisting of a bent tube with two bulbs: in one of these, which is blackened, ether is inclosed, with a small thermometer plunged in it; on the other a piece of muslin is wrapped, by dropping ether on which, the vapour of the inclosed ether passing from the first bulb is condensed; and the ether in the uncovered bulb is cooled until dew is deposited on the bulb, when the reading of the inclosed thermometer is taken. This is generally done at the appearance only of the moisture, but if there be any suspicion on the mind of the observer as to its correctness, it is also done at its disappearance; and if any discordance appears between the results, the observation is repeated. It is found that no certain discordance exists between the results as obtained from the appearance and from the disappearance of the dew. The following is a comparison of the dew-point thermometer with the Royal Observatory standard thermometer when under the same circumstances. | | đ | | | | | | 0 | | | 0 | | | ٥ | |---------|---------------|------|-------|----------|------|---------|--------------|----------|-----|----------------------|--|--------|---------| | On Jan. | 11, f | rom | 3 com | parisons | made | between | 27 · | 0 a | and | 35 .0 | { the dew-point ther-
mometer reads | lower | by 0 ·1 | | ,, | 25, | ,, | 12 | ,, | | ,, | 40 . | 7 | ,, | 46 •2 | ,, | higher | by 0 ·1 | | Feb. | 1, | ,, | 11 | ,, | | , , | 2 8 · | 5 | ,, | $\mathbf{36\cdot 2}$ | ,, | lower | by 0 ·4 | | ,, | 8, | ,, | 5 | ,, | | ,, | 19 · | 5 | ,, | 28 .8 | , , | ,, | 0 .2 | | ,, | 15, | ,, | 10 | ,, | | ,, | 42 · | 0 | ,, | 52 · 7 | ,, | higher | by 0 ·1 | | ,, | 22, | ,, | 12 | ,, | | , , | 44 • | 0 | ,, | 46 · 5 | 5 5 | ,, | 0 .2 | | Mar | . 1, | ,, | 7 | ,, | | ,, | 31 ' | 8 | ,, | 38 .8 | ,, | ,, | 0.0 | | ,, | 8, | ,, | 12 | ,, | | ,, | 34 · | 8 | ,, | 48 • 5 | ,, | ,, | 0 .3 | | ,, | 15, | ,, | 12 | ,, | | , , | 3 3 · | 7 | ,, | 55 · 0 | ,, | ,, | 0 .3 | | ,, | 22, | ,, | 8 | ,, | | ,, | 32 · | 0 | ,, | 60.0 | * * | ,, | 0 -2 | | ,, | 29, | ,, | 12 | ,, | | ,, | 32 . | 2 | ,, | 45 •2 | ,, | ,, | 0.0 | | Apri | l 5, | ,, | 7 | ,, | | ,, | 41 · | 7 | ,, | 54 ·0 | ,, | ,, | 0 .2 | | ,, | 12, | ,, | 8 | ,, | | , , | 52 · | 5 | ,, | 61 •9 | ,, | ,, | 0 .8 | | ,, | 19, | ,, | 7 | ,, | | ,, | 41 · | 2 | ,, | 52 ·0 | ,, | ,, | 0 .2 | | ,, | 26, | ,, | 12 | ,, | | ,, | 39 • | 5 | ,, | 58 •0 | , , | ,, | 0.6 | | May | 3, | ,, | 3 | ,, | | , , | 42 • | 0 | ,, | 49 •0 | , , | ,, | 0 .7 | | ,, | 10, | ,, | 8 | ,, . | | , , | 55 . | 0 | ,, | 69 .8 | , , | ,, | 1 .2 | | ,, | 17, | ,, 1 | 10 | ,, | | , , | 51 % | 5 | ,, | 67 .0 | , , | ,, | 1 · 1 | | ,, | 24, | ,, | 5 | ,, | | ,, | 49 • | 0 | ,, | 65 .7 | , , | ,, | 1 .2 | | ,, | 31, | ,, 1 | 11 | ,, | | , , | 49 (| 0 | ٠, | 81 .9 | , , | ,, | 1 .0 | | June | 7, , | • • | 8 | ,, | : | | 44 • | | | 54 ·0 | ,, | ,, | 0 .7 | | ,, | 28, , | ,, | 5 | ,, | | | 58 · | | | 76 ·5 | ,, | ,, | 0 .2 | | July | 5, , | ,, 1 | 1 | ,, | : | | 49 •: | | | 83 .0 | ,, | ,, | 0 .2 | | ,, | 12, | ,, | 5 | • • | , | , | 62 ·8 | 3 | ,, | 86 .0 | ,, | ,, | 0 •4 | | | 19, | | 2 | ,, | 1 | | 62 .8 | | ,, | 66 •5 | ,, | ,, | 0 •4 | | | 26 , , | | 4 | ,, | | | 51 ·(| | • | 59 ·8 | ,, | ,, | 1 .0 | | Aug. | 9, | | 6 | ,, | , | , | 56 .8 | 3 | ,, | 68 .0 | ,, | . ,, | 1 · 1 | | ,, | 23, | | 3 | , , | , | , | 51 .8 | 3 | ,, | 63 .0 | ,, | ,, | 0 .7 | | Sep. | 6, | ,, | 8 | ,, | | ,, | 41 : | 8 | ,, | 60 ·8 | ,, | ,, | 0 .2 | | Nov. | 1, | | 7 | ,, | , | , , | 52 · | 0 | • | 63 .8 | ,, | ,, | 1 ·2 | | ,, | 15, | - | 7 | , , | : | , | 50 . | 8 | ,, | 57 .0 | ,, | ,, | 0.3 | | | 22, | | 9 | ,, | , | , | 40 % | 8 | ,, | 49 •4 | ,, | ,, | 0 .5 | | | 13, | | 3 | ,, | , | , | 44 ' | 0 | ,, | 45 .0 | ,, | ,, | 0 •4 | | ,, | 20, | ,, 1 | 12 | ,, | , | , | 34 · | 0 | ,, | 41 .0 | ** | ,, | 0.0 | No correction has been applied on account of these differences. A determination of the
temperature of the dew-point is considered to be doubtful to a quarter of a degree. The dew-point observation has been made at 4^h, 10^h, 16^h, and 22^h, Göttingen mean time, every day except Sundays, Good Friday, Christmas Day, and March 24. The relation existing between the temperatures of the air, of evaporation, and of the dewpoint, has been investigated, as explained in the Abstracts of former years; and the following are the tables, &c., which have been used in the formation of the tables in the Abstracts in this volume. A Table shewing the Elastic Force of Vapour, in Inches of Mercury, for every Tenth of a Degree, from 0° to 90°, calculated from the Experiments of Dalton (Manchester Memoirs, vol. V.) and Ure (Philosophical Transactions, 1818). | Temp.
Fahr. | Force of
Vapour. | Temp.
Fahr. | Force of
Vapour. | Temp.
Fahr. | Force of
Vapour. | Temp.
Fahr. | Force of
Vapour. | Temp.
Fahr. | Force of
Vapour. | Temp.
Fahr. | Force of
Vapour, | | Force of
Vapour. | |----------------|---------------------|----------------|---------------------|----------------|---------------------|----------------|---------------------|----------------|---------------------|----------------|---------------------|---------------|---------------------| | | v apour. | Fair. | v apour. | rain. | v apour. | Faii. | vapour. | rant. | v apour. | rani. | v apour. | Faiir. | v apour. | | 0 | in. | 0 | in. | 0 | in. | 0 | ín. | 0 | in. | 0 | n. | 0 | in. | | 0 :0 | 0.061 | 4 .2 | 0.072 | 8 • 4 | 0.084 | 12 ·6 | 0 .098 | 16 ·8 | 0.115 | 21.0 | 0 ·134 | 25 .2 | 0 .156 | | ·T | .061 | .3 | .072 | •5 | .084 | .7 | .099 | 16 · 9 | .115 | •1 | ·135 | .3 | .157 | | •2 | .062 | •4 | .072 | ` ·6 | .085 | •8 | .099 | 17 .0 | .116 | .2 | ·135 | •4 | .157 | | •3 | .062 | •5 | .073 | .7 | .085 | 12 ·9 | .099 | •1 | .116 | .3 | ·136 | -5 | ·158 | | •4 | .062 | .6 | .073 | •8. | .085 | 13 .0 | ·100 | •2 | 117 | •4 | ·136 | •6 | .158 | | •5 | .062 | .7 | .073 | 8.9 | .086 | •1 | .100 | .3 | ·117 | •5 | ·137 | .7 | ·159 | | ٠6 | .063 | -8 | .073 | 9 .0 | .086 | •2 | ·101 | •4 | ·118 | •6 | .137 | -8 | ·160 | | .7 | .063 | 4 .9 | .074 | •1 | .086 | .3 | .101 | •5 | ·118 | .7 | .138 | 25.9 | ·160 | | :8 | .063 | 5 .0 | .074 | •2 | .087 | •4 | ·101 | .6 | 118 | •8 | .138 | 26 ·0 | ·161 | | $6 \cdot 0$ | .063 | •1 | .074 | .3 | .087 | •5 | ·102 | .7 | 119 | 21 •9 | ·139 | •1 | ·161 | | 1 .0 | .064 | •2 | .075 | •4 | .087 | •6 | ·102 | .8 | ·119 | 22 ·0 | ·139 | •2 | ·162 | | •1 | .064 | •3 | ·075 | •5 | .088 | .7 | .102 | 17 .9 | ·120 | •1 | ·140 | .3 | .163 | | •2 | .064 | •4 | ·075 | .6 | .088 | •8 | .103 | 18 .0 | ·120 | •2 | ·140 | •4 | ·163 | | •3 | .064 | •5 | .075 | .7 | | 13 ·9 | ·103 | •1 | 121 | .3 | •141 | •5 | ·164 | | •4 | .065 | .6 | 076 | . 8 | .089 | 14 ·0 | ·104 | •2 | ·121 | •4 | •141 | •6 | ·164 | | •5 | .065 | .7 | .076 | 9 .9 | .089 | •1. | ·104 | .3 | ·121 | •5 | ·142 | .7 | ·165 | | .6 | .065 | •8 | .076 | 10 .0 | .089 | •2 | .104 | '4 | 122 | .6 | •142 | -8 | .165 | | .7 | .065 | 5 .9 | .077 | •1 | .090 | .3 | 105 | ·5 | 122 | .7 | ·143 | 26 ·9 | ·166 | | •8 | .066 | 6.0 | .077 | •2 | .090 | ٠4 | 105 | .6 | ·123 | •8 | ·143 | 27 ·0 | ·167 | | 1 .9 | .066 | •1 | .077 | .3 | .090 | ٠5 | .106 | . 7 | 123 | 22.9 | ·144 | •1 | ·167 | | $2 \cdot 0$ | .066 | •2 | .077 | •4 | .091 | .6 | .106 | •8 | 124 | 23.0 | ·144 | •2 | .168 | | •1 | .066 | •3 | .078 | •5 | .091 | .7 | ·106 | 18 ·9 | ·124 | •1 | ·145 | •3 | ·168 | | •2 | .067 | •4 | .078 | .6 | .091 | •8 | 1 | 19 .0 | 125 | •2 | ·145 | •4 | ·169 | | •3 | .067 | •5 | .078 | .7 | .092 | 14 .9 | ·107 | ·1 | 125 | .3 | ·146 | •5 | ·170 | | •4 | .067 | .6 | .079 | .8 | .092 | 15 ·0 | 108 | •2 | 126 | ٠4 | .146 | .6 | .170 | | •5 | .067 | .7 | .079 | 10 ·9 | .092 | •1 | .108 | .3 | 126 | •5 | •147 | .7 | •171 | | .6 | .068 | •8 | 1 | 11.0 | .093 | •2 | .108 | •4 | 126 | .6 | .147 | •8 | .172 | | .7 | .068 | 6.9 | .080 | •1 | .093 | .3 | .109 | •5 | 127 | .7 | | 2 7 ·9 | .172 | | .8 | .068 | 7.0 | .080 | •2 | .093 | •4 | .109 | .6 | ·127 | •8 | | 28 •0 | ·173 | | 2 .9 | .068 | '1 | .080 | .3 | .094 | •5 | .110 | .7 | | 23 ·9 | •149 | •1 | ·173 | | 3.0 | .069 | .2 | .080 | •4 | .094 | .6 | .110 | .8 | 1 1 | 24 0 | •150 | ·2 | .174 | | •1 | .069 | .3 | .081 | .2 | .094 | .7 | | 19 •9 | ·129 | •1 | •150 | •3 | .175 | | •2 | .069 | •4 | .081 | •6 | .095 | .8 | | 20 0 | ·129 | ·2 | .151 | •4 | .175 | | •3 | .069 | .2 | .081 | .7 | .095 | 15 9 | •111 | '1 | 130 | •3 | .152 | •5 | ·176 | | •4 | .070 | .6 | .082 | .8 | .096 | 16 .0 | .112 | .5 | •130 | •4 | ·152 | .6 | .177 | | . 5 | .070 | .7 | .082 | 11.9 | .096 | 1 1 | 112 | 3 | .131 | .2 | .152 | .7 | .177 | | 6 | .070 | .8 | .082 | 12 ·0 | .096 | .2 | 112 | .4 | 131 | .6 | ·153 | .8 | 178 | | .7 | .071 | 7.9 | .083 | •1 | .097 | .3 | 113 | '5 | 132 | .7 | | 28 .9 | 178 | | .8 | .071 | 8.0 | .083 | .2 | .097 | •4 | .113 | .6 | 132 | .8 | 154 | 29 ·0 | .179 | | 3.9 | .071 | '1 | .083 | •3 | .097 | .2 | .114 | .7 | 1 | 24 ·9 | 155 | -1 | .180 | | 4 .0 | .071 | .2 | .083 | •4 | .098 | .6 | 114 | .8 | 1 | 25 0 | .155 | ·2 | .180 | | •.1. | .072 | .3 | .084 | •5 | .098 | .7 | 115 | $20 \cdot 9$ | .134 | .1 | .156 | .3 | .181 | liv Introduction to Greenwich Meteorological Observations, 1847. Table shewing the Elastic Force of Vapour, in Inches of Mercury, &c .-- continued. | | Force of
Vapour. | | Force of
Vapour. | Temp.
Fahr. | Force of
Vapour. | Temp.
Fahr. | Force of
Vapour. | Temp.
Fahr. | Force of
Vapour. | | Force of
Vapour. | Temp.
Fahr. | Force of
Vapour. | |-------|---------------------|------------------|---------------------|---------------------|---------------------|---|---------------------|----------------------|-----------------------------------|--|---|--|---| | 0 | in, | 0 | in. | 0 | in. | 0 | in. | 0 | in. | 0 | in. | 0 | in. | | 9 •4 | 0 ·182 | 34 ·4 | 0 .217 | 39 •4 | 0 .259 | 44 •4 | 0.308 | 49 •4 | 0 ·366 | 54 •4 | 0 ·434 | 59 · 4 | 0 .513 | | •5 | .182 | •5 | ·218 | ·5 | .260 | •5 | .309 | ·5 | .367 | •5 | .435 | ·5 | •515 | | .6 | .183 | •5 | .219 | •6 | .261 | ·6 | ·310 | .6 | .368 | -6 | .437 | -6 | ·516 | | .7 | ·184 | .7 | .219 | .7 | .262 | .7 | .311 | .7 | .370 | .7 | ·438 | .7 | .518 | | •8 | .184 | .8 | ·220 | •8 | .263 | •8 | .312 | ∙8 | 371 | •8 | .440 | ∙8 | .520 | | 29 ·9 | .185 | 34 ·9 | | 39.9 | ·263 | 44 •9 | •313 | 49 ·9 | .372 | 54.9 | '441 | 59 ·9 | .521 | | 80 .0 | | 35·0 | 1 | 40 .0 | 1 | 45 ·0 | ·315 | 50.0 | | 55 ·0 | .442 | 60 .0 - | .523 | | ·1 | .186 | '1 | .223 | ·1 | .265 | ·1 | .316 | •1 | .375 | •1 | .444 | ·1 | .525 | | •2 | ·187 | •2 | .223 | •2 | •266 | •2 | .317 | .2 | .376 | ·2 | .445 | •2 | .527 | | .3 | .188 | .3 | .224 | .3 | •267 | .3 | •318 | .3 | ·377 | .3 | .447 | .3 | •528 | | •4 | ·188 | •4 | 225 | •4 | .268 | ٠4 | .319 | •4 | ·379 | •4 | •449 | •4 | •530 | | •5 | ·189 | •5 | 226 | •5 | •269 | •5 | •320 | ·5 | .380 | -5 | •450 | •5 | .532 | | :6 | .190 | '6 | ·227 | .6 | .270 | .6 | 321 | .6 | .381 | .6 | 452 | .6 | .534 | | .7 | .190 | .7 | ·227 | .7 | .271 | .7 | .322 | .7 | 382 | .7 | •453 | .7 | •536 | | .8 | .191 | .8 | .228 | •8 | .272 | .8 | .323 | .8 | .383 | •8 | •455 | •8 | •537 | | 6.08 | | 35 ·9 | | 40 · 9 | •273 | 45 ·9 | •324 | 50 .9 | | 55 ·9 | ·456 | 60 ·9 | .539 | | 1.0 | | 36 .0 | į l | 41 0 | | 46 0 | | 51 0 | | 56 ·0 | | 61 ·0 | 541 | | .1 | 193 | 1 | •231 | -1 | 275 | •1 | •327 | •1 | .388 | •1 | •459 | .1 | .543 | | .2 | 194 | .2 | .231 | •2 | 276 | •2 | .328 | .2 | .389 | •2 | •461 | •2 | .544 | | 3 | 194 | .3 | .232 | .3 | •277 | •3 | •329 | .3 | 390 | .3 | •462 | .3 | •546 | | •4 | 195 | ·4 | .233 | 4 | •278 | •4 | •330 | '4 | *392 | •4 | 464 | •4 | •548 | | .5 | 196 | .5 | ·234 | •5 | •279 | ·5 | .331 | .2 | 393 | •5 | •465 | •5 | .550 | | .6 | 197 | ·6 | .235 | .6 | 280 | .6 | •332 | .6 | *394 | .6 | •467 | ·6 | .552 | | .7 | ·197
·198 | •7 | 235 | •7 | 281 | .7 | .333 | .7 | .396 | .7 | •469 | .7 | .554 | | 1.9 | | .8 | 236 | .8 | •282 | ·8 | •335 | .8 | 397 | .8 | •470 | .8 | ·555 | | 2 0 | | 36 ·9
37 ·0 | ·237
·238 | 41 ·9
42 ·0 | 282 | 46 .9 | .336 | 51 9 | | 56 .9 | | 61 ·9 | •557 | | 1 | 200 | •1 | 238 | +2 ·0
·1 | 283 | 47 .0 | ·337
·338 | 52 ·0 | | 57 .0 | | 62 ·0 | .559 | | .2 | 200 | .2 | 239 | $\cdot \frac{1}{2}$ | ·284
·285 | $egin{array}{c} \cdot 1 \\ \cdot 2 \end{array}$ | •339 | $\cdot 1 \\ \cdot 2$ | ·401
·402 | .1 | 475 | 1 | .561 | | .3 | 201 | .3 | 240 | •3 | 286 | ,3 | •340 | .3 | 402 | .2 | 476 | .2 | •563 | | •4 | 201 | •4 | .241 | •4 | 287 | ,3
•4 | 340 | .4 | 404 | 3 | ·478.
·480 | .3 | ·565 | | .5 | 203 | •5 | .241 | •5 | 288 | •5 | •343 | -5 | .407 | ·4
·5 | •481 | •4 | .567 | | .6 | ·204 | .6 | 242 | .6 | •289 | •6 | •344 | 6 | 408 | .6 | •483 | ·5
·6 | .568 | | .7 | .204 | .7 | .244 | .7 | 290 | .7 | •345 | .7 | 409 | .7 | •485 | .7 | ·570
·572 | | -8 | 205 | ∙8 | .245 | .8 | 291 | -8 | 346 | -8 | 411 | .8 | .486 | -8 | .574 | | 2.9 | .206 | 37 .9 | | 42.9 | 291 | 47 · 9 | •348 | 52 .9 | 1 | 57 ·9 | •488 | 62 .9 | .576 | | 3 .0 | 207 | 38 .0 | | 43 ·0 | | 48 .0 | •349 | 53·0 | | 58 · 0 | | 63 ·0 | .578 | | ·1 | 207 | $\ddot{\cdot}$ i | .247 | ·1 | •295 | ·i | .350 | ·i | .415 | · · i | •491 | 1 | •580 | | .2 | .208 | .2 | 248 | $\cdot _{2}^{1}$ | 296 | $\cdot _{2}^{1}$ | 351 | $\cdot _{2}$ | 416 | .2 | •493 | $\cdot \overset{\scriptscriptstyle 1}{2}$ | •582 | | .3 | .209 | •3 | •249 | .3 | 297 | $-\bar{3}$ | .352 | .3 | 418 | -3 | •494 | $\cdot \bar{3}$ | .584 | | •4 | .210 | •4 | .250 | •4 | 298 | .4 | 354 | •4 | •419 | •4 | .496 | •4 | .586 | | .5 | 210 | •5 | 251 | •5 | 299 | ·5 | .355 | •5 | .421 | .5 | •498 | •5 | .588 | | .6 | ·211 | .6
 .252 | .6 | .300 | -6 | .356 | -6 | .422 | ·6 | •499 | .6 | .590 | | .7 | .212 | .7 | .253 | .7 | 301 | .7 | •357 | .7 | •423 | .7 | .501 | .7 | •591 | | .8 | ·213 | .8 | .253 | .8 | .302 | •8 | .358 | -8 | .425 | 8 | | -8 | •593 | | 3 .9 | | 38 ·9 | | 43 •9 | | 48 •9 | .360 | 53 ·9 | | 58 ·9 ` | .504 | 63 .8 | •595 | | 34 ·0 | .214 | 39 ·0 | | 44 ·0 | | 49 ·0 | .361 | 54 ·0 | | 59 ·0 | | 64 .0 | .597 | | •1 | ·215 | •1 | .256 | •1 | .305 | •1 | .362 | -1 | .429 | ·1 | .508 | •1 | .599 | | •2 | ·216 | ·2 | •257 | .2 | .306 | •2 | •363 | ·2 | •431 | $\cdot 2$ | .509 | .2 | ·601 | | .3 | 0 .216 | .3 | 0 .258 | •3 | 0 .307 | .3 | 0 .365 | .3 | 0 .432 | .3 | | | 0 .603 | | •2 | ·216 | ·2 | i | 257 | •257 •2 | 257 2 306 | 257 2 306 2 | 257 2 306 2 363 | ·257 ·2 ·306 ·2 ·363 ·2 | ·257 ·2 ·306 ·2 ·363 ·2 ·431 | . 257 .2 .306 .2 .363 .2 .431 .2 | ·257 ·2 ·306 ·2 ·363 ·2 ·431 ·2 ·509 | ·257 ·2 ·306 ·2 ·363 ·2 ·431 ·2 ·509 ·2 | ELASTIC FORCE OF VAPOUR. Table shewing the Elastic Force of Vapour, in Inches of Mercury, &c .- concluded. | Temp.
Fahr. | Force of Vapour. | Temp.
Fahr. | Force of
Vapour. | Temp.
Fahr. | Force of Vapour. | Temp.
Fahr, | Force of Vapour. | Temp.
Fahr. | Force of Vapour. | Temp.
Fahr. | Force of
Vapour. | Temp.
Fahr. | Force of Vapour | |----------------|------------------|----------------|---------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|---------------------|----------------|-----------------| | 0 | in. | 0 | in. | 0 | in. | 0 | iu. | 0 | in. | 0 | in. | 0 | in. | | 64 ·4 | 0.605 | 68 · 1 | 0.684 | 71 .8 | 0 .771 | 75 .5 | 0.868 | 79 •2 | 0 .976 | $82 \cdot 9$ | 1.097 | 86 .6 | 1 .232 | | •5 | .607 | .2 | | 71 .9 | .773 | •6 | .871 | .3 | .979 | 83.0 | .101 | .7 | •235 | | •6 | .609 | .3 | .688 | 72 .0 | .776 | .7 | 873 | •4 | .983 | •1 | .104 | ∙8 | •239 | | .7 | 611 | •4 | .690 | •1 | .778 | ∙8 | 876 | •5 | .986 | •2 | .108 | 86 .9 | •243 | | •8 | .613 | .5 | ·692 | •2 | .781 | 75 .9 | ·879 | .6 | .989 | .3 | .111 | 87 .0 | 247 | | 64 •9 | .615 | .6 | .695 | ∙8 | .783 | 76 ·0 | .882 | .7 | .992 | •4 | .114 | •1 | .251 | | 65 .0 | 617 | .7 | ·697 | •4 | .785 | ·1 | .885 | -8 | •995 | ·5 | .118 | •2 | 255 | | •1 | .619 | •8 | .699 | •5 | .787 | •2 | .887 | 79 · 9 | 0.998 | .6 | 121 | .3 | •258 | | •2 | .621 | 68.9 | .701 | •6 | .790 | •3 | .890 | 80 .0 | 1.001 | .7 | ·125 | •4 | .262 | | .3 | .623 | 69 ·0 | .704 | .7 | .792 | •4 | .893 | •1 | :005 | ∙8 | 129 | •5 | •266 | | •4 | .626 | •1 | .706 | -8 | .795 | •5 | .896 | •2 | .008 | 83.9 | ·132 | ∙6 | 270 | | •5 | .628 | .2 | .708 | 72 .9 | .797 | ∙6 | .899 | .3 | .011 | 84 .0 | ·136 | .7 | .274 | | •6 | .630 | .3 | .711 | 73 .0 | .801 | .7 | .902 | •4 | .014 | •1 | ·139 | .8 | 278 | | .7 | .632 | •4 | .713 | ·1 | .803 | •8 | .905 | •5 | .017 | ·2 | ·143 | 87 .9 | 282 | | •8 | .634 | . •5 | .715 | •2 | ·806 | 76 ·9 | .908 | •6 | .021 | .3 | ·146 | 88 .0 | •286 | | 65 •9 | .636 | •6 | .717 | .3 | .809 | 77.0 | .910 | .7 | .024 | •4 | .150 | •1 | •290 | | 66 .0 | ·638 | .7 | .720 | •4 | .811 | •1 | .913 | •8 | 027 | •5 | .153 | •2 | •294 | | •1 | .640 | •8 | .722 | ·5 | .814 | •2 | .916 | 80 .9 | .030 | •6 | .157 | .3 | .298 | | •2 | | 69 ·9 | .725 | ·6 | 817 | .3 | .919 | 81.0 | .034 | .7 | .160 | •4 | .302 | | •3 | .644 | 70 .0 | .727 | .7 | ·819 | •4 | .922 | •1 | .037 | ∙8 | ·164 | •5 | ·306 | | •4 | .646 | •1 | .729 | •8 | .822 | ∙5 | 925 | ·2 | ·040 | 84 ·9 | ·167 | •6 | .310 | | •5 | .648 | •2 | .732 | 73 ·9 | .824 | .6 | .928 | .3 | .043 | 85 ·0 | .171 | .7 | •314 | | •6 | .651 | •3 | .734 | 74 ·0 | 827 | .7 | .931 | ·4 | .047 | •1 | .175 | •8 | .318 | | .7 | .653 | •4 | .736 | ·1 | .830 | ∙8 | .934 | •5 | .050 | •2 | .178 | 88 .9 | •322 | | •8 | .655 | .5 | .739 | •2 | .832 | 77.9 | .937 | -6 | .053 | .3 | 182 | 89 .0 | *326 | | 66 · 9 | .657 | •6 | .741 | .3 | .835 | 78 .0 | .940 | .7 | .057 | •4 | 186 | •1 | .330 | | 67 .0 | 659 | .7 | .744 | •4 | .838 | •1 | .943 | •8 | •060 | •5 | •190 | •2 | •335 | | .,1 | .661 | •8 | .746 | •5 | .840 | •2 | '946 | 81 .9 | .063 | -6 | .193 | .3 | •339 | | •2 | .664 | 70 ·9 | .748 | -6 | .843 | .3 | .949 | 82.0 | .067 | .7 | 197 | •4 | .343 | | .3 | .666 | 71 .0 | •751 | .7 | *846 | •4 | .952 | 1 | .069 | .8 | 201 | •5 | ·347 | | •4 | .668 | •1 | .753 | ∙8 | .849 | •5 | .955 | •2 | .073 | 85 .9 | •205 | 6 | 351 | | .5 | .670 | •2 | .756 | 74 ·9 | .851 | 6٠ | .958 | •3 | .077 | 86 ·0 | 209 | .7 | •355 | | •6 | 672 | .3 | .758 | 75 •0 | .854 | .7 | .961 | •4 | .080 | -1 | .212 | •8 | •359 | | .7 | 674 | •4 | .761 | •1 | ·857 | ∙8 | .964 | •5 | •083 | ·2 | .216 | 89.9 | 364 | | •8 | 677 | .5 | •763 | •2 | .860 | 78 ·9 | .967 | •6 | .087 | J ∙3 | | 90 .0 | 1 .368 | | 67 ·9 | 679 | .6 | .766 | .3 | | 79 ·0 | .970 | .7 | .090 | '4 | .224 | 1 | | | 68 .0 | 0.681 | .7 | 0.768 | •4 | 0.865 | •1 | 0 .973 | •8 | 1.094 | ۰5 | 1 .228 | l | 1 | Before deciding upon the use of the above table; many comparisons were made between the observed dew-point, and that deduced from the observed temperature of evaporation by means of the formulæ of Dr. Apjohn, using the values of the elastic force of vapour as given in the Report of the Committee of Physics and Meteorology of the Royal Society; and also between it and that deduced from the values of the elastic force of vapour and the formulæ given by Professor Kämtz, in his work on Meteorology: the errors of the inferred dew-points were considerable with both sets of tables. Similar comparisons were made, using the above table, and the errors were found to be nearly lvi Introduction to Greenwich Meteorological Observations, 1847. always small; and, in consequence, the above table has been adopted for constant use. In the Abstracts contained in previous volumes, it will be seen that Dr. Apjohn's formulæ, combined with this table, give results in close accordance with direct observations of the dew-point; we may, therefore, infer that the above table represents, with considerable accuracy, the relation between the tension and the temperature of steam; and it has been always used in this volume where such values have been required. Dr. Apjohn's formula for deducing the dew-point for all values of the temperature of evaporation above 32° is, $$f'' = f' - \frac{d}{88} \times \frac{h}{30}$$. (Proceedings of the Royal Irish Academy, 1840.) Where f'' represents the force of vapour at the temperature of the dew-point, f' represents the force of vapour at the temperature of evaporation, d represents the difference between the readings of the dry and wet thermometers, h the height of the barometer. The following table, representing $\frac{d}{88} \times \frac{1}{30}$ has been formed to facilitate the calculations:— | 0 · 2
0 · 3
0 · 4
0 · 5
0 · 6
0 · 7 | *00004
*00008
*00011
*00015
*00019
*00023 | 2·4
2·5
2·6
2·7
2·8
3·9 | 0 ·00091
·00095
·00098
·00102
·00106 | 4·7
4·8
4·9
5·0 | 0 ·00178
·00182
·00186 | °7·0
7·1
7·2 | 0 .00265 | - 9·3
9·4 | 0 ·00352
·00356 | |--|--|--|--|--------------------------|------------------------------|--------------------|-----------------|--------------|--------------------| | 0 · 2
0 · 3
0 · 4
0 · 5
0 · 6
0 · 7 | .00008
.00011
.00015
.00019
.00023 | 2·5
2·6
2·7
2·8 | ·00095
·00098
·00102 | 4·8
4·9
5·0 | ·00182
·00186 | 7 ·1 | ·00 2 69 | 9 • 4 | | | 0·3
0·4
0·5
0·6
0·7 | ·00011
·00015
·00019
·00023 | 2·6
2·7
2·8 | ·00098
·00102 | 4 ·9
5 ·0 | .00186 | | | | 00000 | | 0 ·4
0 ·5
0 ·6
0 ·7 | ·00015
·00019
·00023 | 2·7
2·8 | ·00102 | 5 .0 | | | .00273 | 9 • 5 | .00360 | | 0 · 5
0 · 6
0 · 7 | ·00019
·00023 | 2 ·8 | | | •00189 | 7.3 | .00277 | 9.6 | .00364 | | 0 ·6
0 ·7 | .00023 | | - 0 - 0 | 5.1 | .00193 | 7 .4 | .00280 | 9.7 | .00368 | | 0 .7 | | | .00110 | 5.2 | .00197 | 7.5 | .00284 | 9.8 | .00371 | | | | 3 .0 | .00114 | 5.3 | .00201 | 7.6 | .00288 | 9.9 | .00375 | | 0.8 | .00030 | 3.1 | .00118 | 5.4 | .00205 | 7.7 | .00292 | 10.0 | .00379 | | | .00034 | 3 ·2 | .00121 | 5.5 | .00209 | 7 ·8 | .00295 | 10 ·1 | .00383 | | . : | .00038 | 3 · 3 | .00125 | 5.6 | .00212 | 7 .9 | .00299 | 10 .2 | .00386 | | | 00042 | 3 4 | .00129 | 5.7 | .00216 | 8.0 | .00303 | 10 ·3 | .00390 | | 1 .2 | ·00046 | 3 · 5 | .00132 | 5.8 | .00220 | 8.1 | .00307 | 10 •4 | .00394 | | 1.3 | .00049 | 3 ·6 | .00137 | 5 .9 | .00224 | 8 • 2 | .00311 | 10 .5 | .00398 | | | .00053 | 3 .7 | .00140 | 6.0 | .00228 | 8.3 | .00315 | 10 .6 | ·00401 | | | .00057 | 3 ·8 | .00144 | 6 · 1 | .00231 | 8 .4 | ·00 3 18 | 10 7 | ·00405 | | | 00061 | 3 .9 | ·00148 | 6 · 2 | .00235 | 8 · 5 | .00322 | 10 ·8 | .00409 | | | ·00064 | 4 .0 | 00151 | 6.3 | .00239 | 8.6 | .00326 | 10 •9 | .00412 | | 1.8 | .00068 | 4 · 1 | ·00155 | 6 • 4 | .00242 | 8 · 7 | .00330 | 11.0 | .00416 | | 1.9 | 00072 | $4 \cdot 2$ | ·00159 | 6.9 | .00246 | 8.8 | .00333 | 11 · 1 | .00420 | | 2.0 | 00076 | 4 ·3 | .00163 | 6.6 | 00250 | 8 .9 | ·00 337 | 11 •2 | .00424 | | 2 · 1 | 08000 | 4 · 4 | .00167 | 6.7 | .00254 | 9 · 0 | .00341 | 11 ·3 | .00428 | | $2 \cdot 2$ | .00083 | 4.5 | .00171 | 6.8 | .00258 | 9 ·1 | ·00345 | 11 ·4 | .00432 | | 2 ·3 | .00087 | 4 .6 | .00174 | 6.9 | .00261 | 9 · 2 | ·00349 | 11 ·5 | .00436 | TABLES USED IN DEDUCING THE DEW-POINT FROM THE WET THERMOMETER. lvii | V_{alues} of d . | $\frac{d}{88} \times \frac{1}{30}$ | Values of d . | $\frac{d}{88} \times \frac{1}{30}$ | Values of d. | $\frac{d}{88} \times \frac{1}{30}$ | Values of d. | $\frac{d}{88} \times \frac{1}{30}$ | Values of d. | $\frac{d}{88} \times \frac{1}{30}$ |
---|--|--|--|--|--|--|--|--|---| | of a. 11 · 6 11 · 7 11 · 8 11 · 9 12 · 0 12 · 1 12 · 2 12 · 3 12 · 4 12 · 5 12 · 6 12 · 7 12 · 8 | 0 · 00439
· 00443
· 00447
· 00451
· 00458
· 00462
· 00466
· 00470
· 00474
· 00477
· 00481
· 00485 | 13·4
13·5
13·6
13·7
13·8
13·9
14·0
14·1
14·2
14·3
14·4
14·5
14·6 | 0 ·00508
·00511
·00515
·00519
·00522
·00524
·00530
·00534
·00538
·00541
·00545
·00549
·00553 | 15·2
15·3
15·4
15·5
15·6
15·7
15·8
15·9
16·0
16·1
16·2
16·3
16·4 | 0 ·00576
·00580
·00584
·00587
·00591
·00595
·00598
·00602
·00610
·00614
·00618
·00622 | 16·9
17·0
17·1
17·2
17·3
17·4
17·5
17·6
17·7
17·8
17·9
18·0
18·1 | 0 · 00640
· 00644
· 00648
· 00652
· 00655
· 00659
· 00666
· 00670
· 00674
· 00678
· 00682
· 00686 | 18 · 6
18 · 7
18 · 8
18 · 9
19 · 0
19 · 1
19 · 2
19 · 3
19 · 4
19 · 5
19 · 6
19 · 7
19 · 8 | 0·00704
·00708
·00712
·00716
·00720
·00724
·00728
·00731
·00735
·00742
·00746
·00750 | | 12 ·8
12 ·9
13 ·0
13 ·1
13 ·2
13 ·3 | ·00485
·00489
·00493
·00496
·00500
·00504 | 14·6
14·7
14·8
14·9
15·0
15·1 | •00556
•00560
•00564
•00568
•00572 | 16 · 4
16 · 5
16 · 6
16 · 7
16 · 8 | ·00622
·00625
·00629
·00633
·00636 | 18·1
18·2
18·3
19·4
18·5 | ·00690
·00693
·00697
·00701 | 19.8
19.9
20.0
20.1
20.2 | ·00754
·00758
·00761
·00765 | When the reading of the wet thermometer is lower than 32°, the formula becomes:— $$f'' = f' - \frac{d}{96} \times \frac{h}{30}$$ (Proceedings of the Royal Irish Academy, 1840); and the following table has been formed to facilitate the calculations for such cases:— | Values of d. | $\frac{d}{96} \times \frac{1}{30}$ | Values of d. | $\frac{d}{96} \times \frac{1}{30}$ | Values
of d. | $\frac{d}{96} \times \frac{1}{30}$ | Values of d. | $\frac{d}{96} \times \frac{1}{30}$ | Values
of d. | $\frac{d}{96} \times \frac{1}{30}$ | |--------------|------------------------------------|---------------------------------|------------------------------------|-----------------|------------------------------------|--------------|------------------------------------|-----------------|------------------------------------| | ° ·1 | 0 .00003 | $\overset{\circ}{2}\cdot1$ | 0 .00071 | °
4·1 | 0 .00139 | 6·1 | 0 .00207 | 8·1 | 0 .00275 | | 0.2 | .00007 | $\overline{2}\cdot\overline{2}$ | .00075 | 4 · 2 | .00143 | 6 · 2 | .00211 | $8 \cdot 2$ | .00279 | | 0.3 | .00010 | 2 · 3 | 00078 | 4 3 | .00146 | 6.3 | .00214 | 8 · 3 | .00282 | | 0.4 | .00014 | 2 · 4 | .00081 | 4.4 | ·00150 | 6 ·4 | .00218 | 8 • 4 | .00285 | | 0.5 | .00017 | 2.5 | .00085 | 4 · 5 | .00153 | 6 · 5 | .00221 | 8 · 5 | .00289 | | 0.6 | .00020 | 2.6 | •00088 | 4.6 | .00156 | 6.6 | ·00224 | 8.6 | .00292 | | 0.7 | .00024 | 2 .7 | .00092 | 4 ·7 | .00160 | 6.7 | .00228 | 8 · 7 | .00296 | | 0.8 | .00027 | 2.8 | •00095 | 4 ·8 | .00163 | 6.8 | .00231 | 8 .8 | .00299 | | 0.9 | .00030 | 2 ·9 | .00099 | 4 · 9 | .00167 | 6.9 | .00235 | 8 .9 | .00302 | | 1.0 | .00034 | 3.0 | .00102 | 5.0 | .00170 | 7 .0 | :00238 | 9 ·0 | .00306 | | 1.1 | .00037 | 3 1 | .00105 | 5 · 1 | .00173 | 7 ·1 | .00241 | 9 · 1 | .00309 | | 1 .2 | .00041 | 3 · 2 | .00109 | 5 · 2 | .00177 | 7 · 2 | .00245 | 9 · 2 | .00313 | | 1.3 | .00044 | 3 · 3 | .00112 | 5 3 | .00180 | 7 · 3 | ·00248 | 9 · 3 | .00316 | | 1 ·4 | .00047 | 3 · 4 | .00116 | 5.4 | .00184 | 7 · 4 | ·002 52 | 9 • 4 | .00319 | | 1.5 | •00051 | 3.5 | .00119 | 5.5 | .00187 | 7 · 5 | ·00255 | 9 · 5 | .00323 | | 16 | .00054 | 3.6 | .00122 | 5.6 | .00190 | 7 ·6 | ·00 25 8 | 9.6 | [,] 00326 | | 1.7 | •00058 | 3 · 7 | .00126 | 5 · 7 | .00194 | 7.7 | ·00262 | 9.7 | .00330 | | 1.8 | .00061 | 3.8 | .00129 | 5·8 | .00198 | 7 .8 | ·00265 | 8.6 | .00333 | | 1.9 | .00064 | 3 9 | .00133 | 5 ·9 | .00201 | 7 .9 | ·00 269 | 9 · 9 | ·00 337 | | 2.0 | •00068 | 4.0 | .00136 | 6.0 | .00204 | 8 .0 | ·00272 | 10 ·0 | .00340 | | | | | | | | | | | | # lviii Introduction to Greenwich Meteorological Observations, 1847. Using this table or that preceding, accordingly as the reading of the wet thermometer is lower or higher than 32°, the inferred dew-points may be found as follows. The number in the tables, on page lvii, ranging with the difference of the readings of the dry and wet thermometers, being multiplied into the reading of the barometer at the time of the observation, the difference between this product and the elastic force of vapour at the temperature of evaporation will be the elastic force of vapour at the temperature of the dew-point, and then from the table in pages liii to lv the dew-point may be found. M. Gay Lussac has determined by experiment that air expands \(\frac{1}{480} \) part for every addition of 1° of heat, or, that it expands three-eighths of its bulk from the freezing point to the boiling point, and that the expansion is uniform between these points as referred to the temperature indicated by a mercurial thermometer. (Annales de Chimie, vol. 43.) The following table has been calculated upon this assumption, considering a volume of air under the pressure of 30 inches of mercury and at the temperature of 32° to be the unit of comparison. A Table shewing the volume of a Mass of Dry Air after Expansion by Heat, under the Pressure of 30 Inches of Mercury, for every Degree of Temperature from 0° to 90°. | Temp.
Fahr. | The Volume
after
Expansion
by
Heat. | Temp.
Fahr. | The Volume
after
Expansion
by
Heat. | Temp.
Fahr. | The Volume
after
Expansion
by
Heat. | Temp.
Fahr. | The Volume
after
Expansion
by
Heat. | Temp.
Fahr. | The Volume
after
Expansion
by
Heat. | |----------------|---|----------------|---|----------------|---|----------------|---|----------------|---| | 0 | | 0 | | 0 | | 0 | | 0 | | | 0 | 0 .93334 | 19 | 0 .97292 | 37 | 1 .01041 | 55 | 1.04791 | 73 | 1 .08541 | |] | .93542 | 20 | .97500 | 38 | .01249 | 56 | .04999 | 74 | .08749 | | 2 | 93751 | 21 | .97709 | 39 | .01458 | 57 | .05208 | 75 | ·08957 | | 3 | .93959 | 22 | 97917 | 40 | .01666 | 5 8 | .05416 | 76 | .09166 | | 4 | .94167 | 23 | .98126 | 41 | .01874 | 59 | .05624 | 77 | .09374 | | 5 | .94376 | 24 | .98334 | 42 | .02083 | 60 | .05833 | 78 | •09583 | | 6 | .94584 | 25 | .98542 | 43 | .02291 | 61 | .06041 | 79 | •09791 | | 7 | .94792 | 2 6 | .98751 | 44 | .02500 | 62 | .06249 | 80 | ·09999 | | 8 | •95001 | 27 | •98959 | 45 | .02708 | 63 | .06458 | 81 | ·10208 | | 9 | .95209 | 28 | •99167 | 46 | .02916 | 64 | .06666 | 82 | .10416 | | 10 | ·95417 | 29 | •99376 | 47 | .03124 | 65 | .06874 | 83 | .10624 | | 11 | .95626 | 3 0 | .99584 | 48 | .03333 | 66 | .07083 | 84 | ·10833 | | 12 | ·95834 | 31 | 0 .99792 | 49 | .03541 | 67 | .07291 | 85 | ·11041 | | 13 | ·96042 | 32 | 1 .00000 | 50 | .03749 | 68 | .07499 | 86 | ·11249 | | 14 | •96251 | 33 | .00208 | 51 | .03958 | 69 | .07708 | 87 | ·11458 | | 15 | •96459 | 34 | .00416 | 52 | .04166 | 70 | .07916 | 88 | ·11666 | | 16 | .96667 | 35 | .00624 | 53 | .04374 | 71 | .08124 | 89 | ·11874 | | 17 | .96876 | 36 | 1 .00833 | 54 | 1 .04583 | 72 | 1 .08333 | 90 | 1 ·12083 | | 18 | 0 .97084 | | | 1 | | | | | | Sir George Shuckburgh determined that a bulk of 1000 cubic inches of dry air under the pressure of 30 inches of mercury and at the temperature of 60°, weighs 305 grains. Biot and Thénard determined the weight of the same volume under the same circumstances to be 311 grains. (Penny Cyclopædia, article Air.) Using Shuckburgh's value we have, Cubic Inches Grains Inches Grains as 1000:305:1728:527.040; being the weight of a cubic foot of dry air at the temperature of 60° . Now, from the above table it appears that the volume of a mass of dry air at 60°, whose volume at 32° is represented by unity, is 1.05833. Therefore, the weight of a cubic foot of dry air at 32° is equal to the weight at $60^{\circ} \times 1.05833$, or to 557.7295 grains. Using Biot and Thénard's determination, the value would be 568.7013 grains. The mean of these two values is 563.2154 grains. In calculating the following table, 563 grains has been adopted as the weight of a cubic foot of dry air at 32°. This number has been divided by the number expressing the volume of dry air after expansion from heat, as
contained in the table above; and thus the following table has been formed:— A Table shewing the Weight in Grains of a Cubic Foot of Dry Air, under the Pressure of 30 Inches of Mercury, for every Degree of Temperature from 0° to 90°. | Temp. | Weight of
a Cubic Foot
of Dry Air. | Temp.
Fahr. | Weight of
a Cubic Foot
of Dry Air. | Temp.
Fahr. | Weight of
a Cubic Foot
of Dry Air. | Temp.
Fahr. | Weight of
a Cubic Foot
of Dry Air. | Temp.
Fahr. | Weight of
a Cubic Foot
of Dry Air. | |-------------|--|----------------|--|----------------|--|----------------|--|----------------|--| | 0 | gr. | 0 | gr. | 0 | gr. | 0 | gr. | 0 | gr. | | 0 | 603 .21 | 19 | 578 67 | 37 | 557 .21 | 55 | 537 .27 | 73 | 518.70 | | í | 601 .87 | 20 | 577 .44 | 38 | 556 .05 | 56 | 536 · 19 | 74 | 517.70 | | $\hat{f 2}$ | 600 .52 | 21 | 576 21 | 39 | 554 91 | 57 | 535 12 | 75 | 516 .71 | | 3 | 599 .20 | 22 | 574 .98 | 40 | 553.77 | 58 | 534 .07 | 76 | 515 .73 | | 4 | 597 .87 | 23 | 573 .76 | 41 | 552 .65 | 59 | 533 .03 | 77 | 514 .74 | | 5 | 596 .55 | 24 | 572 .55 | 42 | 551.52 | 60 | 531 .97 | 78 | 513 .77 | | 6 | 595 •24 | 25 | 571 .33 | 43 | 550 .39 | 61 | 530 93 | 79 | 512 .80 | | 7 | 593 •94 | 26 | 570 13 | 44 | 549 .27 | 62 | 529 ·88 | 80 | 511 .82 | | 8 | 592 .63 | 27 | 568 .92 | 45 | 548 •16 | 63 | 528 .84 | 81 | 510 .87 | | 9 | 591 .33 | 28 | 567 .73 | 46 | 547.05 | 64 | 527 ·81 | 82 | 509 .89 | | 10 | 590 .04 | 29 | 566 .54 | 47 | 545 .97 | 65 | 526 · 78 | 83 | 508 .93 | | 11 | 588 .75 | 30 | 565 .35 | 48 | 544 .85 | 66 | 525 • 76 | 84 | 507·9 7 | | 12 | 587 .48 | 31 | 564 ·17 | 49 | 543 .75 | 67 | 524 .75 | 85 | 507 .03 | | 13 | 586 .21 | 32 | 563 .00 | 50 | 542 .65 | 68 | 523 · 72 | 86 | 506 .07 | | 14 | 584 .93 | 33 | 561 .84 | 51 | 541 .55 | 69 | 522 .70 | 87 | 505 · 11 | | 15 | 583 .67 | 34 | 560 .67 | 52 | 540 .48 | 70 | 521 .70 | 88 | 504 ·19 | | 16 | 582 .41 | 35 | 559 .51 | 53 | 539 ·41 | 71 | 520 .70 | 89 | 503 .25 | | 17 | 581 ·15 | 36 | 558 .35 | 54 | 538 · 33 | 72 | 519 ·69 | 90 | 502 ·32 | | 18 | 579 .91 | | 1 | | | | | | | lx Introduction to Greenwich Meteorological Observations, 1847. If a volume of dry air, of known elasticity, be mixed with an equal volume of vapour, also of known elasticity; and if the mixture be so compressed as to occupy a space only equal to one of these volumes; then (by Dalton's law) the elasticity of the mixture will be the sum of the two elasticities of the air and the vapour; or, if the mixture be allowed to expand till its elasticity is equal to that of the unmixed air, it will occupy a larger volume in the proportion of the sum of the two elasticities to the elasticity of the air alone. Now we know the elastic force of vapour for every degree of temperature (see table on page liii, and following pages), let also p = the atmospheric pressure as measured by the inches of mercury in the barometer. E_t = the elasticity of vapour at temperature t (measured in the same way). n = the bulk of a certain quantity of air, when dry, at the temperature t, and under the pressure p. n' = the bulk of the same quantity of air when saturated with vapour, at the same temperature t, and under the same pressure p. Then, since the elasticity varies inversely as the volume, the temperature remaining the same, that portion of the elastic force p which depends on the air only which occupies the space n' is $p \times \frac{n}{n'}$. And this, together with E_t , must make up the atmospheric pressure, or $$p = p \times \frac{n}{n'} + E_t$$ or $\frac{n}{n'} = \frac{p - E_t}{p} = (1 - \frac{E_t}{p})$ or $n' = \frac{n}{1 - \frac{E_t}{p}}$. And from this formula the following table has been computed:- A Table shewing the Enlargement which a Volume of Dry Air receives when saturated with Vapour under the Pressure of 30 Inches of Mercury, for every Degree of Temperature from 0° to 90°. | Temp.
Fahr, | Increased Volume owing to the presence of Vapour, the original bulk being considered as unity. | Temp.
Fahr. | Increased Volume owing to the presence of Vapour, the original bulk being considered as unity. | Temp.
Fahr. | Increased Volume owing to the presence of Vapour, the original bulk being considered as unity. | Temp.
Fahr. | Increased Volume owing to the presence of Vapour, the original bulk being considered as unity. | Temp.
Fahr. | Increased Volume owing to the presence of Vapour, the original bulk being considered as unity. | |----------------|--|----------------|--|----------------|--|----------------|--|----------------|--| | 0 | | 0 | | 0 | | 0 | 1 | 0 | | | 0 | 1 .0021 | 19 | 1 .0042 | 37 | 1 .0080 | 55 | 1 .0148 | 73 | 1 .0268 | | 1 | 1 .0022 | 20 | 1 .0043 | 38 | 1.0081 | 56 | 1 .0154 | 74 | 1 0277 | | 2 | 1 .0022 | 21 | 1 .0045 | 39 | 1 .0086 | 57 | 1 .0159 | 75 | 1 .0286 | | 3 | 1 .0023 | 22 | 1 .0046 | 40 | 1 .0089 | 5 8 | 1 .0164 | 76 | 1 .0295 | | 4 | 1.0024 | 23 | 1 .0048 | 41 | 1 .0092 | 59 | 1 .0170 | 77 | 1 0304 | | 5 | 1 .0025 | 24 | 1 .0050 | 42 | 1 .0095 | 60 | 1.0175 | 78 | 1 .0314 | | 6 | 1 .0026 | 25 | 1 .0052 | 43 | 1 .0099 | 61 | 1.0186 | 79 | 1 .0324 | | . 7 | 1 .0027 | 26 | 1 .0054 | 44 | 1 .0102 | 62 | 1.0187 | 80 | 1 .0335 | | 8 | 1 .0028 | 27 | 1 .0056 | 45 | 1.0106 | 63 | 1 .0194 | 81 | 1 .0346 | | 9 | 1 0029 | 28 | 1 .0058 | 46 | 1.0110 | 64 | 1 .0200 | 82 | 1 .0357 | | 10 | 1 .0030 | 29 | 1.0060 | 47 | 1 .0113 | 65 | 1 .0207 | 83 | 1 .0368 | | 11 | 1 .0031 | 30 | 1.0062 | 48 | 1 .0117 | 66 | 1 .0214 | 84 | 1.0380 | | 12 | 1 .0032 | 31 | 1 .0064 | 49 | 1.0121 | 67 | 1 .0221 | 85 | 1 .0392 | | 13 | 1.0033 | 32 | 1 .0066 | 50 | 1 .0125 | 68 | 1 .0228 | 86 | 1 .0405 | | 14 | 1.0035 | 33 | 1 .0070 | 51 | 1.0130 | 69 | 1 .0236 | 87 | 1 .0418 | | 15 | 1 .0036 | 34 | 1.0072 | 52 | 1 .0134 | 70 | 1 0243 | 88 | 1 0431 | | 16 | 1 0037 | 35 | 1.0074 | 53 | 1.0139 | 71 | 1 .0251 | 89 | 1 .0444 | | 17 | 1 0039 | 36 | 1.0078 | 54 | 1.0144 | 72 | 1 .0260 | 90 | 1 .0458 | | 18 | 1 .0040 | | | <u> </u> | | <u> </u> | | <u> </u> | | Gay Lussac has determined by experiment, that vapours, so long as they remain in an aëriform state, expand by the increase of temperature, precisely as permanently elastic fluids, and that they suffer changes of volume proportional to the changes of pressure; and he has, as previously stated, determined that air expands three-eighths of its bulk from 32° to 212°, and that its expansion is uniform between these points. (Annales de Chimie, vol. 43.) Therefore, if the weight of a cubic foot of vapour, under the pressure of 30 inches of mercury, and at the temperature of 212° , be called W; and the weight, expressed in the same denomination, of an equal volume of vapour, at the temperature t and under the same pressure of 30 inches, be called W'; and if E_t be the elasticity of vapour at the temperature t; then (the expansion of dry air from 32° to 212° being 0.375, or being $\frac{1}{480}$ part = 0.002083 for each degree of temperature), $$W' = \frac{1.375 \times W \times E_t}{30 (1 + .002083 \cdot \overline{t^{\circ} - 32^{\circ}})}$$ Now, Gay Lussac has also determined, that a cubic inch of vapour at 212° weighs lxii Introduction to Greenwich Meteorological Observations, 1847. 0.149176 grains under the pressure of 29.92196 inches of mercury (Edinburgh Encyclopædia, article Hygrometry); and, consequently, a cubic foot of vapour, under the same circumstances, weighs $0.149176 \times 1728 = 257.776$ grains; and under a pressure of 30 inches it weighs $$\frac{30}{29.92196} \times 257.776 = 258.448$$ Therefore, substituting for W this weight of a cubic foot of vapour at 212°, and under a pressure of 30 inches, the formula above becomes $$\mathbf{W'} = \frac{1.375 \times 258.448 \times E_t}{30 \ (1 + .002083 \times t^{\circ} - 32^{\circ})}$$ And from this formula the next table is formed, shewing The Weight in Grains of a Cubic Foot of Vapour, under the Pressure of 30 Inches of Mercury, for every Degree of Temperature from 0° to 90°. | Temp.
Fahr. | Weight in Grains of a Cubic Foot of Vapour. | Temp.
Fahr. | Weight
in Grains of
a Cubic Foot
of Vapour. | Temp.
Fahr. | Weight
in Grains of
a Cubic Foot
of Vapour. | Temp.
Fabr. | Weight
in Grains of
a Cubic Foot
of Vapour. | Temp.
Fahr. | Weight in Grains of a Cubic Foot of Vapour. | |----------------|---|----------------|--|----------------|--|----------------|--|----------------|---| | 0 | gr. | 0 | gr. | 0 | gr. | 0 | gr. | 0 | gr. | | 0 | 0.78 | 19 | 1 .52 | 37 | 2 .80 | 55 | 5 .02 | 73 | 8 .76 | | 1 | 0.81 | 20 | 1 .28 | 38 | 2 ·89 | 56 | 5.18 | 74 | 9 .04 | | 2 | 0.84 | 21 | 1 .63 | 39 | 2 .99 | 57 | 5 · 34 | 75 | 9 · 31 | | 3 | 0.87 | 22 | 1 .69 | 40 | 3.09 | 5 8 | 5 · 51 | 76 | 9 . 60 | | 4 | 0.90 | 23 | 1 .75 | 41 | 3 · 19 | 5 9 | 5 · 69 | 77 | 9 .89 | | 5 | 0.93 | 24 | 1 .81 | 42 | 3 ·30 | 60 | 5 · 87 | 78 | 10 ·19 | | 6 | 0.97 | 25 | 1.87 | 43 | 3 .41 | 61 | 6.06 | 79 | 10.50 | | 7 | 1.00 | 26 | 1 93 | 44 | 3 .52 |
62 | 6 .25 | 80 | 10.81 | | 8 | 1 .04 | 27 | 2.00 | 45 | 3.64 | 63 | 6 · 45 | 81 | 11 · 14 | | 9 | 1 .07 | 28 | 2.07 | 46 | 3.76 | 64 | 6 .65 | 82 | 11 ·47 | | 10 | 1.11 | 29 | 2.14 | 47 | 3.88 | 65 | 6 · 87 | 83 | 11 .82 | | 11 | 1 ·15 | 30 | 2.21 | 48 | 4.01 | 66 | 7 .08 | 84 | 12 · 17 | | 12 | 1 · 19 | 31 | 2 ·29 | 49 | 4.14 | 67 | 7.30 | 85 | 12 53 | | 13 | 1 .24 | 32 | 2 · 37 | 50 | 4 .28 | 68 | 7.53 | 86 | 12 .91 | | 14 | 1 .28 | 33 | 2 .45 | 51 | 4 .42 | 69 | 7 .76 | 87 | 13 .29 | | 15 | 1 .32 | 34 | 2 .53 | 52 | 4 . 56 | 70 | 8.00 | 88 | 13 .68 | | 16 | 1 .37 | 35 | 2 .62 | 53 | 4.71 | 71 | 8 • 25 | 89 | 14 .08 | | 17 | 1.41 | 36 | 2.71 | 54 | 4 .86 | 72 | 8 .50 | 90 | 14.50 | | 18 | 1 .47 | | | | | '- | | · | | This table is to be used as follows: if the temperatures of the air and of the dew-point be the same, then the air is quite saturated with moisture, and the number ranging with the temperature will be the weight required; but if the temperature of the air should be higher than the temperature of the dew-point, then the quantity of vapour at the temperature of the dew-point will be expanded in the same proportion as the air is expanded: therefore from the table on page lviii take out the volume after expansion at both temperatures, and then say, As volume at temp. of air: volume at temp. of dew-point:: \begin{cases} \text{weight of a cubic foot} \\ \text{of vapour at temp. of} \\ \text{dew-point.} \end{cases} : \begin{cases} \text{weight of a cubic foot} \\ \text{of vapour required.} \end{cases} As, for instance, suppose that the temperature of the air was 70°, and that of the dewpoint 50°: Then, the expansion of dry air at 70° is 1.079, and at 50° it is 1.037; also, the weight of a cubic foot of aqueous vapour at 50° is 4.28 grains, from the table on page lxii. Then 1.079 : 1.037 :: 4.28 : 4.12 the weight of a cubic foot of vapour. In any state of the atmosphere when the temperatures of the air and of the dew-point are different, no moisture can be precipitated. Before precipitation can take place, either the temperature of the air must fall below that of the dew-point; or the aqueous vapour must increase to a quantity greater than that which can be held in solution at the temperature of the air; or the temperature of the air must fall, and that of the dew-point must rise at the same time, till they are at the same temperature. In the assumed example, the temperature of the air must fall below 50°; or the quantity of aqueous vapour must increase to 8^{gr}·00, that being the greatest quantity of moisture that can be held in solution at 70°; or the temperature of the dew-point must rise above 50°, whilst that of the air must fall below 70°, till they are at the same temperature, before any of the moisture in the air can fall. The following is a table of factors to be multiplied into the weight of a cubic foot of vapour at the temperature of the dew-point, to deduce the weight of a cubic foot of vapour in the existing state of the atmosphere. | Difference
between the
Readings of the
Dry and Dew-
point
Thermometers. | Factor. | Difference
between the
Readings of the
Dry and Dew-
point
Thermometers. | Factor. | Difference
between the
Readings of the
Dry and Dew-
point
Thermometers. | Factor. | Difference between the Readings of the Dry and Dew- point Thermometers. | Factor. | |--|---|--|--|--|--|---|--| | °1
2
3
4
5
6
7
8 | 0 999
996
994
992
990
988
986 | 11
12
13
14
15
16
17 | 0 ·978
·976
·974
·972
·970
·968
·966
·964 | 21
22
23
24
25
26
27
28 | 0 ·958
·956
·954
·952
·951
·949
•947
•945 | 31
32
33
34
35
36
37
38 | 0 ·939
·937
·935
·934
·932
·930
·929
·927 | | 9 | ·982
·980 | 19
20 | ^962
·960 | 29
30 | •943
•942 | 39
40 | ·925
·923 | This table is to be used as follows: taking the same example as above, the difference between the temperatures of the air and of the dew-point is 20°; the factor ranging with 20° is 0.960, which multiplied into 4^{gr} 28 gives 4.11 grains. In this way the tables in the Abstracts were formed, exhibiting the weight of a cubic foot of vapour for given values of the dry and dew-point thermometers. Also, as the weight of moisture in the assumed example is 4^{gr}.11, and at 70° complete saturation takes place, when 8^{gr}.00 of mois- ture are held in solution, the difference between these numbers 3gr. 89, represents the weight required for complete saturation; and in this way the tables in the Abstracts, representing the quantities required for complete saturation, were formed. The tables shewing the degree of humidity were formed by dividing the actual weight of a cubic foot of vapour at the time, by the greatest weight that could be held in solution at the temperature of the air, complete saturation being represented by unity. From the table on page lxii it would appear, that air has its capacity for moisture doubled at each rise of 21° nearly. But by comparing the weights of a cubic foot of vapour for the various temperatures at which the quantity is doubled, it will be seen that the intervals of temperature increase slowly with the temperatures. Thus, it will be seen from the following table, that if the quantities of water held in solution be taken in a geometrical progression, the temperatures increase in a quicker ratio than the terms of an arithmetical progression. | Quantity
of
Water in Solution, | Successive
Temperatures
at which the Solving
Power is doubled. | Differences between the successive Temperatures. | |--|---|--| | gr.
0 · 78
1 · 56
3 · 12
6 · 24
12 · 48 | 0 · 0
19 · 8
40 · 3
62 · 0
84 · 8 | 0
19·8
20·5
21·7
22·8 | A Table shewing the Weight of a Cubic Foot of Dry Air added to the Weight of a Cubic Foot of Vapour, under the Pressure of 30 Inches of Mercury, for every Degree of Temperature from 0° to 90°. | Temp.
Fahr. | Sum of the Weights of a Cubic Foot of Dry Air and a Cubic Foot of Vapour. | Temp.
Fahr. | Sum of the
Weights
of a Cubic Foot
of Dry Air
and a Cubic Foot
of Vapour. | Temp.
Fahr. | Sum of the
Weights
of a Cubic Foot
of Dry Air
and a Cubic Foot
of Vapour. | Temp.
Fahr. | Sum of the Weights of a Cubic Foot of Dry Air and a Cubic Foot of Vapour. | Temp.
Fahr. | Sum of the Weights of a Cubic Foot of Dry Air and a Cubic Foot of Vapour. | |----------------|---|----------------|--|------------------|--|----------------|---|----------------------|---| | ő | 603·99 | 1 <u>9</u> | 580·19 | 3 [°] 7 | 560 ·01 | 55 | 542·29 | 73° | 527 ·46 | | ĭ | 602 .68 | 20 | 579 .02 | 38 | 558 .94 | 56 | 541 .37 | 74 | 526.74 | | $ar{2}$ | 601 .36 | 21 | 577 .84 | 39 | 557 .90 | 57 | 540 .46 | 7 4
75 | 526 02 | | 3 | 600 .07 | 22 | 576 .67 | 40 | 556 .87 | 58 | 539 .58 | 76 | 525 .33 | | 4 | 598 .77 | 23 | 575 -51 | 41 | 555 .84 | 59 | 538 72 | 77 | 524 .63 | | 5 | 597 .48 | 24 | 574 .36 | 42 | 554 .82 | 60 | 537 .84 | 78 | 523 .96 | | 6 | 596 -21 | 25 | 573 20 | 43 | 553 80 | 61 | 536 .99 | 79 | 523 · 30 | | 7 | 594 .94 | 26 | 572 .06 | 44 | 552 .79 | 62 | 536 ·13 | 80 | 522 .63 | | 8 | 593 .67 | 27 | 570 .92 | 45 | 551 .80 | 63 | 535 •29 | 81 | 522 .01 | | 9 | 592 ·40 | 28 | 569 .80 | 46 | 550 .81 | 64 | 534 .46 | 82 | 521 .36 | | 10 | 591 ·15 | 29 | 568.68 | 47 | 549 .85 | 65 | 533 .65 | 83 | 520 .75 | | 11 | 589 .90 | 30 | 567 .56 | 48 | 548 .86 | 66 | 532 .84 | 84 | 520 · 14 | | 12 | 588 .67 | 31 | 566 .46 | 49 | 547 .89 | 67 | 532 .05 | 85 | 519 .56 | | 13 | 587 .45 | 32 | 565 .37 | 50 | 546 .93 | 68 | 531 .25 | 86 | 518 .98 | | 14 | 586 '21 | 33 | 564 29 | 51 | 545 .97 | 69 | 530 ·46 | 87 | 518 .40 | | 15 | 584 ·99 | 34 | 563 .20 | 52 | 545 .04 | 70 | 529 .70 | 88 | 517 .87 | | 16 | 583 .78 | 35 | 562 · 13 | 53 | 544 12 | 71 | 528 .95 | 89 | 517 .33 | | 17 | 582 . 56 | 36 | 561 .06 | 54 | 543 ·19 | 72 | 528 · 19 | 90 | 516 .82 | | 18 | 581 :38 | ļ | | l | 1 | | | | | # SUM OF WEIGHTS OF A CUBIC FOOT OF DRY AIR AND OF A CUBIC FOOT OF VAPOUR. IXV Having the weight of a cubic foot of air added to the weight of a cubic foot of vapour, from the above table, and having the increase of volume of a cubic foot of dry air in consequence of its saturation with moisture, from the table on page lxi, the weight of a cubic foot of air saturated with moisture has been computed and tabulated from the following proportion:— As the whole volume: one cubic foot of the mixture: the whole weight: the weight of a cubic foot of saturated air. Table shewing the Weight of a Cubic Foot of Air saturated with Moisture, under the Pressure of 30 Inches of Mercury, at all Temperatures between 0° and 90°; and the Difference between the Weight of a Cubic
Foot of Dry Air, under the Pressure of 30 Inches of Mercury, and that of a Cubic Foot of Saturated Air, under the same Pressure, for every Degree of Temperature, from 0° to 90°. | | | | | | | | , | · · · · · · · · · · · · · · · · · · · | |-------------------------------------|--|--|-----------------------|--|--|----------------|--|--| | Temp.
Fahr. | Weight of a Cubic Foot of Air saturated with Moisture. | Excess of the Weight of a Cubic Foot of Dry Air above a Cubic Foot of Air saturated with Moisture. | Temp.
Fahr. | Weight of a Cubic Foot of Air saturated with Moisture. | Excess of the Weight of a Cubic Foot of Dry Air above a Cubic Foot of Air saturated with Moisture. | Temp.
Fabr. | Weight of a Cubic Foot of Air saturated with Moisture. | Excess of the Weight of a Cubic Foot of Dry Air above a Cubic Foot of Air saturated with Moisture. | | ő | 602 ·77 | gr.
0 •45 | $\overset{\circ}{31}$ | 562 ·86 | gr.
1 ·31 | 61 | 527 ·48 | gr.
3 ·45 | | | | 0.43 | 32 | 561 ·64 | 1.36 | 62 | 526 .32 | 3.26 | | $egin{array}{c} 1 \\ 2 \end{array}$ | 601 .40 | 0.47 | 33 | 560 42 | 1 .42 | 63 | 525 ·17 | 3 .67 | | | 600 .03 | 0.49 | 34 | 559 20 | 1 42 | 64 | 524 .03 | 3 .78 | | 3
4 | 598 69 | 0.53 | 35 | 558·01 | 1.50 | 65 | 524 03
522 ·90 | 3.88 | | | 597 ·34
596 ·01 | 0.54 | 36 | 556 79 | 1 .56 | 66 | 521 .75 | 4.01 | | 5 | 594 ·69 | 0.55 | 37 | 555 ·61 | 1.60 | 67 | 520 61 | 4.14 | | 6 | 593 36 | 0.58 | 38 | 554 .40 | 1.65 | 68 | 519 46 | 4 26 | | 7
8 | 592 .04 | 0.59 | 39 | 553 20 | 1.71 | 69 | 518 29 | 4 20 | | 9 | 592 ·04
590 ·72 | 0.61 | 40 | 552·00 | 1.77 | 70 | 517 · 17 | 4.53 | | 10 | 589 • 40 | 0.64 | 41 | 550.81 | 1 .84 | 71 | 516 .02 | 4 .68 | | 11 | 588 ·07 | 0.68 | 42 | 549 .63 | 1 .89 | 72 | 514 .87 | 4 .82 | | 12 | 586 · 78 | 0.70 | 43 | 548 ·44 | 1.95 | 73 | 513 .75 | 4.95 | | 13 | 585 49 | 0.72 | 44 | 547 26 | 2.01 | 74 | 512 ·61 | 5.09 | | 14 | 584 18 | 0.75 | 45 | 546 .06 | 2.10 | 75 | 511 .46 | 5.25 | | 15 | 582 .89 | 0.78 | 46 | 544 ·88 | 2 10 | 76 | 510 .32 | 5 · 41 | | 16 | 581 61 | 0.80 | 47 | 543 .75 | 2 .22 | 77 | 509 18 | 5.56 | | 17 | 580 .33 | 0.82 | 48 | 542 .55 | 2 · 30 | 78 | 508 .04 | 5.73 | | 18 | 579 06 | 0.85 | 49 | 541 .36 | 2 30 | 79 | 506 91 | 5.89 | | 19 | 577 ·79 | 0.88 | 50 | 540 21 | 2 .44 | 80 | 505 .74 | 6.08 | | 19
20 | 576 .54 | 0.90 | 51 | 539 04 | 2 44 2 51 | 81 | 504 61 | 6.26 | | 20
21 | 575 ·27 | 0.94 | 52 | 537 .87 | 2.61 | 82 | 503 .45 | 6 .44 | | 22 | 574 01 | 0.97 | 53 | 536 .71 | 2 .70 | 83 | 502 .32 | 6.61 | | 23 | 572 .76 | 1.00 | 54 | 535 .55 | 2 .78 | 84 | 501 .16 | 6.81 | | 23
24 | 571 ·50 | 1.05 | 55 | 534 .39 | 2.88 | 85 | 500 .05 | 6.98 | | 24
25 | 570 ·26 | 1 .07 | 56 | 533 .22 | 2 .97 | 86 | 498 .87 | 7 .20 | | 26
26 | 569·01 | 1 .12 | 57 | 532 .06 | 3.06 | 8 7 | 497 · 71 | 7 .40 | | 20
27 | 567 .77 | 1.15 | 58 | 530 .92 | 3 ·15 | 88 | 496 .58 | 7 ·61 | | 28 | 566 . 53 | 1 .20 | 5 9 | 529 ·77 | 3 .26 | 89 | 495 .44 | 7 .81 | | 29 | 565 31 | 1.23 | 60 | 528 .62 | 3 .35 | 90 | 494 28 | 8 .04 | | 30 | 564.08 | 1 27 | ~ | | 0.00 | - " | | | | 90 | 004 00 | | | | | | | | Then to find the weight of a cubic foot of air in its existing state, we must proceed as follows: if the temperatures of the air and of the dew-point be alike, the quantity ranging with the temperature will be the quantity required; but if the temperature of the air be the higher of the two, take out the excess of the weight of a cubic foot of dry air above the weight of a cubic foot of air saturated with moisture from the above table, at the temperature of the air; the degree of humidity will have been previously determined, and this, multiplied into the difference of weights of a cubic foot of dry and a cubic foot of wet air, will give the part due to the moisture in the air; and this product, subtracted from the weight of a cubic foot of dry air, will give the weight of a cubic foot of air of the given temperature and humidity, under a pressure of 30 inches of mercury. The true weight of a cubic foot of air in its then existing state is found by multiplying the last found value by height of the barometer and humidity. In this way the tables in the Abstracts may be formed, shewing the weights of a cubic foot of air under different circumstances of temperature, humidity, and pressure. All the hygrometrical Abstracts have actually been calculated by the use of general hygrometrical tables, prepared by Mr. Glaisher, and deduced from the preceding tables. It is usually understood that a cubic inch of water, of the temperature 39°.4, produces 1625 cubic inches of vapour, under the pressure of 29.922 inches of mercury, and that at the same temperature the weight of the water is 253 grains. Therefore, 268 grains of water would produce 1728 cubic inches or a cubic foot of vapour whose elastic force is 30 inches; and the weight of vapour in a cubic foot of space has been computed as follows: As 30: elastic force of vapour: 268: the weight of a cubic foot of vapour. Table shewing the Weight of Vapour in a Cubic Foot of Space (upon the supposition of a Cubic Inch of Water producing 1625 Inches of Vapour), under the Pressure of 30 Inches of Mercury, for every Degree of Temperature from 0° to 90°. | Temp.
Fahr. | Weight of Vapour
in a Cubic Foot
of Space. | Temp.
Fahr. | Weight of Vapour
in a Cubic Foot
of Space. | Temp.
Fahr. | Weight of Vapour
in a Cubic Foot
of Space. | Temp.
Fahr. | Weight of Vapou
in a Cubic Foot
of Space. | |----------------|--|-----------------------|--|----------------|--|----------------|---| | ő | gr.
0 · 55 | $2\overset{\circ}{3}$ | gr.
1 •29 | 46
46 | gr.
2 ·91 | 69 | 6·28 | | ĩ | 0.57 | 24 | 1 .34 | 47 | 3.01 | 70 | 6 · 49 | | $ar{2}$ | 0.59 | 25 | 1 ·39 | 48 | 3 ·12 | 71 | 6 .71 | | 3 | 0.61 | 26 | 1 ·44 | 49 | 3 · 22 | 72 | 6 .92 | | 4 | 0.64 | 27 | 1 ·49 | 50 | 3 ·34 | 73 | 7 .15 | | 5 | 0.66 | 28 | 1 .55 | 51 | 3 · 45 | 74 | 7 .39 | | 6 | 0.69 | 29 | 1 .60 | 52 | 3 · 57 | 75 | 7 .63 | | 7 | 0.71 | 30 | 1.66 | 53 | 3 · 69 | 76 | 7.88 | | 8 | 0.74 | 31 | 1 .72 | 54 | 3 .82 | 77 | 8 13 | | 9 | 0.77 | 32 | 1.78 | 55 | 3 .95 | 78 | 8 .40 | | 10 | 0.80 | 33 | 1.85 | 56 | 4.09 | 79 | 8 .67 | | 11 | 0.83 | 34 | 1.91 | 57 | 4 .23 | 80 | 8 .95 | | 12 | 0.86 | 35 | 1.98 | 58 | 4 · 37 | 81 | 9 ·23 | | 13 | 0.89 | 36 | 2.05 | 59 | 4 .52 | 82 | 9 .53 | | 14 | 0.93 | 37 | 2 ·13 | 60 | 4 .67 | 83 | 9 .83 | | 15 | 0.96 | 38 | 2 ·20 | 61 | 4 .83 | 84 | 10 · 14 | | 16 | 1.00 | 39 | 2 · 28 | 62 | 4 .99 | 85 | 10 .46 | | 17 | 1.03 | 40 | 2 ·36 | 63 | 5.17 | 86 | 10 .80 | | 18 | 1.07 | 41 | 2 ·45 | 64 | 5 .34 | 87 | 11 ·14 | | 19 | 1.11 | 42 | 2 .53 | 65 | 5.52 | 88 | 11 .49 | | 20 | 1.15 | 43 | 2 .62 | 66 | 5.70 | 89 | 11 .85 | | 21 | 1.20 | 44 | 2.72 | 67 | 5 .89 | 90 | 12 23 | | 22 | 1 24 | 45 | 2.81 | 68 | 6.08 | | | #### MAXIMUM AND MINIMUM SELF-REGISTERING THERMOMETERS. The self-registering thermometer for maximum temperature of the air is a mercurial thermometer, with a transparent bulb; its index is a piece of blue steel wire. The selfregistering thermometer for minimum temperature of the air is of alcohol, with a transparent bulb: its index is glass, with a knob at each end. These instruments have been read at 22^h every day. The following is an investigation of the index-errors of these thermometers. They were usually compared twice on every day with the Royal Observatory standard thermometer: once at about the time of the maximum temperature, and once at about the time of the minimum temperature. At the end of each month the differences between the readings were taken, and divided into groups according to different temperatures, distinguished by the different amount of the error; the mean of each group was then taken; and in this way the following quantities have been obtained. | | 0 | 0 | ٥ | |-----------|---|-----------|----| | January. | Add 0.7 to all maximum readings below | 30 | | | | ,, 0.6 to all maximum readings between | 30 and 4 | 0 | | | ,, 0.1 to all maximum readings between | 40 and 5 | 0 | | | ,, 1.0 to all minimum readings below | 30 | | | | ,, 0.8 to all minimum readings between | 30 and 4 | 10 | | | ,, 0.4 to all minimum readings between | 40 and 5 | 0 | | February. | Add 0.4 to all maximum readings below | 30 | | | | ,, 0.8 to all maximum readings between | 30 and 4 | 0 | | | ,, 0.2 to all maximum readings between | 40 and 5 | 0 | | | ,, 1.0 to all minimum readings below | 30 | | | | ,, 0.9 to all minimum readings between | 30 and 4 | 0 | | | ,, 0.6 to all minimum readings between | 40 and 5 | 0 | | | ,, 0.3 to all minimum readings above | 50 | | | March. | Add 0.1 to all maximum readings between | 30 and 40 | 0 | | | ,, 0.3 to all maximum readings between | | | | | ,, 0.2 to all maximum readings between | 50 and 60 | 0 | | | ,, 0.8 to all minimum readings between | 30 and 40 | 0 | | | ,, 0.6 to all minimum readings between 4 | 10 and 50 | 0 | | | ,, 0.5 to all minimum readings between 5 | 60 and 60 |) | | April. | Add 0.2 to all maximum readings between 3 | 30 and 40 |) | | | ,, 0.3 to all maximum readings between 4 | 10 and 50 |) | | | ,, 0.2 to all maximum readings between 5 | i0 and 60 |) | | | ,, 0.7 to all minimum readings between 3 | 0 and
40 |) | | | ,, 0.4 to all minimum readings between 4 | 0 and 50 |) | | | ,, 0.2 to all minimum readings between 5 | 0 and 60 | ŧ | | | k 2 | | | ``` May. Add 0:1 to all maximum readings below 50 0.2 to all maximum readings above 50 0.1 to all minimum readings between 30 and 40 0.7 to all minimum readings between 40 and 50 0.2 to all minimum readings above June. Add 0.5 to all maximum readings below 60 0.1 to all maximum readings above 60 0.4 to all minimum readings below 0.1 to all minimum readings above 50 July. Add 0.4 to all maximum readings below 0.5 to all maximum readings between 60 and 70 0.3 to all maximum readings above 70 0.3 to all minimum readings above 70 August. Add 0.8 to all maximum readings below 50 0.6 to all maximum readings between 50 and 60 0.4 to all maximum readings above 0.3 to all minimum readings. Add 0.6 to all maximum readings below September. 0.9 to all maximum readings between and 60 0.8 to all maximum readings above 1.1 to all minimum readings below 0.7 to all minimum readings between 40 and 50 0.3 to all minimum readings above October. Add 1.2 to all maximum readings. 1.2 to all minimum readings. November. Add 0.8 to all maximum readings below 50 0.7 to all maximum readings above 50 0.5 to all minimum readings below 50 0.3 to all minimum readings above 50 December. Add 0.8 to all maximum readings below 40 0.5 to all maximum readings above 40 0.7 to all minimum readings below 40 0.3 to all minimum readings above ``` The readings of the thermometer as inserted in the Tabular Observations at 22^h on every day are the readings of the instruments increased by those numbers, and are such as would have been given by the Royal Observatory standard thermometer. ### RADIATION THERMOMETERS. The self-registering thermometer for solar radiation is a mercurial thermometer with a blackened bulb: its index is a piece of blue steel wire. It has been read every day at 22^h. The self-registering thermometer for radiation to the sky is of alcohol, with a transparent bulb placed in the focus of a parabolic reflector: its index is glass, with a knob at each end. It is read every day at 22^b. No correction has been found to be necessary to the readings of these two thermometers, and the numbers, as inserted in the Tabular Observations, are those as read from the instruments. ## POSITION OF THE THERMOMETERS DURING THE YEAR 1847. A post was planted in the year 1846 in a position 23 feet south of the south-east angle of the south arm of the Magnetic Observatory. A frame revolves on this post consisting of a horizontal board as base, of a vertical board projecting upwards from it connected with one edge of the horizontal board, and of two parallel inclined boards (separated about two inches) connected at the top with the vertical board, and at the bottom with the other edge of the horizontal board. The air passes freely between all these boards. The standard thermometer, the dry and wet-bulb thermometers, the dew-point instrument, and the maximum and minimum thermometers, are attached to the outside of the vertical board, with a small projecting roof above them; their bulbs are about four feet above the ground, and those of the three first project below the wood; and the frame is always turned with its inclined side towards the Sun. It is presumed that the thermometers are thus sufficiently protected. The radiation thermometers are placed in open boxes upon the ground, the sides of the boxes being sufficiently high to prevent lateral wind striking the bulbs. That for sky radiation (giving the minimum temperature) is placed in a horizontal position, its bulb and reflector being fully exposed to the sky; that for solar radiation is inclined as need requires to receive the full rays of the Sun. #### THERMOMETERS SUNK BELOW THE SURFACE OF THE SOIL AT DIFFERENT DEPTHS. These thermometers were made by Messrs. Adie of Edinburgh, under the immediate superintendance of Professor J. D. Forbes. The graduation was made by Professor Forbes himself. The thermometers are four in number. They are all placed in one hole in the ground, the diameter of which in its upper half is 1 foot, and in its lower half about 6 inches. Each thermometer is attached in its whole length to a slender piece of wood, which is planted in the hole with it. The place of the hole is 20 feet South of the extremity of the South arm of the Magnetic Observatory, and opposite the center of its South front. The soil consisted of beds of sand; of flint-gravel with a large proportion of sand; and of flints with a small proportion of sand, cemented almost to the consistency of pudding-stone. Every part of the gravel and sand extracted from the hole was perfectly dry. The bulbs of the thermometers are cylindrical, 10 or 12 inches long and 2 or 3 inches in diameter. The bore of the principal part of the tubes, from the bulb to the graduated scale, is very small. In that part to which the scale is attached the tube is larger. The thermometer No. 1 was dropped into the hole to such a depth that the center of its bulb was 24 French feet (25.6 English feet) below the surface: then dry sand was poured in till the hole was filled to nearly half its height. Then No. 2 was dropped in till the center of its bulb was 12 French feet below the surface; No. 3 and No. 4 till the centers of their bulbs were respectively 6 and 3 French feet below the surface; and the hole was then completely filled with dry sand. The upper parts of the tubes, carrying the scales, were left projecting above the surface: No. 1 by 27.5 inches, No. 2 by 28.0 inches, No. 3 by 30.0 inches, and No. 4 by 32.0 inches. Of these lengths, the parts 8.5, 10.0, 11.0, and 14.5 inches, respectively are tube with narrow bore. The projecting parts of the tubes are protected by a wooden case or box fixed to the ground; the sides of the box are perforated with numerous holes and it has a double roof. In the North face of this box is a large plate of glass through which the thermometers are read. Within the box are two smaller thermometers, one (No. 5) whose bulb is sunk one inch in the ground, and one (No. 6) whose bulb is in the free air nearly in the center of the box. The fluid of the four long thermometers is alcohol tinged with a red colour. The values of 1° on the scales of Nos. 1, 2, 3, and 4, are respectively 2^{in} , 1^{in} -1, 0^{in} -9, and 0^{in} -55; and the ranges of the scales are, 43° -0 to 52° -7, 42° -0 to 56° 8, 39° -0 to 57° -5, and 34° -2 to 64° -5. These ranges were found not to be sufficient in the year 1846, many readings having occurred in that year exceeding the higher of these limits, in Nos. 2, 3, and 4. In the year 1847 the readings of No. 3 only exceeded the graduation. There is a small bulb left at the top of each thermometer (as is usual in alcoholic thermometers), and on the alcohol passing into this space in No.3 the reading was taken by estimation. This process was used from July 21 to September 17, and the highest estimated reading within this interval of time was 59°05. The mounting of the long thermometers was completed in 1846, on March 25, but the observations were not commenced till April 10. They have since that time been taken at every even hour of Göttingen mean time, except on Sundays and Christmas Day. The numbers as printed in the Abstracts are the arithmetical means of the simple uncorrected readings taken on every civil day, for the daily values, and the arithmetical means of the readings, also uncorrected, taken at the same hour throughout the month, for the hourly These numbers, therefore, require correction; 1st, for the variable temperature of the several strata through which the stem passes between the center of the bulb and the surface of the soil; and 2ndly, for the effect produced upon that portion of the stem which is above the ground by the temperature of the air within the case at the time of observa-These corrections will probably be insensible. In estimating, from the readings taken at the same hour through a month, the diurnal inequality of each thermometer, it will be necessary to apply a correction depending on the change from day to day, and this correction will be sensible. THERMOMETERS SUNK IN THE WATER OF THE THAMES. The self-registering, thermometer for determining the maximum temperature of the water of the Thames is a mercurial thermometer, having for its index a piece of steel wire. It is read every day at 22h. The self-registering, thermometer for determining the minimum local temperature of the water of the Thames is of coloured alcohol: its index is glass; with a knob at each end. It is read every day at 22h. A strong wooden trunk is firmly fixed to the side of the Dreadnought Hospital Ship, about five feet in length, and closed at the bottom; the bottom and the sides, to the height of three feet, are perforated with a great number of holes, so that the water can easily flow This trunk is fixed to the ship in such a manner that the perforated part of it is immersed in the water; and the thermometers are suspended within this trunk so as to be about two feet below the surface of the water, and one foot from the bottom of the trunk. The regular observations were made by Lieutenant Sanders, R.N., superintendant of the ship, or in his absence by Mr. Cooper, one of the officers of the ship. # OSLER'S ANEMOMETER. This anemometer is self-registering: it was made by Newman, but has received several changes since it was originally constructed. A large vane, which is turned by the wind, and from which a vertical spindle proceeds down nearly to the table in the north-western turret of the ancient part of the Observatory, gives motion by a pinion upon the spindle to a rackwork carrying a pencil. This pencil makes a mark upon a paper affixed to a board which is moved uniformly in a direction transverse to the direction of the
rack-motion. The movement of the board was formerly effected by means of a chain connected with the barrel of a clock: but the continual failures of this apparatus made it necessary to resort to another construction, and the movement of the board, from the beginning of 1846, has been effected by a rackwork connected with the pinion of a clock. The paper has lines printed upon it corresponding to the positions which the pencil must take when the direction of the vane is N., E., S., or W.; and also has transversal lines corresponding to the positions of the pencil at every hour. The first adjustment for azimuth was obtained by observing from a certain point the time of passage of a star behind the vane-shaft, and computing from that observation the azimuth; then on a calm day drawing the vane by a cord to that position, and adjusting the rack, &c., so that the pencil position on the sheet corresponded to that azimuth. For the pressure of the wind, the shaft of the vane carries a plate one foot square, which is supported by horizontal rods sliding in grooves, and is urged in opposition to the wind by three springs, so arranged that only one comes into play when the wind is light, and the others necessarily act in conjunction with the first as the plate is driven further and further by the force of the wind. A cord from this plate passes over a pulley, and communicates with a copper wire passing through the center of the spindle, which at the bottom communicates with another cord passing under a pulley and held in tension by a slight spring; and by this a pencil is moved transversely to the direction in which the paper fixed to the board is carried by the clock. Lines are printed upon the paper corresponding to different values of the pressure; the intervals of these lines were adjusted by applying weights of 1 lb., 2 lbs., &c., to move the pressure-plate in the same manner as if the wind pressed it. A fresh sheet of paper has been applied to this instrument every day at -22^h mean solar time. ### WHEWELL'S ANEMOMETER. This anemometer is self-registering: it was made by Simms. A horizontal brass plate is connected with a vertical spindle, which passes down through the axis of a fixed vertical cylinder, and takes a vertical-bearing upon a horizontal plate at the bottom of the vertical cylinder, and a collar-bearing in a horizontal plate at the top of the cylinder. To one side of the brass plate is attached a vane, and by the action of the wind upon this vane the brass plate is turned. Upon the brass plate is mounted the frame, carrying the fly and the first and second toothed wheels: underneath that part of the brass plate which overpasses the top of the cylinder are attached the bars of a frame, that surrounds without touching the cylinder, and extends nearly as low as the bottom of the cylinder (where it is guided by small horizontal rollers, which it carries, and which run upon the surface of the cylinder): this frame is for the purpose of carrying the large vertical screw, fifteen inches in length. The fly has eight sails, resembling the sails of a windmill, but having their surfaces plane, and inclined to the direction of the wind at an angle of 45°: its axis is horizontal. Upon the axis is an endless screw, which works in a vertical wheel of one hundred teeth, and upon the axis of this wheel is an endless screw, which works in a horizontal wheel of one hundred teeth; and this horizontal wheel is connected with the top of the great vertical screw. Ten thousand revolutions of the fly therefore produce one revolution of the vertical screw. A concave screw (which admits of being opened at pleasure, for detaching it from the vertical screw) is clamped, so as to embrace the vertical screw, and is carried downwards by its circular motion. To this concave screw is attached a pencil, which in its descent touches the fixed vertical cylinder. The surface of the cylinder is divided by vertical lines into sixteen equal parts, corresponding to the sixteen parts of the circle of azimuth; and the letters indicating the principal points of the compass are painted on it at these lines. Near to the vertical screw, and parallel to it, is fixed a rod, which is one of the bars of the frame before described: a scale upon this rod is divided to tenths of inches, and an index slides upon it. This index turns freely upon the scale, and has a projecting point, which can be brought into contact with that part of the cylinder on which the pencil marks are registered. Bringing this point successively into contact with the extreme upper and lower marks made each day. the difference of the scale-readings would give the descent of the pencil for the day; but the practice has generally been to apply a pair of compasses to the cylinder, and then to ascertain the descent by means of the vertical scale. The instrument is read off every day at 22^h. The pencil in descending marks a broad path in consequence of the oscillations of the vane; the darkest part of this path is observed, and that direction is recorded to which this dark part is nearest. The descent in inches, corresponding to each direction of the wind, is taken by applying a pair of compasses to the cylinder, and then ascertaining the amount by means of the vertical scale; the sum of all the descents belonging to each successive change of the wind is checked each day by the total descent of the pencil, as shewn by the space between the position of the index as previously left, and its position at the time of reading. The individual amounts are inserted in the section of Ordinary Observations. The instrument is fixed on a small wooden erection, of about ten feet in height, placed on the leads above the highest part of the Observatory, in which situation it is nearly free on all sides; an inconsiderable portion only being sheltered by the time ball, whose diameter is five feet, resting on the N.E. turret; the distance between the anemometer and the center of the ball is about twenty feet. The zero of the instrument was determined by means of Osler's Anemometer. At the time a steady south wind was blowing; the instrument was set nearly in the right direction by hand; there was but little friction, and the pencil was on the line marked S on the cylinder: its zero was considered to be well determined. # lxxiv Introduction to Greenwich Meteorological Observations, 1847. The following are measures of the principal parts of the anemometer:— | The length of each sail from axis to end is | $2^{in}.30$ | |---|----------------------| | The length of the flat part of each sail is | $1^{\mathrm{in.}}92$ | | The inclination of each sail to the wind is | 45° | | 45 revolutions of the vertical screw correspond to | 2 inches | | The number of teeth in the vertical wheel is | 100 | | The number of teeth in the horizontal wheel is also | 100 | Therefore, 10,000 revolutions of the fly cause the pencil to descend through the distance of one thread of the vertical screw, or through a space equal to $\frac{2}{4.5}$ inches = $0^{\text{in}}.044$. | Assuming that the effective radius of the sail is | 1 · 7 | |---|---------------| | Then the circumference described is $1^{\text{in.}7} \times 2\pi = \dots$ | 10 .68 | | Therefore the motion of the wind in one revolution is | 10 ·68 | | in 10 000 revolutions | 106800 inches | corresponding to 0in 044 of the vertical screw, or to one revolution of the screw. From this it follows, that the motion of the wind, corresponding to the descent of the pencil through one inch, is 200250 feet, or 37.9 miles. #### RAIN GAUGES. The rain-gauge No. 1 (Osler's) is connected with the anemometer. It is 205 feet 6 inches above the mean level of the sea. It exposes to the rain an area of 200 square inches (its horizontal dimensions being 10 by 20 inches). The collected water passes through a tube into a vessel suspended in a frame by spiral springs, which lengthen as the water increases, until 0.24 of an inch is collected in the receiver; it then discharges itself by means of the following modification of the syphon. A copper tube, open at both ends, is fixed in the receiver, in a vertical position, with its end projecting below the bottom. Over the top of this tube a larger tube, closed at the top, is placed loosely. The smaller tube thus forms the longer leg, and the larger tube the shorter leg of a syphon. The water, having risen to the top of the inner tube, gradually falls through into the uppermost portion of a tumbling bucket, fixed in a globe under the receiver. When full, the bucket falls over, throwing the water into the pipe at the lower part of the globe: this action causes an imperfect vacuum in the globe, sufficient to cause a draught in the longer leg of the syphon, and the whole contents run off. After leaving the globe, the water is received in a pipe attached to the building which carries it away. The springs then shorten and raise the receiver. The ascent and descent of the water-vessel move a radius-bar which carries a pencil; and this pencil makes a trace upon the paper carried by the sliding-board of the self-registering anemometer. The scale of the printed paper was adjusted by repeatedly filling the water-vessel until itemptied itself, then weighing the water, and thus ascertaining its bulk, and dividing this bulk by the area of the surface of the rain receiver. The quantity of water registered by this gauge, between 22^h of one day and 22^h of the next, is added every day to the whole quantity previously registered from the beginning of the year, and the sum is inserted in the column whose heading is "Stand of Rain-gauge No. 1." The quantities in this column represent the amount of rain in inches collected from January 1. The rain-gauge No. 2, on the top of the library, is a funnel, whose diameter is 6 inches; its exposed area
consequently is 28.3 square inches. The water passes into a cylinder from which it is poured into a circular vessel, the diameter of which is 3.25 inches; and therefore 3.4 inches of this correspond to 1 inch of rain. This gauge is 177 feet 2 inches above the mean level of the sea. The quantity of water collected in this gauge is measured every day at 22^h, and the amount in inches is inserted in the column whose heading is "Reading of Rain-gauge No. 2." The rain-gauge No. 3 is a self-registering rain-gauge on Crosley's construction, made by Watkins and Hill. The surface exposed to the rain is 100 square inches. water falls into a vibrating bucket, whose receiving concavity is entirely above the center of motion, and which is divided into two equal parts by a partition whose plane passes through the axis of motion. The pipe from the rain-receiver terminates immediately above the axis. Thus that part of the concavity which is highest is always in the position for receiving water from the pipe. When a certain quantity of water has fallen into it, it preponderates, and, falling, discharges its water into a cistern below; then the other part of the concavity receives the rain, and after a time preponderates. Thus the bucket is kept in a state of vibration. To its axis is attached an anchor with pallets, which acts upon a toothed wheel by a process exactly the reverse of that of a clock-escapement. This wheel communicates motion to a train of wheels, each of which carries a hand upon a dial-plate; and thus inches, tenths, and hundredths are registered. Sometimes, when the escapement has obviously failed, the water which has descended to the lower cistern has again been passed through the gauge, in order to enable an assistant to observe the indication of the dial-plates without fear of an imperfection in the machinery escaping notice. This gauge is placed on the ground, 21 feet South of the Magnetic Observatory, and 156 feet 6 inches above the mean level of the sea. It is read every day at 22h, and its readings are inserted in the column whose heading is "Stand of Rain-gauge No. 3." The numbers in this column represent the amount of rain fallen from January 1. The rain-gauge No. 4 is a simple cylinder-gauge, 8 inches in diameter, and therefore having an exposed area of 50.3 square inches. The height of the cylinder is $13\frac{1}{2}$ inches; at the depth of one inch from the top within the cylinder is fixed a funnel (an inverted cone), of 6 inches perpendicular height; with the point of this funnel is connected a tube, one- lxxvi Introduction to Greenwich Meteorological Observations, 1847. fifth of an inch in diameter, and $1\frac{1}{4}$ inch in length; three quarters of an inch of this tube is straight, and the remaining half-inch is bent upwards, terminating in an aperture of one-eighth of an inch. By this arrangement, the last drop of water remains in the bent part of the tube, and is some hours evaporating; it is usually found that the dew at night fills it, and evening comes before it is again free from water. The upper part of the funnel, or base of the cone, is made to touch the internal part of the cylinder all round; and it is believed that evaporation is almost totally prevented. The cylinder is sunk 8 inches in the ground, leaving $5\frac{1}{2}$ inches above the ground. The height above the mean level of the sea is 155 feet 3 inches; the place of the gauge was 6 feet West of the gauge No. 3 until July 22^{d} , when it was placed 5 feet North of the gauge No. 3. The quantity of water collected is read at the end of every month: its readings are inserted in the marginal notes to the Observations. The rain-gauge No. 5 is one of a similar construction to No. 4, and it is placed in the garden of the Reverend George Fisher, at the Greenwich Hospital Schools, with about two-thirds of its depth below the surface of the ground, and beyond the influence of buildings or trees. Its receiving surface is about 35 feet above the mean level of the sea. The quantity of water collected is read at the end of every month; its readings are inserted in the marginal notes to the Observations. #### THE ACTINOMETER. The actinometer consists of a hollow cylinder of glass, 7 inches in length, and 1.22 inch in diameter, fixed at one end to a tube similar to a thermometer tube, 7 inches in length, which is terminated at the upper end by a ball 1.1 inch in diameter, and at its upper part is drawn out to a fine tube which is stopped by wax: a scale divided into 100 equal parts is attached to the thermometer tube. The other end of the cylinder is closed by a silver plated cap, cemented on it, and furnished with a screw of silver with 23 threads to an inch, passing through a collar of waxed leather. The cylinder is filled with ammonio-sulphate of copper; it is enclosed in a chamber blackened on three sides, and on the fourth by a greenish plate glass, 0.1 inch in thickness, which is removeable at pleasure. of the screw is to increase or diminish the capacity of the cylinder, and thus draw back from, or drive into, the ball a portion of liquid; and by this means the cylinder may be just filled, leaving no bubble of air in it. For using the instrument a stand or table is prepared with a part moveable, on which the instrument is placed, and on which it can be very readily exposed perpendicularly to the direct rays of the Sun: a screen is also attached, which can in an instant be so placed as to cut off all the rays of the Sun from the chamber of the instrument; and can be as quickly withdrawn, so as fully to expose the chamber. The method of observation is as follows: when the cylinder is just full, and no bubble of air is in it, the tube also being clear of all broken portions of liquid, the liquid is drawn down by the screw to the zero of the scale; the instrument is then exposed a few minutes to the Sun, and at the beginning of a minute, by the chronometer, the scale is read; and at the end of the minute it is read again: the screen is placed before the instrument at the following 30° the scale is read for the first shade observation, and at one minute afterwards is again read for the second shade observation; the instrument is then again exposed to the Sun, and read as before, and so on successively. In the volume for 1844, in the section of actinometer-observations, will be found some made for the purpose of ascertaining the effect of the glass forming the fourth side of the chamber, which effect was found to be that one-sixth nearly of the heating rays of the Sun were stopped. Therefore, one-sixth of the observed radiation ought to be added in order to obtain the true radiation. This correction has *not* been applied either in the section of observations or in the Abstracts. In the volumes for 1844 and 1845 are given the details of experiments, from which it appears that the fluid is driven up the tube about 259^{div} by one turn of the screw. The following measurements of the diameter of the screw, and of the height and depth of its thread, were made on April 18, 1844. It was found that the height of 23 threads of the screw corresponded exactly to one inch: the distance, therefore, between two contiguous threads is 0ⁱⁿ·0435. This determination was by Mr. Glaisher. Again, a fine piece of silk was tied to the bottom of the screw, and carefully passed round the bottom of 34 threads: its length was found to be 50ⁱⁿ·4. Therefore, the circumference of the screw at the bottom of the thread was 1ⁱⁿ·5 nearly, or its diameter was 0ⁱⁿ·477. This determination was by Mr. Glaisher. A piece of very fine gold wire also was passed round eleven threads, and its length was found to be 16ⁱⁿ·4; from which the circumference of the bottom of the thread was 1ⁱⁿ·5 as before. This determination was by Mr. Main. The diameter of the screw at the outer edge of the threads was found to be 0ⁱⁿ·52. The depth of the thread by measurement was less than 0ⁱⁿ·05. # ELECTRICAL APPARATUS. The electrical apparatus consists of two parts, namely, the Moveable Apparatus, which is connected with a pole nearly eighty feet high planted a few feet North of the Magnetic Observatory; and the Fixed Apparatus, which is mounted in a projecting window in the ante-room of the Magnetic Observatory. On the top of the pole is fixed a projecting cap, to which are fastened the ends of two iron rods, which terminate in a pit sunk in the ground, and are kept in tension by attached lxxviii Introduction to Greenwich Meteorological Observations, 1847. weights. These rods are to guide the moveable apparatus in its ascents and descents. Near the bottom of the pole is fixed a windlass; the rope upon which it acts passes over a pulley in the cap, and sustains the moveable apparatus. The moveable apparatus consists of the following parts:—A plank in a nearly vertical position is attached to perforated iron bars which slide upon the iron rods. On the upper part of this plank is a cubical box with a very strong top; the top carries a stout cone of glass with its base downwards, having a conical hollow in its lower part; upon the upper or smaller end of the cone is fixed a copper tube five feet long, carrying at its lower extremity a small copper umbrella which protects the glass from rain, and supporting at its upper extremity a large lantern whose flame is very freely exposed to the air; by this flame the atmospheric electricity is collected. In the top of the box there is a large hole, through which a cone of copper passes into the conical hollow of the cone of glass; in the box a small lamp is placed, by the flame of which the copper cone and the lower part of the glass cone are kept in a state of warmth; and thus the copper tube and lantern are perfectly insulated. To the copper tube is attached a copper wire 0.1 inch in diameter, and about 73 feet long, at the end of which is a hook; a loaded brass lever connected with the fixed apparatus presses upon this hook, and thus keeps the wire in a
state of tension, and at the same time establishes the electrical communication between the lantern and the fixed apparatus. For the daily trimming of the lamps, the travelling apparatus is lowered and raised by means of the windlass: the wire is then coiled upon a self-acting reel which is urged by a weight. The fixed apparatus consists of these parts:—A glass bar, nearly three feet long, and thickest at its middle, is supported in a horizontal position, its ends being fixed in the sides of the projecting window. Near to each end is placed a small lamp whose chimney encircles the glass, and whose heat keeps the glass in a state of warmth proper for insulation. A brass collar surrounds the center of the glass bar; it carries one brass rod projecting vertically upwards through a hole in the roof of the window-recess, to which rod are attached a small umbrella and the loaded lever above mentioned; and it carries another rod projecting vertically downwards, to which is attached a horizontal brass tube in an East and West direction. On the North and South sides of this tube there project four horizontal rods, through the ends of which there pass vertical rods which can be fixed by screws at any elevation; these are placed in connexion with the electrometers which rest on the window seat. The electrometers during the year 1847 consisted of a Double Gold Leaf Electrometer of the ordinary construction; two Volta's Electrometers, denoted by Nos. 1 and 2; a Henley's Electrometer; a Ronalds' Spark Measurer; a Dry-pile Apparatus; and a Galvanometer. Volta 1 and Volta 2 are of the same construction; each is furnished with a pair of straws two Paris inches in length; those of the latter being much heavier than those of the former: each instrument is furnished with a graduated ivory scale, whose radius is two Paris inches, and it is graduated into half Paris lines. In the original construction of these instruments it was intended that each division of No. 2 should correspond to five of No. 1: the actual relation between them has not yet been determined by observations at the Royal Observatory. The straws are suspended by hooks of fine copper wire to the suspension-piece, and they are at the distance of half a line from each other. Henley's Electrometer is supported on the West end of the large horizontal tube by means of a vertical rod fixed in it. On each side of the upper part of this rod is affixed a semicircular plate of ivory, whose circumference is graduated; at the centers of these ivory plates two pieces of brass are fixed, which are drilled to receive fine steel pivots, carrying a brass axis, into which the index or pendulum is inserted; the pendulum terminates with a pith ball. The relation between the graduations of this instrument and those of the other electrometers has not been determined. This instrument has seldom been affected till Volta 2 has risen to above 100 divisions of its scale. The spark-measurer is similar in its construction to that at the Observatory at Kew. It consists of a vertical sliding rod terminated by a brass ball, which ball can be brought into contact with one of the vertical rods before referred to, also terminating in a ball; and it can be moved from it or towards it by means of a lever, with a glass handle. During the operation of separating the balls, an index runs along a graduated scale, and exhibits the distance between the balls, and this distance measures the length of the spark. The electrometers and the spark-measurer were originally constructed under the superintendance of Francis Ronalds, Esq., but have since received small alterations. The dry-pile apparatus was made by Watkins and Hill; it is placed in connexion with the brass bar by a system of wires and brass rods. The indicator, which vibrates between the two poles, is a small piece of gold leaf. This instrument is very delicate, and it indicates at once the quality of the electricity. When the inclination of the gold leaf is such that it is directed towards the top of either pile, it remains there as long as the quantity of electricity continues the same or becomes greater: the position is sometimes expressed in the notes by the words "as far as possible." The angle which the gold leaf makes with the vertical at this time is about 40°. The galvanometer was made by Gourjon of Paris, and consists of an astatic needle, composed of two large sewing needles, suspended by a split silk fibre, one of the needles of the pair vibrating within a ring formed by 2400 coils of fine copper wire. The connexions of the two portions of wire forming these 2400 coils are so arranged that it is possible to use a single system of 1200 coils of single wire, or a system of 1200 coils of double wire, or a system of 2400 coils of single wire: in practice the last has always been lxxx Introduction to Greenwich Meteorological Observations, 1847. used. A small ball communicating by a wire with one end of the coils is placed in contact at pleasure with the electric conductor, and a wire leading from the other end of the coil communicates with the earth. An adjustible circular card, graduated to degrees, is placed immediately below one of the needles; the numeration of its divisions proceeds in both directions from a zero. One of these directions is distinguished by the letter A, and the other by the letter B; and the nature of the indication represented by the deflexion of the needle towards A or towards B will be ascertained from the following experiment. A voltaic battery being formed by means of a silver coin and a copper coin, having a piece of blotting paper moistened with saliva between them: when the copper touches the small ball, and the wire which usually communicates with the earth is made to touch the silver, the needle turns towards A; when the silver touches the small ball, and the wire is made to touch the copper, the needle turns towards B. ### PERSONAL ESTABLISHMENT. Four persons were regularly employed in the Magnetical and Meteorological Observations during the year 1847. These persons were— Mr. James Glaisher, Superintendant. Mr. Charles Dilkes Lovelace. Mr. Thomas Downs. Mr. George Humphreys. Mr. Hugh Breen, who in preceding years was attached to this department, was in February transferred to the Astronomical Department of the Observatory. The order of observation is arranged every week, and usually proceeds on the principle of an equal division of observations among the three junior assistants; excepting that at times Mr. Glaisher has taken a complete day's observations. At all times, in cases of illness, or of absence of one person, the observations are equally divided between the three remaining assistants. Denoting the three assistants by A, B, C, the work of three complete days will be thus disposed— | A | from | 12 ^h (m | idnight) | to | $20^{\rm h}$ | |--------------|------|--------------------|----------|----|-----------------| | В | from | 22 ^h | | to | $2^{\rm h}$ | | A | from | 4 ^h | | to | 10 ^b | | В | from | 12h (m | idnight) | to | $20^{\rm b}$ | | \mathbf{C} | from | 22^{h} | | to | $2^{\rm b}$ | | В | from | 4^{h} | | to | 10 ^b | | \mathbf{C} | from | 12h (m | idnight) | to | $20^{\rm t}$ | | A | from | $22^{\rm h}$ | | to | 2^{1} | | \mathbf{C} | from | 4 ^h | | to | 10 ^h | In order to give reasonable security to myself and to the superintendant, that the assistants have really been present at the time at which their observations profess to have been made, there is provided an instrument frequently used in large manufactories, and usually denominated the "watchman's clock." It consists of a pendulum-clock which has no hands, but of which the dial-plate turns round; this dial-plate has a number of radial pins fixed in its circumference, each of which can be pressed downwards (being held by the friction of a spring only) without disturbing the others. A lever is attached to the clock-frame, in such a position that, by means of a cord which passes from the lever through a hole in the clock-case to its outside, the lever can be made to press down that pin which happens to be uppermost, and no other. The clock-case and clock-face are securely locked up. Thus the only power which an assistant possesses over the clock is that of pulling the cord, and thereby depressing one pin; the dial-plate then turns away, carrying that pin in its depressed state, and thus retains, for about eleven hours, the register of every time at which the assistant has pulled the cord. About one hour before returning to the same time (semi-diurnal reckoning), the bases of the pins begin to run upon a spiral inclined plane, by which they are forced up to their normal position before coming to that point at which the lever can act on them. It is the duty of each assistant, on making the prescribed observations, to pull the cord of the watchman's clock; and it is the duty of the first assistant (Mr. Main) to examine the face of the clock every morning, and to enter in a book an account of the pins which he finds depressed. It is presumed that great security is thus given against irregularity, as regards the time of the observations. , # ADDENDUM TO THE INTRODUCTION. #### DESCRIPTION OF THE PHOTOGRAPHIC SELF-REGISTERING APPARATUS. The system of self-registration of the principal Magnetical and Meteorological Instruments by photographic traces having been partially brought into operation in the year 1847, and being nearly perfected at the time of publishing the volume, the present opportunity appears an appropriate one for describing the photographic self-registering apparatus now in constant use at the Royal Observatory. The general principle adopted for all the instruments is the same. The photographic paper is wrapped round a glass cylinder, and the axis of the cylinder is made parallel to the direction of the movement which is to be registered. The cylinder is turned by clockwork, with uniform velocity. The spot of light
(for the magnets and barometer) or the boundary of the line of light (for the thermometers) moves, with the movements which are to be registered, backwards and forwards in the direction of the axis of the cylinder, while the cylinder itself is turned round. Consequently, when the paper is unwrapped from its cylindrical form, there is traced upon it a curve, of which the abscissa measured in the direction of a line surrounding the cylinder is proportional to the time, while the ordinate measured in the direction parallel to the axis of the cylinder is proportional to the movement which is the subject of measure. In the instruments for registering the motions of the magnets and barometer, a line of abscissæ is actually traced on the paper, by a lamp giving a spot of light in an invariable position, under which the cylinder of paper is turned. For the thermometers this is not necessary, as the thermometer-scales are made to carry and to transfer to the photographic paper sufficient indications of the actual reading of the thermometers. In all the instruments, the following method is used for attaching to the sheet of photographic paper indications of the time when certain parts of the photographic trace were actually made, and giving the means of laying down a time-scale applicable to every part of the trace. By means of a small moveable plate, arranged expressly for this purpose, the light which makes the trace can at any moment be completely cut off. An assistant, therefore, occasionally cuts off the light (registering in the proper book the clock-time of doing so), and after a few minutes withdraws the plate (again registering the time). The effect of this is to make a visible interruption in the trace, corresponding to registered times. Sometimes after once cutting off the light, and allowing it again to fall on, the same operation is repeated, and the effect of this is to leave a small isolated spot in the photographic trace, with interruptions on both sides. In either case, by drawing lines from these points parallel to the axis of the cylinder, to meet the photographic line of abscissæ, or an adopted line of abscissæ parallel to it, points are defined upon the line of abscissæ corresponding to registered times. The whole length of the photographic sheet (except where one end, in the cylindrical arrangement, laps over the other) corresponds to the known time of revolution of the cylinder. A scale being prepared beforehand, whose value for the time of revolution corresponds to the circumference of the cylinder, and the scale-reading for the registered time of interruption of light being applied to the foot of the ordinate corresponding to that interruption, the divisions of hours and minutes may be transferred at once from the scale to the line of abscissæ. In practice it is found that the length of the paper is not always the same, and it is necessary, therefore, to use a scale (a separate one for each separate instrument) which will admit of small expansion and contraction, preserving the proportion of its different parts unaltered. A scale of vulcanized caoutchouc, mounted on a small frame in which one end of the scale is fixed while the other is drawn by a screw, is found to answer extremely well. For the magnets and the barometer, the values of the registered movements in the direction of the ordinate are deduced from a geometrical calculation founded on the measures of different parts of the apparatus. In each case a zero of the movement-scale is found in the following manner. The time-scale having been laid down as is already described, and actual observations of the position of the magnet or barometer having been made with the eye and the telescope in the ancient manner at certain registered times, there is no difficulty in defining the points of the photographic trace which correspond to those observed positions. A small scale of pasteboard, on which the calculated values of registered movements are laid down, being applied as an ordinate to one of these points of the photographic trace, and being slid endways till the reading actually taken by the eye-observation, as written upon the scale, falls on that photographic point, the reading corresponding to the line of abscissæ is immediately found. The various readings given by different observations may be combined in any way, and thus an adopted reading for the line of abscissæ may be obtained. From this, with the assistance of the same pasteboard-scale, there will be laid down without difficulty a line representing some whole number of degrees, or other convenient quantity. I now proceed with the details of the separate instruments. The first instrument is used for the photographic record of the Declination Magnet and the Horizontal Force Magnet. In the actual positions of these two magnets it was found that the line drawn from the suspending skein of the declination-magnet to the center of the two suspending lines of the bifilar or horizontal-force magnet passed through the internal projection of the south-eastern re-entering angle of the building, but by so small a quantity that I judged it best to plant the apparatus for registry of the two instruments close to that re-entering angle. The first thing to be described is the arrangement of glass cylinders. One glass cylinder with a hemispherical extremity (in all respects similar to those used as shades or protectors of small clocks, works of art, &c.), 11½ inches long in its cylindrical part, and $14\frac{1}{2}$ in circumference, is covered internally with a black pigment, and is stopped at the open end by insertion in a metallic cap, in the center of which is a short spindle and winch-arm. Round this cylinder the photographic paper is wrapped, and the moistened size on the photographic paper agglutinates their overlapping ends with sufficient firmness. The cylinder and mounted paper are then covered by another glass cylinder with hemispherical end, whose open end is fixed, by friction, on the rim of the metallic cap to which the inner cylinder is attached, a collar of tape being inserted between. this state the cylinders are placed in their working-mounting; the short spindle in the cap, and the large cylinder near its hemispherical end, rest upon friction-rollers, the axis of the cylinder being horizontal. The winch-arm is lodged in a fork at the end of the hour-hand of a timepiece, which is made for the purpose, not exceeding in size an ordinary boxchronometer, but with very strong wheels and powerful spring, and with duplex escapement. In order to avoid the ordinary shake of the hour hand of a clock, due to the play of the motion-wheels under the dial, the hour hand is placed upon the central axis, and the second wheel, which is usually placed in the center and carries the minute hand, is placed on one side. The cylinder is thus made to turn in twelve hours. Each of the magnets whose movements are registered by it therefore makes a trace which passes over the whole length of the paper round the cylinder in twelve hours; and when the movements of the magnet are much disturbed it is necessary to change the photographic sheet every twelve hours. In ordinary cases, however, no confusion or doubt is introduced by allowing two traces of each instrument to be made upon one sheet, and therefore in general the sheet is changed only once in twenty-four hours. In the following remarks I shall (for convenience of language) speak only of the declination-magnet, although the same words will generally apply to the bifilar-magnet. The light by which the trace is made originates in a camphine lamp, placed slightly out of the direction of a straight line drawn from the suspension skein of the magnet to the center of the photographic sheet. Before the flame of the lamp is placed a small aperture, about 0ⁱⁿ·3 high and 0ⁱⁿ·01 broad. This aperture is independent of the lamp, and therefore is not disturbed by the change of lamps. The light from the aperture falls upon a concave mirror of speculum-metal, 5 inches in diameter, and about 26 inches from the aperture. This mirror is carried by a part of the suspension-apparatus of the magnet, which, although it has a small movement of adjustment relative to the magnet-carrier, is in practice very firmly clamped to it, so that the mirror receives all the angular movements of the magnet. By the concave mirror, the light diverging from the aperture is made to converge to a place nearly on the surface of the cylinder of photographic paper, whose distance from the mirror is about 11.8 feet. The form of the aperture, however, and the astigmatism caused by the inclined reflexion from the mirror, produce this effect, that the image is somewhat elongated in the vertical direction, and is at the same time slightly curved. To diminish the length there is placed near the cylinder a plano-convex cylindrical lens of glass, with its axis horizontal, and the image is thus reduced to a neat spot of light. The arrangements for the horizontal-force-magnet are in every respect the same, except that the diameter of the mirror is 4 inches, its distance from its camphine lamp is about 22 inches, and its distance from the cylinder about 10.6 feet. The spot of light from the declination-magnet is received on the south side of the cylinder, and that from the horizontal-force-magnet on the north side, or nearly half a revolution from the other. Thus two independent time-scales are necessary, differing nearly six hours in their zeros. To prevent confusion from the intermixture of the traces of the two instruments the declination-spot is received on the cylinder near its west end, and the horizontal-force-spot near its east end. Every part of the cylinder-apparatus except that on which the spot of light falls is covered with a double case of blackened zinc, having a slit on each side in the same horizontal plane as the axis of the cylinder; and every part of the path of the photographic light is
protected by blackened zinc tubes from the admixture of extraneous light. On the north side of the cylinder, and about 6 inches from it, is placed a third camphine lamp, shining through a small fixed aperture, from which the light falls upon a small cylindrical lens, by which a very delicate and well-defined photographic trace is marked upon the paper, in a fixed position. This is the photographic base-line, or line of abscissæ. The second instrument is used for the photographic record of the movements of the Vertical Force Magnet and the Barometer. The arrangements of the vertical-force-magnet are the following. A single brass frame carries near its extremities the two steel knife edges which rest upon agate plates; and between them it has a rectangular hole through which the magnet passes, and has also the clips for carrying a concave mirror of speculummetal, 4 inches in diameter, with its face at right angles to the length of the magnet. The space in which the magnet oscillates is separated by a thin partition from the space through lxxxvii which the light passes, in order to protect the magnet from the effects of any possible currents of air. At the distance of about 22 inches from the mirror is the horizontal aperture, about 0in.3 in length and 0in.01 in breadth, carried by the same block which carries the agate plates. The camphine lamp which shines through this aperture was originally carried by the same block; but the numerous disturbances shewn in the photographic trace at the times of changing the lamp suggested the propriety of supporting it upon a different foundation; and since 1849, February, it has been carried by another wooden pier, at such a form as to admit of the lamp being placed very nearly in contact with the aperture-plate. The light reflected from the mirror passes through a cylindrical lens with its axis vertical, very near to the cylinder carrying the photographic paper, and finally forms a well-defined spot of light on the cylinder of paper, at the distance of 8.3 feet from the mirror. As the movements of the magnet are vertical, the axis of the cylinder is vertical. The cylinder is about $15\frac{1}{4}$ inches in circumference, or somewhat larger than that used for the declination and horizontal-force magnets. The forms of the exterior and interior cylinders, and the method of mounting the paper, are in all respects the same as for the declination and horizontal-force magnets; but the cylinder is supported by being merely planted upon a circular horizontal plate (its position being defined by fitting a central hole in the metallic cap of the cylinder upon a central pin in the plate), which is turned by watchwork once in twelve hours. The trace of the vertical-force-magnet is on the west side of the cylinder. On the east side the cylinder receives the trace produced by the barometer. North of this point, at the distance of about 30 inches, is a large syphon barometer, the bore of the upper and lower extremities of its arms being about 1·1 inch. A glass float in the quicksilver of the lower extremity is partially supported by a counterpoise acting on a light lever (which turns on delicate pivots), so that the wire supporting the float is constantly stretched, leaving a definite part of the weight of the float to be supported by the quicksilver. This lever is lengthened to carry a vertical plate of opaque mica with a small aperture, whose distance from the fulcrum is eight times the distance of the point of attachment of the float-wire, and whose movement, therefore, is four times the movement of the column of a cistern barometer. Through this hole the light of a camphine lamp, collected by a cylindrical lens, shines upon the photographic paper. Another pencil of light from the same lamp shines through a fixed aperture with a small cylindrical lens, for tracing a photographic base-line upon the cylinder of paper, similar to that for the cylinder of the declination and horizontal-force magnets. The third instrument is for the register of the dry-bulb and wet-bulb thermometers. These thermometers are mounted under a shed 10 feet square, standing upon posts 9 feet high, about 40 feet South of the Magnetic Observatory, and the centers of the bulbs are 4 feet above the ground. The bulbs of the thermometers are very large, being cylinders about 8 inches long and 0in.4 internal bore. The fluid is quicksilver. One of the thermometer bulbs is covered (in the usual way) with muslin, which is charged with water by capillary passage along lampwicks connected sometimes with one and sometimes with three cisterns of water. There is a coarse screw motion for raising or depressing the thermometerframes, so that each can be placed in such a position with regard to the photographic paper that the temperature shewn by the thermometers may be recorded upon a convenient part of the paper. The thermometer-frames are covered by plates having longitudinal apertures, so narrow that any light which may pass through them is completely or almost completely intercepted by the broad flat column of quicksilver in the thermometer-stalk. Across these plates a fine wire is placed at every degree; and at the decades of the degrees, and also at 32°, 52°, and 72°, a coarser wire is placed. A camphine lamp is placed near to each thermometer, and its light, condensed by a cylindrical lens whose axis is vertical, shines through the thermometer-stalk above the surface of the quicksilver, and forms a welldefined line of light upon the cylinder of paper which is close to it, parallel to the axis of the cylinder. As the cylinder of paper revolves under this light, it leaves a broad sheet of photographic trace, whose breadth (in the direction of the axis) varies with the varying height of the quicksilver in the thermometer-tube. But the light is intercepted by the wires placed across the tube at every degree, and there are, therefore, left upon the paper corresponding jines in which there is no photogenic action. As no interference could be permitted, either of the trace of one thermometer with that of the other, or of the traces of the same thermometer at different hours of the day, it is necessary that the cylinder revolve but once in forty-eight hours. No photographic baseline is required, as the degrees are recorded on the photographic sheet, by the shadows of the wires. The length of this cylinder is nearly the same as that of the others, but its circumference is about 19 inches. The preceding remarks will probably be sufficient to enable the reader to understand every part of the diagrams of Plates I., II., and III. These are careful copies of actual specimens, the only departure from exactness being that in Plates I. and II. the lithographer has separated the traces of the two instruments more widely than in the original (without altering their forms), so that the concluded reading of the photographic base-line is, for one instrument in each plate, not the same quantity as in the original sheet. It now remains only to describe the chemical preparation and treatment of the Photographic Paper. The paper used for this purpose is manufactured expressly by Messrs. Lepard Smith Value of Base line Reading for Declination Magnet = 23° 18' 50'. Value of Base line Reading for Horizontal Force Magnet = 0 · 127793 in the original or = 0 · 13118 in the Lithograph for which the indications of the two Instruments have been further separated) Photographic Base-line Standidge & Co Lithe 36, Old Jenn Standidge & C. Lithe 36, Old Lev Photographic Record of the changes of the Wet_Bulb Thermometer and Dry_Bulb Thermometer at the Royal Observatory, Greenwich, from 1849 Feb. 15.23 to Feb. 16.23. Greenwich Mean Solar Time. and Co., of James Street, Covent Garden. It is rather strong woven paper of even texture, and is prepared with great attention to the exclusion of all foreign substances which might combine injuriously with the chemical materials used in the subsequent treatment. A sufficient quantity of paper for the consumption of three or four weeks is treated in the following manner. To a filtered solution of 4 grains of isinglass in one fluid ounce of boiling distilled water are added 12 grains of bromide of potassium and 8 grains of iodide of potassium. The solution, either when hot or cold, is evenly laid upon the paper, with a camel's hair-brush, in such quantity as to thoroughly wet its surface, but not to run off; the paper is then dried quickly before the fire. The paper thus treated is preserved by keeping it in a dry place, and in a drawer. When a cylinder is to be charged with photographic paper, the room is darkened, and illuminated only by a candle whose flame is surrounded by a cylinder of yellow glass. The paper is laid flat in an earthenware dish, and is washed with an aqueous solution of nitrate of silver (made by dissolving 50 grains of crystallized nitrate of silver in one fluid ounce of distilled water), which is laid on in quantity not sufficient to run. The paper is then in a state fit to be placed upon the cylinder. When the paper is to be taken off the cylinder, the room is illuminated in the same way, the cylinder is detached from its mounting, the external cylinder is drawn off, and the paper is unfolded and laid flat in a dish. In this state it exhibits no trace of the action of the light. It is then washed with a solution of gallic acid, to which a few drops of acetic acid are added, till it is moderately wet all over; the impression begins soon to appear, and in a few minutes acquires its full strength. The paper is then repeatedly washed with water till the water runs off quite clear. Solution of hyposulphite of soda (formed by dissolving one dram of the hyposulphite in five ounces of distilled water) is then poured upon it, and water is added in considerable quantity; after this has remained about five minutes, the paper is washed repeatedly with water. The trace is then securely fixed, and light may be
admitted into the room. The sheets are then usually, preserved for gradual drying within the folds of linen towels. The whole of this process, mechanical and chemical, has been arranged by Charles Brooke, Esq. The quantity of chemical substances applied in these preparations may be judged from the following statement. Three sheets of photographic paper are employed every day, including in the whole about 440 square inches. (n) GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1847. # XC GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1847. The amount of chemical substances consumed in three months is nearly as follows: | Crystallized Nitrate of Silver 8 ounces | |---| | Gallic Acid 3 ,, | | Acetic Acid 2 ,, | | Hyposulphite of Soda 16 ,, | | Bromide of Potassium 2 ,, | | Iodide of Potassium 1 ,, | | Naphtha (used in the spirit-lamp employed for boiling the solutions) } ½ pint | | Distilled Water 4 gallons | | Isinglass a small quantity. | Two gallons of camphine are consumed every week in the lamps; and this is the principal part of the current expense of the apparatus. Mr. Brooke has found that the light of ordinary coal-gas charged with the vapour of coal-naphtha produces as strong a photographic effect as the light of camphine; and preparations are now in progress for introducing gas to the Royal Observatory, to be employed in this manner. [1849. August. The gas has been introduced, and, with the vapour of coal-naphtha, is now successfully used for the photographic operations.] END OF THE INTRODUCTION. The volume of Greenwich Magnetical and Meteorological Observations now published is the last which will appear in a separate form. In conformity with a Resolution of the Board of Visitors of the Royal Observatory, passed at the Visitation of the Observatory on 1849, June 2, the system of Photographic Self-registration will be maintained, and the Registers, with everything necessary for their numerical interpretation, will be carefully preserved; but only those results which may probably be compared with results obtained at other places, or those which for any other reason possess peculiar or immediate interest, will be published in an Appendix to the Volume of Astronomical Observations. G. B. AIRY. ROYAL OBSERVATORY, GRBENWICH, 1849, July 26. # ROYAL OBSERVATORY, GREENWICH. # DAILY OBSERVATIONS OF MAGNETOMETERS. 1847. | | | | | | Daily Obs | ervatio | ns fr | rom January 0 to 25 | | | | | | | |-----------------------|--|----------------------|---|---|--|---|------------|--|-------------------------|---|---|--|---|------------| | Time (.
Recl
De | ngen Mean
Astronomical
koning) of
clination
servation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.forTemp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor, for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | | | d h m | 0 / 1/ | | 0 | | 0 | | d h m | 0 1 11 | | 0 | | 0 | 1 | | Jan. | 0.14. 0 | 22. 46. 40 | | | | | L | Jan. 13. 22. 0 | 22, 46, 15 | | •• | | •• | G H | | | 16. 0 | 46. 40 | | | | | |] | • |] | | ` | | | | | 18. 0 | 46. 7 | | • • | • • • | • • | | Jan. 14. 0. 0 | 22, 52, 21 | • • • | •• | | •• | G H | | | 20. 0 | 45. 40 | • • • | • • • | ••• | •• | L | 2. 0 | 50. 13 | ••• | | ••• | • • • | G H | | | 22. 0 | 46. 55 | ••• | •• | • • • | •• | G H | 8. 0
22. 0 | 46. 48
45. 52 | ••• | ••• | ••• | •. • | H B
G H | | Jan. | 2. 0. 0 | 22. 49. 39 | | | | | GН | 11 | 40. 02 | ••• | ٠٠. | ••• | •• | Gn | | Jan. | 2. 0. 0 | 51. 21 | ••• | •• | | :: | GЛ | Jan. 15. 0. 0 | 22, 50, 15 | | | • • • | | н в | | | 2. 0 | 01. 21 | ••• | •• | | | | 2. 0 | 50. 37 | | | | | L | | Jan. | 3.22. 0 | 22. 46. 39 | | | | | GН | 11 | 46. 58 | | | | • • | G H | | | 3, 22, 3 | | | | | | | 22. 0 | 45. 50 | | | | | 1 | | Jan. | 4, 0, 0 | 22. 49. 0 | | | | | G H | | | } | | | | 1 | | | 2. 0 | 49. 57 | • . • | • • | • • • • | •• | | Jan. 16. 0. 0 | 22. 49. 44 | 0 .025535 | 33 .0 | ••• | • • | G H | | ŀ | 22. 0 | 48. 1 | | • • | | | | 2. 0 | 51. 39 | 027945 | 34 .8 | ••• | • • | TD | | ١., | | 00 40 77 | | | | 1 | | 8. 0 | 50. 14 | 027616 | 38 .6 | ••• | • • | T D | | Jan. | 5. 0. 0 | 22. 49. 11 | ••• | •• | • • • | | G H | Jan. 17. 22. 0 | 22. 46. 17 | 0.027741 | 35 .0 | | | G H | | | $egin{array}{ccc} 2. & 0 \ 22. & 0 \end{array}$ | 51. 41
46. 14 | ••• | •• | | • • • | | Jan. 17. 22. 0 | 22. 40. 17 | 0 021141 | 33 0 | ••• | • • | G II | | | 22. 0 | 40. 14 | ••• | •• | • • • | • • • | | Jan. 18. 0. 0 | 22. 46. 27 | 0 .026907 | 33 .0 | | | G H | | Jan. | 6. 0. 0 | 22.48.26 | | | | | GН | 11 1 | 48. 52 | 027860 | 33 .8 | | • • | T D | | oun. | 22. 0 | 46. 40 | | | | 1 | | 22. 0 | 46. 19 | 025604 | 33 .3 | | | G H | | | | | | | | | | 1 | | | 1 | | | | | Jan. | 7. 0. 0 | 22.48. 7 | | • • | • • • • | | G H | Jan. 19. 0. 0 | 22. 48. 18 | 0 .026148 | 34 .5 | ••• | • • | G H | | | 2. 0 | 49. 34 | ••• | • • | | | G H | | 47. 53 | 027052 | 36 .0 | | •• | | | | 22. 0 | 47. 51 | • • • | • • | ••• | • • • | н в | | 46. 26 | 026583 | 38 .2 | ••• | •• | | | т | | 00 40 0 | | | į | 1 | | 22. 0 | 47. 10 | 026891 | 34 .9 | ••• | • • | | | Jan. | 8. 0. 0
2. 0 | 22. 48. 9 | • • • | • • | • • • • | • • • | нв | 11 | 22. 51. 19 | 0.026744 | 35 .0 | | | G H | | | 2. 0
22. 0 | 49. 17
46. 39 | ••• | • • | ••• | •• | H B
T D | 11 . 1 | 52. 54 | 027605 | 38.0 | ••• | • • | G H | | | 22. 0 | 40.00 | ••• | •• | ••• | •• | 1. 1 | 8. 0 | 46.48 | 026149 | 39 .5 | | | н | | Jan. | 9. 0. 0 | 22. 49. 3 | | | 1 | ١ | тр | 1 | 47. 58 | 025963 | 1 ' | | | | | | 2. 0 | 48.48 | | | | | ΤО | 11 | | [| | | | | | | | | | | | 1 | | Jan. 21. 0. 0 | 22.51. 1 | 0 .025565 | 38 .2 | | •• | H F | | Jan. | | 22.51. 9 | • • • • | • • | | | G H | | 48. 50 | 025625 | 41.0 | | • • | TI | | | 2. 0 | 50. 18 | ••• | • • | ••• | ••• | | 8. 0 | 44. 14 | 024528 | 42 .5 | ••• | • • | HE | | | 8. 0 | 47. 34 | ••• | • • | ••• | •• | G H | | 47. 39 | 025790 | 38 .0 | ••• | • • | TI | | | 22. 0 | 45.38 | ••• | •• | ••• | | нв | Jan. 22. 0. 0 | 22.51.44 | 0 .025015 | 20.0 | | | G H | | Tan | 12. 0. 0 | 22. 51. 25 | | | | | GН | 11 | 50.14 | 026171 | | • • • | • • | G H | | vall, | 2. 0 | 55. 29 | | • • | • • • | 1 | н
н в | | 48.30 | 025403 | | • • • | | TI | | | 8. 0 | 49. 44 | | • | | | L | 22. 0 | 48. 9 | 026519 | | | | G H | | | 22. 0 | 49. 10 | | • • | • • • | | G H | 11 1 | | | - | | | 1 | | | | | | | | | | Jan. 23. 0. 0 | 22. 50. 14 | 0.027428 | | | | G H | | Jan. | 13. 0. 0 | 22.51 . 0 | | | • • • | i . | G H | | 47. 39 | 027605 | | ••• | •• | | | | 2. 0 | 51. 16 | ••• | •• | • • • | | н в | 11 1 | 46. 15 | 026805 | 42 .0 | ••• | •• | G H | | | 8. 0 | 45.51 | | • • | | | T D | eg t | | f | { | i | | 1 | The times of Observation of the Vertical Force and Horizontal Force Magnetometers are respectively 2m. 30s before, and 2m. 30s after the time of Observation of the Declination Magnetometer. Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 220°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°97; in Vertical Plane, 23°1. The day referred to in the foot-notes is always to be understood as that of Civil Reckoning, unless the time of the observation be mentioned, and then it is referred to Astronomical Reckoning. During part of the month of January experiments were made to determine the effect of Temperature on the Horizontal and Vertical Force Magnets, and during this time a few observations daily were taken of the position of the Declination Magnet only. | | | | | Daily Obse | | | | | | | | | | |--|-------------------------|---|---|---|-------|------------|--|----------------------|---|---|---|---|------------| | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. |
Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.forTemp. | ET & | Observers. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.forTemp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.forTemp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | | d h m | 0 , 11 | | 0 . | | 0 | | d h m | 0 / " | | 0 | | 0 | | | Jan. 24.14. 0 | 22. 46. 44 | 0 .026953 | 41 .0 | | | L | Jan. 27. 14. 0 | 22. 37. 54 | 0 .023570 | 50 ·2 | • • • | | G : | | 16. 0 | 45, 39 | 026732 | 41.0 | 1 | | | 16, 0 | 37. 46 | 023525 | 50 .4 | | • • | 1 | | 18. 0 | 46. 34 | 026554 | 41 .0 | | •• | | 18. 0 | 36. 57 | 023547 | 51 ⋅0 | | | | | 20. 0 | 46. 34 | 026447 | 41 .5 | | ••• | L | 20. 0 | 36. 37 | 023193 | 51 ·0 | ••• | • • | G | | 22. 0 | 48. 38 | 025310 | 42·8 | ••• | • • | н в | 22. 0 | 37. 21 | 023924 | 51.0 | ••• | •• | T | | Jan. 25. 0. 0 | 22, 51, 7 | 0 .024693 | 43 ·5 | | | G H | Jan. 28. 0. 0 | 22. 35. 54 | 0 .023150 | 50 .0 | • • • | | Т | | (1.50 | 48.47 | 025920 | | | • • • | | ∫ 1. 50 | 37. 9 | 022888 | | | | | | ₹ 2. 0 | 48. 20 | 025720 | 44 .5 | ••• | • • • | | ⟨ 2. 0 | 37. 26 | 022888 | 49 .5 | ••• | •• | | | (2. 10 | 48. 4 | 025322 | | • • • • | ••• | G H | | 37. 26 | 022888 | | ••• | •• | T | | 4. 0 | 47.33 | 024453 | 46 4 | | ••• | L | 4. 0 | 36. 52 | 022557 | 49 () | . 1 | •• | G | | 6. 0 | 47. 9 | 024470 | 47 .2 | | } •• | l | 6. 0 | 34. 14 | 023020 | 49 2 | 1 | •• | | | 8. 0 | 46. 16 | 024554 | 48 .0 | • • • | ••• | L | 8. 0 | 32. 32 | 023375 | 49 .0 | 1 | • • | | | 10. 0 | 46. 3 | 024640 | 48 4 | ••• | | н в | 11 | 31. 19
30. 36 | 023674
023243 | 49 ·1
48 ·8 | . 1 | ••• | G | | 12. 0 | 46.36 | 023668 | 48.0 | • • • • | ••• | T D | 14. 0 | 29. 2 | 023243 | 47.5 |) | ••• | ' | | 14. 0 | 46.41 | 023868 | 47 .8 | ••• | • • • | | 16. 0 | 29. 2
27. 56 | 023002 | 470 | 1 | ••• | | | 16. 0
18. 0 | 46. 37
46. 22 | 024781
025960 | 47 · 0
46 · 2 | ••• | ••• | | 18. 0 | 34. 10 | 023479 | 44 0 | | :: | | | 20. 0 | 46. 22
46. 39 | 025187 | 46 0 | ••• | ••• | T D | 90 0 | 39. 9 | 024046 | 43 .0 | 1 | | | | 22. 0 | 46. 39
47. 35 | 024873 | 46 .4 | ••• | ••• | н в | | 41. 49 | 024586 | 44 .0 | 1 | | T | | Jan. 26. 0. 0 | 22. 48. 44 | 0 .024227 | 47 .0 | | | G H | Jan. 29. 0. 0 | 22, 44, 29 | 0 .024267 | 44.8 | | ١ | T | | (1. 50 | 45. 38 | 024230 | 0 | | | нв | | 45, 46 | 023491 | | | | | | 2. 0 | 45. 7 | 024275 | 48 .3 | | | 1. 5 | 2. 0 | 45. 6 | 023425 | 46 .3 | 1 | . . | | | 2. 10 | 44. 48 | 024253 | | | | н в | | 44. 22 | 023270 | | • • • • | | Т | | 4. 0 | 40. 2 | 023995 | 49 .0 | | •• | T D | | 35. 46 | 022695 | 47 .5 | • • • • | | : | | 6. 0 | 39. 57 | 024390 | 49 .8 | | | | 6. 0 | 35. 45 | 022782 | 48 .0 | • • • • | •• | | | 8. 0 | 40. 20 | 024438 | 49 .0 | ••• | | | 8. 0 | 40.40 | 022451 | 48 .0 | | | : | | 10. 0 | 41.49 | 024762 | 48 .3 | | • • | T D | | 32. 46 | 022183 | 46 .5 | | •• | T | | 12. 0 | 37.46 | 023290 | 48 •2 | ••• | ٠. | н в | | 26. 21 | 021467 | 46 .0 | | | } | | 14. 0 | 39. 44 | 022983 | 47 .8 | | •• | | 14. 0 | 30. 51 | 021838 | 45 .3 | . (| ••• | | | 16. 0 | 43. 2 | 024523 | 47.5 | ••• | •• | | 16. 0 | 34. 49 | 022247 | 43 .4 | . 1 | ••• | | | 18. 0 | 44. 27 | 024891 | 47.0 | ••• | •• | | 18. 0
20. 0 | 40. 2 | 022525
023446 | 41 ·0
39 ·0 | . | | T | | 20. 0
22. 0 | 44. 19
41. 42 | 024292
023784 | 47·2
47·0 | | | H B
G H | | 42. 5
42. 5 | 023440 | 1 | | | H | | į | | } } | | | | | 1 | 00 40 45 | 0.004575 | 39 .5 | | | н | | Jan. 27. 0. 0 | 22. 40. 45 | 0 .023120 | 47.0 | | •• | G H | Jan. 30. 0. 0 | 22. 42. 45
49. 38 | 0 ·024577
025293 | 1 | i | ••• | 100 | | $\int_{0}^{1.50}$ | 41. 42 | 023364 | 47.0 | | | | 2. 0 | 49. 16 | 025182 | | | :: | | | $\left\{ egin{array}{ll} 2. & 0 \\ 2. & 10 \end{array} \right\}$ | 41.58 | 023475
023563 | 41.0 | | '' | G H | 1 10 00 | 49. 14 | 025116 | | | | Н | | 4. 0 | 42. 35
42. 45 | 023159 | 48 .0 | | | н в | 1 | 50. 38 | 024834 | | 1 | | T | | 6. 0 | 42, 45
41, 45 | 023554 | 48.6 | | | " | 6. 0 | 46. 5 | 024754 | | | | | | 8. 0 | 39. 18 | 023694 | 49.5 | | | | 8. 0 | 46. 49 | 021807 | | | | T | | 10. 0 | 36, 33 | 023859 | 50 0 | | | н в | | 39. 23 | 020234 | | 1 | | | | 12. 0 | 37. 58 | 023771 | 50.0 | | | G H | 4 | 37. 36 | 020101 | 46.7 | | | Н | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 220°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°97; in Vertical Plane, 23°1. Declination Magnet. Jan. 28^d. Between 16^d and 18^h a considerable change occurred. Jan. 29^d. Considerable changes occurred. Jan. 30^d, between 0^h and 1^h. 50^m, and between 8^h and 10^h, considerable changes occurred. Horizontal Force Magnet. Jan. 304. Between $6^{\rm h}$ and $8^{\rm h}$ a considerable change occurred. | | 1 | | Horizontal | 4 8 | Vertical | 8 | | | | | Horizontal | <u>پ</u> 8 | Vertical | <u>.</u> | ĺ | |-------|---|-----------------|----------------------------|---|------------------------------|---|------------|--------|---|-----------------|------------------------------|---|------------------------------|---|-----| | Götti | ingen Mean
Astronomical | Western | Force Read- | For ter. | Force Read- | ter or ster. | rs. | Göttir | igen Mean
Istronomical | Western | Force Read- | ter o
For | Force Read- | orce
eter. | | | | coning) of | Western | ing in parts | ntal | ing in parts
of the whole | P. C. D. D. C. | Observers. | Reck | oning) of | W CDUCIII | ing in parts
of the whole | nta
ome | ing in parts
of the whole | O E | | | De | clination | Declination. | of the whole
Hor. Force | rizo | Vert. Force | Tica Tin | pse | Dec | lination | Declination. | Hor. Force | rizo
rizo
gnet | Vert. Force | rtica | 1 3 | | Obs | ervation. | | cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | cor.forTemp. | Thermometer o
Vertical Force
Magnetometer. | 0 | Obs | ervation. | | cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | cor.forTemp. | Thermometer of
Vertical Force
Magnetometer. | | | | d h m | 0 / // | | 0 | | 0 | | | d h m | 0 / // | | 0 | | o | | | Jan. | 31. 14. 0 | 22.42.54 | 0 .021803 | 37 ·5 | 0.055949 | 39 .0 | н в | Feb. | 3. 14. 0 | 22, 45, 36 | 0 .026318 | 41 '3 | 0 .055777 | 43 .0 | ١. | | | 16. 0 | 38.41 | 022804 | 36 · 8 | 055990 | 37.8 | | | 16. 0. | 44. 51 | 027551 | 41.0 | 055734 | 42 .5 | | | | 18. 0 | 44. 53 | 024372 | 36.5 | 056501 | 37.5 | | | 18. 0 | 45. 26 | 027100 | 40 .2 | 055984 | 42 .0 | | | | 20. 0 | 47 . 29 | 024146 | 36 ·2 | 056702 | 37 .3 | | | 20. 0 | 47. 4 | 027037 | 40 .0 | 056176 | 42 .0 | | | | 22. 0 | 49. 23 | 025834 | 36 .0 | 057093 | 38 .0 | GН | | 22. 0 | 46. 40 | 026207 | 41 .3 | 056223 | 42 .8 | H | | Feb. | 1. 0. 0 | 22. 49, 18 | 0 .025834 | 36 · 0 | 0 .057089 | 39 .0 | G H | Feb. | 4. 0. 0 | 22. 47. 50 | 0 .025245 | 41 ·2 | 0 .056197 | 42 .5 | н | | | [1.50 | 49. 4 | 027029 | | 057200 | | | | 1.50 | 49. 39 | 026270 | | 056125 | | 1 | | | ₹ 2. 0 | 49. 6 | 026918 | 37.0 | 057158 | 40 .0 | | | ₹ 2. 0 | 49. 28 | 026181 | 41 .5 | 056097 | 43 .0 | | | | 2. 10 | 48.38 | 026808 | | 057158 | | GН | | 2. 10 | 48. 43 | 026225 | | 056097 |
| H | | | 4. 0 | 42.31 | 025447 | 41 .0 | 057206 | 42 .3 | нв | | 4. 0 | 46. 16 | 026340 | 42 .0 | 056141 | 43 .7 | | | | 6. 0 | 46. 5 | 025827 | 41 •5 | 056661 | 42 .7 | | | 6. 0 | 46.30 | 026461 | 42 .8 | 056022 | 44 .7 | | | | 8. 0 | 45. 9 | 025192 | 41 .8 | 056125 | 43 0 | | | 8. 0 | 46. 19 | 026702 | 43 .0 | 055899 | 45 0 | | | | 10. 0 | 45. 21 | 024952 | 41 .6 | 056111 | 43 .0 | нв | | 10. 0 | 45.50 | 026038 | 43 .0 | 055771 | 45 .0 | 1 | | | 12. 0 | 44. 43 | 025066 | 40.0 | 055908 | | T D | | 12. 0 | 45. 38 | 025928 | 43 .0 | 055670 | 44 5 | | | | 14. 0 | 44. 52 | 025199 | 40 .0 | 056269 | 42 .0 | GН | | 14. 0 | 45.54 | 025812 | 41 .8 | 055621 | 43 .2 | | | | 16. 0 | 44. 54 | 025309 | 40 .0 | 056340 | 42 .0 | | l | .16. 0 | 45. 55 | 025685 | 40 .7 | 055825 | 42 .3 | | | | 18. 0 | 45. 31 | 025642 | 40 .0 | 056340 | 42 .0 | | ĺ | 18. 0 | 45. 29 | 026101 | 38 .2 | 055994 | 40 .7 | | | | 20. 0 | 44. 15 | 025660 | 39 .0 | 056496 | 42 .0 | | l | 20. 0 | 43. 44 | 026736 | 37 · 2 | 056099 | 39 .0 | ı | | | 22. 0 | 45. 33 | 024406 | 39 ·8 | 056214 | 41 .2 | T D | | 22. 0 | 45. 28 | 026271 | 37 .2 | 056411 | 41 .0 | G | | Feb. | 2. 0. 0 | 22.49. 7 | 0 .024246 | 40 .0 | 0 .056246 | 40 ·8 | ΤЪ | Feb. | 5. 0. 0 | 22, 47, 10 | 0 .026011 | 38 .0 | 0 .056724 | 41 .0 | G | | | [1.50 | 48. 30 | 025974 | | 056446 | | | | [1.50 | 47. 25 | 027339 | | 056530 | | | | | ₹ 2. 0 | 48. 30 | 026018 | 40 .0 | 056446 | 41 .0 | | | ₹ 2. 0 | 47. 33 | 027295 | 38 .0 | 056459 | 40 .2 | | | | 2. 10 | 47. 57 | 025974 | | 056375 | | T D | } | 2.10 | 47. 21 | 027229 | | 056445 | | G | | | 4. 0 | 46. 8 | - 1 | 41 0 | 056297 | 42 .0 | | | 4. 0 | 46. 11 | 029516 | 40 .0 | 056625 | 42 .0 | | | | 6. 0 | 44. 31 | 026004 | 41.5 | 056249 | 43 .5 | GН | | 6. 0 | 45. 27 | 028864 | 41 .3 | 056312 | 43 · 2 | | | | 8. 0 | 43. 58 | | 42 ·2 | 055577 | 43 .0 | L | | 8. 0 | 44. 57 | 027207 | 42 .5 | 055954 | 43 .5 | | | | 10. 0 | 44. 34 | | 42.0 | 055748 | 43 .0 | ΤЪ | | 10. 0 | 44. 5 | 027253 | 43 .2 | 055956 | 45 .0 | | | | 12. 0 | 45. 1 | 025542 | 42.0 | 055925 | 43 .8 | L | 1 | 12. 0 | 44. 42 | 026832 | 43 .2 | 055614 | 45 .0 | | | | 14. 0 | 45. 1 | 025220 | 41 '4 | 055791 | 42 .5 | | | 14. 0 | 44. 27 | 026800 | 44 .0 | 055560 | 45 .5 | | | | 16. 0 | 45. 1 | 025218 | 40 .2 | 055805 | 41.0 | | | 16. 0 | 43. 30 | 026623 | 44 .0 | 055448 | 46 .0 | | | | 18. 0 | 46. 3 | | 39 6 | 056072 | 41 .5 | | • | 18. 0 | 45. 11 | 026658 | 44 .8 | 055306 | 46 .0 | | | | 20. 0
22. 0 | 44. 20
44. 3 | $027431 \\ 026814$ | 39 ·0
40 ·0 | 056196
056193 | 41.2 | L | ļ | 20. 0
22. 0 | 43. 38
51. 1 | 026962
024346 | 45 ·4
46 ·0 | 055188
055133 | 46 · 5
47 · 5 | | | | 22. 0 | 44. 0 | 020014 | 40 0 | 090199 | 41 .5 | I D | | 22. 0 | 51. 1 | V24040 | 40 0 | 000100 | 1, 0 | | | eb. | 3. 0. 0 | | | 40 .0 | | 41 .6 | ΤЪ | Feb. | 6. 0. 0 | 22. 53. 43 | 0 .025474 | 46 .2 | 0.055044 | 47 .6 | | | | $\int_{0}^{1.50}$ | 49. 21 | 025828 | | 056215 | | | l | [1.50] | 56. 39 | 024787 | | 055359 | 40.0 | | | | $\begin{cases} 2. & 0 \\ 0. & 10 \end{cases}$ | 48.54 | | 40 .8 | 056215 | 41 .7 | 1 1 | } | $\begin{cases} 2. & 0 \\ 2. & 10 \end{cases}$ | 57. 27 | 025186 | 47 .7 | 055359 | 49 ·2 | ì | | | 2. 10 | 48. 33 | 026050 | | 056215 | | TО | | 2. 10 | 59. 10 | 025186 | 40 -0 | 055431 | 50 .7 | | | | 4. 0 | 48. 10 | | 41 .5 | 056740 | 43 .4 | L | | 4. 0 | 53. 12 | 023884 | 49 .0 | 055485 | 50 .5 | | | | 6. 0 | 46. 5 | | 42 .7 | 056070 | 44 · 2 | | | 6. 0 | 48. 13 | 025133 | 49.3 | 055209 | 51 0 | - 1 | | | 8. 0 | 45. 27 | | 42 6 | 055912 | 44 .0 | | | 8. 0 | 44. 54 | 024654 | 51:0 | 055212 | 52 .0 | | | | 10. 0
12. 0 | 41.17 | 026071 | 42 .2 | 055785 | $44 \cdot 2$ | GH | | , 10. 0 | 35. 50 | 022241 | 51 4 | 054176 | 52 ·5 | C | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 220°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20•8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24•97; in Vertical Plane, 23•1. DECLINATION MAGNET. Jan. 31^d. Between 16^h and 18^h a large change took place for the time of the day. Feb. 1^d, between 2^h. 10^m and 4^h; Feb. 5^d, between 20^h and 22^h; and Feb. 6^d, between 2^h. 10^m and 12^h, considerable changes took place. HORIZONTAL FORCE MAGNET. Feb. 5^d, between 2^h. 10^m and 4^h, and between 20^h and 22^h, considerable changes occurred. Feb. 6^d. Between 8^h and 10^h a considerable change occurred. $[\]begin{array}{ll} & \textbf{Vertical Force Magnet.} \\ & \textbf{Feb. 6}^{d}. & \textbf{Between } 8^h \textbf{ and } 10^h \textbf{ a considerable change occurred.} \end{array}$ | | | | | | Daily C | bserva | tions | s from February 7 | to 13. | | | | | | |------------------------|---|----------------------|---|---|---|---|------------|--|----------------------|---|---|--|---|------------| | Time (A
Recl
Dec | ngen Mean
Astronomical
coning) of
clination
ervation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.forTemp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor. forTemp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | | | d h m | 0 / " | | 0 | | 0 | | d h m | 0 / " | | 0 | | 0 | | | Feb. | 7.14. 0 | 22.43.36 | 0 .025153 | 33 ·2 | 0 .056387 | 34 .0 | L | Feb. 10, 14. 0 | 22. 44. 26 | 0 .027029 | 37 .0 | 0 .056695 | 40 .0 | G I | | | 16. 0 | 42.50 | 025387 | $32 \cdot 0$ | 056531 | 33 .0 | | 16. 0 | 44. 42 | 027162 | 36 .0 | 056721 | 39.5 | 1 | | | 18. 0 | 44. 58 | 025817 | 31 .0 | 056992 | 32 .0 | | 18. 0 | 43. 50 | 027052 | 36 ·0 | 056661 | 36.0 | | | | 20. 0 | 46, 15 | 026257 | 30 .4 | 057348 | 32 .0 | L | 20. 0 | 44. 16 | 027874 | 39 .0 | 056590 | 39 .0 | | | | 22. 0 | 46. 15 | 027886 | 30 .0 | 057775 | 32 .0 | T D | 22. 0 | 44. 22 | 026559 | 40 ·8 | 056411 | 38 •5 | T] | | Feb. | 8. 0. 0 | 22, 47, 35 | 0 .026360 | 31 .7 | 0 .057991 | 33 .0 | T D | Feb. 11. 0. 0 | 22. 49. 2 | 0.026315 | 40 0 | 0 .056077 | 38 ·3 | T | | | [1.50 | 51. 43 | 027443 | | 057920 | 1 | 1 | (1.50 | 52. 13 | 026124 | | 056517 | | | | | ₹ 2. 0 | 51, 26 | 027443 | 31 .4 | 057849 | 33 .8 | | ₹ 2. 0 | 52. 27 | 026124 | 39 · 7 | 056517 | 41 .0 | | | | 2. 10 | 52. 8 | 027221 | | 057849 | İ | T D | L2. 10 | 51.32 | 025991 | | 056517 | | T] | | | 4. 0 | 48. 13 | 028740 | 33 .5 | 057816 | | L | 4. 0 | 49. 18 | 026510 | 41.0 | 056453 | 43.0 | G I | | | 6. 0 | 46. 22 | 027408 | 35 .0 | 057527 | 37 .0 | | 6. 0 | 46. 43 | 026742 | 1 | 056068 | 44 0 | | | | 8. 0 | 45. 44 | 026116 | 36 .5 | 057235 | 38 .0 | | 8. 0 | 45. 24 | 027064 | 41 .0 | 055819 | 43 5 | 1 | | | 10. 0 | 39. 44 | 026188 | 36.0 | 056727 | 38 .0 | L | 10. 0 | 44. 37 | 026732 | 41 .0 | 055762 | 43 . 5 | | | | 12. 0 | 43. 18 | 027827 | 36 .0 | 056701 | 38 .0 | T D | | 40. 15 | 026398 | 39 .8 | 055686 | 42 .7 | | | | 14. 0 | 49. 9 | 026703 | 35 .8 | 056307 | 37 .7 | | 14. 0 | 41. 59 | 026391 | 37 .3 | 055748 | 40.0 | 1 | | | 16. 0 | 43. 10 | 026123 | 35 .5 | 056421 | 37 .7 | | 16. 0 | 44. 23 | 026609 | 36 .0 | 056106 | 39.0 | | | | 18. 0 | 41. 30 | 026523 | 35.0 | 056367 | |] | 18. 0 | 44. 34 | 026770 | 34 .0 | 056460 | 36 .5 | 1 | | | 20. 0 | 43. 54 | 027143 | 35 .0 | 056622 | 37.0 | | | 48. 25 | 027491 | 32 0 | 056814 | 34 .0 | | | | 22. 0 | 45. 53 | 025620 | 34 .8 | 057089 | 36 .3 | н в | 22. 0 | 45. 5 | 027031 | 30 .4 | 057360 | 33 · 5 | L | | Feb. | 9. 0. 0 | 22. 48. 55 | 0 .025393 | 34 .2 | 0 .057237 | 35 .7 | н в | Feb. 12. 0. 0 | 22. 50. 12 | 0 .026447 | 30 .0 | 0 .057649 | 33 .0 | G I | | | ſ 1. 5 0 | 52. 18 | 026090 | | 057362 | | | ſ 1. 5 0 | 52. 28 | 026866 | | 057833 | | L | | | ₹ 2. 0 | 51.44 | 026135 | 34 .6 | 057348 | 36 .4 | | ₹ 2. 0 | 52. 19 | 026866 | 32 .5 | 057761 | 35 .0 | | | | 2. 10 | 51.29 | 026201 | | 057348 | | н в | 2. 10 | 52. 19 | 026756 | , | 057655 | | L | | | 4. 0 | 49. 30 | 027519 | 35 .0 | 057527 | 37 .0 | G H | | 50.49 | 026634 | 35 .0 | 057171 | 37 .0 | | | | 6. 0 | 45.51 | 026651 | 35 .2 | 057257 | 38 .0 | G H | 6. 0 | 45. 3 | 027384 | 36 .2 | 057028 | 37.0 | 1 | | | 8. 0 | 42. 56 | 026304 | 35 8 | 057286 | | L | 8. 0 | 46. 40 | 026431 | 36.5 | 056388 | 37 0 | 1 | | | 10. 0 | 43. 10 | 025365 | | 057162 | 38 .4 | L | 10. 0 | 44. 28 | 025790 | 36 .0 | 056295 | 37.0 | 1 | | | 12. 0 | 44. 27 | 026274 | | 056923 | | н в | 11 | 44. 39 | 026077 | 37 .5 | 056630 | 38 .0 | | | | 14. 0 | 42. 28 | 025988 | | 056622 | | 1 . | 14. 0 | 43. 56 | 025811 | 37.0 | 056641 | 37 .5 | 1 | | | 16. 0 | 43. 10 | 025847 | , | 056931 | | | 16. 0 | 45. 10 | 026277 | | 056638 | 36 ·8 | 1 | | | 18. 0 | 43. 39 | 026246 | | 057184 | i | ĺ | 18. 0 | 45. 10 | 026191 | | 056686 | 35 6 | 1 | | | 20. 0 | 44.
43 | 027070 | 32 .0 | 057424 | 33 .2 | i . | 11 | 45. 10 | 026329
026657 | 33 .5 | 056705
057230 | 34 ·2
35 ·7 | | | | 22. 0 | 45. 57 | 027088 | 32 · 5 | 057564 | 33 ·8 | T D | 22. 0 | 45. 19 | 020057 | 34 .2 | 057250 | 99.4 | H | | Feb. | 10. 0. 0 | 22. 48. 36 | | 33 .0 | | 34 .0 | T D | Feb. 13. 0. 0 | 22. 47. 34 | | 34 .0 | 0.057332 | 35 .2 | | | | $\int 1.50$ | 49. 38 | 026838 | | 057572 | | | 1.50 | 48. 16 | 026455 | | 057438 | 07.0 | | | | $\begin{cases} 2. & 0 \\ 2. & 10 \end{cases}$ | 50. 27 | 026838 | 348 | 057572 | | | $\begin{cases} 2. & 0 \\ 2. & 1 \end{cases}$ | 48. 10 | 026477 | 34 .5 | 057439 | | 1 | | | 2. 10 | 50. 39 | 026904 | | 057572 | | T D | | 48. 2 | 026544 | 05.5 | 057474 | 1 | H | | | 4. 0 | 47. 48 | 027163 | | 057385 | | | | 46. 55 | 027076 | | 057387 | | 1 | | | 6. 0 | 46. 29 | 026941 | | 056945 | | | 6. 0 | 45. 56 | 026676 | | 057059 | | | | | 8. 0 | 46.43 | 026852 | | 056745 | | | 8. 0 | 45. 25 | 026847 | | 056801 | 37 0 | 1 | | | 10. 0 | 44. 38 | 026590 | | 056792 | | 1 | 1 | 44. 33 | 026676 | | 056795 | 36 .8 | 1 | | | 12. 0 | 45. 19 | 026365 | 37 () | 056624 | 40.0 | G H | 12. 0 | 44. 30 | 027255 | 04.9 | 056934 | 35 .8 | H | Reading of Torsion-Circle of Meridianal Magnet for Brass Bar resting in Magnetic Meridian, 220°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20•8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24*97°; in Vertical Plane, 23°·1. DECLINATION MAGNET. Feb. 8^a. Between 8^b and 16^h the changes were considerable. Feb. 12^a. Between 4^h and 6^h a considerable change took place for the time of the day. | | | | Daily Obse | ervations fro | om February 14 to | 20. | | | | | | |--|----------------------|---|---|------------------------------------|--|-------------------------|--|---|--|-----------------------------------|------------| | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal
Force Reading in parts
of the whole
Hor. Force
cor.for Temp. | Vertical
Force Reading in parts
of the whole
Vert. Force
cor.for Temp | ermomet
srtical Fo-
ignetome | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | ermomel
artical Fo
agnetome | Observers. | | d h m | 0 , " | 1 | 0 | 0 | d h m | 0 / // | | 0 | | 0 | | | Feb. 14.14. 0 | 22. 42. 59 | 0.026518 4 | 2 · 7 0 · 055740 | 43 ·5 H B | Feb. 17. 14. 0 | 22. 42. 56 | 0 .025608 | 53 .6 | 0 .053916 | 55 .5 | | | 16. 0 | 43. 55 | 028457 4 | 3 ·5 055599 | 44 .5 | -16. 0 | 42. 32 | 025806 | 53 .0 | 053973 | 55 .0 | | | 18. 0 | 43. 34 | | 4 · 5 055453 | 1 1 | 18. 0 | 44. 1 | 025762 | 53 .0 | 054130 | 55 10 | | | 20. 0 | 44. 11 | | 5 · 3 055178 | 46 •0 н в | | 44. 19 | 025595 | 52 .2 | 054004 | 54 .0 | | | 22. 0 | 44. 57 | 027991 4 | 7 ·0 054786 | 47 ·0 G H | 22. 0 | 45. 6 | 025044 | 53 ·5 | 054026 | 54 .0 | H | | Feb. 15. 0. 0 | 22. 48. 38 | 0 .027525 4 | 7 ·0 0 ·054563 | 47 ·5 G H | Feb. 18. 0. 0 | 22, 49, 17 | 0 .025381 | 54 .5 | 0 .054010 | 54 6 | H | | (1.50 | 47. 22 | 027822 | 054732 | | (1.50 | 49. 41 | 025649 | • | 054051 | | 1 | | ₹ 2. 0 | 46. 35 | | 7 · 5 054696 | | ₹ 2. 0 | 49. 26 | 025782 | 55 .3 | 054058 | 55 .0 | | | (2.10 | 46. 57 | 028043 | 054696 | | 11 | 50. 18 | 026291 | 0 | 054023 | 50.0 | H | | 4. 0 | 46. 1 | | 8 · 5 054800 | 1 1 | 11 | 49. 1 | 026590 | 55.0 | 054264 | 56 · 3
55 · 7 | | | 6. 0 | 45. 19 | | 0.5 054586 | 1 | 6. 0 | 49. 50 | 025549 | 55 ·0
54 ·8 | 054015
053838 | 55 .3 | | | 8. 0 | 45. 31 | | 1.7 054755 | 1 1 | 8. 0
10. 0 | 44. 27 | 026078 | 54 0 | 053808 | 55 .5 | | | 10. 0
12. 0 | 40. 34
44. 46 | | 1 ·8 054608
1 ·0 054465 | 1 | II ' | 43. 25
43. 37 | 025256
025314 | 54.5 | 054023 | 55 .2 | H | | 14. 0 | 45. 23 | 1 | 0.0 054283 | 1 1 | 14. 0 | 43. 34 | 025314 | 53 .5 | 054027 | 53 .5 | | | 16. 0 | 42. 37 | 1 1 | $9.0 \mid 054511$ | | 16. 0 | 43.46 | 025252 | 52 .6 | 054071 | 53 . 2 | | | 18. 0 | 42.45 | | 9.0 054511 | | 18. 0 | 44. 25 | 025506 | 52 .5 | 054176 | 52 .5 | | | 20. 0 | 45. 20 | 1 | 8.0 054487 | 50 ·0 G H | 20. 0 | 44. 42 | 025816 | 51 .5 | 054252 | 52 .0 | н | | 22. 0 | 51.25 | | 6 .7 054563 | 3 | 22. 0 | 45. 37 | 025441 | 50 .5 | 054155 | 51 .0 | Т | | Feb. 16. 0. 0 | 22. 51. 31 | 0 .025851 4 | 6 .0 0 .054962 | 46 ·8 L | Feb. 19. 0. 0 | 22. 50. 54 | 0 .024544 | 50 .8 | 0 .054369 | 51 .0 | G | | (1.50 | 50. 7 | 027268 | 055282 | | (1.50 | 48.54 | 025207 | | 054572 | | | | ₹ 2. 0 | 50. 24 | | 6 · 0 055318 | 46 .8 | ₹ 2. 0 | 48. 39 | 025251 | 52 .0 | 054536 | 52 .0 | | | 2. 10 | 50. 24 | 027445 | 055339 | L | 2.10 | 48.36 | 025428 | | 054543 | | G | | 4. 0 | 46. 58 | 026707 4 | 7 · 0 055577 | | | 46. 59 | 025551 | 52 .7 | 054404 | 53 .7 | | | 6. 0 | 42. 49 | 1 | 6 · 0 055337 | 48 .0 | 6. 0 | 46. 29 | 025917 | 53 .0 | 054134 | 53.5 | 1 | | 8. 0 | 44. 20 | | 8.0 055008 | 48 .5 | 8. 0 | 44. 49 | 026083 | 52 .7 | 054049 | 53 .3 | | | 10. 0 | 42. 58 | | 9.0 054893 | 1 | 10. 0 | 44. 7 | 025994 | 51 ·7
50 ·2 | 054022
054084 | 52 · 2
52 · 0 | | | 12. 0
14. 0 | 41. 51
43. 41 | 1 | 9 · 0 054365
8 · 6 054423 | | 12. 0
14. 0 | 43. 18
43. 18 | 025452
025492 | 48.5 | 054084 | 49.2 | | | 16. 0 | 44. 9 | 1 | 9.0 054611 | 49 8 | 14. 0
16. 0 | 43. 18 | 025492 | 46 .7 | 054417 | 47.3 | | | 18. 0 | 43. 18 | 1 | 7.5 054710 | 1 1 | 18. 0 | 42. 50 | 025730 | 45 .4 | 054665 | 46.0 | | | 20. 0 | 43. 30 | i i | 6.5 054715 | | 20, 0 | 44. 9 | 025752 | 44 .6 | 054834 | 45 .2 | | | 22. 0 | 45. 13 | 1 | 8 · 4 055427 | 50 ·0 T D | l I | 47. 53 | 026014 | 45 .0 | 055235 | 46 .0 | G | | Feb. 17. 0. 0 | 22, 48, 25 | 0 .024682 4 | 8 ·8 0 ·055235 | 50 ·0 T D | Feb. 20. 0. 0 | 22, 52. 16 | 0 .025994 | 44 .8 | 0 .055219 | 46 · 4 | Т | | (1.50 | 48.14 | 025864 | 055106 | | (1.50 | 50. 22 | 026050 | | 055343 | 3 | G | | $\begin{cases} 2. & 0 \end{cases}$ | 48.35 | 025931 4 | | | 2. 0 | 49. 56 | 026050 | 47 .5 | 055336 | 48 .5 | | | 2. 10 | 49. 6 | 026041 | 055070 | TD | 11 1 | 49. 32 | 026161 | | 055307 | | G | | 4. 0 | 45. 28 | 026072 5 | | | 4. 0 | 46. 31 | 026409 | 48 .8 | 055077 | 51.3 | | | 6. 0 | 42.44 | 1 1 | 4.0 054379 | | 6. 0 | 45. 56 | 026315 | 51.0 | 054629 | 52.0 | | | 8. 0 | 40. 47 | 025281 5 | | | 8. 0 | 42. 58 | 026248 | 51 .0 | 054429 | 52.0 | | | 10. 0 | 43, 3 | 025491 5 | | | 10. 0 | 43.57 | 025985 | 50 .0 | 054500 | 52.0 | | | 12. 0 | 41. 33 | 026385 5 | 4.0 053780 | 55 · 7 L | 12. 0 | 41.11 | 027020 | 48 .3 | 054416 | 50.7 | T | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 220°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20° ·8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24° ·97; in Vertical Plane, 23° ·1. DECLINATION Magnet. Feb. 15^a, between 20^b and 22^b, and Feb. 18^a, between 22^b and 24^b, the changes were considerable. HORIZONTAL FORCE MAGNET. Feb. 15^d. Between 20^h and 22^h a considerable change occurred. Vertical Force Magnet. Feb. $16^{\rm d}$. Between $20^{\rm h}$ and $22^{\rm h}$ a considerable change took place. | | | | | y Observati | ons fro | m Fe | ebruary 21 to 27. | | | | | | | |--|--------------------------|--|---|--|----------------------|------------|--|----------------------|--|---|--|----------------------|------------| | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | ermome
ertical Fo | Observers. | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer, | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | ermomel
rtical Fo | Observers. | | d h m | 0 / // | | 0 | - | 0 | | d b m | 0 / " | | 0 | | 0 | | | Feb. 21. 14. 0 | 22.47. 8 | 0.026853 | 46 .7 | 0 .054825 | 48.0 | G H | Feb. 24. 14. 0 | 22. 43. 17 | 0 .023570 | 46 .0 | 0 .054385 | 47.5 | G H | | 16. 0 | 44. 49 | 027265 | 46 .4 | 054812 | 47.5 | | 16. 0 | 48. 39 | 025491 | 44 .2 | 053939 | 46 .0 | | | 18. 0 | 43. 40 | 027991 | 47.0 | 054870 | ı | | 18. 0 | 41.11 | 024931 | 43
.0 | 054440 | 45.0 | 1 | | 20. 0
22. 0 | 43. 53
46. 48 | 027764
026206 | 48 ·0
50 ·0 | 054794
054409 | 48 · 5
49 · 0 | 1 1 | 20. 0
22. 0 | 44. 49
49. 36 | 024710
023583 | 43 · 0
42 · 8 | 054929
055499 | 44 ·0
44 ·0 | | | | | | | | | | | i, | | | | | | | Feb. 22. 0. 0 | 22. 53. 37 | 0 .025652 | 50.0 | 0 .054138 | 49 •0 | T D | Feb. 25. 0. 0 | 22, 53, 2 | 0 .023892 | 43 .7 | 0 .056042 | 45 ·0 | T D | | $\begin{bmatrix} 1.50 \\ 2.50 \end{bmatrix}$ | 56. 2 | 024106 | | 054582 | 0 | | $\int 1.50$ | 53. 1 | 025571 | 45.0 | 056030 | 40.0 | | | $\left\{ \begin{array}{cc} 2. & 0 \\ 3. & 10 \end{array} \right\}$ | 55. 39 | 024151 | 49 .0 | 054582 | 51 .0 | | $\begin{cases} 2. & 0 \\ 0. & 10 \end{cases}$ | 52.33 | 025571 | 45 .0 | 056008 | 46 8 | | | 2.10 | 55. 55 | 024438 | £1.0 | 054725 | 50.0 | TD | 2. 10
4. 0 | 53. 7
44. 30 | 025748 | 49 .0 | 055958 | 51 .0 | TD | | 4. 0
6. 0 | 52. 25 | 024189
024898 | 51.2 | 055516
055084 | 52 ·3
52 ·0 | GH | 4. 0
6. 0 | 44. 30
47. 35 | 024217
024545 | 50.0 | 055607
055106 | 52.0 | G H | | 8. 0 | 45. 53
44. 4 | 024898 | 51 ·2
53 ·0 | 1 | | | 8. 0 | 41.57 | 024123 | 50 2 | 054714 | 52·0 | | | 10. 0 | 44. 16 | 024655 | 53 0 | 054536 | | G H | 10. 0 | 47. 33 | 024120 | 49.7 | 054608 | 52·0 | G H | | 12. 0 | 35. 38 | 023773 | 54 .0 | 054486 | 55.0 | 110 | 12. 0 | 46. 11 | 025913 | 48 3 | 054196 | 50.5 | 1 . | | 14. 0 | 29. 56 | 022776 | 54.0 | 053169 | 55 0 | | 14. 0 | 46. 11 | 024124 | 46 .0 | 053954 | 48 .5 | ~ | | 16. 0 | 33. 54 | 021506 | 54 .5 | 051601 | 55 .5 | i | 16. 0 | 45.51 | 023368 | 44 .0 | 053978 | 46 .2 | | | 18. 0 | 42. 30 | 021814 | 54 .3 | 053025 | 55 .5 | | 18. 0 | 42.44 | 024993 | 42 .5 | 054146 | 44 .0 | | | 20. 0 | 44, 42 | 023105 | 53 .0 | | | TО | 20. 0 | 47. 30 | 024882 | 42.5 | 054787 | 44.0 | T D | | 22. 0 | 46. 41 | 023394 | 53 ·6 | 054061 | 54 ·1 | нв | 22. 0 | 48. 37 | 023043 | 42 .7 | 055491 | 43 · 5 | н в | | Feb. 23. 0. 0 | 22, 50, 11 | 0.024013 | 52 ·8 | 0 .054021 | 53 •2 | нв | Feb. 26. 0. 0 | 22, 55, 22 | 0 .023488 | 42 .5 | 0 .055833 | 43 · 5 | н в | | (1.50) | 49. 35 | 024654 | | 054273 | | | (1.50 | 52. 39 | 025644 | | 055929 | | | | ⟨ 2. 0 | 49. 16 | 024322 | 51 .0 | 054280 | 52 .0 | | ₹ 2. 0 | 53.4 8 | 025710 | 43.5 | 055929 | 43 9 | İ | | 2. 10 | 49. 10 | 024832 | | 054308 | | нв | 2. 10 | 52.53 | 025644 | | 055894 | | н в | | 4. 0 | 47. 29 | 024632 | 50 ·8 | 1 | 52 ·0 | T D | 4. 0 | 47. 22 | 024808 | 44 .0 | 055686 | 45 .0 | 1 | | 6. 0 | 47. 22 | 024660 | 49 .0 | 054582 | 51.0 | 1 1 | 6. 0 | 45. 34 | 025571 | 45 .0 | 055394 | 45.0 | 1 | | 8. 0 | 46. 6 | 024955 | 49 .7 | 054782 | 51.0 | | 8. 0 | 37. 13 | 025970 | 45 .0 | 055088 | 45.0 | 1 | | 10. 0 | 45. 4 | 025249 | 48 3 | 054655 | 50 .3 | 1 1 | 10. 0 | 47. 23 | 025677 | 42 .7 | 055071 | 44.0 | i | | 12. 0
14. 0 | 44. 27 | 024915 | 48 7 | 054688 | 49 .3 | н в | 12. 0 | 47. 1 | 025954 | 43 .5 | 055000
055221 | 44 .0 | | | 16. 0 | 39, 46
42, 5 6 | 024935
024449 | 47.0 | 054666
054858 | 47 · 3
46 · 0 | | 14. 0
16. 0 | 44. 22
48. 23 | 024842
024975 | 43·0
43·0 | 055356 | 44.0 | 1 | | 18. 0 | 43. 6 | 024449 | 45·5
43·0 | 055064 | | | 18. 0 | 46. 2 | 024973 | 43 0 | 055406 | 43.5 | | | 20. 0 | 43. 54 | 024575 | 42 · 3 | 055491 | 43 .5 | нв | 20. 0 | 46. 37 | 024648 | 43 · 5 | 055499 | 44.0 | 1 | | 22. 0 | 45 . 59 | 025720 | 42.0 | 055812 | | 1 1 | 22. 0 | 48. 20 | 024655 | 44 .7 | 055485 | 44 .0 | 1 | | Feb. 24. 0. 0 | 22, 54, 37 | 0 .021832 | 43 ·n | 0 .055709 | 43 ·6 | Сп | Feb. 27. 0. 0 | 99 59 46 | 0 .024918 | 44 ·0 | 0.055408 | 44 .0 | TD | | (1.50 | 56. 24 | 025733 | 70 U | 056114 | 10 0 | 3 11 | (1.50 | 53. 46 | 025671 | ** O | 055556 | | нв | | $\{\begin{array}{cc} 1.00 \\ 2.0 \end{array}\}$ | 57. 17 | | 45 .5 | 056079 | 46 .5 | | 2. 0 | 53. 39 | 025649 | 45 .0 | 055520 | 44 .5 | 1 | | 2.10 | 56. 30 | 024515 | | 055900 | | G H | 1 1 1 | 53, 35 | 025615 | 10 0 | 055556 | | G | | 4. 0 | 53. 5 | 024730 | 48 .2 | 055673 | | | 4. 0 | 50. 29 | | 45 .0 | 055686 | 45 ·0 | 1 | | 6. 0 | 46. 58 | | 48 .7 | 055319 | | | 6. 0 | 47. 8 | 024464 | 45.0 | 055448 | 46 .0 | 1 | | 8. 0 | 25. 17 | 024385 | 48 .5 | 055063 | | | 8. 0 | 47. 58 | 025455 | 44 .5 | 055496 | 45 .5 | | | 10. 0 | 39. 12 | 024043 | 48 .2 | 055028 | | | 10. 0 | 47. 31 | 026030 | 44 .5 | 055391 | 45 .7 | | | 12. 0 | 43. 2 0 | 025497 | | 054680 | | | 12. 0 | 47.37 | 025929 | 43 .7 | 055281 | 44 .7 | | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 220°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°97; in Vertical Plane, 23°1. Declination Magnet. Feb. 21^d, 22^h to 24^h; Feb. 22^d, between 4^h and 18^h; Feb. 23^d, between 22^h and 24^h; and between Feb. 24^d, 4^h and 26^d. 10^h, the changes were large and frequent. Horizontal Force Magnet. Feb 23^d, between 22^h and 24^h, and Feb. 24^d and 26^d, between 0^h and 1^h, 50^m, considerable changes occurred. Vertical Force Magnet. Feb. 22^d, between 2^h, 10^m and 4^h, and from 12^h to 20^h; Feb. 25^d, between 20^h and 22^h; and on Feb. 27^d, between 4^h and 8^h, considerable changes occurred. | | | | | Da | ily Observat | ions fro | m I | February 28 to Ma | rch 6. | | | | | | |----------------------|--|-------------------------|---|---|---|---|------------|--|----------------------|--|---|---|---|-----------| | Time (.
Rec
De | ngen Mean
Astronomical
koning) of
clination
servation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers | | | d h m | 0 / " | | 0 | | 0 | | d h m | 0 ' " | | 0 | | • | | | Feb. | 28.14. 0 | 22, 45, 32 | 0 .026005 | 37 .2 | 0 .056236 | 37 .7 | н в | Mar. 3. 14. 0 | 22. 46. 27 | 0 .025970 | 45 .0 | 0 .054808 | 46 .0 | | | | 16. 0 | 46. 36 | 026210 | 37 .0 | 056357 | 37 .7 | | 16. 0 | 46. 30 | 026402 | 44 .0 | 054989 | 44 .7 | | | | 18. 0 | 45. 53 | 026382 | 37 .2 | 056375 | 37 .6 | | 18. 0 | 45. 40 | 027236 | 42 .8 | 055499 | 44 .0 | | | | 20. 0 | 46. 16 | 026409 | 37 .5 | 056468 | 38 .3 | | 20. 0 | 45. 35 | 026682 | 42 .8 | 055690 | 43 .5 | | | | 22 . 0 | 44. 52 | 026759 | 37 .7 | 056340 | 39 ·2 | L | 22. 0 | 45. 11 | 025235 | 42 .7 | 055831 | 43 .6 | Н | | Mar. | 1. 0. 0 | 22. 51. 48 | 0 .026588 | 38 · 5 | 0 .056914 | 39 .7 | L | Mar. 4. 0. 0 | 22. 50. 25 | 0 .024933 | 42 8 | 0.055888 | 43 ·1 | н | | | (1. 50 | 57 . 18 | 029192 | | 056499 | | | [1.50 | 52. 28 | 027137 | | 055921 | | | | | ₹ 2. 0 | 58. 2 | 028815 | 39 .6 | 056393 | 40.5 | | ₹ 2. 0 | 52. 12 | 027115 | 44 .5 | 055935 | 45 .6 | | | | 2. 10 | 22.58. 2 | 029036 | | 056393 | | L | 2. 10 | 52. 3 | 027225 | | 055921 | 40 .0 | H | | | 4. 0 | 23. 4.35 | 027949 | 41 .7 | 056938 | 42 .0 | нв | 4. 0 | 51. 1 | 027866 | 47.5 | 055907 | 48 .0 | | | | 6. 0 | 22. 58. 9 | 027683 | 43 · 3 | 057613 | 43 .5 | | 6. 0 | 48. 53 | 026189 | 48 .4 | 056367 | 49 ·0 | | | | 8. 0 | 23. 7. 59 | 023991 | 44 .7 | 058509 | 44 6 | | 8. 0 | 47. 49 | 025703 | 48 ·4
48 ·0 | 055676
055392 | 49 0 | | | | 10. 0 | 22. 42. 34 | 022467 | 45 .6 | 057281 | 46 .2 | | 10. 0
12. 0 | 42. 6
31. 23 | 024222
026060 | 47.8 | 055044 | 48 .5 | 1 | | | 12. 0
14. 0 | 39. 43
45. 42 | 023491
023167 | 46 · 3
45 · 3 | 056082
055698 | 47 · 0
46 · 0 | L | 12. 0
14. 0 | 31. 23
39. 51 | 024499 | 47.9 | 054968 | 48 .3 | 1 | | | 16. 0 | 43. 42
42. 41 | 023435 | 44 .0 | 055720 | 44 .8 | | 16. 0 | 39. 49 | 024433 | 47.2 | 054887 | 47 .7 | | | | 18. 0 | 45. 22 | 023433 | 43 .0 | 055514 | 43 .7 | | 18. 0 | 42. 47 | 025536 | 46 6 | 055115 | 47 .3 | | | | 20. 0 | 47. 9 | 024613 | 42 .0 | 055740 | 42.8 | L | 20. 0 | 46. 39 | 026545 | 46 . 5 | 055221 | 47 .3 | | | | 22. 0 | 47. 8 | | 43 .0 | 055263 | 43.5 | - 1 | 22. 0 | 46. 51 | 024788 | 46 .0 | 055213 | 46 .7 | | | Mar. | 2. 0. 0 | 22. 50. 24 | 0 ·024157 | 43 .0 | 0 .055926 | 44 .0 | | Mar.5 . 0. 0 | 22, 50, 23 | 0 .024390 | 46 .0 | 0 .055232 | 46 .8 | | | mai. | 1.50 | 52. 44 | 025964 | 40 0 | 0.055326 | 44 0 | G H | (1.50 | 53. 2 | 025916 | 40 0 | 055427 | 20 0 | | | | $\{\begin{array}{ccc} {\bf 2.00} \\ {\bf 2.00} \end{array}\}$ | 52. 25 | 025853 | 44 .5 | 056241 | 45 .0 | | 2. 0 | 53. 2 | 025916 | 46 .2 | 055427 | 47 .0 | | | | 2. 10 | 52. 31 | 026185 | 1. 0 | 056220 | 1 ! | G H | 2. 10 | 53. 2 | 026226 | | 055427 | -
 | | | 4. 0 | 49. 15 | 026717 | 45 .8 | 055337 | 46 .4 | L | 4. 0 | 51.24 | 026792 | 47 .6 | 055587 | 48 .0 | H | | | 6. 0 | 47. 21 | 026462 | 47 .5 | 055587 | 48 .0 | ĺ | 6. 0 | 48.16 | 026681 | 47.8 | 055314 | 47 .7 | | | | 8. 0 | 47. 14 | 026325 | 48 .0 | 055221 | 48 .5 | | 8. 0 | 39. 0 | 028016 | 48 .3 | 055231 | 48 •3 | 1 | | | 10. 0 | 47 . 30 | 025903 | 48 ·2 | 055118 | 48 .7 | L | 10. 0 | 46. 1 | 025945 | 48 .6 | 055107 | 49 .0 | 1 | | | 12. 0 | 47. 40 | 026124 | 48 ·2 | 055079 | 48 5 | G H | 12. 0 | 43. 22 | 025682 | 48 • 2 | 054991 | 48 .8 | • | | | 14. 0 | 47. 15 | 025699 | 47 3 | 055052 | 48 .0 | | 14. 0 | 43. 43 | 026019 | 47 .2 | 054540 | 48 .0 | 1 | | | 16. 0 | 47. 11 | 025777 | 47.0 | 055181 | 48 .0 | | 16. 0 | 46. 58 | 026097 | 45 .8 | 054726 | 46 .5 | | | | 18. 0 | 46. 56 | 025977 | 46 .8 | 1 | 1 | | 18. 0 | 46. 58 | 026437 | 44 .8 | 054978 | 45 .4 | | | | 20. 0
22. 0 | 45. 56
45. 22 | 025806
025010 | 46 ·2
46 0 | 055270
055284 | 47·0 (| | 20. 0
22. 0 | 45. 46
45. 43 | 026891
025644 | 43 ·8
43 ·5 | 055164
055414 | 44 ·5
44 ·5 | 1 | | 3.5 | į | | | | | | , | | | | | | | | | Mar. | 3. 0. 0 | | 0 .024567 | 46.0 | | 47 .0 | T D | 1 | 22.49.52 | | 43 .3 | 0 .055414 | 44 .5 | G | | | $\begin{bmatrix} 1.50 \\ 2.0 \end{bmatrix}$ | 53. 55 | 026560 | 40.0 | 055397 | | | $\int_{0}^{\infty} \frac{1.50}{2}$ | 52. 10 | 027022 | 44.0 | 055544 | | | | | $\begin{cases} 2. & 0 \\ 0. & 10 \end{cases}$ | 53. 13 | 026560 | 46 .0 | 055427 | | | $\begin{cases} 2. & 0 \\ 0. & 10 \end{cases}$ | 52. 40 | 027776 | 44 .0 | 055558 | 44 .7 | | | | 2. 10 | 52. 56 | 026560 | 47 .0 | 055447 | | r D | 2. 10 | 52. 5 | 027907 | 45 .0 | 055594
0554 7 2 | 45 .0 | | | | 4. 0
6. 0 | 49. 28
47. 51 | $\begin{array}{c} 027126 \\ 026224 \end{array}$ | | 055479
055277 | 49.5 | σH
 | 4. 0
6. 0 | 51. 22
48. 12 | 027231
027725 | | 055472 | 45.0 | 1 | | | 8. 0 | 46. 34 | 026346 | , | | | | 8. 0 | 47. 36 | 027725 | | 055373 | 45 0 | | | | 10. 0 | 46. 20 | 025540 | | 054893 | | gн | 10. 0 | 47. 3 | 027619 | | 055359 | 44 .7 | - 1 | | | 12. 0 | 46. 16 | 025777 | | | | | 12. 0 | 44. 39 | 027367 | | 055371 | 43 .7 | ı | | | | 10.10 | 0.0.,, | 5 | | 20 0 | ا - | | 00 | 02,001 | 100 | 0004 | | 1 | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 220°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°97; in Vertical Plane, 23°1. Declination Magnet. Feb. 28^d. 22^h to March 1^d. 14^h. The changes were large and frequent. March 4^d, between 8^h and 14^h, and on March 5^d, between 6^h and 10^h, considerable changes occurred. HORIZONTAL FORCE MAGNET. March 1d, between 0h and 1h. 50m, and between 6h and 8h; March 4d, between 0h and 1h. 50m; and March 5d, between 8h and 10h, considerable changes took place. Vertical Force Magnet. March 1^d, between 6^h and 12^h, and March 2^d, between 2^h. 10^m and 4^h, a considerable change occurred. | | | | | Daily Ob | servati | ons i | from March 7 to 1 | 3. | | | | | | |--|----------------------|---|---|--|---|------------|--|----------------------|---|---|--|---|------------| | Göttingen Mean Fime (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor, for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor, for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | | d h m | 0 / // | | 0 | | 0 | | d h m | ó , " | | 0 | | 0 | | | Mar. 7. 14. 0 | 22, 45, 21 | 0.027173 | 39 ·8 | 0 .056091 | 42 .0 | G H | Mar. 10. 14. 0 | 22.43.23 | 0 .026147 | 39 .0 | 0 ·056179 | 41 5 | G | | 16. 0 | 48. 42 | 027396 | 39 · 1 | 056037 | 41 9 | | 16. 0 | 45. 16 | 026563 | 37 .5 | 056269 | 39 ·4 | , | | 18. 0 | 47. 16 | 027321 | 39.0 | 056179 | 41 .5 | | 18. 0 | 45.34 | 027162 | 36 .0 | 056717 | 38 .5 | | | 20. 0 | 50. 2 | 026509 | 39 .8 | 056125 | 40 .8 | | 20. 0 | 46. 24 | 026634 | 35 0 | 056944 | 36 .2 | | | 22. 0 | 50.42 | 025691 | 41 .0 | 056198 | 42 .0 | T D | 22. 0 | 47. 14 | 025814 | 35 .0 | 057166 | 36.0 | T | | Mar. 8. 0. 0 | 22, 51, 48 | 0.024723 | 42 .0 | 0 .056074 | 42 .8 | T D | Mar. 11. 0. 0 | 22, 52, 51 | 0 .025774 | 35 ·3 | 0 ·057178 | 36 ·2 | T | | [1. 50 | 52.37 | 027478 | | 056099 | | L | 1.50 | 55 41 | 026554 | | 057071 | | | | ₹ 2. 0 | 52. 12 | 027610 | 44 .8 | 056027 | 45 .3 | 1 | ₹ 2. 0 | 55.43 | 026621 | 37 .4 | 057057 | 38 .0 | | | (2. 10 | 52. 29 | 027654 | 450 0 | 056027 | | T D | 2. 10 | 55. 10 | 026777 | 40.0 | 057057 | 40.0 | T | | 4. 0 | 51.50 | 028434 | 47.0 | 055867 | 47 .8 | | 4. 0 | 52. 26 | 027081 | 40.0 | 056774 | 43 .0 | | | 6. 0 | 47. 35 | 029088 | 49 ·0
51 ·0 | 055807 | 49 .3 | | 6. 0 | 48. 41 | 027010 | 41.6 | 056247
056082 | 44 ·0
43 ·3 | | | 8. 0
10. 0 | 46. 55 | 028971
026425 | 52 ·0 | 055284
054635 | 52 ·0
53 ·0 | GН | 8. 0
10. 0 | 46. 36
47. 22 | 027506
028282 | 41.0 | 056057 | 42.2 | | | 10. 0
12. 0 | 38. 52
40. 31 | 020425 | 53.5 | 054474 | 54 .0 | 1 | 10. 0 | 48. 23 | 028062 | 41.5 | 056204 | 42.5 | | | 14. 0 | 45. 12 | 026469 | 52 ·0 | 054003 | 52.8 | 1 1 | 14. 0 | 45. 9 | 026600 | 40.3 | 056132 | 41.7 | 1 | | 16. 0 | 42. 49 | 026315 | 51.0 | 053931 | 52 .0 | | 16. 0 | 45. 32 | 026416 | 40.0 | 056268 | 41.0 | 1 | | 18. 0 | 49. 29 | 025852 | 49 .8 | 053755 | 50 .5 | | 18. 0 | 45. 1 | 026974 | 39 .8 | 056407 | 40 .7 | | | 20. 0 | 44. 3 | 026364 | 49 .0 | 054060 | 50 .0 | T D | 20. 0 | 45. 31 | 027263 | 41 .0 | 056518 | 42 .0 | Т | | 22. 0 | 48. 1 | 024088 | 48 •2 | 054395 | 49 •0 | L | 22. 0 | 44.31 | 025884 | 41 ·4 | 056198 | 42 .0 | 1 | | Mar. 9. 0. 0 | 22, 54. 7 | 0 .024533 | 47 .8 | 0 .054635 | 48 .8 | L | Mar. 12. 0. 0 | 22. 50. 40 | 0 .024892 | 42 .6 | 0 ·056111 | 43 .0 | | | (1.50 | 22, 59. 38 | 025751 | | 054956 | | | (1.50 | 54. 13 | 025664 | | 056018 | | G | | ₹ 2. 0 | 23, 0, 18 | 025574 | 47 .8 | 055013 | 48 .6 | | ₹ 2. 0 | 53. 5 7 | 025775 | 45 .9 | 055947 | 46.0 | | | (2.10 | 23, 0.48 | 025905 | | 055027 | | L | 2. 10 | 54.35 | 026018. | | 055876 | | G | | 4. 0 | 22, 54, 43 | 027139 | 49 .0 | 055612 | 50.0 | T D | 4. 0 | 51. 4 | 026567 | 48 .2 | 055757 | 51.0 | 1 | | 6. 0 | 49. 7 | 026431 | 49 .0 | 055491 | 49 .5 | | 6. 0 | 48. 19 | 027139 | 49 .0 | 055385 | 51.8 | | | 8. 0 | 47. 40 | 026272 | 47.5 | 055031 | 48 .0 | | 8. 0 | 47. 23 | 026582 | 50 .0 | 054856 | 52 .0 | 1 | | 10. 0 | 46.439 | 026761 | 45 ·8
44 ·2 | 054964 | 47.0 | TD | 10. 0 | 45. 54 | 026296 | 49 · 2
48 · 8 | 054725
054672 | 51 ·0
49 ·5 | | | 12. 0
14. 0 | 47.15 | 026819
026904 | 42 .8 | 055022
055142 | 44 ·8
43 ·5 | L | 12. 0
14. 0 | 46. 7
43. 35 | 025567
026178 | 46 6 | 054488 | 47 3 | | | 16. 0 | 47. 15
46, 50 | 026355 | 41 .7 | 055488 | $42 \cdot 4$ | | 16. 0 | 41, 24 | 026014 | 45.0 | 054736 | 46.0 | | | 18. 0 | 47. 6 | 026732 | 41.0 | 055716 | 41.7 | | 18. 0 | 42. 52 | 025915 | 44 .0 | 054901 | 44.8 | | | 20. 0 | 46. 7 | 026416 | 40 .0 | 055911 | 40 .8 | L | 20. 0 | 43. 13 | 026673 | 42 .7 | 055103 | 43 .4 | | | 22. 0 | 46. 18 | 025642 | 40 .0 | 056232 | 41 .0 | | 22. 0 | 44. 18 | 026211 | 42 .5 | 055548 | 43 .5 | G | | Mar. 10. 0. 0 | 22. 51. 12 | 0 .024645 | 40 .0 | 0 .056286 | 41.5 | C H | Mar. 13. 0. 0 | 22. 51. 37 | 0 .025113 | 43.5 | 0.055570 | 44 .0 | G | | 1.50 | 55. 21 | 025890 | 100 | 056269 | 11 0 | U 11 | (1.50 | 55. 53 | 026117 | 100 | 055658 | | | | $\begin{cases} 2. & 0 \end{cases}$ | 55. 9 | 026289 | 41 .0 | 056269 | 42 .0 | | 2. 0 | 56.12 | 025895 | 46 .0 | | 46 .2 | : | | 2. 10 | 55. 6 | 026400 | | 056269 | | G H | 2. 10 | 56. 26 | 025895 | İ | 055559 | | G | | 4. 0 | 51.40 | 026649 | 42 .0 | 056316 | 43 .8 | | 4. 0 | 53. 10 | 025600 | 47 .0 | 055425 | 47 .8 | 1 | | 6. 0 | 45. 22 | 027347 | 42 ·8 | 056139 | 44 .0 | | 6. 0 | 48. 53 | 026302 | 48 .2 | 055260 | 48 .7 | | | 8. 0 | 43. 12 | 025817 | 43 0 | 056083 | 43 .7 | | 8. 0 | 47. 4 | 026542 | | 055097 | 49.6 | | | 10. 0 | 43. 17 | 026163 | 42.0 | | | | 10. 0 | 45.50 | 026230 | 1 | 054950 | 50 .0 | | | 12. 0 | 41.28 | 025957 | 41.0 | 055842 | 42.0 | G H | 12. 0 | 38. 6 | 025656 | 49.0 | 054451 | 50.0 | ' G | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 220°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°.8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°.97; in Vertical Plane, 23°·1.
Declination Magnet. March 8d, between 8h and 10h; and between March 8d. 16h and March 9d, 0h and 6h; March 10d, between 4h and 6h, and between 22h and 24h; March 12d, between 22h and 24h; and March 13d, between 10h and 12h, the changes were considerable. Horizontal Force Magnet. March 8d, between 0h and 1h. 50m, between 8h and 10h, and between 20h and 22h, considerable changes occurred. Vertical Force Magnet. During this week the changes of position of this magnet were small. | | | | Da | aily Observa | tions fi | rom | March 14 to Marc | h 20. | | | | | | |--|-------------------------|---|---|---|----------------|------------|--|-------------------------|--|---|---|---|-----------| | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor. for Temp. | 1 E E E | Observers. | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers | | d h m | 0 / " | | 0 | | 0 | | d h m | 0 ' " | | 0 | | 0 | | | Mar. 14. 14. 0 | 22.45. 2 | 0 .026014 | 45 .0 | 0 .054797 | 46 .5 | G H | Mar. 17. 14. 0 | 22. 44. 32 | 0 .026378 | 56 .7 | 0 .052888 | 57 .5 | | | 16. 0 | 43. 6 | 1 | 44.0 | 054874 | 45 .6 | | 16. 0 | 44. 37 | 026205 | 57 · 0 | 053244 | 57 .5 | | | 18. 0 | 44. 24 | 026588 | 44 · 1 | 055140 | 45 .2 | | 18. 0 | 44. 35 | 026388 | 56 .5 | 053455 | 57 .0 | | | 20. 0 | 45. 0 | 027101 | 44 .8 | 055437 | 45 .0 | | 20. 0 | 45. 31 | 026266 | 54 · 5 | 053432 | 55 .0 | | | 22. 0 | 46. 33 | 025128 | 45 .0 | 055662 | 46 .0 | T D | 22. 0 | 45. 57 | 024649 | 54 •5 | 053702 | 55 .0 | 1 | | Mar. 15. 0. 0 | 22, 53. 24 | 0.025821 | 47 .0 | 0 .055373 | 48 .0 | TD | Mar. 18. 0. 0 | 22, 53, 39 | 0 .024323 | 55 •5 | 0 .053702 | 56 .0 | ۱, | | f 1. 50 | 56. 0 | 025928 | | 055435 | | | (1.50) | 57.47 | 024365 | | 054065 | [| ' | | ₹ 2. 0 | 56. 9 | 026039 | 50 . 5 | 055385 | 51 .8 |] | ₹ 2. 0 | 57. 37 | 024365 | 58 ·1 | 053943 | 58 .0 | T | | 2. 10 | 55. 55 | 026304 | | 055385 | | T D | 2. 10 | 56. 19 | 024365 | | 053851 | | | | 4. 0 | 53.43 | | 53 .2 | 054919 | 58 .0 | G H | 4. 0 | 52. 29 | 024820 | 60 .0 | 053900 | 62 .2 | | | 6. 0 | 47. 53 | | 56.0 | 054317 | 58 .5 | | 6. 0 | 48. 4 | 024340 | 59 .7 | 053565 | 61 .5 | | | 8. 0 | 47. 14 | | 56 .2 | 053884 | 57.5 | | 8. 0 | 45. 17 | 024093 | 59 .5 | 053282 | 60 .5 | | | 10. 0 | 47. 18 | | 56 0 | 053847 | 57.0 | | 10. 0 | 45. 31 | 024145 | 59 .2 | 053102 | 59 .0 | 4 | | 12. 0 | 46. 59 | | 55.0 | 053881 | 56.5 | T D | 12. 0 | 46. 20 | 024677 | 57.0 | 053281 | 58 ·0
56 ·5 | | | 14. 0
16. 0 | 47. 14 | | 53 .7 | 053760 | 54 .5 | | 14. 0 | 44, 13 | 024279 | 55 .5 | 053276
053126 | 55.8 | | | | 46. 33 | | 52 ·0
51 ·0 | 053923 | 53 ·0
52 ·0 | | 16. 0 | 42. 39 | 024761 | 54 .5 | 053447 | 54 .8 | | | 18. 0
20. 0 | 45. 37
44. 42 | | 50.0 | 054052
05365 7 | 51.0 | TD | 18. 0
20. 0 | 45. 34
48. 34 | 025762
024764 | 53 · 0
52 · 0 | 053529 | 53 .5 | | | 20. 0
22. 0 | 44. 42
44. 37 | | 50 .3 | 053057 | 51 0 | L | 20. 0 | 45. 34
47. 18 | 024704 | 52·2 | 053866 | 53 .0 | , | | Mar. 16. 0. 0 | 22. 50, 36 | 0 .023016 | 52 ·2 | 0 .054216 | 52·0 | L | Mar. 19. 0. 0 | 22, 55, 45 | 0 .022267 | 54 ·0 | 0 ·054046 | 54 .0 | Т | | (1.50 | 55. 18 | 024068 | 22 2 | 054301 | 02 () | " | (1.50 | 23. 5. 1 | 022975 | 94 0 | 054840 | 0.0 | | | 2. 0 | 55. 17 | 1 | 55 .6 | 054243 | 55 .8 | | $\begin{cases} 2, 0 \\ 0 \end{cases}$ | 4. 30 | 023152 | 58 •5 | 054854 | 59 .0 | ı | | 2. 10 | 55. 3 | 023891 | | 054158 | 000 | L | 2. 10 | 23. 5.13 | 023086 | | 054854 | | T | | 4. 0 | 52. 55 | | 58 .5 | 054021 | 61 .0 | : I | | 22. 59. 47 | 028079 | 59 .5 | 056917 | 64 .0 | G | | 6. 0 | 47. 50 | | 60 .0 | 053610 | 61 .7 | | 6. 0 | 53. 28 | 023713 | 60 .0 | 055946 | 63 .2 | | | 8. 0 | 43. 22 | | 60 .0 | 053423 | 61 .5 | | 8. 0 | 50.59 | 018904 | 60 .2 | 056171 | 62 .0 | | | 10. 0 | 40.41 | 024808 | 59 .0 | 053477 | 60 .8 | ΤЪ | | 43. 48 | 018509 | 60 .0 | 052825 | 62 .0 | | | 12. 0 | 43. 13 | 024796 | 58 .0 | 053497 | 59 .3 | L | 12. 0 | 41. 54 | 019887 | 59 .5 | 052953 | 61 .0 | | | 14. 0 | 44, 47 | 025016 | 56 .5 | 053391 | 57 .2 | | 14. 0 | 36. 38 | 020191 | 58 .0 | 052746 | 59 .0 | • | | 16. 0 | 45. 4 | | 54 •4 | 053418 | 55 ·0 | | 16. 0 | 56. 4 | 019186 | 57 .0 | 048155 | 58 .0 | | | 18. 0 | 44.11 | | 53 .2 | 053676 | 54 .2 | | 18. 0 | 45. 29 | 017473 | 56 0 | 051355 | 57.0 | | | 20. 0
22. 0 | 44. 57
43. 55 | | 51 ·8
52 ·6 | 053820
054137 | 52 ·5
53 ·0 | C H | 20. 0
22. 0 | 43. 25
46. 43 | 019355
020371 | 56 ·0
55 ·8 | 052045
054487 | 57 ·0
56 ·5 | | | 22. 0 | 10.00 | 025610 | 02 0 | 004107 | 00 0 | G II | 22. 0 | 40. 40 | 020311 | 00 0 | 007701 | 0.3 0 | | | Mar. 17. 0. 0 | | | 54 .5 | | 54 .0 | GН | Mar. 20. 0. 0 | 22. 50. 51 | 0.020153 | 56 ·2 | 0.054630 | 57 .0 | | | $\int_{0}^{1.50}$ | 57. 18 | 024356 | 57.1 | 053961 | EM .0 | | $\int_{0}^{1.50}$ | 51.54 | 022117 | 50.0 | 054530 | 57.0 | | | $\begin{cases} 2. & 0 \\ 2. & 10 \end{cases}$ | 57. 3 | 024135 | 01.1 | 053854
053783 | , | | $\begin{cases} 2. & 0 \\ 9.10 \end{cases}$ | 52. 42 | 025371 | 56 .8 | 054530
054445 | 01.2 | | | $\begin{bmatrix} 2.10 \\ 4.0 \end{bmatrix}$ | 56. 52
54. 0 | $egin{array}{c c} 024201 & & \\ 025434 & & \\ \end{array}$ | 50 · e | 054140 | - 1 | GH | 2. 10
4. 0 | 52. 31
51. 30 | 023335
024894 | 58 .8 | 054445 | 60 ·0 | | | 6. 0 | 48. 10 | 025434 | | 052910 | | - | 6. 0 | 49. 24 | 024894 | 59 3 | 054472 | 60 .7 | | | 8. 0 | 45. 22 | | $61 \cdot 2$ | 052896 | | L | 8. 0 | 49. 24
47. 48 | 025344 | 58 5 | 053881 | 60.0 | | | 10. 0 | 44. 31 | 026192 | 1 | 052656 | | G | 10. 0 | 45. 41 | 023791 | 57.0 | 053651 | 58 .0 | 1 | | 12. 0 | 44. 27 | 026357 5 | | 052832 | | | 12. 0 | 34. 50 | 026373 | | 052593 | 56.8 | | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 220°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°.8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°.97; in Vertical Plane, 23°.1. Declination Magnet. March 14^d, between 22^h and 24^h; March 15^d, between 4^h and 6^h, and between 22^h and 24^h; March 16^d, between 4^h and 6^h, and between 22^h and 24^h; and March 17^d, between 0^h and 1^h, 50^m, between 4^h and 6^h, and between 22^h and 24^h, the changes in the position of the magnet were considerable. March 18^d, 22^h to March 19^d, 18^h; and on March 20^d, between 10^h and 12^h, the changes were considerable. Horizontal Force Magnet. March 18^d, between 20^h and 22^h; March 19^h, between 2^h. 10^m and 8^h; and March 20^d, between 1^h. 50^m and 2^h. 10^m, and between 10^h and 12^h, considerable changes occurred. $\begin{array}{c} \textbf{Vertical Force Magnet.} \\ \textbf{March 15^d. 20^h to } \ 22^h \ ; \ \textbf{March 17^d, between 4^h and 6^h} \ ; \ \textbf{and on March 19^d and 20^d, considerable changes took place.} \end{array}$ | | | | | | • | ervatio | ns fi | om March 21 to 2 | | | | | | | |--|-----------------------------|------------------------|--|---|--|---|------------|--|----------------------|--|---|---|---|-----------| | Göttingen
Time (Astro
Reckonin
Declina
Observa | onomical
ng) of
ation | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. forTemp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor.for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor, Force
cor, forTemp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor, for Temp. | Thermometer of
Vertical Force
Magnetometer. | Ohservers | | d | h m | 0 1 " | | 0 | | 0 | | d h m | 0 / " | | 0 | | 0 | Ī | | Mar. 21. |
14. 0 | 22, 45, 43 | 0 .023725 | 50 .2 | 0.054084 | 51 .0 | L | Mar. 24. 14. 0 | 22. 46. 14 | 0 .024394 | 49 .0 | 0 .054903 | 51 .0 | G | | | 16. 0 | 45. 19 | 023774 | 49 .0 | 054249 | 49 .7 | - | 16. 0 | 46. 7 | 024545 | 50 .0 | 054938 | 51.0 | 1 | | | 18. 0 | 45. 43 | 024491 | 47.4 | 054483 | | | 18. 0 | 47. 31 | 023438 | 50 .0 | 054756 | 50 .8 | 1 | | | 20. 0 | 45. 17 | 024618 | 46 .5 | 054825 | | L | 20, 0 | 47.50 | 024102 | 50 .0 | 054685 | 50 .8 | Т | | | 22. 0 | 45. 15 | 023826 | 47 .4 | 055204 | 47 .5 | G H | 22, 0 | 47. 16 | 022883 | 51 ·0 | 054933 | 51 .5 | 1 | | Mar. 22. | 0. 0 | 22. 49. 58 | 0 .022574 | 50 .2 | 0 .055051 | 50.5 | G H | Mar. 25. 0. 0 | 22. 50. 59 | 0 .023348 | 53 ·0 | 0 •054675 | 52 · 5 | . . | | | (1.50 | 53. 7 | 024105 | | 054787 | | | (1.50 | 53. 19 | 024293 | | 054770 | | G | | < | 2. 0 | 53. 18 | 024370 | 54.0 | 054702 | 54 .0 | | ₹ 2. 0 | 53.26 | 024558 | 56.0 | 054656 | 56 ·0 | | | | 2. 10 | 53. 43 | 024658 | | 054631 | | G H | 2. 10 | 53. 26 | 024558 | | 054556 | | G | | | 4. 0 | 5 0. 5 8 | 024854 | 57.0 | 054495 | 57 .2 | L | 4. 0 | 51.44 | 025582 | 59.0 | 054407 | 60 .2 | | | | 6. 0 | 48, 34 | 025582 | 59 .0 | 054111 | 59 .5 | 1 1 | 6. 0 | 47.15 | 024598 | 60.0 | 054092 | 61 .0 | | | | 8. 0 | 47.47 | 025071 | 60 .0 | 053900 | 60 .3 | | 8. 0 | 43.53 | 024327 | 59 .6 | 054063 | 61 .2 | 1 - | | | 10. 0 | 47. 13 | 024913 | | | 60 .0 | L | 10. 0 | 44. 44 | 023762 | 59.5 | 053751 | 59 .8 | | | | 12. 0 | 46. 3 8 | 024636 | | 053760 | 1 | G H | | 45.38 | 023844 | 58 0 | 053644 | 59 .0 | | | | 14. 0 | 46. 33 | 024515 | 5 7 · 5 | 053753 | | | 14. 0 | 44. 27 | 023739 | 56 .0 | 053789 | 57.0 | 1 | | | 16. 0 | 46. 16 | 024663 | 56 ·8 | 053827 | | | 16. 0 | 44. 11 | 023778 | 55.0 | 053915 | 56 ·0 | | | | 18. 0 | 45. 42 | 024735 | 56 .0 | 053946 | | | 18, 0 | 42.24 | 023813 | 53 .0 | 053868 | 54 .0 | | | | 20. 0 | 43, 41 | 024221 | 55.0 | 054072 | 56 .0 | | | 45. 24 | 023504 | 53.0 | 054275 | 54 .0 | | | | 22. 0 | 47. 49 | 022804 | 55 ·2 | 054200 | 56 .0 | T D | 22. 0 | 46. 13 | 022640 | 52 .8 | 054305 | 53 .4 | | | Mar. 23. | 0. 0 | 22, 53, 12 | 0 .023089 | 56 .6 | 0.054399 | 58 .0 | T D | Mar. 26. 0. 0 | 22. 52. 6 | 0 .023223 | 54 .8 | 0 .054444 | 54 .8 | | | | (1.50 | 56 . 22 | 023634 | | 054504 | | | (1.50 | 53. 55 | 023961 | | 054475 | | | | | 2. 0 | 55. 21 | 023590 | 59 .0 | 054504 | 60 .3 | | ₹ 2. 0 | 54. 3 | 024116 | 57.5 | 054461 | 57.6 | | | | 2. 10 | 55. 7 | 023767 | | 054504 | | T D | 2, 10 | 53.29 | 024072 | ĺ | 054404 | | | | | 4. 0 | 52.44 | 024438 | 59 .6 | 054045 | 60 .0 | G H | 4. 0 | 50. 51 | 024864 | | 054697 | 61 0 | - 1 = | | | 6. 0 | 48.29 | 025041 | 60 .0 | 054080 | | | 6. 0 | 47. 6 | 024772 | 1 | 054249 | 62 0 | | | | 8. 0 | 48. 18 | 025339 | 59 .0 | 053800 | | | 8. 0 | 40.55 | 024560 | 62 .0 | 054158 | 63.0 | | | | 10. 0 | 47. 20 | 025327 | 58 0 | 053935 | 58 .8 | 1 1 | 10. 0 | 44. 52 | 024121 | 61.5 | 053750 | 62 .0 | | | | 12. 0 | 41. 18 | 027436 | 56 .0 | 053562 | 57 .0 | T D | 12. 0 | 45. 37 | 023829 | | 053651 | 61.0 | - 1 | | | 14. 0 | • • • | ••• | /• • | ••• | | | 14. 0 | 44 23 | 024119 | 58 .8 | 053612 | 59 5 | | | | 16. 0 | • • • | ••• | • • | ••• | ••• | | 16. 0 | 43. 50 | 024307 | 56 6 | 053605 | 57.2 | | | | 18. 0 | ••• | ••• | • • | ••• | •• | ' | 18. 0 | 42.30 | 024244 | 55 2 | 053674 | 55.7 | - 1 | | | 20. 0
22. 0 | ••• | ••• | •• | ••• | •• | | 20. 0
22. 0 | 42. 12
44. 52 | 024082
022643 | | 053931
05423 7 | 54 ·4
54 ·5 | - 1 | | Mar. 24. | | | , | | | | | | | | 1 | 0.054109 | 55 ·9 | | | | 1.50 | ••• | • • • | •• | ••• | •• | | Mar. 27. 0. 0 | 22. 49. 23 | | 99.8 | 0 ·054108
054103 | 90.8 | 6 | | J | 2. 0 | ••• | • • • | • • | • • • | •• | | $\begin{cases} 1.50 \\ 2.0 \end{cases}$ | 52. 2
52. 5 | 024249
02433 7 | 57.5 | 054103 | 58 .5 | | | ነ | 2. 10 | • • • | • • • | •• | ••• | ••• | | 2. 0
2. 10 | 52. 5
52. 7 | 024537 | 31.3 | 053997 | 00 0 | G | | , | 4. 0 | ••• | •••• | •• | • • • | •• | | 4. 0 | 48.52 | 024313 | 60 .9 | 054377 | 61 .0 | | | | 6. 0 | • • • | • • • | •• | • • • | •• | | 6. 0 | 48. 32
46. 41 | 025445 | | 054177 | 62.0 | 1 | | | 8. 0 | ••• | • • • | • • | • • • | • • | | 8. 0 | 45. 18 | 024854 | | 053818 | 62 .3 | • | | | 10. 0 | 22. 42. 10 | 0 .025133 | 49 · 5 | 0 .054181 | 50·0 | G | 10. 0 | 45.46 | 024741 | 60 .8 | 053626 | 61 '3 | | | | 12. 0 | 44.56 | 025124 | 49.0 | 053804 | 1 | ŧ 1 | | 44. 59 | 025139 | | 053582 | 60 .0 | | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 220°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°·8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°97°; in Vertical Plane, 23°·1. $\begin{array}{c} \textbf{Declination Magnet.} \\ \textbf{During this week the motions of this magnet were unusually small.} \end{array}$ HORIZONTAL FORCE MAGNET. March 23d. Between 10h and 12h a considerable change occurred. March 24d was devoted to a Fast, and the usual observations were not taken. Vertical Force Magnet. March 24^d , 12^h to 14^h . The change was considerable. | | | | D | aily Observ | ations : | from | March 28 to Apri | 13. | , | | | | | |--|----------------------|--|---|--|---|------------|--|-------------------------|---|---|--|---|------------| | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor.for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.forTemp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | | d h m | 0 / " | | 0 | | 0 | | d h m | 0 1 11 | | 0 | | 0 | | | Mar. 28. 14. 0 | 22. 45. 44 | 0 .025661 | 48 .0 | 0.054850 | 49 .5 | GН | Mar. 31. 14. 0 | 22, 46, 22 | 0.026220 | 47.0 | 0 .055109 | 48 .0 | TI | | 16. 0 | 45. 41 | 026331 | 47.0 | 055008 | 48 .5 | } | 16. 0 | 46. 16 | 026228 | 46 .0 | 055118 | 46 .8 | | | 18. 0 | 45. 55 | 026680 | 46 ·1 | 055154 | 47 .5 | Ì | 18. 0 | 45. 21 | 026532 | 45 .3 | 055459 | 46 .5 | - | | 20. 0 | 44. 32 | 026073 | 46 .0 | 055227 | 46 .7 | | 20. 0 | 43. 20 | 026038 | 43 .0 | 055427 | 44 .0 | 4 | | 22. 0 | 44. 30 | 024390 | 46 .0 | 055441 | 47 .0 | TО | 22. 0 | 44. 9 | 025100 | 43 ·1 | 055712 | 44 .0 | G F | | Mar. 29. 0. 0 | 22, 52, 19 | 0 .025418 | 47 .8 | 0 .055337 | 48 .0 | тр | April 1. 0. 0 | 22.51. 8 | 0 .024630 | 44 .0 | 0 .055463 | 44 .5 | G I | | (1.50 | 55. 16 | 026808 | | 055495 | | | 1.50 | 56. 39 | 025387 | | 055448 | |] | | $\langle 2, 0 \rangle$ | 54. 53 | 026874 | 49 .0 | 055459 | 49 .7 | | ₹ 2. 0 | 56. - 2 | 025253 | 46 .0 | 055448 | 46 .0 | | | 2. 10 | 54. 34 | 026874 | | 055459 | | ΤЪ | 2. 10 | 56. 2 | 025342 | | 055448 | | 1 | | 4. 0 | 50. 14 | 026626 | 50 •0 | 055163 | 50 .0 | GН | 1 ; | 50.37 | 027453 | 48 .2 | 055162 | 48 •2 | 1 | | 6. 0 | 47, 29 | 025850 | 51.0 | 055009 | 51 .0 | | 6. 0 | 47. 34 | 027112 | 50 2 | 054964 | 50 .0 | 1 | | 8. 0 | 47. 2 | 026315 | 51.0 | 054897 | 51 .2 | | 8. 0 | 47. 53 | 026726 | 49 .7 | ` 054793 | 49 .5 | | | 10. 0 | 47. 7 | 026469 | 51.2 | 054894 | 51 .9 | | | 47. 28 | 026970 | 49 .7 | 07.400.0 | 40.0 | G | | 12. 0 | 47. 6 | 026138 | 51 .0 | 054928 | 52.0 | ΤЪ | 8 9 1 | 46. 31 | 026878 | 48 .0 | 054680 | 49 0 | GI | | 14. 0 | 45. 57 | 026030 | 49 •4 | 054858 | 50 .5 | | 14. 0 | • • • | • • • | • • | • • • | ••• | | | 16. 0 | 44. 25 | 026546 | 48 .0 | 054822 | 49.0 | | 16. 0 | ••• | • • • • | • • | ••• | • • • | | | 18. 0
20. 0 | 44. 12
43. 2 | 026338
025931 | 46.0 | 054959
055249 | 46 .9 | . . | 18. 0
20. 0 | • • • | ••• | | • • • | • • | | | 20. 0
22. 0 | 43. 2
47. 12 | 023931 | 45 · 5
45 · 0 | 055268 | 46 ·0
45 ·8 | Г D
L | 20. 0 | ••• | • • • | • • | | ••• | İ | | M | | | | | | | | | | | | | | | Mar. 30. 0. 0 | 22. 52. 13 | 0.025171 | 46 .5 | 0 .055318 | 46 · 8 | L | April 2. 0. 0 | • • • | • • • • | • • | ••• | •• | | | $\left\{ \begin{array}{l} 1.50 \\ 2.0 \end{array} \right]$ | 55. 2
56. 2 | 026673 | 40.0 | 055479 | 40.0 | | $\begin{cases} 1.50 \\ 2.0 \end{cases}$ | • • • | • • • • | •• | • • • | ••• | | | 2. 10 | 55. 30 | $\begin{array}{c} 026408 \\ 026452 \end{array}$ | 49 • 2 | 055408
055408 | 49 8 | | $\begin{cases} 2. & 0 \\ 2. & 10 \end{cases}$ | • • • | | •• | ••• | •• | | | 4. 0 | 52 . 39 | 025673 | 50 2 | 055273 | 51.0 | L
T D | 1 - 1 | • • • | • • • | • • | ••• | ••• | | | 6. 0 | 48. 15 | 026359 | 51.0 | 055253 | 51.5 | 1 1 | 6. 0 | • • • | | •• | | ••• | | | 8. 0 | 46. 56 | 026139 | 50.0 | 055166 | 51 .0 | | 8. 0 | • • • | | | | •• | - | | 10. 0 | 47. 36 |
026118 | 49 •4 | 055051 | | тр | 10. 0 | • • • | | | | | | | 12. 0 | 45. 44 | 026046 | 48 .5 | 055003 | 49 .2 | L | 12. 0 | | • • • • | | | • • | | | 14. 0 | 45. 44 | 025800 | 46.8 | 055025 | 47.5 | | 14. 0 | 22, 46, 33 | 0:027226 | 42 .0 | 0 .055356 | 44 .0 | G I | | 16. 0 | 46. 38 | 026014 | 45 .0 | 055192 | 45 •4 | | 16. 0 | 44. 44 | 027871 | 41 .8 | 055654 | 43 •3 | i | | 18. 0 | 45. 21 | 026216 | 43 .0 | 055370 | 43 .5 | | 18. 0 | 44. 4 | 028997 | 42 0 | 055920 | 43 .2 | | | 20. 0 | 42.49 | 026031 | 41 .3 | 055645 | 41 .7 | L | 20. 0 | 42. 15 | 027818 | 42 .4 | 055883 | 43.0 | 1 | | 22. 0 | 45. 34 | 024850 | 41 .0 | 055927 | 42 .0 | TД | 22. 0 | 44. 59 | 025649 | 44 .0 | 055664 | 44 .2 | L | | Mar. 31. 0. 0 | 22. 52. 2 | 0 .024537 | 43 .5 | 0 .056033 | 44 .0 | тр | April 3. 0. 0 | 22. 55. 43 | 0 .023167 | 45 ·3 | 0 ·055244 | 45 .3 | L | | (1.50) | 54. 18 | 026006 | | 056068 | | | 1.50 | 23. 1. 3 | 025916 | | 055972 | | | | ₹ 2. 0 | 54.16 | 025895 | 46 .0 | 056046 | 47 .0 | | \ 2. 0 | 2. 19 | 026138 | 46 .2 | 055829 | 46 .5 | 1 | | 2. 10 | 53. 5 0 | 025895 | | 055996 | | TD | 2.10 | 23. 2.42 | 026138 | | 055829 | | L | | 4. 0 | 50. 1 | 1 | 48 .5 | 055676 | 49 .0 | L | 40 | 22. 52. 42 | 028877 | 47 0 | 056139 | 47 0 | 1 | | 6. 0 | 47. 7 | | 50.0 | 055260 | 50 .3 | | 6. 0 | 44. 17 | 024996 | 48 .0 | 056441 | 48 .0 | 1 | | 8. 0 | 46. 1 | | 50.8 | 054979 | 51 .2 | _ | 8. 0 | 35, 37 | 024491 | 49 .5 | 056238 | 49.0 | - | | 10. 0 | 46.46 | | 49 .8 | 054797 | 50.3 | ı | 10. 0 | 32. 45
39. 15 | 029525
021117 | 51 ·0
49 ·0 | 055081
053853 | 51 ·0
49 ·5 | | | 12. 0 | 46. 18 | 026080 | 48 2 | 054858 | 49 .0 | L D | 12. 0 | 99, 19 | OWITI' | 40 U | บบบอยช | 49.0 | 1 | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 220°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°97; in Vertical Plane, 23°1. Declination Magnet. March 28^d , 29^d , 30^d , and 31^d . Between 22^h and 24^h the changes were considerable. April 1^d , between 0^h and 4^h ; and from April 2^d . 22^h to April 3^d . 12^h , the changes were large. HORIZONTAL FORCE MAGNET. April 1^d, between 2^h. 10^m and 4^h; between 20^h and 24^h; and April 3^d, between 0^h and 10^h, considerable changes occurred. Vertical Force Magnet. April 14.10^h. The observation was omitted. April 3^d. Between 0^h and 1^h. 50^m, and between 8^h and 12^h, considerable changes occurred. April 2d was Good Friday. | April 4. | nonomical ing) of ation ation. h m 14. 0 16. 0 18. 0 20. 0 22. 0 | Western Declination. 22. 45. 23 47. 33 51. 6 44. 7 43. 6 | 0 ·024665
024724
025280
026522 | Thermometer of Thermo | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. 0 ·054727 054902 055041 | Thermometer of Vertical Force Magnetometer. | H Observers. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. d h m April 7.14. 0 | 0 / " | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | 0 | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor.for Temp. | 0 | Observers. | |----------|---|---|---|--|---|---|--------------|---|------------------------|--|----------------|---|------------------|------------| | April 4. | . 14. 0
16. 0
18. 0
20. 0
22. 0
. 0. 0
[1.50] | 22. 45. 23
47. 33
51. 6
44. 7
43. 6 | 024724
025280
026522 | 44 ·8
44 ·5
44 ·3
45 ·2 | 054902
055041 | 45 .2 | L | 1 1 | 0 / " | | 0 | | 0 | | | •
• . | 16. 0
18. 0
20. 0
22. 0
. 0. 0
[1.50] | 47. 33
51. 6
44. 7
43. 6 | 024724
025280
026522 | 44 · 5
44 · 3
45 · 2 | 054902
055041 | | L | April 17 14 0 | 00 04 00 | 0.000 | 57.0 | | | i | | •
• . | 16. 0
18. 0
20. 0
22. 0
. 0. 0
[1.50] | 51. 6
44. 7
43. 6 | 025280
026522 | 44 ·3
45 ·2 | 055041 | 45 .0 | | April 1. 14. U | 22, 24, 29 | 0 .020758 | 57.0 | 0.052430 | 57.3 | L | | | 20. 0
22. 0
. 0. 0
. 1. 50 | 44. 7
43. 6 | 026522 | 45 .2 | | | | 16. 0 | 35. 8 | 017200 | 56 .5 | 049646 | 57.0 | l | | | 22. 0
. 0. 0
. 1.50 | 43. 6 | 1 1 | | | | | 18. 0 | 5 8. 5 5 | 021434 | 55 .8 | 051004 | 56 2 | | | | . 0. 0 | | 024006 | 47.0 | 055510 | | L | 20. 0 | 58. 35 | 017106 | 55.7 | 052491 | 56.0 | , | | April 5. | [1.50] | 22. 49. 56 | | 0 | 0555,77 | 47 .7 | T D | 22. 0 | 58. 57 | 020794 | 56 .0 | 054066 | 56 .7 | T D | | | | | 0 .024859 | 48 •8 | 0 .055419 | 49 · 5 | TD | April 8. 0. 0 | 22. 58. 47 | 0 .022432 | 57 .3 | 0 .054726 | 58 .0 | T D | | < | 22 O L | 56. 34 | 026868 | | 055426 | | | [1.50] | 55. 58 | 022064 | | 054650 | | ĺ | | 7 | | 56. 52 | I I | 51.0 | 055376 | 52 0 | | 2. 0 | 55. 22 | 022352 | 59 .2 | 054650 | 60.0 | İ | | | 2. 10 | 56. 11 | 026868 | | 055355 | | T D | 2. 10 | 56. 26 | 022507 | 00.0 | 054650 | 00.0 | i | | | 4. 0 | 49. 56 | • 1 | 53 ·8 | 055171 | 54 · 2 | L | 4. 0 | 52. 14 | 023204 | 60.0 | 054497 | 60.9 | ł | | | 6. 0 | 46. 52 | | 54.2 | 054813 | 55.2 | . | 6. 0
8. 0 | 47. 29 | 024242 | 60 ·7
61 ·0 | 054149 | 61·0
61·4 | L | | | 8. 0 | 41.26 | | 54.8 | 054600 | 55 ·2
56 ·0 | L
G | 8. 0
10. 0 | 46. 23 | 025564
024241 | 59 8 | 054148
053841 | 60 2 | L | | | 10. 0 12. 0 | 46. 3
43. 28 | 1 | 56 ·0
54 ·4 | 054442
053810 | 54 ·5 | | 10. 0 | 46, 46
43. 1 | 025743 | 58 .5 | 053501 | 59.0 | l . | | | 14. 0 | 46. 10 | : 1 | 53.0 | 053852 | 53.0 | 1 1 | 14. 0 | 48. 34 | 024234 | 57.0 | 053493 | 57.5 | יע ו | | | 16. 0 | 42. 59 | 1 | 52 ·3 | 053941 | 52 .5 | | 16. 0 | 37. 43 | 026690 | 55 .3 | 053161 | 55.8 | l | | | 18. 0 | 46. 15 | 1 | 51.6 | 054260 | 51.8 | [[| 18. 0 | 44. 10 | 025256 | 54.0 | 053491 | 54.0 | ĺ | | | 20. 0 | 41. 9 | | 51.0 | 054714 | 52 .0 | тр | 20. 0 | 43. 10 | 023105 | 53 .0 | 053994 | 53 .0 | T D | | | 22. 0 | 43. 0 | | 51 .0 | 054821 | 52 ·0 | | 22. 0 | 46. 4 | 021777 | 53 .0 | 054404 | 52 ·5 | 1 | | April 6. | . 0. 0 | 22, 52, 32 | 0 .023270 | 51 .9 | 0 .054643 | 52 .0 | GН | April 9. 0. 0 | 22, 53, 25 | 0 .022441 | 53 .0 | 0 .054390 | 52 .5 | GН | | | [1. 50] | 56. 13 | 025762 | - | 054739 | | | (1.50 | 56. 5 | 023994 | | 054541 | | | | Ž | 2. 0 | 56. 20 | , , | 53 .0 | 054739 | 53 .5 | | ₹ 2. 0 | 5 5. 56 | 023795 | 54 ·0 | 054534 | 53 •2 | ĺ | | | 2. 10 | 55. 32 | 025120 | 1 | 054704 | | GН | 2. 10 | 56. 2 | 024205 | | 054570 | | | | | 4. 0 | 5 0. 55 | 026930 | 54 ·5 | 054842 | 55 .0 | TD | 4. 0 | 52. 52 | 025770 | 55 .0 | 054628 | 55.0 | G H | | | 6. 0 | 46. 19 | 026714 | 55 . 5 | 054613 | 56 .0 | T D | 6. 0 | 49. 20 | 025753 | 56 ·0 | 054620 | 56.3 | T D | | | 8. 0 | 47. 4 | 1 | 55.0 | 054157 | 55 ·5 | G | 8. 0 | 43. 12 | 027436 | 56 .0 | 054428 | 56 .0 | | | | 10. 0 | 41. 2 | 1 | 55.0 | 054058 | 55 5 | G | 10. 0 | 47. 56 | 025776 | 56.0 | 054271 | 56 0 | | | | 12. 0 | 44. 33 | • 1 | 56.0 | 054018 | 56 .2 | G H | 12. 0 | 48. 19 | 025992 | 55.0 | 054093 | 55 .7 | 1 | | | 14. 0 | 50. 49 | 1 1 | 55.0 | 054108 | 55 ·9 | | 14. 0
16, 0 | 54. 29 | 025081 | 54 ·6
54
·2 | 054144
054308 | 55 · 2
54 · 9 | GH | | | 16. 0
18. 0 | 41. 48
43. 25 | 1 1 | 55 ·0
54 ·5 | 054016
054201 | 55 ·8
55 ·0 | | 16. 0
18. 0 | 54. 23
53. 4 | 024681
025042 | 52·5 | 054085 | 52 .4 | | | | 20. 0 | 43. 23
43. 13 | 1 | 54 0 | 054201 | 55 ·0 | G H | 20. 0 | 53. 4
52. 15 | 023042 | 52 0 | 054541 | 52 .2 | G H | | | 22. 0 | 45. 36 | | 54.7 | 054137 | 55 .2 | L | 22. 0 | 45. 59 | 022861 | 52 .2 | 054746 | 52 . 5 | i | | April = | | 00 59 44 | 0 .022281 | 5.1 -5 | 0.052000 | 55 •0 | | April 10. 0. 0 | 99 54 90 | 0 .022840 | 59 .0 | 0 ·054569 | 53 ·3 | T | | April 7. | (1.50 | 22. 53. 44
56. 51 | 024221 | 04.0 | 053902 | | ا بد ا | April 10. 0. 0 | 54.35 | 024442 | 00 0 | 054805 | 99 9 | " | | J | $\left\{ \begin{array}{ccc} 1.30 \\ 2. & 0 \end{array} \right\}$ | 56. 28 | 1 1 | 55 .0 | 053965 | | | 2. 0 | 54. 12 | 024442 | 55 .0 | 054677 | 55 .5 | | |) | 2. 10 | 57.33 | 025439 | 30 0 | 053951 | 0 | | 2. 10 | 53. 54 | 024442 | | 054663 | 0 | L | | .' | 4. 0 | 53.45 | 1 | 56 .2 | 054117 | 56 · 6 | L | 4. 0 | 50. 14 | - 025253 | 57 .0 | 054468 | 57 .4 | | | | 6. 0 | 51. 30 | | 57 ·1 | 054074 | | | 6. 0 | 46. 52 | 025300 | 1 | 054317 | 58 .5 | ś | | | 8. 0 | 39. 30 | 1 ! | 58 .0 | 054655 | 58 ·9 | GН | 8. 0 | 47. 42 | 025706 | 58 .2 | 054103 | 58 .5 | | | | 10. 0 | 39. 45 | 024747 | 58 .5 | 054107 | 59 ·0 | GН | 10. 0 | 47. 58 | 025208 | 57 ·0 | 053940 | 57 .2 | 1 | | | 12. 0 | 36. 14 | 023204 | 58 .2 | 052693 | 58 .5 | L | 12. 0 | 47. 58 | 025488 | 56.0 | 054009 | 56 . 5 | L | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 220°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°97; in Vertical Plane, 23°1. DECLINATION MAGNET. From April 46: 18h to April 10d, 0h the position of the magnet was frequently changing, and occasionally the changes were great. HORIZONTAL FORCE MAGNET. April 4^d, between 20^h and 22^h; April 5^d and 6^d, between 0^h and 1^h. 50^m; April 7^d, between 14^h and 22^h; and April 8^d, between 14^h and 16^h, and between 18^h and 20^h, considerable changes occurred. Vertical Force Magnet. April 7d, 10h to 8d, 0h. Considerable changes took place. | | | | | Daily Ob | servati | ions 1 | from April 11 to 1 | 7. | | | | | | |--|-----------------------|--|---|--|---|------------|--|-------------------------|--|---|--|---|------------| | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | | d h w | 0 , " | | 0 | | 0 | | d h m | 0 / // | | 0 | | 0 | | | April 11. 14. 0 | 22.47.11 | 0 .026431 | 49 .0 | 0 .054683 | 49 .2 | L | April 14. 14. 0 | 22. 41. 10 | 0 .025142 | 53 .0 | 0 .053941 | 53 .7 | L | | 16. 0 | 46.27 | 026431 | 49 .0 | 054751 | 49 .0 | | 16. 0 | 41.10 | 024654 | 51.0 | 053971 | 51 .8 | 1 | | 18. 0 | 45. 9 | 026085 | 49 .5 | 054620 | 48 .7 | | 18. 0 | 41.57 | 024491 | 49 .5 | 054127 | 49 .8 | | | 20. 0 | 42. 42 | 025750 | 50.5 | 054914 | 50 .7 | | 20. 0 | 42. 22 | 024129 | 48 8 | 054576 | 49 2 | | | 22. 0 | 44. 4 0 | 025406 | 51 .8 | 054817 | 52 ·5 | T D | 22. 0 | 45. 59 | 022597 | 49 .8 | 054819 | 49 .7 | HE | | April 12. 0. 0 | 22. 50. 25 | 0 .025656 | 54 •4 | 0 .054322 | 55 .0 | T D | April 15. 0. 0 | 22. 54. 48 | 0 .022938 | 51 .7 | | 51 .5 | н в | | 1.50 | 52 . 39 | 026906 | | 054481 | | | (1.50 | 56. 18 | 025198 | | 054754 | | 1 | | ⟨ 2. 0 | 52.39 | 026729 | 57 · 5 | 054339 | 58 .6 | 1 1 | ₹ 2. 0 | 56. 9 | 025331 | 53 .3 | 054761 | 53 .3 | | | 2. 10 | 52. 39 | 026729 | -0 | 054304 | 20.0 | TD | 2.10 | 55. 55 | 025508 | 50.5 | 054761 | FO | HE | | 4. 0 | 48. 40 | 026997 | 59 .7 | 054052 | 60 .0 | | 4. 0 | 52.46 | 026084 | 53.5 | 054568 | 53 .7 | L | | 6. 0 | 48. 51 | 028555 | 61 ·2
61 ·8 | 053779 | 61 .2 | | 6. 0 | 48.38 | 026084
026005 | 53 · 5
52 · 8 | 054517
054381 | 53 ·8
52 ·8 | l | | 8. 0 | 47, 40 | 029205 | 61 4 | 053608
053351 | 62 ·0
61 ·5 |) 1 | 8. 0
10. 0 | 45. 20
44. 57 | 1 | 51.0 | 054361 | 51.2 | | | $ \begin{array}{c cccc} 10. & 0 \\ 12. & 0 \end{array} $ | 41. 49
46. 32 | 027252
026746 | 60.0 | 053422 | 60 .3 | 1 1 | 10. 0 | 44.57 | 025760
025102 | 49.0 | 054190 | 49.0 | | | $egin{array}{cccc} 12. & 0 & \ 14. & 0 & \ \end{array}$ | 46. 32 | 027083 | 58.6 | 053308 | 58.8 | ן י | 14. 0 | 43. 20 | 025102 | 47.0 | 054216 | 47.0 | - | | 16. 0 | 40. 32 | 027497 | 58.0 | 053331 | 58 .0 | | 16. 0 | 42.40 | 025742 | 45 · 8 | 054779 | 46 .7 | | | 18. 0 | 42. 17 | 027046 | 57 ·0 | 053348 | 57.0 | | 18. 0 | 41.18 | 025927 | 44 .8 | 055121 | 46 0 | | | 20. 0 | 41. 33 | 026094 | 57.0 | 053612 | 57.0 | тр | 20. 0 | 39. 30 | 024237 | 44.5 | 055343 | 44 .5 | TI | | 22. 0 | 44. 6 | 024279 | 55 ·5 | 053661 | 56 .8 | | | 45 . 48 | 022804 | 45 .0 | 055294 | 45 .0 | G | | April 13. 0. 0 | 22. 52. 44 | 0 .024663 | 55 .0 | 0 .053404 | 54 .8 | G H | April 16. 0. 0 | 22. 52. 5 | 0 .024067 | 48 .0 | 0 .055309 | 48 .0 | н | | (1.50 | 55. 10 | 026213 | 00 0 | 053830 | 0.1 | " | 1.50 | 55. 7 | 024806 | 100 | 054964 | 10 0 | | | $\begin{cases} 2. & 0 \end{cases}$ | 54. 41 | 025992 | 55 .0 | 053902 | 55 .6 | | 2. 0 | 54.41 | 024629 | 48 .5 | 054929 | 49 .0 | | | 2.10 | 54. 19 | 026191 | | 053902 | | GН | 2.10 | 54.34 | 025071 | | 054943 | | H F | | 4. 0 | 49. 26 | 028543 | 56 .0 | 054310 | 57 ·0 | T D | 4. 0 | 50. 15 | 026072 | 52 ·8 | 054849 | 53 .0 | ТІ | | 6. 0 | 47.29 | 029163 | 56 .0 | 053989 | 57 .0 | | 6. 0 | 48. 51 | 027413 | 53:5 | 054484 | 53 .3 | ł | | 8. 0 | 46. 6 | 028988 | 56 •4 | 053932 | 57 .0 | | 8. 0 | 45. 57 | 026189 | 54 .8 | 054570 | 55 .5 | 1 | | 10. 0 | 48. 35 | 028162 | 55 ·0 | 054037 | 56.0 | 1 1 | 10. 0 | 45. 32 | 025863 | 53 .2 | 054287 | 54 4 | | | 12. 0 | 44. 57 | 026517 | 53 ·8 | 054017 | 54 .6 | G H | 12. 0 | 45. 38 | 025573 | 51 .9 | 054247 | 52.5 | H I | | 14. 0 | 48. 7 | 026559 | 52 ·8 | 054147 | 53 ·8 | | 14. 0 | 45. 44 | 025586 | 50.0 | 053989 | 50 .7 | | | 16. 0 | 40. 35 | 025395 | 51.7 | 054105 | 52 .5 | 1 1 | 16. 0 | 37.41 | 024376 | 48.0 | 053634 | 48 5 | ļ | | 18. 0 | 40. 19 | 025562 | 51 .0 | 054465 | 52.0 | | 18. 0 | 43.44 | 025246 | 45 · 5
 43 · 7 | 054403
054975 | 46 ·3
44 ·7 | ļ., . | | 20. 0
22. 0 | 42. 13
46. 12 | 024654
023768 | 51 ·0
52 ·6 | 054592
0546 7 5 | 51 ·4
52 ·5 | 1 | 20. 0
22. 0 | 43. 7
47. 15 | 024379 | 43 .7 | 055262 | 43 .8 | ı | | | | | | | | | | | | | | | | | April 14. 0. 0 | 22. 54. 23 | | 53 ·6 | | 54 .0 | T D | April 17. 0. 0 | 22. 59. 9 | | 46 2 | 0 .055468 | 45 .8 | L | | $\int_{0}^{1.50}$ | 56. 33 | 025314 | 5 A - E | 054486 | 55 · C | | $\int_{0}^{1.50}$ | 57.45 | 026337 | 50.0 | 055804 | 50 .0 | | | $\begin{cases} 2. & 0 \\ 0. & 10 \end{cases}$ | 56. 10
55. 95 | 025314 | 94 '9 | 054536 | 55 ·0 | 1 | $\begin{cases} 2. & 0 \\ 2. & 10 \end{cases}$ | 58.38 | 026958
027046 | 50.2 | 055769
055698 | 90 ·0 | 1 | | 2.10 | 55. 25
52. 24 | $025712 \ 027224$ | 55 ·7 | 05455 7
054535 | 56 ·0 | T T | 2. 10
4. 0 | 59. 27
52. 44 | 027046 | 54 ·0 | 055255 | 54 .8 | L | | 4. 0
6. 0 | 49. 59 | 027224 | | | 55·8 | | 6. 0 | 48. 35 | 025694 | 55.3 | 054841 | 56.0 | | | 8. 0 | 47. 30 | 025164 | | 054585 | 55 .8 | ŭ | 8. 0 | 47.15 | 024885 | 55.0 | 054343 | 56 .0 | | | 10. 0 | 42. 13 | 024500 | | | 55 .8 | G | 10. 0 | 47. 7 | 025319 | 53 .0 | i | 53.8 | | | 12. 0 | 40. 39 | 025433 | | 053860 | | , , | | 47. 4 | 025141 | | 053941 | 51 .0 | | | | | | | | | | | | | | | | <u></u> | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 220°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°97; in Vertical Plane, 23°1. Declination Magnet. April 11^d, between 22^h and 24^h; April 12^d, between 8^h and 10^h, and between 22^h and 24^h; April 13^d, between 14^h and 16^h, and between 22^h and 24^h; April 14^d, between 8^h and 10^h, and between 22^h and 24^h; April 15^d, between 20^h and 24^h; April 16^d, between 14^h and 24^h; and April 17^d, between 2^h. 10^m and 4^h, the changes were considerable. HOBIZONTAL FORCE MAGNET. April 13d, between 2h. 10m and 4h; and April 15d and 17d,
between 0h and 1h. 50m, considerable changes occurred. Vertical Force Magnet. April 144. Between 10h and 12h a considerable change took place. | | | | | Daily Obs | ervatio | ns fi | rom April 18 to 24 | !. | | | | | | |--|----------------------|---|---|---|-----------------------------------|------------|--|-------------------------|---|---|--|---|------------| | Gottingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor. for Temp. | nermome
artical Fo
agnetome | Observers. | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor. forTemp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | | d h m | 0 / # | | 0 | | 0 | | d h m | 0 / " | | 0 | | 0 | 1 | | April 18. 14. 0 | 22. 45. 15 | 0 .025661 | 48 .0 | 0 .054749 | 48 .2 | L | April 21. 14. 0 | 22.48. 4 | 0 .022329 | 59 ·2 | 0 .053270 | 5 9 ·5 | | | 16. 0 | 44. 25 | 025334 | 47 .0 | 054786 | | | 16. 0 | 44, 44 | 022638 | 59 0 | 053883 | 59 .2 | | | 18. 0 | 43. 15 | 025654 | 45 .8 | 054989 | | | 18. 0 | 44. 55 | 022866 | 57.6 | 053936 | 58 .0 | | | 20. 0 | 42. 11 | 024706 | 45 2 | 055173 | 45 .3 | L | 20. 0 | 45, 11 | 022684 | 57 · 0 | 054226 | 57.5 | 1 | | 22. 0 | 44. 55 | 023462 | 47 ·3 | 055551 | 48 .0 | T D | 22, 0 | 49. 57 | 022236 | 57 .0 | 054310 | 57 ·0 | G | | April 19. 0. 0 | 22, 52, 40 | 0 .023438 | 50 .0 | 0 .055122 | 50 .5 | T D | April 22. 0. 0 | 22, 54, 38 | 0 .022571 | 59.0 | 0.054427 | 59 .0 | TD | | (1.50 | 54. 2 | 025142 | | 055095 | * | | 1.50 | 56. 9 | 023715 | | 054605 | | G H | | $\{2, 0\}$ | 54. 2 | 024876 | 53 .0 | 055095 | 53 .5 | | ₹ 2. 0 | 56, 15 | 023494 | 61.8 | 054569 | 62 .0 | | | 2, 10 | 54. 2 | 024876 | | 055095 | | Тр | 2. 10 | 55. 5 5 | 023051 | | 054519 | | G H | | 4. 0 | 49. 8 | 025793 | 55 2 | 055232 | | L | 4. 0 | 52. 42 | 024553 | 63 .5 | 054521 | 63 .8 | | | 6. 0 | 47.57 | 025945 | 56:5 | 054523 | | | 6, 0 | 49. 50 | 026056 | 64 5 | 054624 | 65 · 0
64 · 0 | j. | | 8. 0 | 47. 31 | 026656 | 56 .8 | 054131 | | | 8. 0 | 45. 13 | 027121 | 63 · 5
62 · 5 | 054318
053766 | 63 0 | | | 10. 0 | 46, 46 | 026152 | 56:0 | 053844 | 56 .0 | L | 10. 0 | 48, 14 | 024313
023632 | 59.7 | 053582 | 60.0 | _ | | 12. 0 | 46. 10 | 026213 | 55:0 | 053930 | | TD | j | 47. 51
46. 19 | 023032 | 56.2 | 053568 | 56.7 | 1 | | 14. 0 | 42, 39 | | 53.0 | 053781
053758 | 53 ·0
51 ·5 | | 14. 0
16. 0 | 44. 5 | 024035 | 53.0 | 053843 | 53 .3 | | | 16. 0
18. 0 | 40, 28
38, 21 | 027090
027303 | 51 ·0
49 ·5 | 054165 | 50.0 | | 18. 0 | 43, 40 | 024324 | 50.0 | 054146 | 50 6 | 1 | | 20. 0 | 50, 56 | 027505 | 48 0 | 054284 | 48.8 | TD | 20. 0 | 44. 31 | 024660 | 49 .0 | 054494 | 49.5 | 1 | | 22. 0 | 57. 13 | 019072 | 48.5 | 054395 | 49.0 | | 22. 0 | 46. 31 | 023736 | 50 .7 | 055009 | 51 .0 | T D | | A 7 | 00 *** *0 | | 71. 0 | 0.054000 | 51.0 | | A100 0 0 | 22, 49, 31 | 0 .023893 | 53·5 | 0 .055058 | 54 .0 | TD | | April 20. 0. 0 | 22. 57. 52 | 1 1 | 91.3 | 0.054908 | 31.2 | GH | April 23. 0. 0 (1.50) | 51. 43 | 025819 | 54 5 | 055068 | | | | $\left\{ egin{array}{ll} {f 1.50} \\ {f 2.0} \end{array} \right\}$ | 23. 0. 14 | 021502 | 56 .0 | 056123
055980 | 56.0 | | 2. 0 | 51, 59 | 025731 | 58 .4 | 055068 | 59.0 | } | | $\begin{cases} 2.0 \\ 2.10 \end{cases}$ | 23. 0.41
22.59.22 | 021573
019111 | 30 0 | 055874 | i | GН | 2. 10 | 52. 14 | 025731 | | 054997 | | T D | | 4. 0 | 23. 1.37 | 024414 | 58 • 5 | 056848 | | | | 49. 7 | 025804 | 60.8 | 054356 | 62 .0 | L | | 6. 0 | 22. 55, 24 | 025885 | 59 .3 | 056893 | 60.0 | | | 48, 23 | 025493 | 62 .2 | 053993 | 63.0 | | | 8. 0 | 41.45 | 022433 | 59 .5 | 055977 | 60 .2 | G | 8. 0 | 46, 23 | 025291 | 62 .0 | 053722 | 62 .5 | 1 | | 10. 0 | 41. 30 | 023739 | 59 .5 | 054909 | 60 .2 | G | 10. 0 | 49.17 | 025165 | 61.0 | 053793 | 62 5 | 1 | | 12. 0 | 45, 28 | 023407 | 59:5 | 054400 | 59 .9 | G H | 12. 0 | 47. 13 | 024575 | 58.0 | 053260 | 58.0 | 1 | | 14. 0 | 45, 29 | 023652 | 58 .6 | 054356 | | | 14. 0 | 45. 28 | 024558 | 56.0 | 053275 | 56 0 | 1 | | 16. 0 | 44. 12 | 023733 | 58 0 | 054250 | | | 16. 0 | 45, 24 | 024836 | 54.2 | 053582 | 54·7
52·0 | | | 18. 0 | 44. 6 | 024234 | 57.0 | 054203 | | | 18. 0 | 45. 5 | 024997 | 51 ·7
51 ·0 | 053860
054333 | 51 0 | 1 | | 20. 0 | 44, 26 | 023975 | 56.6 | 054237 | 56.5 | 1 1 | 20, 0 | 44. 23
46, 29 | 024920
023879 | 1 | 054679 | 1 | | | 22. 0 | 46. 37 | 023355 | 56 6 | 054245 | 56 .7 | TD | 22. 0 | 40, 25 | 020010 | 020 | | | | | April 21. 0. 0 | 22. 55, 52 | 0.021916 | 57.9 | 0.054180 | 58 •2 | L | April 24. 0. 0 | 22. 50. 27 | 0 .023763 | 54 .6 | 0 .054589 | 53 .8 | G H | | (1.50 | 23. 6. 9 | 022298 | | 055398 | | | (1.50 | 53. 17 | 024110 | l | 054668 | | G | | 2. 0 | 5, 15 | 021745 | 60 .2 | 055398 | 59 .2 | | ₹ 2. 0 | 53, 21 | 024243 | 58.0 | 054539 | 57.5 | 1 | | 2. 10 | 6. 48 | 021745 | | 055434 | | L | 2. 10 | 53. 21 | 024243 | | 054397 | 00.0 | G | | 4. 0 | 23, 8, 2 | 025100 | | 056171 | | | | 50, 58 | 025162 | | 054106 | | | | 6. 0 | 22, 55, 26 | | 62 .0 | 055758 | 62 .0 | T D | | 50. 2 | 026082 | | 053953
053517 | 63.0 | 1 | | 8. 0 | 46, 41 | | 61 .7 | 054878 | 61.5 | L | 8. 0 | 49, 35 | 025573 | 63·0
61·5 | 053237 | 1 | | | 10. 0 | 45 , 22 | | 60 .2 | 054362 | | | 10. 0 | 48, 25 | 025228 | | | | | | 12. 0 | 45, 46 | 023553 | 00 - | 052615 | 00.0 | G | 12. 0 | 45.48 | 025095 | 59 .0 | 053547 | 60.0 | | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 220°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°-8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°-97; in Vertical Plane, 23°-1. Declination Magnet. April 18^d, between 22^h and 24^h; April 19^d, between 18^h and 22^h; April 20^d, between 4^h and 8^h, and between 22^h and 24^h; and April 21^d, between 0^h and 1^h. 50^m, and between 4^h and 8^h, the changes in the position of the magnet were considerable. HORIZONTAL FORCE MAGNET. April 20h, between 0h and 8h; April 21d, between 2h. 10m and 4h; and April 22d, between 8h and 10h, considerable changes occurred. Vertical Force Magnet. April 20d and 21d. Considerable changes occurred during both these days. | | | |] | Daily Observ | ations | fron | a April 25 to May | 1. | | | | | | |--|----------------------|---|---|--|-----------------------|------------|--|------------------------|---|---|---|---|-----------| | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor. for Temp. | nermome
entical Fo | Observers. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers | | d h m | 0 / // | | 0 | | 0 | | d h m | 0 / " | | 0 | | 0 | | | April 25. 14. 0 | 22. 46. 38 | 0 .026036 | 55 .0 | 0 .053773 | 56 .0 | GН | April 28. 14. 0 | 22, 44, 59 | 0 .026052 | 57 .4 | 0 .053509 | 58 .0 | G | | 16. 0 | 45. 23 | 027040 | 53 .5 | 054052 | 54 .8 | | 16. 0 | 46. 46 | 025608 | 57 ·2 | 053813 | 57.5 | | | 18. 0 | 43. 30 | 025939 | 53 .0 | 054346 | 54 ·0 | | 18. 0 | 40.49 | 025903 | 58 .0 | 053908 | 58 .0 | | | 20. 0 | 41.57 | 025809 | 53 .8 | 054346 | 54 .0 | G H | 20. 0 | 40. 33 | 024079 | 58 ·3 | - 053707 | 57 .5 | G | | 22. 0 | 44. 20 | 025145 | 53 .8 | 054004 | 54 0 | L | 22. 0 | 48. I | 022748 | 59·0 | 053960 | 59 •2 | 1 | | April 26. 0. 0 | 22. 50. 17 | 0 .025189 | 53 .8 | 0 .054132 | 54 ·0 | L | April 29. 0. 0 | 22. 50. 0 | 0 .023763 | 60 •4 | 0 .053822 | 59 8 | 1 | | 1.50 | 52. 19 | 026521 | | 054280 | | | 1.50 | 52.
13 | 025272 | | 053932 | | | | ₹ 2. 0 | 51.44 | 026720 | 54 .6 | 054280 | 54 .7 | | ₹ 2. 0 | 52. 29 | 025316 | $62 \cdot 2$ | 053989 | 61 .8 | 1 | | 2. 10 | 52.27 | 026499 | | 054280 | | L | 2.10 | 51.52 | 024984 | | 053989 | | | | 4. 0 | 49. 15 | 027267 | 57 ·0 | 054267 | 57.0 | G H | | 5 0. 4 9 | 027233 | 63.0 | 053965 | 63 .0 | | | 6. 0 | 47. 9 | 027508 | 59 ·0 | 054142 | 59 .0 | | 6. 0 | 47. 26 | 025528 | 63 .0 | 053851 | 63 .0 | | | 8. 0 | 46. 49 | 027355 | 59 ·2 | 054023 | 60.0 | , | 8. 0 | 44. 14 | 025746 | 62 · 1 | 053864 | 62 5 | 1 | | 10. 0 | 47. 38 | 027112 | 59 .2 | 053826 | | G H | | 44. 32 | 027269 | 61 .0 | 053477 | 61 .8 | 1 | | 12. 0 | 47. 38 | 026830 | 58 .7 | 053786 | 59 .0 | L | 12. 0 | 34.47 | 025415 | 59.8 | 053057 | 60 .2 | | | 14. 0 | 43. 26 | 026594 | 57.3 | 053329 | 57.5 | | 14. 0 | 37. 20 | 023232 | 57.8 | 052044 | 58 .2 | í | | 16. 0
18. 0 | 43. 48 | 026064 | 56.0 | 053573 | 56 .0 | | 16. 0 | 41. 42 | 024448 | 56 ·0
54 ·2 | 052114 | 56 3 | | | 20. 0 | 44. 25
44. 25 | 025602
025366 | 54 ·5
53 ·8 | 053782
053990 | 54 · 7
54 · 0 | | 18. 0
20. 0 | 41. 58
43. 13 | 025013
022297 | 53 ·3 | 053782
053992 | 54 ·7
53 ·5 | | | 20. 0
22. 0 | 48. 42 | 023300 | 56.0 | 054129 | 56.0 | L
T D | 20. 0
22. 0 | 50. 20 | 022228 | 55·0 | 053992 | 55 ·0 | | | April 27. 0. 0 | 22, 52, 55 | 0 .025410 | 59 ·4 | 0 .055093 | 60.7 | T D | April 30. 0. 0 | 22, 54, 24 | 0 .022821 | 57.7 | 0 .054398 | 5 7 ·8 | _ | | (1.50 | 55. 59 | 026929 | 00 4 | 054321 | 00 1 | 1 " | April 50. 0. 0 | 55.20 | 024130 | 01.1 | 054860 | 01 0 | 1 | | $\begin{cases} 2.00 \\ 2.0 \end{cases}$ | 55. 5 | 026730 | 62 .0 | 054321 | 63 .0 | | 2. 0 | 55. 5 | 024150 | 59 .8 | 054917 | 59 .6 | | | 2.10 | 54. 59 | 026398 | 02 0 | 054264 | 00 | ΤЪ | 2. 10 | 54. 50 | 025016 | 40 0 | 054917 | 00 0 | T | | 4. 0 | 52. 15 | 025887 | 63 2 | 053926 | 64 .0 | L | 4. 0 | 52. 9 | 025460 | 60 .7 | 054555 | 61 .0 | | | 6. 0 | 49.47 | 026407 | 63 .8 | 054543 | 64 .2 | _ | 6. 0 | 47. 13 | 025465 | 60 .2 | 054443 | 60 .5 | | | 8. 0 | 47.59 | 026304 | 63 .0 | 053694 | 63 .0 | | 8. 0 | 43. 52 | 026246 | 59.0 | 054285 | 59 .0 | | | 10. 0 | 46. 56 | 025804 | 61 .5 | 053396 | 61 .7 | L | 10. 0 | 43. 0 | 025850 | 57 · 0 | 053847 | 57 .0 | | | 12. 0 | 46.36 | 025705 | 60 .0 | 053632 | 60 .0 | ΤД | 12. 0 | 39. 5 | .025342 | 55 .5 | 053588 | 55 .4 | T | | 14. 0 | 46. 19 | 025726 | 58 ·0 | 053561 | 58 .3 | | 14. 0 | 42.55 | 025098 | 53.0 | 053471 | 52 .6 | | | 16. 0 | 46. 0 | 025665 | 56 ·0 | 053567 | 55 .7 | | 16. 0 | 47.18 | 024920 | 51 ·0 | 053583 | 50 .7 | - 1 | | 18. 0 | 43. 45 | 025488 | 56 0 | 054265 | 55 .8 | | 18. 0 | 46. 27 | 023993 | 49 • 4 | 054167 | 50 .0 | - 1 | | 20. 0
22. 0 | 42, 59
48, 34 | $\begin{array}{c} 024481 \\ 024177 \end{array}$ | 54 · 0
55 · 0 | 054275
054332 | 54 ·0
54 ·0 | | 20. 0
22. 0 | 42. 6
46. 18 | 023870
023946 | 49·7
51·6 | 054701
054686 | 50 ·0 | 1 | | A 37 00 | | | | | | | | | | | | | | | April 28. 0. 0 | 22. 53. 44 | | 56 .2 | 0.054629 | | ι | May 1. 0. 0 | 22. 52. 19 | 0.023603 | 52 .2 | 0.054572 | 52 .0 | G | | $\int_{0}^{1.50}$ | 52. 46 | 025558 | • • • | 054634 | | G H | | 54.33 | 026005 | | 054556 | | | | $\begin{cases} 2. & 0 \\ 2. & 10 \end{cases}$ | 51. 35 | 025669 | 58 ·8 | 054634 | , - | | $\begin{cases} 2. & 0 \\ 0. & 10 \end{cases}$ | 54.52 | 026670 | 57 .0 | 054485 | 56 ·0 | ł | | 2.10 | 51. 27
50. 16 | 025337 | G1 .5 | 054563 | | GH | | 54, 45 | 026559 | E0 -0 | 054528 | e0 .* | G | | 4. 0
6. 0 | 50. 16
49. 14 | $\begin{array}{c} 026933 \\ 025449 \end{array}$ | 61 .5 | 054763 | | L D | | 52.11 | 026955 | 59.0 | 054588 | 59 5 | | | 8. 0 | 49. 14
48. 15 | 025449 | 61 · 5
61 · 0 | 053966
053864 | 61 ·7
61 ·0 | | 6. 0
8. 0 | 46. 41
46. 34 | 026603
026507 | 58 .3 | 054488
054047 | 58 .5 | • | | 10. 0 | 46. 35 | 025883 | 60.0 | 053774 | 60.0 | тъ | II | 40. 34 | 026130 | 57·5
56·0 | 054047 | 57 ·3
56 ·0 | | | 12. 0 | 41. 34 | 026949 | 58 ·4 | 053671 | 58.8 | | | 44. 1 | 025666 | | 053631 | 55 0 | | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 220°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°97; in Vertical Plane, 23°1. Declination Magnet. April 25^d, between 22^h and 24^h; April 27^d, between 20^h and 24^h; April 28^d, between 10^h and 12^h, and between 20^h and 24^h; April 29^d, between 10^h and 12^h, and between 20^h and 22^h; April 30^d, between 22^h and 24^h; and May 1^d, between 4^h and 6^h, considerable changes occurred. HORIZONTAL FORCE MAGNET. April 27^d, between 22^h and 24^h; April 29^d, between 18^h and 20^h; and May 1^d, between 0^h and 1^h. 50^m, considerable changes occurred. Vertical Force Magnet. April 26d, between 22h and 24h; April 27d, between 0h and 1h. 50m, and between 6h and 8h; April 28d, between 4h and 6h; and April 29d, between 12h and 18h, considerable changes took place. | | | | Horizontal | 5 8 | Vertical | to | | 1 | 1 | | Horizontal | ا 8 ي | Vertical | 4 | ī | |-------------|--|------------------|----------------------------|---|-----------------------------|---|------------|------------|---|-----------------------|----------------------------|---|--|-------------------|-----------| | Gottin | gen Mean | Wastann | Force Read- | fer (
For
ter. | Force Read- | ter. | y. | Gött | ngen Mean | 337 4 | Force Read- | fer o
For
ter. | Force Read- | ter. | ١, | | | stronomical oning) of | Western | ing in parts | nta. | ing in parts | Forme | Observers. | Rec | Astronomical
koning) of | Western | ing in parts | otal
one | ing in parts | o Fo | Observano | | | lination | Declination. | of the whole
Hor. Force | rizo | of the whole
Vert. Force | tica | Ser | | clination | Declination. | of the whole
Hor. Force | izor | of the whole | tica | 1 5 | | Obse | ervation. | | cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | cor. for Temp. | Thermometer of Vertical Force Magnetometer. | ဝီ | Ob | servation. | | cor, for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Force Reading in parts of the whole Vert. Force cor, for Temp. | The
Ver
Mag | 1 6 | | | d h m | 0 / # | | . 0 | | 0 | | | d h m | 0 / 1/ | | 0 | | 0 | | | May | 2. 14. 0 | 22, 43, 14 | 0 .026670 | 53 ·2 | 0 .053826 | 54 ·0 | GН | May | 5. 14. 0 | 22. 44. 14 | 0 .025959 | 59 9 | 0 .053497 | 60 .0 | G | | • | 16. 0 | 44. 44 | 026505 | 53 .5 | 054346 | 54 .0 | | | 16. 0 | 44. 18 | 025622 | 59.0 | 053598 | 59 ·5 | | | | 18. 0 | 44. 3 | 026300 | 54 .8 | 054571 | 55 .0 | | | 18. 0 | 41. 4 | 025804 | 59 .0 | 053765 | 59 ·0 | 1 | | | 20. 0 | 41.42 | 025100 | 55 .9 | 054529 | 55 ·0 | | | 20. 0 | 38.10 | 025435 | 58 .7 | 053813 | 58 ·8 | | | | 22. 0 | 43. 10 | 023806 | 56 .2 | 054350 | 55 .7 | L | | 22. 0 | 41.23 | 023651 | 59 5 | 053874 | 59 ·3 | T | | Iay | 3. 0. 0 | 22, 53, 2 | 0 .024150 | 56 · 3 | 0 .054072 | 56 ·0 | L | May | 6. 0. 0 | 22, 49, 46 | 0 .023912 | 61 6 | 0 .053565 | 61 .5 | T | | • | (1.50 | 58. 8 | 026250 | | 054373 | | | | 1.50 | 52.43 | 023868 | - | 053609 | | | | | ₹ 2. 0 | 57. 5 0 | 026250 | 57 · 2 | 054373 | 56 .8 | | | ₹2. 0 | 53.14 | 024134 | 63 .0 | 053623 | 63 .0 | T | | | 2. 10 | 57.44 | 026360 | | 054387 | | L | | 2. 10 | 53. 18 | 024201 | | 053623 | | T | | | 4. 0 | 52. 52 | 027071 | 58 .5 | 054278 | 58 .0 | G H | 1 | 4. 0 | 51, 53 | 025523 | 65 .0 | 053627 | 65.0 | | | | 6. 0 | 48. 5 | 027419 | 59 ·0 | 054278 | | | | 6. 0 | 48.57 | 027227 | 66 .0 | 053671 | 66 .0 | | | | 8. 0 | 45. 33 | 026562 | 58 .5 | 054237 | 58 .2 | | | 8. 0 | 46 . 28 | 026984 | 66 · 5 | 053401 | 66.0 | | | | 10. 0 | 42. 12 | 026840 | 57.5 | 054092 | 57.8 | G H | | 10. 0 | 45.41 | 026431 | 66 .5 | 053294 | 66.0 | - 1 | | | 12. 0 | 43. 34 | 025593 | 56 .8 | 053924 | 56 .7 | L | | 12. 0 | 45. 8 | 026211 | 64 .0 | 053189 | 64 .5 | - 1 | | | 14. 0 | 45. 55 | 026391 | 55 .0 | 053631 | 55 .0 | 1 | | 14. 0 | 43.50 | 025854 | 61 2 | 052810 | 61 .0 | - 1 | | | 16. 0 | 45. 2 5 | 026229 | 53 6 | 053885 | 53 .5 | | | 16. 0 | 44.23 | 025915 | 59.0 | 053003 | 29.0 | | | | 18. 0 | 41.51 | 025595 | 52 .5 | 054212 | | | | 18. 0 | 41.17 | 026110 | 57 ·8 | 053265 | 57.6 | - 1 | | | 20. 0 | 40. 16 | 025008 | 51 .8 | 054429 | | | | 20. 0 | 40. 10 | 025674 | 57.0 | 053562 | 57.0 | | | | 22. 0 | 43. 15 | 023670 | 52 · 7 | 054502 | 52 .8 | T D | | 22. 0 | 42. 46 | 024731 | 59 ·1 | 053780 | 58 .0 | 1 | | I ay | 4. 0. 0 | 22. 52. 18 | 0 .023886 | 54 ·6 | 0 .054365 | 54 .7 | T D | May | 7. 0. 0 | 22. 49. 9 | 0 .023634 | 61 .5 | 0 .053762 | 60 ·8 | 1 | | | [1.50] | 55. 45 | 025364 | - | 054482 | | | | ſ 1. 50 | 52. 3 | 024656 | | 053669 | - | | | | $\langle 2, 0 \rangle$ | 55.48 | 025364 | 57.2 | 054454 | 5 7 ·5 | 1 | li . | ₹ 2. 0 | 52. 25 | 024966 | 64 .3 | 053597 | 63 .2 | - 1 | | | 2.10 | 55.48 | 025364 | | 054454 | 1 | T D | | 2. 10 | 52 . 45 | 025033 | | 053519 | | 1 | | | 4. 0 | 52. 0 | 027064 | 58 .8 | 054213 | | | - | 4. 0 | 51,48 | 025523 | 65 .5 | 053391 | 65 .0 | - 3 | | | 6. 0 | 46. 24 | 027230 | 59.8 | 054152 | 60.0 | | | 6. 0 | 48.14 | 025925 | 65 .2 | 053520 | 65 .0 | | | | 8. 0 | 44. 22 | 026839 | 59.5 |
053956 | * | | | 8. 0 | 45, 23 | 025990 | 64 .5 | 053404 | 64 · 2 | - 1 | | | 10. 0 | 44. 37 | 026320 | 58.7 | 053742 | | | | 10. 0 | 45. 36 | 026477 | 64 .0 | 053357 | 64 .0 | -) | | | 12. 0 | 46. 5 | 026825 | 57.0 | 053497 | 1 | 1 | l | 12. 0 | 45. 20 | 026924 | | 053106 | 62 .7 | - 1 | | | 14. 0 | 44. 59 | 026196 | 56 0 | 053674 | 1 | 1 | | 14. 0 | 38. 3 | 025581 | | | 62 0 | - 1 | | | 16. 0 | 44. 59 | 026155 | 54 .5 | 053853 | | 1 | | 16. 0 | 55. 54 | 025980 | 1 | 052753 | 62 0 | Ł | | | 18. 0
20. 0 | 42.59 | 025983 | 53.0 | 053959 | | 1 | l | 18. 0 | 22. 46. 16 | 026449 | | | 61 ·0 | - E | | | $\begin{bmatrix} 20. & 0 \\ 22. & 0 \end{bmatrix}$ | 41. 10
43. 27 | 024666
023941 | 52 ·7
54 ·5 | 054422
054383 | ſ | 1 | <i>!</i> ? | 20. 0
22. 0 | 23. 3.44
23. 2.12 | 020699
017230 | | 051638
052514 | 1 . | - (| | | | 20 50 55 | | | 0.054100 | 50.0 | | 3.5 | | 22 *4 24 | 0.00000 | | 0.070500 | 61.0 | | | ay | 5. 0. 0 | 22. 50. 15 | | 57.0 | 0.054129 | | G H | May | | 22, 54, 21 | | 60.5 | 0.053736 | 91.0 | , ,
 | | | $\int_{0}^{1.50}$ | 54. 0 | 024510 | 60.0 | 054142 | | | | $\int_{0}^{1.50}$ | 53. 4 | 021749 | co .o | 055245 | 60.0 | | | | $\begin{cases} 2. & 0 \\ 2. & 10 \end{cases}$ | 54. 0 | 024576 | 00 0 | 054107 | 09.0 | | | $\begin{cases} 2. & 0 \\ 2. & 10 \end{cases}$ | 52. 26 | 022413 | | 055281
055245 | 02 0 | , | | | 2. 10
4. 0 | 54. 0
51.20 | 024598 | 69 ·A | 054071
054177 | 69 .0 | GH | | 2. 10 | 51. 21 | 022147
022305 | | | 63.0 | | | | 6. 0 | 51.20 | 026221
026569 | 63 0 | 054177 | | | | 4. 0
6. 0 | 50.28 | 022305 | | | 63.0 | | | | 8. 0 | 46. 43
45. 6 | 026525 | 63.0 | 053851 | | | | 8. 0 | 45. 19
49. 29 | 024004 | | | 61 .5 | | | | 10. 0 | 45. 6
44. 11 | 026525 | 62 .0 | 053468 | | | | 10. 0 | 49. 29
47. 54 | 023722 | | | 60.5 | | | | 12. 0 | 44.11 | 020022 | U4 U | 000408 | 01 / | 1 0 | lf . | 10. U | 47.04 | 020100 | ט טען | 1 000001 | 00 0 | ,
5 (| Reading of Torsion-Circle of Meridianal Magnet for Brass Bar resting in Magnetic Meridian, 220°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 248.97; in Vertical Plane, 238.1. Declination Magnet. May 2^d, between 22^h and 24^h; May 3^d, between 0^h and 1^h.50^m, and between 22^h and 24^h; May 4^d, between 4^h and 6^h, and between 22^h and 24^h; and May 5^d, between 22^h and 24^h, and between 7^d. 12^h and 24^h, the changes were considerable. May 8^d. Between 4^h and 6^h the change was considerable for the time of the day. Horizontal Force Magnet. May 3d, between 0h and 1h. 50m, and between May 7d. 18h and May 8d. 1h. 50m, considerable changes occurred. Vertical Force Magnet. May 7^d, between 12^h and 14^h, and between 18^h and 24^h; May 8^d, between 0^h and 1^h. 50^m, and between 6^h and 8^h, considerable changes occurred. | | | | | | Daily O | bserva | tions | from May 9 to 15 | i . | | | | | | |----------------------|--|------------------------|--|---|--|---------------|------------|--|-------------------------|--|---|--|---------------------------------|------------| | Time (
Reck
De | ngen Mean
Astronomical
koning) of
clination
servation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | E T S | Observers. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | ermomet
rtical Fo
gnetome | Observers. | | | d h m | 0 / " | | 0 | | 0 | | d h m | 0 / // | | 0 | | 0 | | | May | 9. 14. 0 | 22. 45. 28 | 0 .025140 | 60 .8 | 0 .053622 | 61 .5 | G H | May 12. 14. 0 | 22. 46, 15 | 0 .025617 | 60 .0 | 0 .053202 | 61 .0 | | | • | 16. 0 | 45.12 | 025059 | 60 .2 | 053701 | 61 .0 | | 16. 0 | 44.48 | 025494 | 59 .0 | 053582 | 60.0 | | | | 18. 0 | 44.22 | 025767 | 60 .2 | 053736 | 61 .0 | | 18. 0 | 42. 43 | 024896 | 59 .0 | 053755 | 59 .5 | | | | 20. 0 | 47. 34 | 023062 | 61.0 | 053539 | 60 .2 | G H | 20. 0 | 40. 15 | 023479 | 59 .0 | 053670 | 58 .7 | | | | 22. 0 | 49. 55 | 024541 | 62 .2 | 053465 | 61.0 | L | 22. 0 | 45, 49 | 022815 | 59 .0 | 053604 | 58 .2 | L | | May | 10. 0. 0 | 22.51.45 | 0 .024748 | 65 .0 | 0 .053784 | 64 .0 | L | May 13. 0. 0 | 22, 54, 2 | 0 .024180 | 60 .2 | 0 .054121 | 59 .8 | L | | • | (1.5 0 | 53.34 | 025085 | | 054116 | | ΤО | [1.50] | 56. 7 | 025642 | | 053608 | 1 | | | | ₹ 2. 0 | 53. 26 | 025263 | 67 .2 | 054116 | 67 .5 | | ₹ 2. 0 | 55. 36 | 025398 | 62 .5 | 053608 | 62 .0 | 1 | | | 2. 10 | 53. 19 | 025085 | | 054058 | } | TО | 2. 10 | 55. 13 | 025310 | | 053565 | 1 | L | | | 4. 0 | 49.50 | 025772 | 69 .0 | 053626 | 69 .0 | G H | 4. 0 | 49. 8 | 025984 | 64 .8 | 053634 | 65 .0 | G H | | | 6. 0 | 45 . 53 | 026111 | 70 .8 | 053569 | 70 .5 | | 6. 0 | 45. 0 | 025310 | 65 .9 | 053496 | 66 .4 | | | | 8. 0 | 44. 3 | 026158 | 70 .5 | 053551 | 71 .0 | | 8. 0 | 45. 26 | 025341 | 65 .8 | 053342 | 66.5 | { | | | 10. 0 | 44. 46 | 025423 | 70 ·0 | 053355 | 70 .5 | | 10. 0 | 46. 3 | 025370 | 64 .0 | 053164 | 65.0 | G H | | | 12. 0 | 45. 12 | 025064 | 69.0 | 052997 | 68 .7 | L | 12. 0 | 46. 12 | 025332 | 62 .5 | 053118 | 63 .0 | | | | 14. 0 | 44. 6 | 024700 | 67 .3 | 052855 | 67 .0 | | 14. 0 | 46. 12 | 025103 | 60 .5 | 053024 | 61 .0 | G | | | 16. 0 | 43 . 2 8 | 024996 | $65 \cdot 2$ | 052736 | 65 .0 | | 16. 0 | 44. 30 | 024673 | 58 .8 | 053110 | 59 .0 | L | | | 18. 0 | 40, 45 | 024597 | 63 .2 | 052781 | 63 .2 | | 18. 0 | 41.47 | 024456 | 57 ·0 | 053206 | 57.0 | G | | | 20. 0 | 40. 45 | 024455 | 62 .4 | 052825 | 62 .0 | L | 20. U | 40. 24 | 023570 | 57 .0 | 053626 | 56.8 | | | | 22. 0 | 44. 6 | 023428 | 62 . 5 | 052973 | 62 ·4 | ΤЪ | 22. 0 | 44. 59 | 022969 | 59 .0 | 053573 | 59 .0 | TI | | May | 11. 0. 0 | 22. 52. 17 | 0 .023035 | 63 ·4 | 0 .053240 | 63 .8 | ΤЪ | May 14. 0. 0 | 22, 52, 52 | 0 .023523 | 61 .5 | 0 .053847 | 61.8 | т | | • | (1.50 | 52.38 | 024175 | | 053235 | | | 1.50 | 54. 5 | 025062 | | 053519 | | G | | | ₹ 2. 0 | 52.38 | 024440 | 64 .0 | 053214 | 64 .0 | | ₹ 2. 0 | 53. 54 | 024885 | 63 .5 | 053497 | 62 .7 | | | | 2. 10 | 52. 12 | 024440 | | 053214 | | ΤЪ | 2.10 | 53. 34 | 024863 | l | 053419 | 1 | G | | | 4. 0 | 48. 1 | 025431 | 64 ·8 | 053602 | 65 .5 | L | 4. 0 | 49. 56 | 025568 | 65 .0 | 053331 | 64 .5 | L | | | 6. 0 | 45. 14 | 026164 | 66.0 | 053591 | 66 .2 | 1 | 6. 0 | 45. 37 | 026253 | 66 .0 | 053543 | 66 .0 | | | | 8. 0 | 45.48 | 026364 | 66.5 | 053116 | 66 .0 | | 8. 0 | 45. 52 | 026780 | 66 .3 | 053187 | 66.0 | 1 | | | 10. 0 | 45. 58 | 025828 | 65 .8 | 053116 | 66 .0 | L | 10. 0 | 45. 39 | 026368 | 65 .7 | 052926 | 65 .5 | L | | | 12. 0 | 44. 54 | 025924 | 64 .0 | 052844 | 64 .0 | ΤЪ | 12. 0 | 43. 19 | 025613 | 64 .0 | 052762 | 63.8 | TI | | | 14. 0 | 44. 2 | 025309 | 61 .8 | 052875 | 61 .6 | | 14. 0 | 44. 33 | 025955 | 62 .0 | 052661 | 61.6 | | | | 16. 0 | 43. 20 | 025262 | 60.0 | 052927 | 60 .0 | | 16. 0 | 44. 13 | 025778 | 62 .0 | 053046 | 61.6 | | | | 18. 0 | 39. 32 | 024101 | 57 ·0 | 052878 | 56 .8 | | 18. 0 | 40. 57 | 025074 | 60 .8 | 053197 | 60 .2 | | | | 20. 0 | 39. 59 | 023101 | 56 ·7 | 053597 | 56 .6 | ТО | 20. 0 | 38. 53 | 024244 | 60.0 | 053276 | 60.0 | 1 | | | 22. 0 | 45.11 | 023468 | 58 ·0 | 053671 | 5 7 ·5 | G H | 22. 0 | 43. 51 | 022480 | 61 .3 | 053235 | 60.8 | G F | | May | 12. 0. 0 | 22, 49, 55 | 0 .024315 | 59 ·5 | 0 •053605 | 58 ·5 | G H | May 15. 0. 0 | 22. 58. 25 | 0 .023178 | 62 .8 | 0 .053038 | 62 .0 | L | | • | f 1. 50 | 50. 35 | 025077 | | 053699 | } | | (1.50 | 23. 1. 7 | 024372 |] | 053371 |] | G I | | | ₹ 2. 0 | 50. 21 | 024988 | 61 .0 | 053667 | 60 .0 | | ₹ 2. 0 | 1.32 | 024128 | 65 .0 | 053449 | 64 :0 | 1 | | | 2. 10 | 50. 4 | 025187 | | 053653 | | GН | 2. 10 | 23. 1. 9 | 024172 | | 053393 | 1 | G I | | | 4. 0 | 47. 16 | 025291 | $62 \cdot 0$ | 053850 | 62 .0 | тр | 4. 0 | 22. 59. 0 | 025811 | 66 .5 | 054112 | 66 .6 | T | | | 6. 0 | 45. 34 | 025927 | 63.0 | 053851 | 63 .0 | | 6. 0 | 52. 12 | 025541 | 67 .3 | 054961 | 67.7 | ' | | | 8. 0 | 45. 59 | | 64 .0 | 053692 | 64 .0 | | 8. 0 | 43. 33 | 026995 | 67 .4 | 054350 | 67 .5 | | | | 10. 0 | 45. 45 | | $\mathbf{62\cdot8}$ | 053246 | 62 6 | | 10. 0 | 45.38 | 026568 | 66 .7 | 053876 | 66.5 | | | | 12. 0 | 45. 2 | 025291 | 62 .0 | 053446 | 63 .0 | G H | 12. 0 | 44. 18 | 026564 | 65 .0 | 053081 | 66 .0 | G I | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 220°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°.8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24.97; in Vertical Plane, 23°.1. Declination Magnet. May 10^d, between 22^h and 24^h; May 11^d, between 20^h and 22^h; May 12^d,
between 20^h and 24^h; May 13^d, between 2^h, 10^m and 4^h, and between 22^h and 24^h; May 14^d, between 22^h and 24^h; and May 15^d, between 4^h and 8^h, the changes were considerable. $\begin{array}{ll} \textbf{HORIZONTAL FORCE MAGNET.} \\ \textbf{May 9}^d. & \textbf{Between 18}^b \ \text{and 20}^b \ \text{a considerable change occurred.} \end{array}$ Vertical Force Magnet. May 11^d, between 18^h and 20^b; and May 15^d, between 2^h. 10^m and 6^b, and between 10^h and 12^h, considerable changes took place. | | | | | | Daily Ob | servati | ons i | from May 16 to 22 | | | | | | | |---------------------|--|-------------------------|---|---|--|---------------------------------|------------|--|-----------------------|--|---|---|-------|------------| | Time (
Red
De | ingen Mean 'Astronomical ckoning) of eclination servation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | ermomet
rtical Fo
gnetome | Observers. | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor, forTemp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor, for Temp. | S Tie | Observers. | | | d h m | 0 1 " | | 0 | | 0 | | d h m | 0 / " | | 0 | | 0 | | | May | 16.14. 0 | 22, 45, 11 | 0 .024279 | 61 .0 | 0 .053408 | 62 .0 | G H | May 19. 14. 0 | 22, 41, 39 | 0 .023615 | 61 .0 | 0 .052376 | 62 .0 | G | | • | 16. 0 | 45. 39 | 024093 | 59 .5 | 053807 | 61 .0 | | 16. 0 | 42. 9 | 024957 | 59 .5 | 052835 | 60 .0 | 1 | | | 18. 0 | 41. 35 | 023767 | 59 .0 | 053755 | 59 .5 | 1 | 18. 0 | 38. 14 | 024215 | 58 .5 | 053074 | 59 .0 | | | | 20. 0 | 41. 9 | 024602 | 58 .4 | 053819 | 58 .5 | G H | 20. 0 | 40. 7 | 024088 | 58 .0 | 053526 | 58 .4 | G | | | 22, 0 | 42. 54 | 021707 | 59 .0 | 053929 | 58 .5 | L | 22. 0 | 44. 51 | 021356 | 59 ·2 | 053570 | 58 .5 | L | | May | 17. 0. 0 | 22. 47. 42 | 0.021835 | 59 ·5 | 0 .053819 | 58 •5 | L | May 20. 0. 0 | 22, 52, 51 | 0 .022532 | 60 .3 | 0 .053328 | 59 5 | L | | | (1.50 | 52.27 | 022970 | 30 0 | 054123 | | T D | (1.50 | 52. 4 | 023937 | 0.0 | 053707 | | ~ | | | ₹ 2. 0 | 53. 4 | 022793 | 61 .5 | 053994 | 61 .2 | L | $\begin{cases} 2 & 0 \\ 2 & 0 \end{cases}$ | 52, 4 | 023937 | 61 .8 | 053750 | 61 .5 | | | | 2. 10 | 52. 46 | 022793 | 01 0 | 053994 | 01 - | L | 2. 10 | 51.23 | 024269 | | 053750 | | L | | | 4. 0 | 53.47 | | 63 .8 | 054161 | 64 .0 | 1 1 | 4. 0 | 47. 20 | 024444 | 63 .0 | 053979 | 63 .0 | | | | 6. 0 | 49. 35 | 025014 | 65 .0 | 054525 | 65 .7 | | 6. 0 | 45. 32 | 026401 | 64 6 | 054066 | 64 9 | | | | 8. 0 | 46. 43 | 025040 | 65 2 | 054184 | 66 .0 | | 8. 0 | 44. 3 | 026232 | 65 0 | 053862 | 65 .0 | , | | | 10. 0 | 42. 34 | 023021 | 65 .0 | 052733 | 65 .3 | GН | 10. 0 | 44.52 | 024962 | 64 .6 | 053354 | 64 .9 | | | | 12. 0 | 38.57 | 023495 | 63 .2 | 053075 | 63 .0 | L | 12. 0 | 45, 29 | 023607 | 63 ·2 | 052805 | 63 .0 | | | | 14. 0 | 41. 22 | 023419 | 61 .2 | 052552 | 60 .8 | | 14. 0 | 46. 14 | 023948 | 61.0 | 052810 | 61 .0 | | | | 16. 0 | 42. 23 | 023560 | 60 .2 | 052505 | 59 .8 | | 16. 0 | 43. 25 | 024155 | 60 .0 | 052967 | 59 8 | | | | 18. 0 | 42. 6 | 023344 | 58 8 | 052124 | 58 .4 | | 18. 0 | 43. 25 | 023492 | 58 2 | 053153 | 58 .0 | 1 | | | 20. 0 | 44. 2 | 021524 | 58 .4 | 052627 | 58.0 | L | 20. 0 | 41.25 | 022852 | 58 4 | 053637 | 58 .0 | I | | | 22. 0 | 46. 33 | | 59 ·0 | 053522 | 59 .0 | TД | 22. 0 | 43. 54 | 021641 | 59 .0 | 053791 | 58 .7 | T | | May | 18. 0. 0 | 22. 52. 1 | 0 .021929 | 60 .8 | 0 .053550 | 61 .0 | G Н | May 21. 0. 0 | 22, 51, 6 | 0 .022612 | 60 ·4 | 0 .053555 | 59 ·5 | T | | • | ſ 1. 50 | 56. 19 | 023492 | | 053694 | | - | (1.50 | 52. 20 | 025209 | | 054293 | | 1 | | | $\langle 2, 0 \rangle$ | 55. 23 | ſ | 63 .0 | 053659 | 63 .0 | | 2. 0 | 52, 15 | 024877 | 64 8 | 054257 | 64 .5 | | | | 2. 10 | 56. 2 | 024532 | | 053680 | | GН | 2. 10 | 51.44 | 024877 | | 054257 | | T | | | 4. 0 | 52. 23 | 025104 | 64 .0 | 053723 | 64 .5 | L | 4. 0 | 47. 51 | 025770 | 65 .7 | 053899 | 66 .0 | 1 | | | 6. 0 | 45. 38 | 026316 | 64 8 | 053876 | 65 .0 | | 6. 0 | 44.49 | 025388 | 67 .8 | 053737 | 68 .0 | | | | 8. 0 | 47. 10 | 025326 | 64 .0 | 053404 | 64 .2 | | 8. 0 | 42. 9 | 025704 | 68 .5 | 053168 | 68 .0 | } | | | 10. 0 | 46. 35 | 025374 | 63 .0 | 053195 | 63 .3 | L | 10. 0 | 44.55 | 024751 | 68 .0 | 052906 | 67 .8 | 1 | | | 12. 0 | 46. 25 | 025225 | 62 0 | 053026 | 61 .7 | ΤО | 12. 0 | 43. 57 | 024975 | 64 .7 | 052249 | 64 5 | T | | | 14. 0 | 46. 18 | 025032 | 61.0 | 052836 | 60 .8 | | 14. 0 | 43. 1 | 024705 | 64 .0 | 052317 | 63 .6 | | | | 16. 0 | 45. 4 | | 60 .3 | 052966 | 60 .3 | | 16. 0 | 40.44 | 024468 | 62 . 5 | 052497 | 62 .0 | | | | 18. 0 | 43. 45 | 025028 | 59 .0 | 053008 | 58 .7 | | 18. 0 | 42. 58 | 024317 | 62 .0 | 052853 | ł | 1 | | | 20. 0 | 42. 44 | 023844 | 58 .0 | 053353 | 58 .0 | T D | 20. 0 | 40, 15 | 024694 | 61 ·3 | 053074 | 61 .0 | | | | 22. 0 | 47. 10 | 021822 | 57 .2 | 053428 | 57 ·6 | G H | 22. 0 | 42.51 | 021972 | 63 ·4 | 053396 | 61 .7 | I | | Iay | 19. 0. 0 | 22, 54. 3 | 0 .022754 | 58 .5 | 0.053112 | 58 .2 | GН | May 22. 0. 0 | 22. 50. 36 | 0 .023751 | 65 .5 | 0 .053414 | 64 .0 | , | | | [1.50] | 54. 27 | 024722 | | 053598 | | | 1.50 | 53 . 10 | 024795 | | 053688 | 1 | | | | ⟨ 2. 0 | 53. 50 | 024944 | 61 .0 | | 60 .7 | | ₹ 2. 0 | 53 . 10 | 025016 | 68 •4 | 053688 | 67 .2 | :] | | | 2. 10 | 53.11 | 024744 | ĺ | 053526 | | G H | 2.10 | 51. 3 | 025016 | | 053616 | | 1 | | | 4. 0 | 48. 40 | 024593 | , | 054250 | | | 4. 0 | 47. 12 | 025386 | | 053907 | 1 | | | | 6. 0 | 45. 52 | 024962 | | 053983 | | | 6. 0 | 46. 28 | 024718 | 73 .0 | 053542 | | | | | 8. 0 | 46. 42 | 025014 | | 053506 | | | 8. 0 | 46. 4 | 024563 | | 053106 | | | | | 10. 0 | 45. 43 | | 64 .2 | 053237 | | 1 1 | 10. 0 | 45. 9 | 024505 | | 053007 | | | | | 12. 0 | 43. 42 | 024502 | 62 .6 | 052911 | 63.0 | GH | 12. 0 | 44, 52 | 024456 | 71.0 | 052686 | 71 .2 | 1 | Reading of Torsion-Circle of Meridianal Magnet for Brass Bar resting in Magnetic Meridian, 220°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°97°; in Vertical Plane, 23°1. Declination Magnet. May 18d, between 4h and 6h, and May 18d, 19d, 20d, and 21d, between 22h and 24h, the changes were considerable. HORIZONTAL FORCE MAGNET. May 16³, between 20^h and 22^h; May 17³, between 8^h and 10^h; May 18^d and 19^d, between 20^h and 22^h; and May 21^d, between 0^h and 1^h. 50^m, and between 20^h and 22^h, considerable changes occurred. Vertical Force Magnet. May 17^d, between 20^h and 22^h; and May 19^d, between 2^h. 10^m and 4^h, considerable changes took place. | | | | | Daily Obs | servatio | ns f | rom May 23 to 29 | • | | | | | | |---|--------------------|---|-----------------------------------|--|----------------|------------|--|-------------------------|---|------------------|--|---|------------| | Göttingen Mear
Time (Astronomi
Reckoning) of
Declination
Observation. | al Western | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | hermomel
orizontal
agnetome | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor. for Temp. | Fig. 6 | Observers. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp | 1 5 2 6 | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | | d h | m 0 / " | | - 0 | | 0 | | d h m | 0 1 11 | | 0 | | 0 | | | May 23.14. | 0 22.44.41 | 0 .023715 | 74 .8 | 0 .051919 | 74 .7 | G | May 26. 14. 0 | 22. 45. 57 | 0 023889 | 63 .2 | | 63 .7 | G | | | 0 43. 12 | 023958 | 74 .8 | 052289 | 74.7 | | 16. 0 | 44. 48 | 024196 | 62 ·1 | 052332 | 61 ·4
59 ·0 | | | 18. | | 023642 | 71.5 | 052214 | 72 .0 | | 18. 0 | 41. 1 | 024193 | 58 · 5
59 · 0 | 5 | 58.5 | G | | 20. | | 023102 | 70.5 | 052411 | 71 ·0
70 ·0 | G
L | $ \begin{array}{cccc} 20. & 0 \\ 22. & 0 \end{array} $ | 39. 37
42. 18 | 023368
0233 7 5 | 61.2 | 053377 | 59 4 | 1 | | 22. | 0 43. 32 | 022438 | 70.5 | 052306 | 10.0 | - | 22. 0 | 42. 10 | 020070 | 0. 2 | 0000,, | 30 1 | _ | | May 24. 0. | 0 22.48.44 | 0 .022673 | 70 .6 | 0 .052426 | 70 .2 | L | May 27. 0. 0 | 22.50. 8 | 0
.023217 | 64 .8 | | 63 .0 | L | | ſ 1. <i>(</i> | | 024086 | | 052839 | | | ſ 1. 5 0 | 51. 58 | 024623 | 1.1 | 053715 | 20.2 | | | | 0 49. 1 | 024263 | 71.2 | 052839 | 71 0 | | ₹ 2. 0 | 52, 17 | 024734 | 69 .2 | I . | 68 2 |]_ | | 2. 1 | | 024794 | | 052839 | | L | 2. 10 | 52. 3 | 024734 | 50.5 | 053573 | 70.0 | L | | 4. | 0 48.28 | 024620 | 72.0 | 052919 | 72.0 | G | 4. 0 | 48. 45 | 024734 | 72 . 5 | | 72·0
72·0 | G | | 6. | 0 46. 22 | 024465 | 72 0 | 052954 | 72.0 | | 6. 0 | 45, 47 | 024906
027015 | 73 .7 | 053184
053130 | 75.0 | | | 8. | 0 46.41 | 024562 | 69 .7 | 052462 | 70 ·0
68 ·7 | | 8. 0
10. 0 | 46. 9
45. 26 | 027015 | 74 ·5
73 ·7 | 1 | 74.0 | G | | 10. | 0 45.22 | 024597 | 66 .8 | 052413
052356 | 66 . 7 | G
L | 10. 0
12. 0 | 45. 26 | 023799 | 72 .3 | 052164 | 72.0 | L | | 12.
14. | 0 45. 1
0 43.58 | 024810
024420 | 65 2 | 052356 | 65 .4 | - | 14. 0 | 46. 7 | 025755 | 70 .0 | | 69 8 | - | | | 0 43.58 | 024426 | 63 .5 | 052478 | 63 .2 | | 16. 0 | 41. 43 | 023976 | 68 .0 | 1 | 68 .0 | | | | 0 39.11 | 024096 | 61 .3 | 052442 | 61 .2 | | 18. 0 | 42. 13 | 024482 | 66 .0 | 052024 | 66 2 | | | 20. | 0 38.40 | 023881 | 61 .0 | 052730 | 60 .8 | L | 20. 0 | 38. 27 | 022817 | 66 8 | 052580 | 66 .5 | L | | | 0 42. 31 | 023409 | 62 .0 | 052898 | 61 .7 | TD | 22. 0 | 44. 43 | 021079 | 69 .0 | 053175 | 68 .7 | T | | May 25. 0. | 0 22.48.6 | 0 .023263 | 63.8 | 0 .053170 | 62 .5 | πъ | May 28. 0. 0 | 22, 49, 59 | 0 021463 | 73 .0 | 0 .053613 | 73 .0 | T | | 11. 5 | 1 . | 024394 | 00 0 | 053653 | 00 0 | | 1.50 | 53. 5 | 023555 | | 053809 | | | | 1 . | 0 51.11 | 024616 | 67 0 | 053639 | 67 .0 | | 2. 0 | 53. 5 | 023599 | 77 .0 | 053809 | 77.0 | | | $\begin{cases} \frac{2}{2} & 1 \end{cases}$ | | 024881 | | 053596 | | тр | 2. 10 | 53. 5 | 023821 | | 053809 | | T | | 4. | 0 48. 12 | 025112 | 67 .4 | 053282 | 67 .5 | L | 4. 0 | 49. 7 | 024688 | 79 .8 | 053483 | 79 ·2 | L | | 6. | 0 46. 22 | 025440 | 69 .0 | 053414 | 69 3 | ı | 6. 0 | 46.47 | 025494 | 81.0 | 053334 | 80.8 | | | 8. | 0 45.15 | 025551 | 69 .0 | 053035 | 69.0 | - 1 | 8. 0 | 45.40 | 024718 | 81 .0 | 052810 | 80.6 | | | 10. | 0 45. 28 | 025016 | 68.0 | 052812 | 68 .0 | L | 10. 0 | 44. 53 | 024103 | 79 .6 | 052357 | 79 .8 | G | | 12. | 0 42. 25 | 025168 | 66.0 | 052465 | 65 .6 | T D | 12. 0 | 44. 48 | 023975 | 79 2 | 052333 | 79 .5 | t | | 14. | 0 40.18 | 024844 | 63 .7 | 052315 | 63 .2 | | 14. 0 | 44. 32 | 024018 | 75 8 | 051652 | 76 ·0
73 ·7 | T | | 16.
18. | 0 40. 7 | 024074 | 61 ·3
58 ·2 | 052145 | 61 ·3 | | 16. 0
18. 0 | 43. 33
35. 15 | 023658
025308 | 73·8
71·7 | 051470
051756 | 71 .4 | | | | 0 40. 7
0 40. 2 | 024089
023811 | 59 0 | 052505
052932 | 59 ·0
59 ·0 | T D | 18. 0
20. 0 | 49. 14 | 020445 | 70 .5 | 052292 | 72.0 | | | 20.
22. | 0 45. 46 | 023862 | 61 .2 | 052946 | 59.0 | L | 22. 0 | 46. 24 | 021278 | 69 .0 | 052092 | 70.0 | | | M 22 2 | 22.52.42 | | 00.0 | 0.050701 | 22.0 | _ | W 00 0 0 | 00.00 | 0.004000 | 70.5 | 0.050411 | 71.0 | | | May 26. 0. | | 0 .023944 | 63 6 | | 62.0 | L | May 29. 0. 0 | 22. 52. 2 | 0.024209 | 70.5 | 0.052411 | 71.0 | G | | $\int_{9}^{1.5}$ | | 025031
025119 | 66 .3 | 053413
053377 | 65 ·3 | | $\begin{cases} 1.50 \\ 2.0 \end{cases}$ | 53. 22
53. 25 | 024421
024864 | 72 .0 | | 72.0 | | | $\left\{egin{array}{l} 2. \ 2. \ 1 \end{array} ight.$ | | 023119 | 00.9 | 053377 | 00.9 | L | $\begin{cases} 2.0 \\ 2.10 \end{cases}$ | 53. 25
52. 48 | 024804 | ۱ - ۵ | 052734 | '- ' | G | | 4. | | 024904 | 69 .0 | 053809 | 69 •4 | | | 50. 3 | 024668 | 72.5 | I | 73 .0 | | | 6 . | | 025523 | 70 .4 | 053687 | 70.0 | ا ا | 6. 0 | 47. 56 | 025753 | 72 .5 | 053149 | 72.8 | | | 8. | | 025208 | 71 .3 | 053761 | 71 .5 | | 8. 0 | 47. 21 | 025727 | 72 0 | 1 | 73 0 | | | 10. | | 023824 | 69 .0 | 052923 | 69 .7 | ΤЪ | | 46.11 | 024335 | 68 .2 | 051944 | 68 5 | | | 12. | | 024239 | 67 .0 | 053072 | 69 .3 | G | | 44.31 | 024801 | 66 •4 | 052143 | 66 .7 | T | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 220°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°.8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°.97; in Vertical Plane, 23°.1. Declination Magnet. May 23^d and 24^d, between 22^h and 24^h; May 25^d, between 20^h and 24^h; May 26^d, between 22^h and 24^h; May 27^d, between 20^h and 24^h; and May 28^d, between 16^h and 24^h, the changes were considerable. HORIZONTAL FORCE MAGNET. May 27^d, between 6^h and 8^h and between 10^h and 12^h; and May 28^d, between 0^h and 1^h. 50^m, and between 18^h and 20^h, considerable changes occurred. Vertical Force Magnet May 26^d, between 12^h and 14^h; and May 29^d, between 2^h. 10^m and 4^h, and between 8^h and 10^h, considerable changes took place. | | | | | Daily Ob | servati | ons f | rom M | ay 30 to Ju | | 2 | | | | | |--|-------------------------|---|---|--|---|------------|----------------------|--|----------------------|---|---|--|---|------------| | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor, for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Time (.
Rec
De | ngen Mean
Astronomical
koning) of
clination
servation. | Western Declination, | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor, for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | | d h m | 0 ' 1 11 | | 0 | | 0 | | | d h m | 0 / 11 | | . 0 | | 0 | | | May 30. 14. 0 | 22. 42. 52 | 0 .023671 | 63 .7 | 0 .052249 | 63 .0 | T D | June | 2.14. 0 | 22.41.58 | 0 .025130 | 64 ·2 | 0 .051947 | 64 .0 | | | 16. 0 | 43. 10 | 024090 | 63.0 | 052115 | 61 .7 | | j | 16. 0 | 39. 8 | 024842 | 63 .0 | 052299 | 63 .0 | | | 18. 0 | 39. 7 | 024567 | 61 .0 | 052625 | 61 .0 | | | 18. 0 | 40.40 | 024722 | 61 0 | 052345 | 61.3 | | | 20. 0 | 38. 23 | 023900 | 60 .8 | 052855 | 60 .2 | 1 1 |] | 20. 0 | 38.42 | 023704 | 61 .0 | 052924
052910 | 61 ·5 | 1 | | 22. 0 | 41, 23 | 023520 | 62 .0 | 052967 | 61.0 | G H | | 22. 0 | 42. 52 | 022279 | 62 · 7 | 002910 | 61.9 | G H | | May 31. 0. 0 | 22. 50. 34 | 0.023464 | 65 .0 | 0 .053179 | 64 .0 | GН | June | 3. 0. 0 | 22.45.41 | 0 .023091 | 65 ·2 | 0 ·052858 | .64 .0 | G H | | (1.50 | 51.58 | 024692 | | 053336 | | |) | $\int 1.50^{-1}$ | 58.16 | 023314 | | 053221 | | | | ₹ 2. 0 | 51.55 | 024870 | 69 .2 | 053301 | 68 4 | | ļ | ₹ 2. 0 | 58. 2 | 023403 | 69 .8 | 053150 | 68 .8 | l | | 2. 10 | 51. 59 | 025091 | | 053179 | | G H | 1 | [2. 1 0 | 57. 29 | 023624 | | 053093 | | G H | | 4. 0 | 49. 2 | 025992 | 73 .4 | 053805 | 73 .7 | T D | | 4. 0 | 56. 3 | 024045 | 72.0 | 053343 | 73 .0 | T | | 6. 0 | 48. 38 | 025472 | 74 .7 | 053469 | 74 .8 | | | 6. 0 | 52. 9 | 024940 | 75.0 | 05343 7
052880 | 75 ·8 | TD | | 8. 0 | 47. 6 | 025251 | 75.0 | 052884 | 74 6 | | 1 | 8. 0 | 52. 24 | 025029 | 75·0
73·0 | 052275 | 73.0 | 1 | | 10. 0 | 46. 25 | 025946 | 74 .0 | 052704 | 74 4 | 1 1 | 1 | 10. 0 | 51.39
47.7 | 024541
024421 | 72.0 | 052306 | 72.0 | 1 | | 12. 0 | 44. 33 | 025149
024518 | 71 ·2
69 ·7 | 052356
052359 | 72 ·0
70 ·5 | GH | ŀ | 12. 0
14. 0 | 50. 0 | 024421 | 68.6 | 052227 | 70 4 | " | | 14. 0
16. 0 | 43. 30
41. 58 | 024518 | 67.0 | 052433 | 68 .2 | | | 16. 0 | 50. 49 | 024660 | 67.0 | 052185 | 68 .0 | Į | | 18. 0 | 38. 23 | 023685 | 65 .0 | 052523 | 66 .5 | | | 18. 0 | 47. 8 | 024039 | 66 .0 | 052678 | 67 .0 | | | 20. 0 | 39. 45 | 022375 | 64.8 | 052665 | 65 .0 | G H | , | 20. 0 | 47.30 | 023379 | 65 .7 | 052855 | 66 .4 | G H | | 22. 0 | 41. 36 | 022746 | 66 .6 | 052666 | 64 .7 | L | | 22 . 0 | 49. 39 | 022322 | 66 .4 | 052703 | 66 ·0 | L | | June 1. 0. 0 | 22, 52, 10 . | 0 023136 | 68 .5 | 0.052720 | 67.0 | G | June | 4. 0. 0 | 22, 52, 26 | 0 .022632 | 68 .7 | 0 .052702 | 67 .6 | L | | (1.50 | 52, 36 | 025252 | | 052903 | " " | L | 0 | (1, 50 | 55. 1 | 024393 | | 052910 | | 1 | | 2. 0 | 52.47 | 025252 | 72 .4 | 052903 | 70 .4 | | | ₹ 2. 0 | 55. 1 | 024393 | 71.8 | 052875 | 71 0 | | | 2.10 | 52. 31 | 025584 | | 052846 | | L | | 2. 10 | 55. 17 | 024393 | | 052839 | | L | | 4. 0 | 50. 6 | 026402 | 75 ·0 | 053058 | 74 .5 | G H | | 4. 0 | 51.36 | 024350 | 74 .6 | 052959 | 73 .9 | | | 6. 0 | 44, 46 | 028691 | 77.0 | 053535 | 76 .5 | |]] | 6. 0 | 49, 29 | 024601 | 76.3 | 053048 | 76.0 | | | 8. 0 | 42. 39 | 024529 | 77 .0 | 053125 | 77 .0 | | | 8. 0 | 48. 13 | 025089 | 76.6 | 052634 | 76.0 | | | 10. 0 | 42. 37 | 024558 | 74.5 | 052432 | 75.0 | i | | 10. 0 | 48. 54 | 024690 | 76.0 | 052531
052100 | 76 ·2
73 ·6 | | | 12. 0 | 37. 6 | 023757 | 72.0 | 051726 | 72 .0 | L | | 12. 0 | 47.50 | 024634
024611 | 73·5
71·0 | 051913 | 71.0 | | | 14.
0 | 38. 51 | 022786
023840 | 69 ·5 | 051446
051526 | 69 ·4
66 ·5 | | | 14. 0
16. 0 | 46, 19
43, 51 | 024011 | 68 .4 | 051864 | 68 .5 | | | 16. 0
18. 0 | 38.59
37.24 | 023425 | 64.7 | 051320 | 64 .5 | | | 16. 0
18. 0 | 42. 0 | 024553 | 66 .2 | 052060 | 66 .5 | | | 20. 0 | 39. 10 | 021765 | 64 .7 | 052644 | 64 3 | L | lì | 20. 0 | 41. 1 | 024017 | 65 .0 | 052522 | 65 6 | | | 22. 0 | 41.41 | 022313 | 65 .0 | 052950 | 65 .0 | | | 22. 0 | 47. 28 | 022951 | 64 .8 | 052608 | 65 .0 | T 1 | | June 2. 0. 0 | | 0 .021385 | 69 •3 | 0 .052703 | 66 .9 | с н | June | 5. 0. 0 | 22. 50. 20 | 0 .023579 | 66 .2 | 0.052808 | 66 -5 | T 1 | | (1.50 | 22. 49. 35 | 023914 | | 053727 | | TD | | 1.50 | 51.48 | 024580 | | 052950 | | | | $\begin{cases} 2. & 0 \end{cases}$ | 49. 50 | 024091 | 72.8 | 053699 | | | l l | $\begin{cases} 2. & 0 \\ 2. & 0 \end{cases}$ | 51.56 | 024580 | 68 .7 | | 68 .8 | | | 2. 10 | 49. 50 | 024202 | | 053699 | ĺ | T D | | 2. 10 | 51.56 | 024624 | 1 | 052936 | 1 | T] | | 4. 0 | 47. 18 | 024779 | 74 · 5 | 053014 | | L | | 4. 0 | 50. 50 | 025228 | 70 .5 | 052822 | 69 .0 | | | 6. 0 | 44. 21 | 025265 | 74 .8 | 052994 | 74 .7 | | | 6. 0 | 49. 44 | 024859 | 70 .4 | 052934 | 69 .8 | | | 8. 0 | 42. 22 | 025477 | 73 ·2 | 052559 | 73 .0 | | ł | 8. 0 | 48. 17 | 025744 | 69 .6 | | 69 5 | - 1 | | 10. 0 | 43. 11 | 025246 | 70.0 | 052021 | 70 .0 | | 1 | 10. 0 | 47. 35 | 025553 | 68 .2 | 3 | 68 · 0 | | | 12. 0 | 43. 7 | 024659 | 65 .0 | 051337 | 64 .8 | T D | 1 | 12. 0 | 44. 13 | 025368 | 67 .0 | 002000 | 0,0 | ' * ' | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 220°; from June 2^d. 1^h. 50^m, 350°; from June 4^d, 1^h. 50^m, 17°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°97; in Vertical Plane, 23°1. DECLINATION MAGNET. June 2^d. 0h. Before this observation, the torsion circle and suspension stirrup were removed, and a new suspension stirrup was put up, which is to carry the magnet, and also a concave mirror, to be used in the self-registration of the changes of the position of this magnet by Mr. Brooke's photographic process. The suspension thread was shortened, and a new value of the fraction expressing the proportion of the torsion force to the earth's magnetic force will be required. June 3^d, after 0^h. The mirror was placed in its cell; the result at the next observation indicated that the magnet had moved contrary to its usual motion, and it was suspected that some torsion had been communicated to the suspension-skein. After the observation on June 3^d at 22^h, the reading of the torsion circle, when the brass bar rested in the magnetic meridian, was found to be 17°, being 27° different from the preceding reading; and all the readings between June 3^d, 1^h, 50^m and June 3^d, 22^h have been increased by 15′, 35″. The readings, however, between June 2^d, 0^h and June 3^d, 22^h are not trustworthy, and they have the provided in the Abstracts. they have not been used in the Abstracts. | | | | | | Daily Ob | servati | ons f | from June 6 to 12. | | | | | | | |------------------------|---|----------------------|--|---|---|------------------|------------|--|-------------------------|---|---|---|---|------------| | Time (A
Reck
Dec | ngen Mean
Astronomical
coning) of
clination
ervation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.forTemp. | e rii | Observers. | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.forTemp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.forTemp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | | · | d h m | 0 , " | | 0 | | 0 | | d h m | 0 1 " | | 0 | | 0 | | | June | 6. 14. 0 | 22. 44. 37 | 0 .025564 | 61 .0 | 0.052333 | 61 0 | ΤЪ | June 9. 14. 0 | 22. 44. 54 | 0 .025955 | 62 .0 | 0 .053017 | 62 .0 | TI | | 0 4 | 16. 0 | 45. 53 | 025421 | 58 .4 | 052263 | 58 .0 | l | 16. 0 | 42, 43 | 025617 | 60 .0 | 052799 | 60.0 | | | | 18. 0 | 39. 27 | 025967 | 56 ·6 | 052742 | 56 .5 | | 18. 0 | 41.47 | 024894 | 58 .8 | 052836 | 58 .5 | | | | 20. 0 | 39. 13 | 025416 | 56.8 | 053049 | 56 .6 | | 20. 0 | 40.41 | 024481 | 58 5 | 053151 | 58 .7 | | | | 22. 0 | 36. 17 | 024575 | 58 .0 | 053098 | 56 ·5 | GН | 22. 0 | 44. 19 | 024353 | 58 .0 | 053107 | 58 .5 | G F | | June | 7. 0. 0 | 22. 41. 56 | 0 .024279 | 61 .0 | 0 .053298 | 58 4 | G H | June 10. 0. 0 | 22. 53. 13 | 0 .024414 | 58 .5 | 6 | 58 .5 | G I | | | (1.50 | 43. 22 | 024878 | | 053508 | | 1 | (1.50) | 58. 26 | 023479 | | 053003 | | 1 | | | ₹ 2. 0 | 43. 22 | 024944 | 64 .3 | 053494 | 62 .5 | | ₹ 2. 0 | 56 . 56 | 023368 | 59 .0 | 053003 | 59 0 | | | | 2. 10 | 43. 34 | 025365 | | 053437 | | G H | 2, 10 | 56. 40 | 024143 | | 053031 | aa 5 | G I | | | 4. 0 | 50.45 | 025851 | 66 .8 | 053638 | | ΤО | 4. 0 | 54 . 38 | 026911 | 60.8 | 053674 | 60 5 | | | | 6. 0 | 49. 51 | 025592 | 68.0 | 053466 | 68 .0 | | 6. 0 | 48.10 | 026303 | 61 .6 | 054220 | 61 .5 | | | | 8. 0 | 48.17 | 025858 | 68.0 | 053246 | 68 .0 | | 8. 0 | 49. 34 | 025867 | 61 .3 | 053508
053309 | 61 ·0 | | | | 10. 0 | 46 . 4 | 026032 | 67.0 | 053024 | 67 .4 | 1 1 | 10. 0 | 46. 11 | 025165 | 61 .0 | 053170 | 60 .7 | | | | 12. 0 | 45. 9 | 025718 | 65 .3 | 052831 | 66 .0 | G H | | 37. 6 | 027778 | 61 ·0 | 052989 | 61.0 | 1 | | | 14. 0 | 46. 23 | 025790 | 64 .0 | 052788 | 64 .7 | | 14. 0 | 42.31
47.7 | 024439
024501 | 61 .0 | 052366 | 61.0 | 1 | | | 16. 0 | 40.40 | 025418 | 63 .0 | 052612 | 63 · 7
63 · 0 | | 16. 0
18. 0 | 43.58 | 024301 | 61.0 | 053166 | 61.0 | | | | 18. 0 | 41. 5 | 026082
024909 | 63 ·0 | 052662
052484 | 63 .0 | C II | 20. 0 | 47. 34 | 021331 | 62 .2 | 053024 | 61.0 | | | | $\begin{bmatrix} 20. & 0 \\ 22. & 0 \end{bmatrix}$ | 45. 14
46. 2 | 024909 | 62 .0 | 052198 | 62 .0 | L | 22. 0 | 45. 45 | 023138 | 64 · 2 | 053017 | 61 '6 | 1 | | June | | 00 50 04 | 0.004140 | 01 .7 | 0 .052280 | 61 .8 | L | June 11. 0. 0 | 22. 50. 47 | 0 .023047 | 65 •2 | 0 .053095 | 64 • 4 | L | | June | 8. 0. 0 | 22. 50. 24
54. 30 | 0 ·024146
024146 | 61 .7 | 052494 | 01.9 | - | (1.50 | 53. 56 | 024163 | 00 - | 053259 | .0 | | | | $\left\{ \begin{array}{ccc} 1.50 \\ 2.0 \end{array} \right\}$ | 54. 7 | 024301 | 61 .7 | 052494 | 61 ·8 | 1 | 2. 0 | 53. 36 | 024119 | 66.6 | 053245 | 65 .4 | .) | | | 2. 10 | 54. 7 | 024234 | 01 / | 052530 | 01 0 | L | 2.10 | 53. 7 | 023787 | | 053201 | | L | | | 4. 0 | 52. 14 | 024339 | 61 .7 | 052910 | 62 ·0 | 1 1 | | 52.48 | 024972 | 68 .0 | 053249 | 66 .5 | G 1 | | | 6. 0 | 49. 42 | 025354 | 62 .5 | 053081 | 62 .5 | | 6. 0 | 47. 6 | 026302 | 68 5 | 053140 | 67 .0 | | | | 8. 0 | 47. 32 | 025955 | 62 ·0 | 053209 | 62 .5 | | 8. 0 | 44. 57 | 025459 | 68 • 4 | 053253 | 68.0 | | | | 10. 0 | 46.50 | 025807 | 61 .0 | 052989 | 61 .0 | G H | 10. 0 | 46.14 | 024948 | 67 0 | 052770 | 67 .0 | 1 | | | 12. 0 | 44. 40 | 025317 | 59.0 | 052775 | 59 .0 | L | 12. 0 | 44. 19 | 024704 | 65 0 | 052401 | 65 .0 | | | | 14. 0 | 44. 56 | 024898 | 57 · 0 | 052750 | 56 .8 | | 14. 0 | 42. 32 | 024532 | 63 .0 | 052342 | 63 .0 | | | | 16 . 0 | 44. 8 | 025464 | 55 .5 | 053025 | 55 .5 | | 16. 0 | 42. 12 | 024254 | 60 .8 | 052227 | 61 .0 | | | | 18. 0 | 41. 46 | 025013 | 54 2 | 053207 | 54.0 | | 18. 0 | 41. 25 | 023922
022483 | 59 ·0 | 052433
052874 | 59 ·0
58 ·8 | | | | 20. 0
22. 0 | 43. 17
46. 23 | 024528
023510 | 54 ·8
56 ·5 | 05366 7
054074 | 55 ·0
56 ·8 | L
T D | 20. 0
22. 0 | 37. 2
43. 34 | 022483 | 62.0 | 052874 | 59.0 | | | - | | | | _ | | | | T | 22 52 27 | 0.000000 | 04.0 | 0.059451 | CO .O | | | June | 9. 0. 0 | | 0 · 024397 | 58 .0 | 0 .053851 | 58 .0 | T D | June 12. 0. 0 | 22. 50. 27 | | 64 0 | 0 ·053451
052997 | 62 .0 | G | | | $\int_{0}^{1.50}$ | 52. 46 | 024562 | | 053881 | 00.0 | | $\int_{0}^{1.50}$ | 53.41
53.55 | 024616
024948 | 87.0 | 052997 | 65 .8 | | | | $\begin{cases} 2. & 0 \\ 0. & 10 \end{cases}$ | 53. 3 | | 60 .0 | 053881 | 60 .0 | | $\left\{ egin{array}{ll} 2. & 0 \ 2. & 10 \end{array} \right.$ | 53. 55
53. 57 | 024948 | 0,0 | 052920 | 000 | G: | | | 2.10 | 52. 54 | 025484 | 61 ·8 | 053867
053603 | 61 ·2 | T D
L | 4. 0 | 52. 51 | 024859 | 68 .8 | 052791 | 68 .5 | | | | 4. 0
6. 0 | 50. 18
47. 43 | | 63 .5 | 053668 | 63 · 5 | " | 6. 0 | 50. 9 | 025357 | 70.0 | 052804 | 70.0 | . [| | | 8. 0 | 47. 43
47. 13 | | 64.5 | 053371 | 64 .0 | | 8. 0 | 47. 26 | 026658 | 70.6 | 052690 | 70 .4 | 1 | | | 10. 0 | 45. 15 | | 64 2 | | 64 .0 | T. | 10. 0 | 50. 9 | 024759 | 1 | 052060 | 69 0 | 1 | | | 12. 0 | 46.21 | | 63 .0 | 052932 | 63 .0 | 1 1 | | 36. 2 8 | 025858 | | 051537 | 68 .0 | | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in
Magnetic Meridian, 17°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°97; in Vertical Plane, 23°·1. Declination Magnet. June 6d, between 16h and 18h; and June 7d, between 2h. 10m and 4h, and between 14h and 16h, considerable changes occurred. June 10d. Considerable changes occurred. June 11d, between 4h and 6h, and between 20h and 24h; and June 12d, between 10h and 12h, considerable changes took place. Horizontal Force Magnet. June 10^d, between 2^h. 10^m and 4^h, between 10^h and 14^h, and between 18^h and 20^h, considerable changes occurred. Vertical Force Magnet. June 10d. Between 6h and 8h a considerable change occurred. | | | | | Daily Obs | ervatio | ns fi | com June 13 to 19 | • | | | | | | |--|-------------------------|--|---|---|---|------------|--|----------------------|--|---|--|----------------------------------|----------| | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.forTemp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | ermomel
rrtical Fo
gnetome | Observen | | d h m | 0 , " | | 0 | | 0 | | d h m | 0 / " | | 0 | | 0 | | | June 13.14. 0 | 22, 41, 46 | 0 .023630 | 62 .7 | 0 .052070 | 62 .5 | G | June 16. 14. 0 | 22, 38, 23 | 0 .025775 | 62 ·5 | 0.052953 | 62 .5 | 6 | | 16. 0 | 48. 36 | 024402 | 62 .5 | 051545 | 62 .2 | | 16. 0 | 39. 43 | 025731 | 62 .5 | 053088 | 62 .5 | | | 18. 0 | 48. 13 | 023741 | 62 .0 | 051735 | 61 .5 | | 18. 0 | 35. 35 | 025952 | 62 ·5 | 053373 | 62 .5 | | | 20. 0 | 44.40 | 022483 | 60 .8 | 052490 | 61 .0 | G | 20. 0 | 33. 54 | 024247 | 62 .5 | 053223 | 62 .5 | 1 | | 22. 0 | 38. 15 | 021929 | 60 .8 | 052597 | 61 .0 | L | 22. 0 | 34. 58 | 023494 | 61 .8 | 053124 | 61 .2 | 1 | | June 14. 0. 0 | 22, 41, 52 | 0 .022425 | 61 4 | 0 .052642 | 61 •2 | L | June 17. 0. 0 | 22.41. 5 | 0 .024266 | 63 · 5 | 0 .052932 | 63 ·0 | 1 | | (1.50 | 47. 45 | 025774 | | 053038 | | | (1.50) | 42.24 | 025301 | | 052950 | | 1 | | 2. 0 | 49. 55 | 024379 | 61 .8 | 053181 | 62 .0 | | ₹ 2. 0 | 43. 4 | 025523 | 65 .5 | 052879 | 65 .0 | | | 2. 10 | 50. 22 | 024822 | | 053181 | | L | 2. 10 | 43. 4 | 025479 | | 052879 | | 1 | | 4. 0 | 48. 43 | 028498 | 62 .5 | 053573 | 62 .0 | G | 4. 0 | 41. 35 | 027472 | 67.0 | 052893 | 66 .5 | ١, | | 6. 0 | 43.50 | 030178 | 63 .0 | 053922 | 63 .0 |] | 6. 0 | 35. 50 | 028538 | 68 .5 | 052956 | 67 .8 | | | 8. 0 | 40, 32 | 026831 | 64 .0 | 053618 | 63 .5 | | 8. 0 | 36. 20 | 028761 | 69 .0 | 052857 | 69 .0 | | | 10. 0 | 31. 12 | 025104 | 64 .0 | 052930 | 64 .0 | G | 10. 0 | 37. 34 | 027344 | 69 .0 | 052636 | 69 .0 | ١, | | 12. 0 | 30. 53 | 024867 | 62 .5 | 052557 | 62 .7 | L | 12. 0 | 41. 12 | 026922 | 68 .0 | 052384 | 68 .0 | | | 14. 0 | 38. 5 | 024445 | 61 .2 | 052326 | 61 .0 | | 14. 0 | 41. 12 | 026474 | 66.0 | 052275 | 66 .0 | | | 16. 0 | 36. 7 | 023934 | 60 .0 | 052415 | 60 .0 | | 16. 0 | 38. 27 | 025879 | 64 .0 | 052218 | 64 .0 | | | 18. 0 | 38.16 | 023344 | 58 .8 | 052723 | 58 .7 | | 18. 0 | 37.21 | 026461 | 62 .5 | 052061 | 62 ·4 | 1 | | 20. 0 | 36. 5 | 023429 | 59 .5 | 053288 | 59 .0 | L | 20. 0 | 35. 5 | 025633 | 61 .2 | 052298 | 61 .0 | | | 22. 0 | 36. 15 | 022413 | 62 · 0 | 053141 | 59 •3 | GН | 22. 0 | 38. 53 | 024919 | 60.8 | 052692 | 61 .2 | G | | June 15. 0. 0 | 22.44.4 | 0 .023204 | 63 ·0 | 0 052791 | 60 ·6 | GН | June 18. 0. 0 | 22, 45, 28 | 0 .023560 | 60 ·2 | 0 .052633 | 61 .0 | G | | (1.50) | 45. 25 | 024971 | | 052967 | | | ſ 1. 5 0 | 48.54 | 025349 | | 052953 | İ | - | | ₹ 2. 0 | 45. 36 | 025148 | 64 .0 | 052967 | 62 .0 | | ₹ 2. 0 | 48. 25 | 025327 | 60 .7 | 052953 | 61 .0 | | | 2. 10 | 45. 2 8 | 025547 | | 052988 | | G H | 2. 10 | 48. 30 | 025349 | | 052953 | | G | | 4. 0 | 46. 33 | 026986 | 64 .0 | 053357 | 64 .0 | L | 4. 0 | 46. 50 | 026158 | 61.5 | 052668 | 61.0 | 1 | | 6. 0 | 41.48 | 026672 | 63 ·8 | 053286 | 64 .0 | | 6. 0 | 42. 46 | 027606 | 62 .8 | 053117 | 62 .5 | t | | 8. 0 | 39. 52 | 026646 | 63 .6 | 053170 | 63 .2 | | 8. 0 | 41.30 | 028140 | 63 .2 | 053101 | 63 .2 | | | 10. 0 | 41. 16 | 026499 | 62 .8 | 052982 | 63 .0 | L | 10. 0 | 40. 23 | 027651 | 64 .0 | 052844 | 64 .0 | 1 | | 12. 0 | 3 8. 11 | 025658 | 61 .4 | 052896 | 62 .0 | G H | 12. 0 | 36. 41 | 026167 | 64 .0 | 052702 | 64.0 | | | 14. 0 | 35. 2 5 | 026148 | 60 .0 | 052989 | 61.0 | | 14. 0 | 36. 31 | 026150 | 63 .7 | 052622 | 63 .9 | | | 16. 0 | 35. 51 | 025705 | 60 ·0 | 053026 | 60.0 | | 16. 0 | 37. 25 | 025990 | 64.0 | 052585 | 63 .8 | 1 | | 18. 0 | 31. 33 | 025860 | 60.0 | 053155 | 60.0 | } | 18. 0 | 32.42 | 026189 | 64 0 | 052702 | 64 .0 | | | 20. 0 | 32. 19 | 024882 | 60 .2 | 053084 | 60.0 | G H | 20. 0 | 33. 32 | 024152 | 64 .5 | 052848 | 64 .2 | | | 22. 0 | 34. 54 | 024121 | 61 .2 | 053174 | 61.5 | G | 22. 0 | 34. 21 | 023554 | 64 .0 | 052716 | 64 0 | | | une 16. 0. 0 | 22. 40. 2 | 0 .024206 | 62 .0 | 0 ·053116 | 62 .0 | G | June 19. 0. 0 | | 0 .023633 | 64 .6 | | 64 .0 | | | ſ 1. 50 | 44. 22 | 024845 | | 052711 | | | 1.50 | 42.47 | 024606 | | 052950 | | Į | | ⟨ 2. 0 ⟨ | 44. 22 | 024490 | 62 ·5 | | 61 .2 | | ₹ 2. 0 | 42. 54 | 024606 | 66 .6 | 052950 | 65 6 | | | 2. 10 | 44. 33 | 024269 | | 052639 | | G | 2. 10 | 43. 9 | 024783 | l | 052950 | 00 - | | | 4. 0 | 46. 23 | 025809 | 62 6 | 052967 | | | | 42.18 | 025474 | 1 | 052701 | 66 .5 | - | | 6. 0 | 42. 36 | 026177 | 62 .0 | 053252 | | | 6. 0 | 41.52 | 026147 | 68 .5 | 053096 | 68 .0 | 1 | | 8. 0 | 39. 21 | 027948 | 62 .0 | 053323 | | | | 41. 0 | 026015 | 67.2 | 052587 | 66 .5 | | | 10. 0 | 38. 33 | 027171 | 63 .5 | 053210 | 63.0 | | 10. 0 | 40. 27 | 025563 | 66 .8 | 052578 | 67:0 | | | 12. 0 | 40. 31 | 025980 | $62 \cdot 2$ | 052760 | 62 .0 | G | 12. 0 | 40. 20 | 025392 | 64 .5 | 052404 | 66.0 | G | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 17°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°.8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°.97; in Vertical Plane, 23°.1. Declination Magnet. June 13^d, between 14^h and 16^h, and between 20^h and 22^h; June 14^d, between 0^h and 1^h. 50^m, between 8^h and 10^h, between 12^h and 14^h, and between 22^h and 24^h; June 15^d and 16^d, between 22^h and 24^h; June 15^d and 16^d, between 22^h and 24^h, considerable HORIZONTAL FORCE MAGNET. June 14d, between 0h and 1h. 50m; June 14d, between 2h. 10m and 4h, and between 6h and 8h; and June 18d, between 18h and 20h, considerable changes occurred. VERTICAL FORCE MAGNET. June 13d. Between 18h and 20h a considerable change occurred. | | | | | Daily Ob | servati | ons | from June 20 to 26 | 5. , | | | | | | |--|-------------------------|---|---|--|--------------------|------------|--|-----------------------|---|---|---|---|------------| | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | ertical Forgeneral | Observers. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor, Force
cor.forTemp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | | d h m | 0 , " | | 0 | | 0 | | d h m | 0 / " | - | 0 | | 0 | | | June 20, 14, 0 | 22. 42. 26 | 0 .025387 | 63 · 1 | 0 .052328 | 63 .0 | G | June 23. 14. 0 | 22, 39, 40 | 0 .025521 | 63 8 | 0 .052380 | 62 .7 | | | 16. 0 | 40. 44 | 025032 | 63 ·1 | 052520 | 63 .0 | | 16. 0 | 3 8. 47 | 025131 | 63 .0 | 052555 | 62 .6 | | | 18. 0 |
38.33 | 025308 | 63 .0 | 052947 | 63 .0 | | 18. 0 | 37. 24 | 024822 | 61 .8 | 052613 | 61 .7 | 1 | | 20. 0 | 35. 6 | 024911 | 62 .2 | 052746 | 62 .0 | G | 20. 0 | 37. 8 | 024184 | 62 .0 | 052839 | 62.0 | 1 | | 22. 0 | 40. 0 | 024133 | 61 .6 | 052711 | 61.5 | L | 22. 0 | 36. 52 | 024359 | 63 ·2 | 052633 | 62 .2 | GH | | June 21. 0. 0 | 22. 47. 49 | 0 .024456 | 62 · 4 | 0 .052397 | 62 .0 | L | June 24. 0. 0 | 22, 42, 57 | 0 .024396 | 64 0 | | 63 .3 | | | (1.50 | 51. 35 | 025034 | - | 052543 | | | ſ 1. 5 0 | 46. 1 | 025080 | | 052760 | | G H | | ₹ 2. 0 | 51.35 | 025078 | 63.8 | 052529 | 63 •5 | | ₹ 2. 0 | 45. 29 | 024991 | 66 .2 | 052689 | 66 .0 | 1 | | 2. 10 | 50. 51 | 025078 | | 052529 | | L | (2.10) | 45. 34 | 025080 | 00.0 | 052617 | 07 0 | GH | | 4. 0 | 48.46 | 024909 | 63 .0 | 052263 | 62 .2 | G | 4. 0 | 40, 16 | 026743 | 68 .0 | 052644 | 67.6 | | | 6. 0 | 46. 11 | 025904 | 63 .2 | 052449 | 63 .0 | | 6. 0 | 22. 40. 32 | 026948 | 69 · 5 | 052558
052416 | 69 .0 | | | 8. 0 | 44.37 | 027416 | 62 .7 | 052191 | 62 .5 | G | 8. 0 | 23. 8. 33 | 027126
026658 | 69 0 | 052410 | 68 .7 | 1 | | 10. 0 | 42.14 | 027163 | 64 .5 | 052630 | | G H | 10. 0
12. 0 | 22, 39, 14
40, 17 | 026234 | 68 .0 | 052171 | 68 .0 | , | | 12. 0 | 37. 43 | 027143 | 63 .5 | 052363 | 63 ·4
62 ·0 | L | 12. 0 | 39. 50 | 025965 | 66 0 | 052169 | 66.0 | | | 14. 0 | 39. 2 | $\begin{array}{c} 025759 \\ 025987 \end{array}$ | $62 \cdot 2$ $61 \cdot 2$ | 052184
052326 | 61.0 | | 16. 0 | 38. 54 | 025422 | 64 .4 | 052057 | 64 .5 | | | 16. 0
18. 0 | 41. 19
38. 2 | 025987 | 60 4 | 052613 | 60 .2 | | 18. 0 | 36. 32 | 025418 | 63 .0 | 052164 | 63 .0 | i | | 20. 0 | 36. 19 | 026493 | 61.0 | 052836 | 60 .8 | L | 20. 0 | 36. 26 | 025558 | 63 .4 | 052213 | 63 .0 | | | 22. 0 | 40. 29 | 024772 | 64 .0 | 052796 | 62 .2 | ſ | 22. 0 | 38. 44 | 024558 | 63 .2 | 052270 | 63 .0 | L | | June 22. 0. 0 | 22, 46, 29 | 0 .024328 | 65 ·0 | 0 .052315 | 63 • 5 | СН | June 25. 0. 0 | 22.46. 0 | 0 .023750 | 63 ·8 | 0 .052329 | 63 .5 | L. | | (1.50 | 49. 59 | 026276 | 00 0 | 052783 | 00 0 | G 11 | (1.50 | 44. 40 | 025346 | | 052523 | | | | $\left\{ \begin{array}{c} 1.00 \\ 2.0 \end{array} \right\}$ | 50. 51 | 024948 | 67 .0 | 052783 | 65 .5 | | 2. 0 | 43. 33 | 025457 | 65 .0 | 052502 | 65 .0 | | | 2. 10 | 49. 30 | 024173 | | 052726 | | GН | 2, 10 | 43.13 | 025568 | | 052452 | | L | | 4. 0 | 50. 4 | 026096 | 67 .8 | 052990 | 67 .5 | L | 4. 0 | 41.54 | 026414 | 67 2 | 052718 | 67 .7 | | | 6. 0 | 44. 18 | 026549 | 68 ·2 | 052897 | 68 .0 | | 6, 0 | 40. 39 | 027145 | 69 .0 | 052701 | 69 .0 | 1 | | 8. 0 | 40.40 | 026479 | C8 · 5 | 052761 | 68 .2 | | 8. 0 | 41. 9 | 026441 | 70.0 | 052505 | 70.0 | | | 10. 0 | 39. 47 | 026081 | 67 .2 | 052300 | 67.0 | L | 10. 0 | 40. 9 | 026331 | 70 .0 | 052306 | 70 .0 | | | 12. 0 | 39. 53 | 025744 | 65 .5 | 052344 | | GН | ll l | 39. 34 | 026171 | 69 ·0
67 ·2 | 052117
051930 | 69 ·0 | | | 14. 0 | 39, 25 | 025444 | 63 · 2 | 051898 | 64 .0 | | 14. 0
16. 0 | 39. 57
36. 46 | 025 7 50
025 7 04 | 65 .2 | 051811 | 65 .0 | í | | 16. 0 | 38. 47 | 025165 | 61 .0 | 052455 | 62 0 | | 16. 0
18. 0 | 35. 54 | 025704 | 64 0 | 051990 | 64 .0 | 1 | | 18. 0
20. 0 | 36. 33
34. 53 | 025361
023986 | 59 ·0
58 ·8 | 052585
052783 | 60 ·0 | C 11 | 20. 0 | 35. 5 | 025078 | 63 .8 | 052079 | 63 · 4 | | | 20. 0
22. 0 | 36. 8 | 023351 | 60 .3 | 053354 | 60.0 | L | 22. 0 | 41. 9 | 023552 | 66 .0 | 052146 | 64 .0 | 1 | | T 00 0 0 | 20 40 50 | 0.000715 | C1 .0 | 0.052000 | <i>0</i> 1 .5 | | June 26. 0. 0 | 22. 46. 51 | 0 .024173 | 67 .0 | 0 .052071 | 65 • 5 | С Н | | June 23. 0. 0 | 22. 42. 56
46. 20 | 0.023715 | 01.8 | 052753 | 01.9 | r | 1. 50 | 46. 40 | 025636 |) | 052193 | 33 % | " | | $\left\{ egin{array}{ll} 1.50 \\ 2. & 0 \end{array} \right\}$ | 46. 20
46. 20 | 024730 | 63 ·2 | 052753 | 62 .0 | | $\begin{cases} 2. & 0 \\ \end{cases}$ | 46. 31 | 025858 | 68 .0 | 052179 | 67 .0 | | | 2. 10 | 46. 20 | 024824 | J- 2 | 052753 | J_ J | L | 2. 10 | 46. 17 | 026079 | | 052143 | | G H | | 4. 0 | 45. 39 | 025126 | 64 .5 | 052885 | 63 .5 | | | 43. 37 | 025953 | 68 .7 | 052683 | 68 .2 | 1 | | 6. 0 | 42.27 | 025634 | 65.5 | 052904 | 64 .5 | | 6. 0 | 44. 50 | 025772 | 69 0 | 052498 | 68 .7 | | | 8. 0 | 40. 8 | 026227 | 65 .8 | 052808 | 65 ·0 | GН | 8. 0 | 49. 45 | 026187 | 68 8 | 052150 | 68 .5 | | | 10. 0 | 40. 18 | 026029 | 64.8 | 052750 | 65 .0 | , | 10. 0 | 53. 41 | 026522 | 68 .0 | 052028 | 68 .0 | | | 12. 0 | 38, 51 | 025848 | 64 · 1 | 052296 | 62.8 | G | 12. 0 | 40. 31 | 026564 | 67 .0 | 052001 | 67 .0 | G H | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 17°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°97; in Vertical Plane, 23°1. Declination Magnet. June 20d and 21d, between 22h and 24h; June 22d, between 4h and 6h, and between 22h and 24h; June 23d, between 22h and 24h, June 24d, between 2h and 10h, and between 22h and 24h; June 25d, between 20h and 24h; and June 26d, between 10h and 12h, considerable changes occurred. | | | | | Daily Obser | rvation | s fro | m June 27 to J | uly 3. | | | | | | | |--|-------------------------|--|---|--|---|------------|--|------------|---------------|--|---|--|---|------------| | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen Mea
Time (Astronomi
Reckoning) of
Declination
Observation. | ical West | ern
ation. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | ertical Fo | Observers. | | d h m | . 0 / // | | 0 | | 0 | | đ h | m O | , ,, | | ٥ | | 0 | | | June 27. 14. 0 | 22. 41. 46 | 0 .025900 | 67 .0 | 0.051957 | 68 .0 | GH | June 30. 14. | 0 (23. 1 | 2. 46) | 0 .024665 | 67 .2 | 0 .051581 | 68 .2 | | | 16. 0 | 39. 35 | 025314 | 65 .6 | 051976 | 66 .3 | | 16. | 0 (22. 3 | 3. 2) | 025367 | 66 .0 | 051431 | 67.0 | | | 18. 0 | 36. 32 | 025392 | 64 • 5 | 052096 | 65 .0 | | 18. | | 0.46) | 024350 | 65 0 | 051407 | 66 .0 | 1 | | 20. 0 | 37. 1 | 024857 | 63 .8 | 052020 | 63.3 | | f . | | 8. 54) | 023510 | 64 .5 | 051811 | 65 .0 | | | 22. 0 | 41.15 | 024023 | 64 •2 | 052309 | 65 .0 | T D | 22 | 0 (3 | 1. 24) | 023021 | 65 .0 | 051939 | 65.0 | T | | June 28. 0. 0 | 22. 46. 18 | 0 .024083 | 66 .0 | 0.052147 | 66 .0 | ΤЪ | July 1. 0. | 0 22.5 | 1. 28 | 0 .023066 | 67.0 | 0 .052357 | 67 ·0 | T | | (1.50 | 47. 10 | 024597 | | 052488 | | | ſ 1. 5 | | 2.59 | 025772 | - | 052586 | | | | ₹ 2. 0 | 47.10 | 025151 | 68 .5 | 052488 | 68.8 | | | | 2.49 | 025839 | 69 0 | 052558 | 69 .0 | J | | 2.10 | 47. 29 | 025151 | | 052438 | | T D | (2.1 | | 2.49 | 025994 | | 052537 | | T | | 4. 0 | 46. 9 | 025905 | 70 .9 | 052278 | 70 .0 | G H | | | 1.17 | 027157 | 71 .0 | 052447 | 71.0 | | | 6. 0 | 43. 46 | 026124 | 72 .3 | 052364 | 72 0 | | | 1 | 6.27 | 026398 | 72 · 2 | 052490 | 72.5 | , | | 8. 0 | 41. 20 | 026449 | 73 .5 | 052601 | 73.5 | | | | 4. 15 | 025670 | 73 .0 | 052280 | $\begin{array}{c} 73.5 \\ 72.2 \end{array}$ | | | 10. 0 | 41. 59 | 025626 | 73.0 | 052004 | 73 .0 | | | | 3. 5 | 025279 | 71 ·8
70 ·0 | 051788 | 70.7 | 1 | | 12. 0 | 41.30 | 026521 | 71 .2 | 051500 | 71.0 | ТВ | | | 2. 14 | 025025
025166 | 67.8 | 051668
051557 | 67.7 | | | 14. 0 | 39. 51 | 025844 | 70.0 | 051479 | 70 · 2
69 · 0 | | | | 2. 1
1.17 | 025355 | 66.4 | 051478 | 66 6 | | | 16. 0
18. 0 | 38. 3
36. 53 | 024931
024597 | 69 ·0 | 051633
051781 | 68 .3 | | | | 6.49 | 023333 | 64 .0 | 051478 | 64 .4 | 1 | | 20. 0 | 34. 59 | 023912 | 67 2 | 051781 | 67.0 | T D | | l l | 6. 45 | 024173 | 63 · 3 | 051765 | 63 .8 | | | 20. 0
22. 0 | 39. 31 | 023312 | 68 .5 | 051874 | 67.8 | L | | | 7.46 | 023178 | 62 .8 | 051464 | 62 .5 | | | June 29. 0. 0 | 00 40 00 | 0.004100 | 70.0 | 0.051060 | 69 • 5 | _ | July 2. 0. | 0 22.4 | 5 96 | 0 .023204 | 63 .0 | 0 .051558 | 63 ·0 | G | | _ | 22, 43, 30
46, 6 | 0 ·024139
025556 | 70.0 | 0·051969
052363 | US J | L | July 2. 0. | | 0.54 | 024249 | 00 0 | 051853 | 00 0 | _ | | $\left\{egin{array}{ll} 1.50 \ 2.0 \end{array} ight.$ | 46, 12 | 025550 | 72 .2 | 052349 | 71 .6 | L | í í | | 1. 9 | 024558 | 63 .2 | 051888 | 63 .5 | | | 2. 10 | 46. 12
46. 18 | 025556 | 12 2 | 052349 | | G H | $\begin{array}{c} 2.1 \\ 2.1 \end{array}$ | | 1. 29 | 024780 | 00 - | 051888 | | G | | 4. 0 | 47. 28 | 025606 | 74 .4 | 052446 | 74 .7 | | , , | L . | 0. 33 | 025768 | 64 .0 | 052146 | 64 .0 | T | | 6. 0 | 22. 53. 25 | 025664 | 76.0 | 052336 | 76 0 | 1 | 1 | | 6. 36 | 026342 | 65 .0 | 052323 | 65 .0 | | | 8. 0 | 23. 6. 7 | 025493 | 73 .0 | 051491 | 73 .0 | | 8. | | 4. 56 |
026474 | 66 .0 | 052404 | 66 .0 | | | 10. 0 | 23. 1.32 | 025386 | 71.0 | 051293 | 71.0 | | 10. | 0 4 | 3. 19 | 026169 | 65 .7 | 052021 | 65 .2 | 1 | | 12. 0 | 22, 40, 15 | 025471 | 70.5 | 051380 | 70 .0 | T D | 12. | 0 4 | 2. 0 | 025855 | 65 .0 | 051854 | 65.0 | 1 | | 14. 0 | 37. 15 | 025329 | 69 .0 | 051274 | 68 .7 | L | 14. | 0 4 | 1.30 | 025326 | 64 .0 | 051862 | 64 .0 | | | 16. 0 | 37. 21 | 025166 | 67 .8 | 051601 | 68 .0 | | | | 0. 34 | 025197 | 63 .0 | 051914 | 63.0 | | | 18. 0 | 38. 26 | 024304 | 66 .0 | 051535 | 66.0 | | | | 9. 53 | 024516 | 62 .0 | 051920 | 62 .0 | | | 20. 0 | 34. 43 | 023659 | 64 ·8 | 051527 | 64 .7 | L | 1 | | 9. 53 | 023684 | 61 .2 | 052063 | 61.0 | , | | 22. 0 | 42. 26 | 022866 | 65 .0 | 051859 | 65 .0 | ТD | 22. | 0 4 | 4. 8 | 022989 | 62 .0 | 052220 | 62 .0 |) (G | | June 30. 0. 0 | 22. 44. 50 | 0 ·024062 | 67 .0 | 0 .051763 | 66 .0 | G H | July 3. 0. | 0 22.5 | 0. 53 | 0 .023520 | 62 .0 | 0 .051970 | 62 .0 | G | | [1.50] | 46. 27 | 025731 | | 052065 | | | [1.6 | | 0.40 | 025326 | | 052431 | | | | ₹ 2. 0 | 46. 8 | 026174 | 70 .3 | 052044 | 68 .5 | | ₹ 2. | | 0.58 | 025591 | 64 .0 | 052431 | 64.0 | ١. | | [2. 10] | 22. 45. 59 | 026262 | | 052008 | | G H | 2. 1 | 10 5 | 0.58 | 025657 | 00.5 | 052374 | 00.0 | G | | 4. 0 | (23. 16. 55) | 026414 | 72 .0 | 052306 | | | 4. | | 8.36 | 024814 | | 052368 | 66.3 | , | | 6. 0 | (20. 40) | 025198 | 72.8 | 052148 | 72 .5 | | 6. | | 6. 10 | 026147 | | 052443 | 68 .3 | ł | | 8. 0 | (21.24) | 026334 | 73 .0 | 051990 | 73.0 | | 8. | I | 4. 49 | 026672 | | | 70 · 5
71 · 0 | | | 10. 0 | (19. 58) | 026078 | 71 .2 | 051451 | 71.0 | ! | 10. | | 1. 5 | 025342 | | 1 | 70.0 | | | 12. 0 | (17. 47) | 025108 | 69. 0 | 051566 | 70.0 | GH | 12. | .v 4 | l0. 56 | 024761 | 00.1 | 001018 | 100 | , , | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 17°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°97; in Vertical Plane, 23°1. Declination Magnet. June 27d, between 22h and 24h, and June 29d, between 4h and 22h, the changes were considerable. July 1d. Oh. Before this observation it was found that the mirror of the photographic apparatus was touching another part of the apparatus; the observation on June 30d at 4h indicated a magnetic disturbance, but this was not confirmed by the other instruments. There is no doubt that the results of the observations between June 30d. 4h and June 30d. 22h are erroneous, and they have not been used in subsequent calculations. July 1d, between 22h and 24h; and July 2d, between 0h and 1h. 50m, and between 22h and 24h, the changes were considerable. Vertical Force Magnet. June 294. Between $6^{\rm h}$ and $8^{\rm h}$ the change was considerable. | | | | | | Daily Ob | servati | ons i | from July 4 to 10. | | | | | | | |------------------------|--|-----------------------------------|--|---------------------------------|---|---|-------------|--|-------------------------|--|---|---|---|------------| | Time (.
Reck
Dec | ingen Mean
Astronomical
coning) of
clination
ervation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | ermomet
rizontal
gnetomel | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor.for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.forTemp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | | | d h m | 0 / " | | 0 | | 0 | | d h m | 0 / " | | 0 | | 0 | | | July | 4. 14. 0 | 22.42.20 | 0.024388 | 71 .3 | 0.051452 | 72 ·U | G H | July 7. 14. 0 | 22, 39, 10 | 0 .025219 | 69 .0 | 0 051487 | 70 .0 | G H | | | 16. 0 | 39. 40 | 024491 | 69 .5 | 051594 | 70 .0 | | 16. 0 | 41. 25 | 023995 | 67 .0 | 051510 | 68 . 5 | | | | 18. 0 | 36.47 | 024898 | 66 .3 | 051837 | 67 .5 | | 18. 0 | 37. 34 | 024708 | 65 .2 | 051370 | 66 .2 | | | | 20. 0 | 38. 37 | 023022 | 67 .0 | 051882 | 66 .2 | | 20. 0 | 39. 7 | 023204 | 64 .7 | 051573 | 65 .5 | | | | 22. 0 | 42. 12 | 021603 | 66 .0 | 051763 | 66 .0 | T D | 22. 0 | 41. 42 | 022596 | 64 8 | 051682 | 65 .0 | T D | | July | 5. 0. 0 | 22. 44. 40 | 0 .024178 | 69 .0 | 0 .052287 | 69 .0 | тр | July 8. 0. 0 | 22. 47. 48 | 0 .022180 | 65 .0 | 0 .051597 | 65 .0 | TD | | | [1.50] | 44.36 | 025575 | | 052747 | | | ſ 1. 5 0 | 53. 21 | 023375 | | 051967 | | Ì | | | ₹ 2. 0 | 44. 36 | 025464 | 72 .8 | 052747 | 72 .7 | | ₹ 2. 0 | 53, 28 | 023197 | 66 .0 | 051953 | 65 .6 | | | | 2. 10 | 42. 51 | 025464 | | 052640 | | T D | 2. 10 | 52. 42 | 023197 | | 051953 | | T D | | | 4. 0 | 42. 40 | 025206 | 75 .0 | 052017 | 74 .0 | G H | 11 | 47. 32 | 024931 | 67 .7 | 052312 | 67 .7 | | | | 6. 0 | 41.46 | 024158 | 76.0 | 052350 | 77.0 | | 6. 0 | 45. 44 | 025223 | 68 .3 | 052488 | 69 .7 | | | | 8. 0 | 43. 8 | 024855 | 78 .0 | 052019 | 77.5 | | 8. 0 | 44. 5 | 025539 | 70 .2 | 052270 | 70.2 | | | | 10. 0 | 42.36 | 024557 | 76 0 | 051719 | 76.5 | 1 1 | 10. 0 | 44. 48 | 025136 | 70.0 | 052003 | 70.5 | | | | 12. 0 | 42. 22 | 024550 | 74 · 3 | 051428 | 74 .7 | T D | II. | 44. 15 | 024887 | 69 .0 | 051504 | 69 .0 | | | | 14. 0
16. 0 | 42. 1 | 024424 | 71 .4 | 050964 | 71.7 | | 14. 0 | 41. 26 | 024391 | 67 ·8
64 ·8 | 051601 | 68 · 0
64 · 7 | 1 | | | 18. 0 | 38. 31
35. 48 | 024803
024394 | 70·0
67·0 | 051074
051147 | 70·0
67·0 | | 16. 0
18. 0 | 39. 45
38. 22 | 024102
023957 | 63 .0 | 051470
051416 | 63 .0 | 1 | | | 20. 0 | 36. 6 | 024354 | 67 .7 | 051147 | 67.5 | T D | 20. 0 | 38. 26 | 023270 | 63 .0 | 051715 | 63 .0 | 1 | | | 22. 0 | 45. 26 | 023946 | 69 . 7 | 051766 | 67.5 | L | 22. 0 | 40. 18 | 023464 | 63 .3 | | 63 .0 | 1 | | July | 6 0 0 | 00 47 40 | 0.000500 | | 0.050000 | # 0.0 | | T 1 0 0 0 | 22 45 43 | 0.00004# | ae e | | GE .0 | _ | | July | 6. 0. 0 | 22. 47. 48
46. 49 | 0 ·022508
023774 | 71.0 | 0 ·052092
052336 | 70 .0 | L | July 9. 0. 0 | 22. 45. 41 | 0.023947 | 69.9 | 0 ·052167
052456 | .65 .0 | L | | | 2. 0 | 46. 49 | 023774 | 75 · 2 | 052365 | 73 .8 | , | $\begin{cases} 1.50 \\ 2.0 \end{cases}$ | 47. 3
46. 47 | 024294 | 68 .3 | 052456 | 68 .0 | 1 | | | 2. 10 | 46. 22 | 023774 | 10 2 | 052222 | 13 0 | L | 2. 10 | 46.42 | 024781 | 00 ., | 052398 | 00 0 | L | | | 4. 0 | 42.27 | 025276 | 78 · 0 | 052508 | 78 .0 | | | 47. 3 | 026022 | 70 .8 | 052625 | 71 .0 | 1 | | | 6. 0 | 44. 10 | 026459 | 79 8 | 052646 | 80.0 | עיי | 6. 0 | 42. 39 | 025892 | 72 .7 | 052665 | 72 .8 | | | | 8. 0 | 44. 41 | 026598 | 80 .7 | 052889 | 81.0 | | 8. 0 | 39. 52 | 026113 | 73 .0 | 052716 | 73 .0 | | | | 10. 0 | 41.27 | 026206 | 79 .6 | 051749 | 79 .5 | ΤЪ | 10. 0 | 33. 48 | 025263 | 72 .0 | 052022 | 72 .0 | | | | 12. 0 | 43. 21 | 025549 | 78 .2 | 051368 | 78 .0 | L | 12. 0 | 30.14 | 022279 | 70 .0 | 051109 | 70 .0 | L | | | 14. 0 | 41.55 | 024970 | 75 ·8 | 051138 | 75 ·5 | | 14. 0 | 32. 44 | 005516 | 68 .2 | 045763 | 68 .0 | 1 | | | 16. 0 | 37. 54 | 024524 | 73 .2 | 050978 | 73 .5 | | 16. 0 | 38. 9 | 019161 | 67 .6 | 049630 | 67 .5 | | | | 18. 0 | 35 . 11 | 024920 | 72 .4 | 051039 | 72 .0 | | 18. 0 | 34.47 | 020161 | 66 .8 | 050387 | 66 . 5 | | | | $\begin{bmatrix} 20, & 0 \\ 22, & 0 \end{bmatrix}$ | 35. 22
41. 9 | 023879
023165 | $71 \cdot 3$ $72 \cdot 2$ | 051130
051244 | 71 ·0
71 ·0 | C H | 20. 0
22. 0 | 40. 59
42. 16 | 020470
019523 | 66 · 3 | 050909
052015 | 66 ·0 | | | | | 41. 0 | 020100 | | 001244 | 11 0 | 3 II | 22. 0 | 42. 10 | 013020 | 0.0 | 002010 | 0, 0 | 0 11 | | July | 7. 0. 0 | 22 . 52 . 50 | 0 ·023212 | 73 ·3 | 0 .051665 | | | July 10. 0. 0 | 22. 48. 27 | 0 .022341 | 69 .0 | 0 .052378 | 68 .7 | G H | | | 1.50 | 48.43 | 024765 | | 051542 | | GН | [1.50 | 53. 9 | 023867 | | 052465 | | | | | $\begin{cases} 2. & 0 \\ 2. & 10 \end{cases}$ | 49. 32 | 024677 | 73 .8 | 051542 | 73 ·2 | | $\begin{cases} 2. & 0 \\ 2. & 10 \end{cases}$ | 53. 0 | 023757 | 72 .0 | 052430 | 71 .5 | i | | | 2. 10 | 49. 58 | 024898 | *0 * | 051542 | | GH | 2.10 | 52.38 | 023535 | | 052430 | m/A . A | G H | | | 4. 0 | 50. 39 | 026545 | 73 .7 | 051690 | 73.5 | L | 4. 0 | 54. 16 | 024181 | 74 2 | 052672 | 74 .0 | | | | 6. 0
8. 0 | 46. 20
45. 4 | 025187
026820 | 73·5
73·3 | 052026 | 73.0 | | 6. 0 | 50. 39
41. 36 | 025856
026181 | 75 .8 | 052607
0524 2 1 | 75 ·4
76 ·0 | | | | 10. 0 | 43. 4
42. 48 | 025598 | 72.5 | 051882
051488 | 72·8
72·0 | L | 8. 0
10. 0 | 41. 36 | 020181 | 76 · 5 | 052421 | 76.0 | | | | 12. 0 | 41.48 | 025386 | | 051486 | | СН | | 41. 2 | 023855 | 75.0 | 051778 | 75 ·5 | | | | | -1.10 | 023300 | 0 | 001100 | 0 | J 11 | 12. 0 | 12. 2 | 02000 | .5 0 | | | J. | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 17°. Reading of Torsion-Circle for Horizontal
Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°97; in Vertical Plane, 23°1. Declination Magnet. July 5^d, between 20^h and 22^h; July 6^d, between 20^h and 24^h; July 7^d, between 22^h and 24^h; July 8^d, between 0^h and 4^h, and between 22^h and 24^h; July 9^d, between 8^h and 10^h, between 14^h and 16^h, and between 22^h and 24^h; and July 10^d, between 6^h and 8^h, considerable changes occurred. HORIZONTAL FORCE MAGNET. July 44, between 22h and 24h; and July 9d, from 10h to 16h, and between 22h and 24h, the changes were great. Vertical Force Magnet. July 6d, between 8h and 10h, a considerable change took place; and July 9d, from 10h to 22h, the changes were large and of frequent occurrence. | | | | T | | | 1 4- | (| li . | | | - 0 | | - | - | |--------------------|---|----------------------|---|---|---|--|------------|--|----------------------|---|---|--|---|--------------| | ime (
Rec
De | ingen Mean
Astronomical
koning) of
clination | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor. for Temp. | permometer of
rtical Force
gnetometer. | Observers. | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force | Thermometer of
Vertical Force
Magnetometer. | 1 | | Ob | servation. | | cor. for Temp. | The May | cor. for Temp. | Ma Va | | Observation. | | cor, forTemp. | FHE | cor. forTemp. | T A R | 1 | | | d h m | 0 / " | | 0 | | 0 | | d h m | 0 / " | | 0 | | 0 | | | uly | 11.14. 0 | 22. 46. 54 | 0 .025443 | 74 .5 | 0 .050723 | 75 .0 | | July 14. 14. 0 | 22. 55. 18 | 0 .023777 | 77.0 | 0.051440 | 78·0 | 1 | | • | 16. 0 | 37.23 | 023456 | 73 .0 | 051120 | 73 . 5 | 1 1 | 16. 0 | 55. 26 | 023745 | 75.0 | 051246 | 76 ·0 | - 1 | | | 18. 0 | 36. 47 | 022951 | 71.0 | 051326 | | | 18. 0 | 52. 48 | 023013 | 73 ·0 | 051319 | 74.0 | | | | 20. 0 | 41. 1 | 021512 | 71 0 | 051593 | 71 .0 | G H | | 51.41 | 022318 | 72.0 | 051487 | 72 .7 | 1 | | | 22. 0 | 44.24 | 020464 | 72 ·2 | 051771 | 71 .0 | L | 22. 0 | 22. 56. 8 | 021540 | 71 .2 | 051059 | 71.0 | | | ılv | 12. 0. 0 | 22. 48. 59 | 0.022483 | 75 .0 | 0 .052036 | 73 .6 | L | July 15. 0. 0 | 23. 4.48 | 0 .022222 | 73 · 2 | 0 .051227 | 72 .8 | - | | • | (1.50 | 51.49 | 023901 | | 052775 | | T D | (1.50 | 9. 28 | 024173 | | 052087 | | l | | | ₹ 2. 0 | 52, 42 | 024123 | 79 .0 | 052739 | 79 .0 | | ₹ 2. 0 | 8. 54 | 023775 | 76 4 | 052051 | 76.0 | ١ | | | 2. 10 | 52.48 | 024123 | | 052739 | | | (2. 10 | 9.25 | 023952 | | 052051 | , | 1 | | | 4. 0 | 48. 12 | 025660 | 81 .3 | 052605 | 81 .0 | T D | | 23. 5.29 | 024678 | 78 .0 | 052201 | 7 8 ·8 | 1 | | | 6. 0 | 43. 20 | 026737 | 83 .0 | 052309 | 82 .0 | G H | 6. 0 | 22. 58. 23 | 025670 | 80.0 | 052282 | 80.0 | | | | 8. 0 | 43. 15 | 025409 | 83 .0 | 052016 | 83 .0 | - | 8. 0 | 58. 32 | 025385 | 79 .0 | 051984 | 80.0 | 1 | | | 10. 0 | 41. 21 | 025214 | 81 .7 | 051739 | 82 .0 | G H | 10. 0 | 58. 55 | 024898 | 77.1 | 051518 | 78 0 | | | | 12. 0 | 39. 45 | 024787 | 79 .0 | 050852 | 79 .0 | L | 12. 0 | 58. 55 | 024601 | 74.8 | 050964 | 74 .5 | | | | 14. 0 | 45. 7 | 024027 | 77 .2 | 050605 | 77.0 | | 14. 0 | 57. 24 | 024120 | 73 .0 | 050936 | 73 .0 | 1 | | | 16. 0 | 40. 15 | 024660 | 75 .2 | 050723 | | | 16. 0 | 56. 21 | 024169 | 71.0 | 050987 | 71.0 | 1 | | | 18. 0 | 38. 19 | 023306 | 73 .5 | 050793 | | ' | 18. 0 | 53. 1 | 023789 | 69 .8 | 051235 | 69 · 7 | 1 | | | 20. 0 | 41. 20 | 022235 | 72 .2 | 051096 | | L | 20. 0 | 51. 3 | 022673 | 69 .0 | 051419 | 69 .0 | ٠ | | | 22. 0 | 41. 38 | 020978 | 72 .7 | 051167 | 72 .0 | G H | 22. 0 | 22. 55. 59 | 021955 | 71.0 | 051792 | 71 .0 | | | ly | 13. 0. 0 | 22. 47. 24 | 0 .021259 | 74 .2 | 0.051348 | 73 .5 | G H | July 16. 0. 0 | 23. 4.58 | 0 .021949 | 73 ·3 | 0 .051854 | 73 0 | , | | · | (1.50 | 53. 21 | 024143 | | 051786 | - | | [1.50] | 8. 31 | 024352 | | 052243 | | | | | ₹2. 0 | 52. 51 | 023922 | 76 .2 | 051700 | 75 .2 | | ₹ 2. 0 | 8. 53 | 024263 | 77.0 | 052243 | 77 .0 | , | | | 2. 10 | 52. 24 | 023922 | | 051700 | | G H | | 23. 8.53 | 024263 | | 052200 | | | | | 4. 0 | 51. 32 | 025948 | 78 .2 | 052072 | 77 .7 | L | 4. 0 | 22. 59. 27 | 025672 | 79 .0 | 051853 | 78 .0 | , | | | 6. 0 | 47. 36 | 025560 | 80 .0 | 052198 | | 1 | 6. 0 | 23. 1.30 | 025900 | 80 .2 | 051994 | 79 .8 | | | | 8. 0 | 40. 35 | 025681 | 80 .5 | 051963 | 80.0 | | 8. 0 | 22. 59. 54 | 026398 | 79 .4 | 051493 | 79 .0 | , | | | 10. 0 | 40. 35 | 024435 | 79 .6 | 051503 | 79 .3 | L | 10. 0 | 55. 12 | 027060 | 77 .2 | 051175 | 77 .0 | | | | 12. 0 | 40. 50 | 024191 | 78 .0 | 051160 | 77 .7 | T D | 12. 0 | 55. 41 | 024896 | 75 .0 | 051008 | 75 .0 | , | | | 14. 0 | 44. 21 | 023987 | 76 .7 | 051159 | 76 .4 | | 14. 0 | 55. 41 | 025499 | 73 .2 | 050972 | 73 .0 |) | | | 16. 0 | 39. 46 | 024217 | 74 .6 | 050957 | 74 .2 | | 16. 0 | 54. 51 | 025616 | 72 .0 | 051075 | 72 .0 | | | | 18. 0 | 35. 41 | 023427 | 72 .8 | 051080 | 72 .5 | | 18. 0 | 52. 27 | 024803 | 70 .0 | 051095 | 70 .0 | | | | 20. 0 | 36. 20 | 023080 | 71 .6 | 051255 | 71 .5 | T D | 20. 0 | 53. 21 | 024067 | 69 .0 | 051405 | 69 .0 | | | | 22. 0 | 22. 38 . 27 | 021321 | 72 .0 | 051201 | 71 .0 | G H | 22. 0 | 22. 57. 19 | 023228 | 68 ·2 | 051384 | 69 .0 | , | | ly | 14. 0. 0 | • • • | 0 .021548 | 73 .6 | 0 .051538 | 72 .9 | G H | July 17. 0. 0 | 23. 3.38 | 0 .022826 | 68 .5 | 0 .050996 | 68 .0 |) | | | (1.50 | 23. 2.40 | 023502 | | 051992 | | G | (1.50 | 8. 39 | 022891 | | 051231 | | Į | | | ⟨2. 0 | 3. 3 | 023568 | 75 .0 | 051964 | 75 .8 | | ₹ 2. 0 | 7.46 | 022802 | 68 .0 | 051245 | 68 .0 | , | | | 2. 10 | 3. 12 | 023546 | . [| 051942 | | G | 2. 10 | 7. 43 | 023422 | | 051259 | | | | | 4. 0 | 23. 1.24 | 025453 | 78 .0 | 052445 | | | 4. 0 | 3 31 | 024839 | 68 .4 | 051722 | 68 .0 | | | | 6. 0 | 22. 57. 58 | 026311 | 79 .7 | 052333 | | | 6. 0 | 23. 0.49 | 024785 | | 052040 | 69 •5 | , | | | 8. 0 | 57. 7 | 025602 | 80 .7 | 052353 | | | 8. 0 | 22. 59. 59 | 025803 | 70 .5 | 051952 | 70 .5 | , | | | 10. 0 | 55. 15 | 024940 | 80.0 | 051761 | | | | 54. 28 | 027337 | 70 .7 | 051622 | 70 .4 | | | | 12. 0 | 54. 8 | 023901 | 79.0 | 051351 | | | 12. 0 | 51.40 | 024648 | 70 .0 | 051540 | 70 .5 | Į. | Reading of Torsion-Circle of Meridianal Magnet for Brass Bar resting in Magnetic Meridian, 17°; from July 14d. 1b. 50m, 93½°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20s. 8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24 97; in Vertical Plane, 23 1. DECLINATION MAGNET. July 11^d, between 14^h and 16^h; July 12^d, between 12^h and 14^h, and between 22^h and 24^h; and July 13^d, between 0^h and 1^h. 50^m, and between 6^h and 8^h, considerable changes occurred. July 14d. 0b. Some alterations were made in the suspension-stirrup, after which the torsion-circle reading was 93½°, when the brass bar rested in the magnetic meridian, meridian, July 14^d, between 22^h and 24^h; July 16^d, between 2^h. 10^m and 4^h, and between 22^h and 24^h; and July 17^d, between 0^h and 1^h. 50^m, and between 8^h and 10^h, considerable changes took place. HORIZONTAL FORCE MAGNET. July 13^d, between 0^h and 1^h. 50^m, and between 2^h. 10^m and 4^h; July 16^d, between 0^h and 1^h. 50^m, and between 10^h and 12^h; and July 17^d, between 10^h and 12^h, considerable changes occurred. VERTICAL FORCE MAGNET. VERTICAL FORCE MAGNET. July 12d, between 0h and 1h. 50m, and between 10h and 12h; and July 15d, between 0h and 1h. 50m, considerable changes occurred. | | | | | Daily O | bservat | ions | from July 18 to 24 | !. | | | | | |--|------------------------|--|---|--|----------------------------------|------------|--|----------------------------------|--|---|--|---| | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Reading in parts
of the whole
Vert. Force
cor.for Temp. | ermomet
artical Fo
gnetome | Observers. | Göttingen Mean
Time (Astronomical
Reckoning)
of
Declination
Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizoutal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | Thermometer of
Vertical Force
Magnetometer. | | d h m | 0 , " | | 0 | | 0 | | d h m | 0 / // | | 0 | | 0 | | July 18. 14. 0 | 22. 58. 3 | 0.025083 | 68 .0 | 0.051348 | 69 .0 | GΗ | July 21. 14. 0 | 22, 57, 31 | 0 .025006 | 73 .0 | 0.051741 | 73 .0 | | 16. 0 | 59. 15 | 023861 | 66 .0 | 051552 | 67 .5 | | 16. 0 | 56. 45 | 024847 | 70 0 | 051309 | 70 .0 | | 18. 0 | 53, 44 | 024573 | 64 .0 | 051776 | 65 .0 | | 18. 0 | 59. 48 | 024526 | 68 .8 | 051463 | 68 .6 | | 20. 0 | 51.47 | 023140 | 62 .5 | 052030 | 63 .2 | GН | 1 | 58. 32 | 024130 | 68 •4 | 051459 | 68 .0 | | 22. 0 | 22.57.2 | 022634 | 62 .0 | 051685 | 62 0 | L | 22. 0 | 22 . 59 . 2 | 023600 | 68 .0 | 051672 | 68 .0 | | July 19. 0. 0 | 23. 4.39 | 0 .022761 | 63 .0 | 0 .051774 | 62 .7 | L | July 22. 0. 0 | 23, 3.49 | 0 ·023047 | 68 .5 | 0 .052060 | 69 .0 | | (1.5 0 | 7.14 | 024748 | | 052167 | | | (1.50 | 6.41 | 025246 | | 052380 | 1 | | ₹ 2. 0 | 7. 14 | 024748 | 65 .5 | 052146 | 65 .0 | | ₹ 2. 0 | 6.27 | 025025 | 70.0 | 052345 | 70 .3 | | 2. 10 | 7 . 14 | 024969 | | 052096 | | L | 2.10 | 5.59 | 024803 | | 052287 | ו | | 4. 0 | 3. 16 | 025371 | 68.0 | 052108 | 67.0 | GН | | 4. 2 | 025095 | 70 .5 | 052288 | 71.5 | | 6. 0 | 1. 55 | 025667 | 70 .0 | 052361 | 69 5 | | 6. 0 | 1. 38 | 026334 | 73 .0 | 052472 | 73 ·3 | | 8. 0 | 0. 12 | 027017 | 70.0 | 052206 | 70 .0 | - 1 | 8. 0 | 0.45 | 025819 | 72.5 | 052061 | 73 .0 | | 10. 0 | 23. 0. 22 | 025274 | 70 .2 | 051964 | 70 .0 | | 10. 0 | 23. 0.21 | 025497 | 71.0 | 051486 | 71.0 | | 12. 0 | 22. 59. 6 | 024975 | 69 .0 | 051661 | 69.0 | L | 12. 0 | 22. 58. 10 | 025938 | 70 .2 | 051557 | 71.0 | | 14. 0 | 58. 44 | 024281 | 67.8 | 051672 | 68.0 | I | 14. 0 | 56. 50 | 025108 | 69 .0 | 051277 | 69 .0 | | 16. 0 | 55. 6 | 024201 | 64 .2 | 051021 | 64 0 | 1 | 16. 0 | 58, 58
58, 10 | 024106 | 66 ·5
64 ·0 | 051477
051146 | 67 ·6
65 ·5 | | $\begin{bmatrix} 18. & 0 \\ 20. & 0 \end{bmatrix}$ | 54. 33 | 024597 | 65 2 | 051597 | 65 .0 | | 18. 0 | 58. 10
54. 34 | 024883
023647 | 63 .0 | 051283 | 63 5 | | 20. 0
22. 0 | 51. 50
22. 55. 36 | $023112 \\ 022134$ | 64 · 0
63 · 8 | 051648
051804 | 64 · 0
64 · 0 | L
T D | 20. 0
22. 0 | 22. 58. 10 | 023047 | 63 .7 | 051651 | 63 .4 | | Il., 20 0 0 | 00 0 50 | 0.000001 | 00.0 | 0.051055 | 00.0 | | Il 99 0 0 | 00 4 50 | 0.000000 | 65.0 | 0.051000 | 64.4 | | July 20. 0. 0 | 23. 0.53 | 0 ·022821
024843 | 00.00 | 0.051977 | 66.0 | ТЫ | 1 0 | 23. 4. 50
6. 27 | 0 ·023088
023513 | 09.0 | 0 ·051898
052119 | 64 • 4 | | $\begin{cases} 1.50 \\ 2.0 \end{cases}$ | 6. 50
6. 35 | 024843 | 69 .0 | 052361
052361 | 69 · 5 | | $\begin{cases} 1.50 \\ 2.0 \end{cases}$ | 6. 13 | 023690 | 66 .7 | 052119 | 66 .0 | | 2. 10 | 6. 35 | 024665 | 09.0 | 052254 | | тр | 2. 10 | 6. 0 | 023801 | 00 1 | 052119 | 00 0 | | 4. 0 | 3. 8 | 024807 | 71.6 | 052088 | 71 .5 | L | 4. 0 | 4. 55 | 025507 | 69 .0 | 052391 | 68 .0 | | 6. 0 | 23. 0.25 | 025120 | 73 8 | 052131 | 73.5 | - | 6. 0 | 2. 0 | 025689 | 70 .0 | 052356 | 70.0 | | 8. 0 | 22. 58. 28 | 025295 | 75.0 | 051973 | 74.6 | | 8. 0 | 23, 0.54 | 025316 | 70 .5 | 052103 | 70 .7 | | 10. 0 | 59 . 8 | 025000 | 74 .5 | 051618 | 74 0 | L | 10. 0 | 22. 59. 28 | 025537 | 70 5 | 051931 | 70 .5 | | 12. 0 | 57. 37 | 024591 | 73 .2 | 051448 | | ΤО | 12. 0 | 58. 27 | 024887 | 69 .0 | 051633 | 69 0 | | 14. 0 | 57. 27 | 024563 | 73 .0 | 051452 | 72.0 | l | 14. 0 | 58. 14 | 024394 | 67 .0 | 051410 | 67 .0 | | 16. 0 | 5 6. 5 9 | 024316 | 70 .0 | 051351 | 70 .4 | l | 16. 0 | 51. 35 | 024708 | 65 .2 | 051241 | 65 .0 | | 18. 0 | 55. 3 | 024222 | 69 .0 | 051405 | 69.0 | 1 | 18. 0 | 49. 59 | 024005 | 63 .2 | 051345 | 63 .0 | | 20. 0 | 22.55. 0 | 024059 | 67.8 | 051473 | 68 .0 | T D | 20. 0 | 49, 33 | 023365 | 62 .0 | 051653 | 61 .8 | | 22. 0 | 23. 0.13 | 022955 | 67 .0 | 051530 | 68 .0 | G H | 22. 0 | 22.5 8. 8 | 023138 | 63 .0 | 051986 | 63 .0 | | July 21. 0. 0 | 23. 5.18 | 0 .023796 | 67.0 | 0 .051458 | 67 .7 | GН | July 24. 0. 0 | 23. 4.40 | 0 .023556 | 65 .7 | 0 .051825 | 65 .0 | | [1.50] | 6. 56 | 024887 | | 051762 | 1 | j | (1.50 | 4. 0 | 025355 | | 052430 | | | ₹ 2. 0 | 6. 51 | | 69 .0 | 051797 | 68 .8 | - | ₹ 2. 0 | 3.54 | 025510 | 68 .7 | $\boldsymbol{052430}$ | 69 .0 | | 2.10 | 6. 35 | 024998 | | 051833 | | ļ | 2. 10 | 4. 6 | 025510 | | 052430 | 1 | | 4. 0 | 2. 54 | | 70 .7 | 051931 | 70 .5 | - 1 | 4. 0 | 23. 2.24 | 024943 | 71.0 | 052252 | 71 .2 | | 6. 0 | 0. 7 | | 72 ·8 | 052346 | 73 .0 | ŧ | 6. 0 | 22. 59. 31 | 024934 | 72 .5 | 051915 | 72 .0 | | 8. 0 | 23. 0.45 | 025385 | 73 .8 | 051868 | 73 .5 | L | 8. 0 | 58. 43 | 025198 | 72 .8 | 051792 | 72 5 | | 10. 0 | 22. 59. 43 | | 73.8 | 051618 | 73 .5 | G | 10. 0 | 58. 1 | 024642 | 72 .0 | 051630 | 72 0 | | 12. 0 | 59 . 27 | 025199 | 72.5 | 051484 | 73.0 | G | 12. 0 | 5 8. 11 | 025067 | 70 ·3 | 051260 | 69 .8 | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 93\frac{1}{2}^\circ. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27'. Time of Vibration of Horizontal Force Magnetometer, 20*\cdot 8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24*\cdot 97; in Vertical Plane, 23*\cdot 1. Declination Magnet. July 18^a, between 16^h and 24^h; July 19^a, between 22^h and 24^h; July 20^d, between 0^h and 1^h. 50^m, and between 20^h and 24^h; July 22^d, between 22^h and 24^h; and July 23^d, between 20^h and 24^h, considerable changes took place. HORIZONTAL FORCE MAGNET. July 20d and 22d. Between 0h and 1h. 50m the changes were considerable. | | | , | | | | | | | | | | | | |--|------------------------------|--|---|---|---|------------|--|-----------------------|---|---|--|---|-----| | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation, | Western
Declination. | Horizontal Force Reading in parts of the whole Hor. Force cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.forTemp. | Thermometer of
Vertical Force
Magnetometer, | Observers. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal Force Reading in parts of the whole Hor. Force cor. forTemp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | - | | d h m | 0 / # | | 0 | | 0 | | d h m | 0 1 11 | | 0 | | 0 | - | | July 25. 14. 0 | 22.58. 4 | 0 .023686 | 67 .0 | 0 .051412 | 66 .8 | T D | July 28. 14. 0 | 22, 43, 28 | 0 .023962 | 70 .0 | 0.051131 | 70.0 | ۱, | | 16. 0 | 56. 22 | 023686 | 63 .3 | 051131 | 1 | | 16. 0 | 42. 10 | 024139 | 70 .0 | 051430 | 70.0 | | | 18. 0 | 54.35 | 023222 | 62 .8 | 051515 | 62 . 5 | | 18. 0 | 40, 23 | 023933 | 68 .5 | 051433 | 69 .0 | | | 20. 0 | 56. 49 | 022856 | 62 .0 | 051849 | 62 .0 | T D | 20. 0 | 39. 38 | 023287 | 6 7 ·0 | 051148 | 67 ·3 | | | 22. 0 | 22. 59. 21 | 022013 | 63 .2 | 051899 | 62 .0 | G H | 22. 0 | 41.10 | 022623 | 67 .0 | 051147 | 67.0 | T | | July 26. 0. 0 | 23. 2.15 | 0 .021940 | 65 .2 | 0.052040 | 64 .0 | GН | July 29. 0. 0 | 22. 50. 11 | 0 .023492 | 69 .0 | 0 .051706 | 69 ·3 | T | | 1.50 | | 022758 | | 052478 | | | (1.50 | 51.59 | 024598 | | 051979 | | | | ₹ 2. 0 | | 022559 | 68 .0 | 052535 | 67 ·5 | 1 1 | ₹ 2. 0 | 51 . 18 | 024642 | 72 .0 | 051979 | 72 .0 | | | 2. 10 | • • • | 022537 | | 052549 | | G H | 2. 10 | 50. 58 | 024642 | | 051950 | | 7 | | 4. 0 | 22. 47. 28 | 024279 | 71.0 | 052590 | | T D | | 49.18 | 025178 | 74 .2 | 051777 | 73 .7 | | | 6. 0 | 43. 6 | 024908 | 72 .0 | 052541 | | | 6. 0 | 46. 57 | 024750 | 77.0 | 051393 | 76.5 | - 1 | | 8. 0 | 42. 36 | 025598 | 72.5 | 051964 | 1 | | 8. 0 | 45.54 | 024817 | 77.0 | 051339 | 76 .0 | | | 10. 0 | 40.58 | 023978 | 72.0 | 051599 | ı | | 1 | 45. 24 | 025443 | 76.0 | 051851 | 76 0 | - 1 | | 12. 0 | 38.40 | 023146 | 70 .5 | 051415 | | G H | i i | 44. 21 | 024705 | 74.6 | 050964 | 74 5 | - 1 | | 14. 0 | 44. 8 | 1 | 69.0 | 051313 | | | 14. 0 | 44.43 | 024453 | 73.0 | 050922 | 73.0 | - 1 | | 16. 0 | 40. 54 | 023592 | 66 .3 | 051267 | | | 16. 0 | 44. 20 | 024722 | 71.0 | 050788
050540 | 71 ·0
70 ·0 | | | 18. 0
20. 0 | 40. 16 | 023729 | 65 .0 | 051501 | 65 ·8 | | 18. 0
20. 0 | 42.51 | 024139
023511 | 70 ·0
68 ·0 | 050540 | 68 0 | | | 20. 0
22. 0 | 38. 35
44. 41 | 022955
023199 | 65 ·0 | 051609
051409 | 64 5 | | 1 | 42. 17
47. 21 | 023311 | 69.0 | 051082 | 68 .5 | | | uly 27. 0. 0 | 00 50 51 | 0.000001 | 67.0 | 0.051505 | e* .0 | | I-1 20 0 0 | 00 51 0 | 0.000510 | 70.0 | 0 .051093 | 69 · 7 | | | uly 27. 0. 0
1.50 | 22, 52, 51
52 , 45 | 0 ·023664
024465 | 67.0 | 0 ·051595
052328 | 01.0 | L D | July 30. 0. 0 | 22. 51.
2
51. 31 | 0 ·023519
024311 | 70.0 | 051519 | 03 1 | 1 | | 2. 0 | 52. 45
52. 52 | 024403 | 72 ·0 | 052328 | 71 .8 | | $\begin{cases} 1.30 \\ 2.0 \end{cases}$ | 51.50 | 024421 | 72 .0 | 051519 | 71 .7 | 1 | | 2. 10 | 52. 52 | 024642 | 12 0 | 052328 | 11 0 | тр | 2. 10 | 52. 9 | 024532 | 120 | 051519 | • • • | | | 4. 0 | 48, 21 | 025187 | 73·5 | 052004 | 73 .0 | 1 1 | | 50. 33 | 024529 | 74.0 | 051533 | 74.0 | | | 6. 0 | 45, 18 | 025472 | 75.0 | 051847 | | | 6. 0 | 46. 33 | 024203 | 75 .4 | 051935 | 75.5 | | | 8. 0 | 45, 18 | 025369 | 75 · 5 | 051594 | 75 .2 | | 8. 0 | 46. 29 | 025000 | 76 .0 | 051731 | 76.0 | - 1 | | 10. 0 | 43, 53 | 024896 | 75 0 | 051435 | 75 .0 | G H | 1 | 42.39 | 025029 | 75 0 | 051370 | 75.3 | | | 12. 0 | 43, 9 | 024634 | 73 .5 | 050993 | 73 .0 | L | 12. 0 | 43. 42 | 025006 | 73 0 | 051177 | 74.0 | | | 14. 0 | 43, 27 | 024500 | 71 .0 | 050916 | 71 .0 | | 14. 0 | 43.18 | 024378 | 71 .7 | 050954 | 72 0 | | | 16. 0 | 44.37 | 024001 | 69 .0 | 050579 | 69 .0 | | 16. 0 | 41.49 | 024601 | 69 .5 | 050742 | 70 .5 | | | 18. 0 | 40, 31 | | 67 .2 | 050591 | 67 .0 | | 18. 0 | 41.18 | 024311 | 67 .7 | 050989 | | | | 20. 0 | 45. 9 | | 65 .8 | 050980 | 66.0 | L | 20. 0 | 39. 30 | 023596 | 66 .0 | 051218 | | | | 22. 0 | 41. 2 | 022162 | 65 .7 | 051350 | 66 .0 | T D | 22. 0 | 42.47 | 022489 | 66 .0 | 051262 | 66.5 | | | ly 28. 0. 0 | 22. 46. 30 | 0.022074 | 67 .2 | 0.051503 | 6 7 ·0 | ТД | July 31. 0. 0 | 22, 47, 55 | 0.022717 | 67 . 7 | 0.051588 | 67 .5 | | | [1.50] | 50, 29 | 023032 | | 052049 | | | ſ 1. 50 | 52.40 | 024455 | | 051956 | | 1 | | ₹ 2. 0 | 50, 29 | 023032 | 70 .0 | 052049 | 70 .0 | | ₹ 2. 0 | 52. 28 | 024587 | 69 4 | 051956 | 70 .6 | | | 2. 10 | 50, 33 | 023253 | | 052021 | | T D | 2. 10 | 52. 14 | 024587 | | 051921 | | 1 | | 4. 0 | 48, 42 | | 71 .6 | 051903 | | | 4. 0 | 48. 51 | 025338 | 73 .0 | 051919 | | | | 6. 0 | 45. 50 | | 73 .0 | 051868 | | | 6. 0 | 46. 5 | 025691 | 75 .8 | 051827 | | | | 8. 0 | 44. 10 | | 73 .0 | 051577 | | | 8. 0 | 45 . 40 | 024631 | 76 .5 | 051730 | | | | 10. 0 | 44. 8 | | 72.7 | 051491 | 73.0 | | 10. 0 | 44.40 | 024306 | 75 ·8 | 051022 | | | | 12. 0 | 44. 29 | 024222 | 72 .0 | 051374 | $72 \cdot 0$ | G | 12. 0 | 45. 45 | 024441 | 74 .0 | 050949 | 74 0 | Ì | Reading of Torsion-Circle of Meridianal Magnet for Brass Bar resting in Magnetic Meridian, 93½° till July 263.0h; from 1h. 50m there was no Forsion-Circle in use. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20s.8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24s.97; in Vertical Plane, 23s.1. Declination Magnet. July 26d. 1b. 50m. Before this time the suspension-stirrup, &c. was removed, for the purpose of making some alterations. A temporary stirrup and carrier were put up, but without a torsion-circle. The brass bar was first inserted, and then the magnet was inserted, when the position of the suspension skein was such that the bar rested in the magnetic meridian. July 26d, between 12h and 14h, and between 20h and 24h; July 27d and 28d, between 22h and 24h; July 29d, between 20h and 22h; and July 30d, between 22h and 24h considerable changes occurred. Vertical Force Magnet. July 27d, between 0h and 1h. 50m; July 29d, between 10h and 12h; and July 31d, between 8h and 10h, considerable changes took place. | | | | | • | | | from Augus | | | | | | | | |--|----------------------------|---|---|--|-----------------------------------|------------|---|-------------------------|---|--|--------------------------------|--|------------------|---| | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor. for Temp | ermomet
ertical Fo
ignetome | Observers. | Göttingen
Time (Astro
Reckonin
Declina
Observat | nomical
g) of
ion | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor for Temp. | ermomel
rizontal
gnetome | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor. for Temp. | 1 to 1 to 1 | | | d h m | 0 / // | ļ | 0 | <u> </u> | 0 | | d | h m | 0 ' " | | 0 | | 0 | ï | | Aug. 1.14. 0 | 22. 43. 47 | 0 .023865 | 77.0 | 0 .050534 | 77 .0 | L | Aug. 4. 1 | | 22. 41. 11 | 0 .024529 | 68 .0 | 0 .050960 | 68 .0 | ŀ | | 16. 0 | 43, 15 | 023998 | 74 0 | 050322 | 74.0 | ~ | | 6. 0 | 40. 36 | 023884 | 66 .5 | 050359 | 66 .5 | | | 18. 0 | 41. 2 | 023766 | 70 .5 | | 70 .2 | | 4 | s. 0 | 30. 31 | 016677 | 64.8 | 049082 | 64 .6 | , | | 20. 0 | 40.18 | 023293 | 69 .0 | 050707 | 69.0 | L | 13: | 0. 0 | 40.55 | 021230 | 64 .0 | 050736 | 64 .0 | , | | 22. 0 | 41. 22 | 022537 | 68 .0 | 051063 | 69 .0 | G H | 2 | 2. 0 | 44. 33 | 020078 | 64 .5 | 051150 | 64 .0 |) | | Aug. 2. 0. 0 | 22 . 47 . 48 | 0 .022558 | 71 .2 | 0 .051362 | 70 .5 | G Н | Aug. 5. | 0. 0 | 22. 52. 24 | 0 .019344 | 66 .0 | 0.051478 | 66 .0 |) | | (1.50 | 51. 56 | 024122 | | 051933 | | тр | (| 1. 50 | 58. 36 | 020323 | | 052028 | | | | ₹ 2. 0 | 52. 23 | 023966 | 75 .0 | 051933 | 75.0 | | \ \ | 2. 0 | 57.13 | 020323 | 68.0 | 051993 | 68 .0 | į | | 2. 10 | 52. 39 | 023966 | | 051933 | | ΤД | | 2. 10 | 55 . 48 | 019880 | | 051957 | | | | 4. 0 | 52. 7 | 024226 | 77 .5 | 051581 | 77 .3 | L | _ | 4. 0 | 52 . 31 | 023381 | 69 .0 | 052273 | 69 .0 | | | 6. 0 | 48. 1 | 024454 | 79 ·0 | 051493 | 79 .0 | | | 6. 0 | 46. 7 | 023197 | 69 .6 | 052396 | 69 .2 | | | 8. 0 | 45. 36 | 024344 | 79.0 | 051394 | 79 .0 | | l | 8. 0 | 47. 58 | 024222 | 69.0 | 051917 | 69 .0 | | | 10. 0 | 45. 8 | 024219 | 77.0 | 050947 | 77.0 | L | l . | 0. 0 | 41. 49 | 025665 | 68 .2 | 051459 | 68 .0 | | | 12. 0 | 42. 24 | 024911 | 75 .4 | 050851 | | T D | | 2. 0 | 41. 59 | 023041 | 67.8 | 051089 | 67.0 | | | 14. 0 | 43. 40 | 024868 | 72 ·5 | 050428 | 72 ·4 | | | 4. 0 | 44. 9 | 023341 | 67 .4 | 050990 | 67 .0 | | | 16. 0 | 44. 55 | 024873 | 70 .5 | 050312 | 70 .0 | ļ | | 6. 0 | 45. 12 | 023553 | 67.0 | 050862 | 67 .0 | | | 18. 0
20. 0 | 40.51
41.0 | $\begin{array}{c} 024221 \\ 024261 \end{array}$ | 68 ·5 | 050298
050766 | 68·0 | | | 8. 0
0. 0 | 39. 2 7 | 022932 | 66 0 | 050909
051324 | 66 ·0 | | | 20. 0
22. 0 | 41. 0
44. 27 | 1 | 66 .5 | 051289 | 67.0 | | | 0. 0
2. 0 | 39. 5
43. 59 | $022286 \\ 021250$ | 65 ·8 | 051324
051526 | 65 .0 | | | Aug. 3. 0. 0 | 22. 52. 15 | 0 .023732 | eo .o | 0 .051147 | C# .0 | | A C | , , | 00 40 0 | 0 ·021914 | ez .0 | 0 .051526 | 65 ·0 | | | 1.50 | 55. 29 | 023732 | 08 0 | 051277 | 67 .0 | GH | 0 | 0. 0
1. 50 | $\begin{bmatrix} 22.49. & 3 \\ 52.59 \end{bmatrix}$ | 022596 | 05 0 | 051526 | 09 0 | | | 2. 0 | 55. 7 | 1 | 70 .2 | 051277 | 69 .0 | İ | | 2. 0 | 52. 46 | 023017 | 66 .8 | 051739 | 66 •2 | | | 2. 10 | 55. 44 | 023724 | •• - | 051277 | | GH | | 2. 10 | 54. 5 | 024102 | 00 0 | 051810 | 00 2 | | | 4. 0 | 52.11 | 024917 | 73 .0 | 051900 | 72 .7 | | - | 4. 0 | 51. 10 | 024045 | 67 .7 | 051766 | 67 .5 | | | 6. 0 | 48.31 | | 73 .0 | 051776 | 73 .0 | | | 6. 0 | 45. 39 | 025124 | 68 8 | 052364 | 68 .5 | | | 8. 0 | 47. 20 | | 73 .0 | 051670 | 73 .0 | | | 8. 0 | 47. 23 | 024863 | 68 .5 | 052189 | 68 .6 | į | | 10. 0 | 44. 41 | 024877 | 71 .0 | 051130 | 71 .0 | то | | 0. 0 | 44. 21 | 024308 | 68 .0 | 051601 | 68 .0 | , | | 12. 0 | 42. 43 | 024001 | 69 0 | 051238 | 70 .0 | G Н | 1 | 2. 0 | 37. 54 | 024169 | 67 .3 | 051268 | 67 .5 | ı | | 14. 0 | 43. 19 | 024173 | 67 .0 | 051046 | 68 .0 | | | 4. 0 | 40. 52 | 024438 | 66 .0 | 051339 | 67 .0 | | | 16. 0 | 41. 40 | | 65 .0 | 051229 | 66.0 | | | 6. 0 | 43. 54 | 023620 | 64 . 5 | 051359 | 65 '5 | | | 18. 0 | 41. 11 | L | 63 .0 | 051328 | 64 .0 | 1 | | 8. 0 | 43. 42 | 023204 | 63 .0 | 051434 | 64 .0 | | | 20. 0
22. 0 | 43. 34
43. 34 | 1 | 63 · 0 | 051523
051715 | 63 ·0 | G H | | 0. 0
2. 0 | 43. 11
44. 27 | $\begin{array}{c} 023171 \\ 022530 \end{array}$ | 63 ·6
64 ·3 | 051744
051947 | 63 ·8
64 ·0 | | | | | | | | | - 1 | | İ | | | | | | | | ug. 4. 0. 0 | | 0 .022533 | 65 .2 | | 65 .3 | L | | | | 0 022710 | 66 .0 | | 66 .0 | | | $\int_{0}^{1.50}$ | 54.38 | 022895 | 00.0 | 051971 | 00.0 | | | 1. 50 | 55. 18 | 023530 | 00.0 | 051808 | 40.0 | | | $\begin{cases} 2. & 0 \\ 2. & 10 \end{cases}$ | 54. 52 | 023050 | 08 2 | | 68 .0 | | | 2. 0 | 56. 21 | 024150 | 8.80 | 051794 | 68 .8 | | | 2. 10
4. 0 | 55. 11 | 023405 | 70.5 | 051886 | | L | | 2. 10
4. 0 | 54. 2 7 | 023973 | 71.0 | 051866
052124 | | | | 6. 0 | 51. 6
47. 56 | $024502 \\ 024974$ | | | 70.0 | G H | | 6. 0 | 51. 11
46. 41 | 024943
026484 | 72.5 | 052124 | 70 · 7
72 · 0 | | | 8. 0 | 46. 1 | 024974 | | 051751 | 72 .0 | | | 8. 0 | 43. 25 | 026331 | 72.2 | 051873 | 72.2 | | | 10. 0 | 45. 23 | | 71.0 | | 71.0 | G H | | 0. 0 | 43. 35 | 027478 | 71.7 | 051812 | 73 .0 | | | 12. 0 | 44. 5 | 025177 | | | 69 2 | | | 2. 0 | 40. 45 | 026530 | 70.0 | 050833 | 69 .8 | | Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of
Horizontal Force Magnetometer, 20°.8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°.97; in Vertical Plane, 23°.1. Declination Magnet. Aug. 1^d and 2^d, between 22^h and 24^h; Aug. 3^d, between 22^h and 24^h; Aug. 4^d, between 0^h and 1^h. 50^m, and between 22^h and 24^h; Aug. 5^d, between 0^h and 1^h. 50^m, between 4^h and 6^h, between 10^h and 12^h, and between 22^h and 24^h; Aug. 6^d, between 4^h and 6^h, between 10^h and 12^h, and between 22^h and 24^h; and Aug. 7^d, between 4^h and 6^h, considerable changes occurred. Horizontal Force Magnet. Aug. 4^d, between 16^h and 20^h; and Aug. 5^d, between 2^h. 10^m and 4^h, and between 10^h and 12^h, considerable changes took place. VERTICAL FORCE MAGNET. Aug. 4d, between 16h and 20h, and Aug. 7d, between 10h and 12h, considerable changes occurred. | | | | | | | bservat | ions | from August 8 to | 14. | | | | | | |------------------------|---|----------------------|---|---|--|---|------------|--|-------------------------|---|---|---|--------------------------|------------| | Time (A
Reck
Dec | ngen Mean
stronomical
oning) of
clination
ervation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor, for Temp. | Thermometer of
Horizoutal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor. for Temp. | ermon
rtical
gneto | Observers. | | | d h m | 0 / " | | 0 | | 0 | | d h m | 0 / 11 | | 0 | | 0 | | | Aug. | 8. 14. 0 | 22, 44, 33 | 0 .024396 | 64 .5 | 0 .050698 | 64 .2 | L | Aug. 11. 14. 0 | 22.58.28 | | • • | 0.051415 | 72 .7 | L | | - 0 | 16. 0 | 44. 16 | 024038 | 62 .6 | 050831 | 62 .5 | | 16. 0 | 57.15 | • • • | • • | 051402 | 71 .8 | 1 | | | 18. 0 | 43. 30 | 024837 | 61 .0 | 050888 | 61 .0 | | 18. 0 | 54 . 49 | | • • | 051415 | 71 .0 | 1 | | | 20. 0 | 40. 56 | 023163 | 60.0 | 051232 | 60 .0 | L | 20. 0 | 52.42 | • • • | • • | 050836 | 70 .5 | | | | 22. 0 | 45. 31 | 021543 | 60 .0 | 051318 | 60 .0 | ΤЪ | 22. 0 | 22.58.50 | ••• | • • | 051415 | 71 0 | T D | | Aug. | 9. 0. 0 | 22. 52. 26 | 0.022040 | 6 0 ·8 | 0 .051559 | 60 .5 | GН | Aug. 12. 0. 0 | 23. 4.40 | | | 0 .051854 | 74 .0 | TD | | Ü | (1.50) | 55.42 | 024329 | | 052213 | | T D | [1.50] | 7. 19 | | | 052022 | | | | | ₹ 2. 0 | 56.13 | 024329 | 62 ·8 | 052270 | 63 .0 | | ₹ 2. 0 | 7 . 19 | ••• | • • | 051994 | 76 .6 | 1 | | | 2. 10 | 56.13 | 024329 | | 052270 | 1 | TО | 2.10 | 7.40 | • • • • | • • | 051994 | | T D | | | 4. 0 | 50, 21 | 024839 | 64 .0 | 052172 | 63 .8 | L | 4. 0 | 23. 4. 19 | ••• | • • | 051690 | 77.6 | L | | | 6. 0 | 47. 15 | 025466 | 65 .4 | 052110 | 65 .0 | L | 6. 0 | 22. 59. 35 | • • • • | • • | 051510 | 78 .8 | 1 | | | 8. 0 | 45. 44 | 025367 | 66 .0 | 051682 | 65 .0 | G | 8. 0 | 59. 3 | • • • • | • • | 051360 | 79.3 | | | | 10. 0 | 44. 38 | 025726 | 65 · 2 | 051833 | | GН | 10. 0 | 55. 30 | • • • | • • | 051697
050765 | 78 ·7
75 ·6 | | | | 12. 0 | 42.56 | 024661 | 64 .0 | 051528 | 64 .4 | T D | 12. 0 | 57. 45 | • • • | •• | 050750 | 74 0 | עיו | | | 14. 0
16. 0 | 44. 24 | 024643 | 63 ·0 | 051572 | 63 .0 | | 14. 0 | 57.45 | • • • | • • | 050797 | 72.0 | | | | 18. 0 | 42.44
41.45 | 024722
023819 | 60 .2 | 051970
052103 | 61 ·0 | | 16. 0
18. 0 | 57. 13
57. 47 | ••• | • • | 050944 | 71.0 | İ | | | 20. 0 | 39. 39 | 023042 | 58 5 | 051793 | 1 | Τр | 20. 0 | 55. 26 | ••• | • • | 051095 | 70 .0 | тр | | | 22. 0 | 44. 24 | 024243 | 58.0 | 051795 | 58 5 | | 22. 0 | 22. 58. 44 | • • • | • • | 051034 | 69 .2 | , | | Ano · | 10. 0. 0 | 22, 50, 33 | 0.022483 | 50 .0 | 0 .051584 | 59 -7 | СП | Aug. 13. 0. 0 | 23. 7.13 | | | 0 .051024 | 70 .0 | G H | | 11u5. | 1.50 | 54.44 | 023216 | 99 9 | 052031 | 00 . | G II | 1. 50 | 10. 3 | | •• | 051456 | | | | | 2. 0 | 54. 44 | 023372 | 61 .0 | 052031 | 60 .7 | | 2. 0 | 10. 14 | | | 051420 | 73 .0 | j | | | 2. 10 | 55. 1 | 023726 | UL U | 052031 | | GН | 2. 10 | 10. 8 | | | 051420 | | G H | | | 4. 0 | 49. 54 | 024090 | 63 .0 | 052299 | 63 .0 | | 4. 0 | 6.41 | | | 051757 | 76 .4 | ТЪ | | | 6. 0 | 46.48 | 024407 | 63 •4 | 052386 | 63 .5 | | 6. 0 | 23. 0.10 | ••• | • • | 051591 | 77 .5 | ŀ | | | 8. 0 | 43. 8 | 024710 | 63 .0 | 052014 | 63 .0 | | 8. 0 | 22.59.17 | | | 051116 | 76 .4 | | | | 10. 0 | 46. 16 | 024479 | 64 .3 | 052004 | 64 .0 | ΤЪ | 10. 0 | 5 8. 18 | | •• | 051054 | 76 .0 | 1 | | | 12. 0 | 45. 37 | 024727 | 64 5 | 052026 | 64 .7 | GН | 12. 0 | 57.27 | | • • • | 050828 | 74 .0 | G H | | | 14. 0 | 45 . 5 | 025147 | 65 0 | 051882 | 65 .0 | | 14. 0 | 59. 2 | ••• | | 050882 | 72.0 | | | | 16. 0 | 45.45 | 025523 | 66 .0 | 051905 | 66.0 | | 16. 0 | 56.11 | | ••• | 050775 | 70.0 | ļ | | | 18. 0 | 43.48 | 025700 | 66.0 | 051905 | 66.0 | | 18. 0 | 55.21 | ••• | •• | 051011 | 68 · 5
67 · 5 | | | | 20. 0
22. 0 | 41.47
44. 7 | 024371
025102 | 66 ·0 | 051 7 99
051918 | 66·8 | G H
L | 20. 0
22. 0 | 52. 57
22. 54. 30 | | | 051313 | 67.0 | 1 | | A | | | . 1 | | | 20. 4 | | | | | | 0.050000 | 68 .0 | | | rag. 1 | (1. 0. 0 | | 0 .024342 | | 0.052075 | | L | Aug. 14. 0. 0 | 23. 6. 14 | • • • • | •• | 0 ·050960
051436 | 00 0 | " | | | $\left\{ egin{array}{ll} 1.50 \\ 2. & 0 \end{array} \right\}$ | 23. 4.51 | | • • | | 72 ·0
72 ·0 | | $\int_{9}^{1.50}$ | 10.58 | ••• | ••• | 051436 | 70.8 | | | | 2. 10 | 5. 26
5. 35 | | • • | 051950
051893 | | | $ \begin{cases} 2. & 0 \\ 2. & 10 \end{cases} $ | 11.45
12.19 | | •• | 051450 | • | L | | | 4. 0 | 23. 4. 28 | ••• | • • | 051895 | 74.0 | | 4. 0 | 5. 49 | | | 052031 | 74.0 | | | | 6. 0 | 22. 59. 51 | | • • | 051862 | 75.0 | J | 6. 0 | 1. 11 | ••• | | 052360 | 75.0 | 1 | | | 8. 0 | 57. 49 | | •• | 051506 | 75 0 | | 8. 0 | 23. 0.53 | | :: | 051525 | 74.8 | | | | | | , | | | | i 1 | | | 1 | 1 | | | | | | 10. 0 | 58. 6 | • • • • | | 051248 | 74 .0 | GH | 10. 0 | 22.58. 4 | | | 051191
050930 | 73 .5 | G H | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, from Aug. 11^d. 1^h. 50^m, 270°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°97; in Vertical Plane, 23°1. Aug. 8d, between 22h and 24h; Aug. 9d, between 2h. 10m and 4h, and between 22b and 24h; Aug. 10d, between 2h. 10m and 4h, and between 22h and 24h; Aug. 11d, between 0h and 1h. 50m, and between 22h and 24h; Aug. 12d, between 22h and 24h; Aug. 13d, between 4h and 6h, and between 22h and 24h; and Aug. 14d, between 2h. 10m and 4h, considerable changes occurred. Aug. 11d. 0h. After this observation the temporary suspension stirrup was taken away, and the permanent one was put up. The suspension-skein was clear of torsion with a reading of 270°. Horizontal Force Magnet. Aug. 94. Between 0h and 1h. 50m a considerable change occurred. Aug. 11d. 0h. The suspension stirrup was removed during the preparation of a new stirrup and carrying piece for a concave mirror, to be used in the self-registration of the movements of this magnet. Vertical Force Magnet VERTICAL FORCE MAGNET. Ang. 12^d, between 10^h and 12^h; and Aug. 14^d, between 6^h and 8^h, considerable changes took place. | | | 177 | , e | 1 37 | ا يو | | i i | | Horizontal | 5.8 | Vertical | ٦. | Ī | |--|-----------------------------------|---------------------------|---|---------------------------|---|------------|---|--------------------|---|-------------|-----------------------------|---|-----------| | Göttingen Mean | | Horizontal
Force Read- | er of
Force
er. | Vertical
Force Read- | er of | φį | Göttingen Mean | 337 - 4 - w | Force Read- | For
For | Force Read- | ter o | 9 | | Time (Astronomical | Western | ing in parts | met
tal] | ing in parts | Fo Fe | Observers. | Time (Astronomical
Reckoning) of | Western | ing in parts | ome
utal | ing in parts | P F | Ohservers | | Reckoning) of
Declination | Declination. | of the whole | zon | of the whole | rmo
ical
neto | ser | Declination | Declination. | Hor Force | fro | of the whole
Vert. Force | Tica Tica | 9 | | Observation. | Decimation. | Hor. Force cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vert. Force cor.for Temp. | Thermometer of
Vertical Force
Magnetometer. | õ | Observation. | | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.forTemp. | The
Hor |
cor. for Temp. | Thermometer overtical Force Magnetometer. | 2 | | d h m | 0 / " | | 0 | | 0 | | d h m | 0 / " | | 0 | | 0 | | | Aug. 15.14. 0 | 22. 57. 45 | | | 0.051274 | 68 ·7 | L | Aug. 18. 14. 0 | 22, 59, 16 | | | 0 .050972 | 69 .5 | 1 | | 16. 0 | 57. 7 | ••• | •• | 051079 | 66 .3 | - | 16. 0 | 58. 4 | | •• | 051001 | 68 .6 | 1 | | 18. 0 | 54. 43 | | •• | 051312 | 65 .0 | | 18. 0 | 55. 27 | | | 051032 | 68 .0 | | | 20. 0 | 52. 51 | | ••• | 051551 | 64 .5 | L | 20. 0 | 54.55 | | • • | 051330 | 68 .0 | 1 | | 22. 0 | 22 . 58 . 28 | | • • • | 051469 | 65 .0 | | | 22. 58. 45 | ••• | | 051388 | 68 .0 | Т | | | | | | 0.051505 | CE . 7 | | A 10 0 0 | 23. 8. 15 | | | 0 .051277 | 69 .0 | T | | Aug. 16. 0. 0 | 23. 6. 56 | | • • | 0.051705 | 09 1 | TЪ | Aug. 19. 0. 0 | 12. 15 | ••• | • • | 051486 | 00 0 | E | | $\begin{bmatrix} 1.50 \\ 2.50 \end{bmatrix}$ | 10.26 | ••• | • • | 051455 | 65 .0 | | $\left\{\begin{array}{c} 1.50 \\ 2.0 \end{array}\right\}$ | 12. 13 | ••• | •• | 051429 | 71 .0 | | | $\left\{ \begin{array}{ll} 2. & 0 \\ 2. & 10 \end{array} \right\}$ | 10. 26 | | • • | 051455 | | . T | 2. 0 | 12. 11 | • • • | • • | 051429 | 0 | E | | 2. 10 | 10. 22 | | • • | 051455
051810 | 66 •2 | T D
L | 4. 0 | 6. 59 | ••• | ••• | 051436 | 70 .8 | | | 4. 0 | 7. 24
2. 18 | | • • | 051973 | 67.0 | ь | 6. 0 | 1. 38 | ••• | | 051486 | 71 .0 | | | 6. 0
8. 0 | 1.56 | | • • | 051624 | 67.8 | | 8. 0 | 23. 0. 21 | | • • | 051486 | 71 .0 | | | 8. 0
10. 0 | 23. 0.25 | | •• | 051624 | 68 .0 | L | 10. 0 | 22. 59. 57 | | | 051238 | 70 .0 | | | 10. 0
12. 0 | 23. 0. 23
22. 54. 23 | | • • | 051473 | 68 .0 | | 10. 0 | 58. 41 | | | 051139 | 69 .6 | | | 14. 0 | 57. 40 | • • • • | •• | 051475 | 67.5 | ע י | 14. 0 | 59. 3 | | | 051117 | 68 .0 | 1 - | | 16. 0 | 57. 40
57. 52 | ••• | •• | 051431 | 67 .5 | | 16. 0 | 58. 26 | | | 051125 | 67 .0 | 1 | | 18. 0 | 58. 0 | • • • | •• | 051481 | 67.5 | | 18. 0 | 55.43 | | • | 051122 | 66 .0 | | | 20. 0 | 58. 3 | ٠ | • • | 051481 | 67.5 | тъ | 20. 0 | 22, 56, 11 | | | 051056 | 65 .0 | Т | | 20. 0
22. 0 | 22. 59. 52 | • • • | | 051231 | 68 0 | | 22. 0 | 23. 1.39 | | | 051123 | 65 · 1 | E | | A 15. 0. 0 | 00 7 40 | | | 0 .050889 | ee .0 | C 11 | Aug. 20. 0. 0 | 23. 8.14 | | | 0 .051014 | 65 .0 | | | Aug. 17. 0. 0 | 23. 7.40
13.20 | ••• | •• | 051277 | 00.0 | GН | Aug. 20. 0. 0 | 12. 36 | ••• | •• | 051217 | | 1 | | $\begin{cases} 1.50 \\ 2.0 \end{cases}$ | 13. 20
12. 54 | ••• | ••• | 051277 | 69 .0 | | 2. 0 | 12. 36 | ••• | | 051217 | 65 .8 | | | 2.10 | 12. 44
12. 44 | • • • | •• | 051277 | | GН | 2. 0 | 12. 36 | ••• | • • • | 051238 | | | | 4. 0 | 9. 28 | • • • | •• | 051699 | 71 .0 | | | 7. 16 | | • | 051553 | 67 .0 | | | 6. 0 | 3. 35 | ••• | ••• | 051737 | 72.0 | | 6. 0 | 2. 24 | | | 051716 | 67 .5 | | | 8. 0 | 2. 57 | ••• | | 051608 | 72.0 | | 8. 0 | 0. 52 | | | 051958 | 68 .5 | | | 10. 0 | 23. 0.17 | | | 051502 | 72.0 | тъ | 10, 0 | 23. 0.42 | | | 051060 | 68 .7 | | | 12. 0 | 22. 59. 53 | | | 051251 | 71.2 | | 12. 0 | 22. 59. 42 | | | 051103 | 68 .0 | G | | 14. 0 | 58.12 | | | 051297 | 70 9 | | 14. 0 | 58. 20 | | | 051006 | 67 ·3 | | | 16. 0 | 58.18 | | | 050747 | 68 0 | ļ | 16. 0 | 57. 24 | | • • | 051135 | 66 .2 | | | 18. 0 | 57. 7 | | | 051278 | 69 · 3 | | 18. 0 | 55. 5 | • • • • | • • | 051182 | 65 5 | | | 20. 0 | 55. 1 | | | 051421 | 69 .3 | | 20. 0 | 54. 13 | | • • | 051384 | 65 .0 | G | | 22. 0 | 22. 56. 14 | | | 051183 | 69 .2 | GН | 22. 0 | 22. 58. 9 | • • • • | • • | 051246 | 63 .8 | E | | Aug. 18. 0. 0 | 23. 3.48 | | | 0 ·050872 | 68 .8 | т. | Aug. 21. 0. 0 | 23. 6.39 | | | 0 .051502 | 65 .2 | | | (1.50 | 9. 35 | ••• | •• | 050812 | 00 0 | - | (1.50 | 10. 0 | | | 051775 | | 1 | | $\begin{cases} 1.30 \\ 2.0 \end{cases}$ | 9. 53 | • • • | | 050898 | 69 ·2 | | 2. 0 | 9. 46 | | •• | 051704 | 69 .0 | 1 | | 2. 10 | 9. 53 | • • • | | 050898 | 30 2 | L | $\begin{array}{c c} 2.10 \end{array}$ | 9. 46 | | •• | 051704 | | | | 4. 0 | 7. 35 | l | | 051252 | 70 .2 | | | 6. 21 | | | 051808 | 72 .0 | 1 | | 6. 0 | 23. 1.57 | ••• | •• | 051486 | 71.0 | ~ 11 | 6. 0 | 1. 43 | | | 051355 | 74 .0 | | | 8. 0 | 22. 59. 56 | • • • | •• | 053515 | 71 .0 | 1 | 8. 0 | 2. 12 | | | 051409 | 74 .9 | | | 10. 0 | 22. 55. 52 | ::: | | 051557 | 71 .0 | GН | 10. 0 | 23. 0.38 | | | 051070 | 74 .0 | , | | 12. 0 | 23. 1.36 | | | 050910 | 70 .2 | | 12. 0 | 22. 59. 32 | | ٠. | 050503 | 71 .0 | 0 | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 270°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24.97; in Vertical Plane, 23.1. Declination Magnet. Aug. 15^d, between 20^h and 24^h; Aug. 16^d, between 4^h and 6^h, between 10^h and 12^h, and between 22^h and 24^h; Aug. 17^d, between 0^h and 1^h. 50^m, between 4^h and 6^h, and between 22^h and 24^h; Aug. 18^d, hetween 0^h and 1^h. 50^m, between 4^h and 6^h, between 10^h and 12^h, and between 22^h and 24^h; Aug. 19^h, between 2^h. 10^m and 6^h, and between 20^h and 24^h; and 24^h; and and 24^h; and between 20^h and 24^h, considerable changes occurred. HOBIZONTAL FORCE MAGNET. Aug. 214. The new suspension stirrup was mounted. Vertical Force Magnet. Aug. 18^d, between 6^h and 10^h; and Aug. 20^d, between 8^h and 10^h, considerable changes took place. | | | | | Daily Obse | ervation | ns fr | om August 22 to 2 | 8. | | | • | | | |--|-------------------------|--|---|--|---|------------|--|-----------------------------------|--|---|--|---|---------| | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | Thermometer of
Vertical Force
Magnetometer, | Promote | | d h m | 0 1 11 | | 0 | | 0 | | đ h m | 0 / " | | 0 | | 0 | | | Aug. 22. 14. 0 | 23. 4.35 | 0 ·137948 | 63 ·2 | 0 .049757 | 63 .0 | G | Aug. 25. 14. 0 | 22. 57. 35 | 0 ·140282 | 68 ·3 | 0 .050747 | 68 .0 | 1 | | 16. 0 | 22, 58, 35 | 138050 | 62 .0 | 050852 | | | 16. 0 | 22. 57. 49 | 140535 | 67 .0 | 050648 | 67 · 0 | | | 18. 0 | 57. 5 | 137541 | 62 .0 | 051351 | 61 .2 | | 18. 0 | 23. 1.17 | 141096 | 66 .0 | 050610 | 66 .0 | | | 20. 0 | 22. 59. 11 | 137529 | 59 .5 | 051389 | 60.0 | G | 20. 0 | 0. 7 | 140464 | 65 6 | 050718 | 65 .2 | 1 | | 22. 0 | 23. 0.35 | 136843 | 59 .0 | 051482 | 60.0 | G H | 22. 0 | 5. 32 | 138314 | 66.0 | 050766 | 66 .0 | Т | | Aug. 23. 0. 0 | 23. 7.46 | 0 ·137901 | 61 .0 | 0 .051793 | 62 .0 | ЕН | Aug. 26. 0. 0 | 23. 12. 52 | 0 ·137985 | 67.0 | 0 .051289 | 67 .0 | Т | | ∫ 1.50 | 10. 7 | 136764 | | 051772 | Ì | G H | (1.50 | 13. 37 | 138166 | | 051902 | | | | ₹ 2. 0 | 9. 32 | 135837 | 63 .0 | 051737 | 63 .0 | | ₹ 2. 0 | 13. 6 | 138444 | 68 .0 | 051902 | 68 • 5 | , | | 2. 10 | 8. 25 | 135258 | | 051687 | | G H | 2. 10 | 12. 25 | 138815 | | 051937 | | T | | 4. 0 | 5. 7 | 135142 | 63 .0 | | | ЕН | 4. 0 | 7. 30 | 139994 | 69 .0 | 051510 | 68 .2 | | | 6. 0 | 23. 0.45 | 135611 | 65 .0 | 051776 | | G | 6. 0 | 2.22 | 141014 | 70 .5 | 051345 | 70.0 | | | 8. 0 | 22. 58. 59 | 138414 | 65 .0 | 051682 | 1 | | 8. 0 | 0. 27 | 141477 | 70.5 | 051073 | 70 .2 | | | 10. 0 | 59. 0 | 138283 | 64.0 | 051349 | 64 .0 | G | 10. 0 | 0. 27 | 140656 | 69.6 | 050844 | 69 .5 | 1 | | 12. 0 | 58.57 | 138090 | 64 · 3 | 051551 | | G H | 12. 0 | 0.47 | 140947 | 68 .0 | 050948 | 68 .3 | 1 | | 14. 0 | 23. 0.58 | 138451 | 63 .2 | 051506 | | | 14. 0 | 0.30 | 140215 | 66.0 | 050780 | 66 ·0 | | | 16. 0
18. 0 | 22. 54. 52 | 137390 | 63 .0 | 051390 | | | 16. 0
18. 0 | 23. 0. 0
22. 57. 58 | 141363
140704 | 64 ·5
63 ·0 | 049640
051025 | 63.0 | 1 | | 20. 0 | 55.45 $22.57.44$ | 137459
135953 | 63 ·0 | 051630
051772 | | GН | 18. 0
20. 0 | 22. 57. 35
22. 57. 35 | 140763 | 62 0 | 051023 | 62 .0 | | | 22. 0 | 23. 1.17 | 135942 | 62 .0 | 051472 | 3 | 1 ! | 22. 0 | 23. 2.30 | 140103 | 62 .0 | 051329 | 62 .0 | 1 | | Ana 04 0 0 | 00 10 01 | 0.100000 | <i>a</i> a a | 0.05110# | 20 - | | 4 07 0 0 | 00 10 70 | 0 .140105 | 60.0 | 0.051199 | 62 · 7 | | | Aug. 24. 0. 0 | 23. 10. 31 | 0 ·136999 | 62 .3 | 0.051137 | 62 5 | 1 | Aug. 27. 0. 0 | 23. 12. 52
13. 20 | 0 ·140125
141328 | 03.0 | 0.051133
051609 | 02 7 | 7 | | $\left\{egin{array}{ccc} 1.50 \ 2. & 0 \end{array} ight\}$ | 9. 26
9. 26 | 141196
140964 | 65 .0 | 051 7 54
051 7 40 | 65 .0 | G | 2. 0 | 13. 20
13. 0 | 141328 | 66 .0 | 051609 | 66 .7 | | | 2. 10 | 9. 20 | 140904 | 03 0 | 051740 | 00 0 | ЕН | 2. 10 | 12. 58 | 141722 | 00 0 | 051609 | 0., | 7 | | 4. 0 | 4. 52 | 140632
| 66 .0 | 051894 | 65 .5 | GH | | 10. 2 | 142620 | 67.0 | 050990 | 67 .0 | - 6 | | 6. 0 | 23. 0.21 | 140535 | 67.0 | 052037 | | | 6. 0 | 4. 25 | 141694 | 67.0 | 050506 | 67.0 | | | 8. 0 | 22. 57. 47 | 141365 | 68 .0 | 051886 | | | 8. 0 | 4. 0 | 142639 | 68 .0 | 050391 | 68 .0 | - 1 | | 10. 0 | 58. 14 | 140949 | 67 .5 | 051651 | | G H | 10. 0 | 23. 0.44 | 142274 | 72 .2 | 051181 | 72 .0 | 1 | | 12. 0 | 58. 4 | 140766 | 67 ·0 | 051431 | | T D | 12. 0 | 22.58. 2 | 142383 | 71 .5 | 051156 | 71 .7 | | | 14. 0 | 59. 28 | 141230 | 67 0 | 051275 | 67 .0 | | 14. 0 | 59.31 | 141588 | 69 .3 | 050898 | 69 .2 | - 1 | | 16. 0 | 22.57.59 | 140957 | 66 .0 | 051193 | 66.0 | | 16. 0 | 58. 25 | 141444 | 66 .0 | 050339 | 66 .0 | | | 18. 0 | 23, 3, 14 | 139871 | 65 .5 | 051269 | 65 .0 | | 18. 0 | 55 . 3 0 | 141560 | 66.0 | 050980 | 66 .0 | - 1 | | 20. 0 | 4. 37 | 137889 | 64 .0 | 051172 | 1 | 1 . | 20, 0 | 22. 53. 50 | 140833 | 64 .0 | 050794 | 64 0 | - 1 | | 22. 0 | 9. 45 | 138283 | 64 .0 | 051175 | 63 .8 | G | 22, 0 | 23. 4.28 | 139494 | 63 .2 | 050856 | 63 .5 | 1 | | Aug. 25. 0. 0 | 23. 10. 56 | 0 ·139509 | 66 ·2 | 0 .051787 | 67 .0 | G | Aug. 28. 0. 0 | 23. 15. 2 | 0 · 140439 | 64 .0 | 0 .051150 | 64 .0 |) | | [1.50] | 13. 8 | 140992 | | 052115 | İ | | (1.50 | 15. 36 | 142891 | | 052350 | ł | ľ | | ⟨ 2. 0 | 13. 5 | 140807 | 68 .5 | 052101 | 68 .3 | | ₹ 2. 0 | 15. 7 | 142775 | 69 .0 | | 69 .4 | | | 2. 10 | 12. 6 | 141085 | | 052087 | | G | 2. 10 | 15. 52 | 142822 | | 052229 | | ĺ | | 4. 0 | 9. 39 | 140923 | | 052662 | | | | 11. 2 | 143007 | | | | | | 6. 0 | 1. 49 | 141201 | | 052378 | | 1 | 6. 0 | 4. 14 | 142385 | | 052022 | 72 .0 | 1 | | 8. 0 | 1.57 | 139459 | | 051997 | | | 8. 0 | 2.51 | 142848 | | 051519 | 71.7 | | | 10. 0 | 23. 2.12 | 139925 | | 051411 | | | | 23, 1, 21 | 142431 | | 051188 | 71 .8 | • | | 12. 0 | 22. 58. 43 | 140546 | 69 .3 | 050672 | 09.0 | L | 12. 0 | 22 . 5 8. 13 | 142068 | 71 .4 | 1 | | | Reading of Torsion-Circle of Meridianal Magnet for Brass Bar resting in Magnetic Meridian, 270°; from Aug. 25^d. 2^h. 10^m, 269°. Reading of Torsion-Circle for Horizontal Magnetometer, 37°. Reading for Brass Bar in the same position, 357°. 21′; and from Aug. 24^d. 4^h these values were 37°. 45′ and 358°. 6′ respectively. Time of Vibration of Horizontal Force Magnetometer, 20*.5. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24. 97; in Vertical Plane, 23.1. Declination Magnet. Aug. 22^a, between 14^b and 16^h, and between 22^h and 24^h; Aug. 23^d, between 14^h and 16^h, and 22^h and 24^h; Aug. 25^d, between 4^h and 6^h, and between 20^h and 24^h; Aug. 26^d, between 22^h and 24^h; Aug. 27^d, between 4^h and 6^h, and between 20^h and 24^h; and and 24^h; Aug. 26^d, between 4^h and 6^h, and between 20^h and 24^h; and and 24^h; Aug. 26^d, between 4^h and 6^h, and between 20^h and 24^h; and HORIZONTAL FORCE MAGNET. Aug. 23d, between 6h and 8h; Aug. 24d, between 0h and 1h. 50m; Aug. 25d, between 20h and 22h; and Aug. 28d, between 0h and 1h. 50m, considerable changes VERTICAL FORCE MAGNET. Aug. 22^d, between 14^h and 16^h; Aug. 25^d, between 10^h and 12^h; Aug. 26^d, between 14^h and 18^h; Aug. 27^d, between 8^h and 10^h; and Aug. 28^d, between 0^h and 1^h, 50^m, considerable changes took place. Aug. 28^d, 12^h. The observation was inadvertently omitted. | | | | Dai | ily Observat | ions from | Au _ξ | gust 2 | 29 to Septe | mber 4. | | | | | | |--|------------------------|--|---|--|---|-----------------------------------|----------------------|---|-------------------------|--|---|---|---|------------| | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | Thermometer of
Vertical Force
Magnetometer. | Ti Ti | me (A
Reck
Dec | gen Mean
stronomical
oning) of
lination
ervation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.forTemp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | | d h m | 0 / " | | 0 | | 0 | | | d h m | 0 / // | | 0 | | 0 | | | Aug. 29. 14. 0 | 22. 57. 36 | 0 ·143533 | 64 .8 | 0 .051384 | 65 ·0 T | $\mathbf{p} \parallel \mathbf{s}$ | Sep. | 1. 14. 0 | 22, 58, 12 | 0 ·142073 | 65 ·5 | 0.051087 | 66 .0 | G H | | 16. 0 | 57 . 32 | 143086 | 63 .5 | 050989 | 63 .0 | | · · I · | 16. 0 | 57 . 51 | 141254 | 64 .2 | 051241 | 65 0 | | | 18. 0 | 56. 50 | 142582 | 61 .0 | 050873 | 61 .5 | - 11 | | 18. 0 | 56. 36 | 141850 | 63 .8 | 051257 | 64 .0 | | | 20. 0 | 22, 56, 33 | 141748 | 59 ·5 | 050938 | 59 ·0 T | D | | 20. 0 | 56. 20 | 140704 | 63.0 | 051416 | 63 .0 | 1 | | 22. 0 | 23. 0.31 | 139487 | 59 ·2 | 051031 | 59 .8 1 | <u>د</u> | | 22. 0 | 22. 58. 42 | 139524 | 61.0 | 050959 | 61 .0 | TI | | Aug. 30. 0. 0 | 23. 8.27 | 0 ·139616 | 59 ·5 | 0 .051049 | 59 .5 | 3 | Sep. | 2. 0. 0 | 23. 7.24 | 0.140312 | 61 .0 | 0 .050902 | 61 .0 | TI | | (1.50 | 12. 52 | 141041 | 00 0 | 051545 | | Ĺ ' | oop. | 1.50 | 11.14 | 141487 | | 051289 | | | | 2. 0 | 12. 22 | 140925 | 62 ·0 | 051545 | 61 .7 | | | $\begin{cases} 2. & 0 \end{cases}$ | 13. 33 | 141904 | 61 .5 | 051289 | 61 .7 | 1 | | 2. 10 | 12.48 | 141041 | | 051616 | I | ւ | | 2. 10 | 14. 7 | 142321 | | 051474 | | TI | | 4. 0 | 8.30 | 140936 | 63 .0 | 051579 | 63 ·0 T | D | | 4. 0 | 8. 5 | 141798 | 62 . 5 | 051707 | 1 | | | 6. 0 | 23. 2.44 | 141030 | 65 '5 | 052169 | 66 ·0 T | D | | 6. 0 | 5. 5 | 143132 | 63 .2 | 051487 | 63 .0 | | | 8. 0 | 22. 59. 38 | 141276 | 67 .0 | 051740 | 66.5 | 11 | | 8. 0 | 2. 13 | 142017 | 64 2 | 051434 | 1 | • | | 10. 0 | 59. 18 | 140998 | 67 .0 | 051431 | 66.7 | - 11 | | 10. 0 | 23. 1.11 | 142011 | 64 .5 | 051469 | 65 .0 |) . | | 12. 0 | 22. 58. 41 | 141132 | 66 .2 | 051193 | 66 ·0 I | | | 12. 0 | 22. 59. 40 | 141631 | 63.0 | 050989 | 63 ·0 | | | 14. 0 | 23. 0. 16 | 141312 | 65 .0 | 051170 | 65 .0 | - | | 14. 0 | 57.11 | 141245 | 63 .6 | 051190
051207 | 62 .4 | 1 | | 16. 0 | 22. 59. 26 | 141323 | 64 .2 | 051164 | 64 .0 | | | 16. 0 | 56. 39 | 140855 | 62 ·0 | 051207 | 61 .0 | | | 18. 0
20. 0 | 57. 55
55. 59 | 141696
141066 | $\begin{array}{c c} 63.5 \\ 62.2 \end{array}$ | 0512 72
051469 | 63 · 3 I | . | | 18. 0
20. 0 | 55. 15
54. 49 | 140961
139940 | 59 .3 | 051323 | I . | | | 20. 0 | 22. 58. 19 | | 62 0 | 051486 | 62 · 0 T | l II | | 20. 0
22. 0 | 22. 57. 50 | 138185 | 58.6 | 051211 | 58 .3 | | | | 22.00.10 | 20000 | | 001100 | 02 0 | | | | 22.000 | • | | l | 1 | | | Aug. 31. 0. 0 | 23. 6.18 | 0 ·139488 | 62 .0 | 0 .051358 | 62 ·0 T | D | Sep. | 3. 0. 0 | 23. 6. 48 | 0 ·140112 | 59 •2 | 0 .051365 | 59 .0 | 1 | | [1.50 | 12.42 | 140588 | | 051558 | | | - | $\int 1.50$ | 8.55 | 141041 | | 051571 | | G H | | $\left\{ \begin{array}{cc} 2. & 0 \\ \end{array} \right\}$ | 12, 32 | 140588 | 63.0 | 051558 | 63 .0 | | | ₹ 2. 0 | 9. 2 | 140809 | 62 .0 | 051500 | 61 .5 | i | | 2.10 | 12. 8 | 140588 | 20. 2 | 051558 | T | - 11 | | 2. 10 | 9. 28 | 141272 | 40.0 | 051500 | 63 .0 | G H | | 4. 0 | 7. 39 | 141240
142159 | $\begin{array}{c c} 63 \cdot 2 \\ 63 \cdot 5 \end{array}$ | 051630 | 63 ·0 I | - | | 4. 0 | 6. 5 | 141862 | 63 ·0 | 051900
051630 | 63 .0 | 1 | | 6. 0
8. 0 | 2. 44
23. 0. 2 | 142159 | 63 .2 | 051630
051345 | 63 ·0 | | | 6. 0
8. 0 | 2. 49
2. 4 | 142395
142429 | 63 .8 | 051504 | i | | | 10. 0 | 23. 0. 2
22. 58. 51 | | 63 .0 | 051416 | 63·0 I | . | | 8. 0
10. 0 | 1. 28 | 142429 | 63.5 | 051415 | 1 | | | 12. 0 | 59, 10 | 141302 | 62 .0 | 051329 | 62.0 | . 11 | | 10. 0 | 0. 0 | 142802 | 64 .0 | 051104 | | | | 14. 0 | 58.25 | 142189 | 61 .0 | 051310 | 61 .2 | ^ | | 14. 0 | 2. 39 | 141927 | 63 5 | 050749 | 63 .5 | | | 16. 0 | 59. 43 | 141594 | 59 .0 | 051237 | 59 .0 | | | 16. 0 | 57 . 16 | 141772 | 62 .2 | 050760 | 62 .0 | 1 | | 18. 0 | 58. 10 | 141803 | 59 .0 | 051536 | 59 .0 | 1 | | 18. 0 | 56. 45 | 140841 | 60 .4 | 050850 | 60 .2 | , | | 20. 0 | 55 . 20 | 141177 | 59 .0 | 051956 | 59 ·0 G | 3 | | 20. 0 | 56. 32 | 140440 | 59 .6 | 051334 | 59 .6 | | | 22. 0 | 22. 58. 59 | 139662 | 59 .3 | 051686 | 59 ·0 G | н | | 22. 0 | 0. 4 | 139338 | 59 .2 | 051405 | 59 .2 | G E | | Sep. 1. 0. 0 | 99 0 17 | 0 ·139612 | G1 .77 | 0.051951 | 61.0 | | g _{an} | 4 0 0 | 99 10 0 | 0.140010 | 61 .0 | 0.051885 | 61 .0 | G | | (1.50) | 13. 16 | 141242 | 01 7 | 051526 | UI U G | H A | эер. | 4. 0. 0 | 23. 10. 0
10. 56 | 0 · 1402 19
142287 | 01 0 | 050660 | 01 0 | TI | | $\left\{ \begin{array}{ccc} 1.50 \\ 2.0 \end{array} \right\}$ | 13. 10
12. 54 | 141312 | 65 .0 | 051320 | 65 .0 | | | $\begin{cases} 1.50 \\ 2.0 \end{cases}$ | 10. 30 | 142472 | 62 .7 | 1 | 61 .0 | 1 - | | 2. 10 | 12. 52 | 141428 | | 051420 | G | н | | 2. 10 | 12. 18 | 142588 | - | 050710 | | TI | | 4. 0 | 8. 37 | 141560 | 66 .0 | 051492 | | | | 4. 0 | 5. 12 | 143176 | 64 .2 | 051862 | 64 .0 | L | | 6. 0 | 23. 3.30 | 142846 | | 051601 | | 11 |
 6. 0 | 1. 27 | 142103 | | 051577 | 64 .0 | | | 8. 0 | 22. 58. 45 | 142523 | | 051544 | 68 .0 | | | 8. 0 | 1.45 | 142918 | | | | | | 10. 0 | 23. 0.43 | | 67 .0 | 051075 | | | | 10. 0 | 0.56 | 143358 | 62 .0 | 051102 | | L | | 12. 0 | 22. 59. 49 | 142157 | 67.0 | 051168 | 67.00 | 11 | | 12. 0 | 0. 2 | 142279 | 60 .8 | 051169 | 61 .3 | 0 | Reading of Torsion-Circle of Meridianal Magnet for Brass Bar resting in Magnetic Meridian, 269°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 37°. 45′. Reading for Brass Bar in the same position, 358°. 6′. Time of Vibration of Horizontal Force Magnetometer, 20°.5. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24.97; in Vertical Plane, 23.1. DECLINATION MAGNET. Ang. 29⁴, between 22^h and 24^h; Aug. 30^d, between 4^h and 6^h, and between 22^h and 24^h; Aug. 31^d, between 0^h and 1^h, 50^m, and between 22^h and 24^h; Sep. 2^d, between 2^h and 24^h; Sep. 2^d, between 2^h and 24^h; Sep. 2^d, between 2^h and 16^h, and between 22^h and 24^h; and Sep, 4^d, between 2^h 10^m and 4^h, considerable changes occurred. HORIZONTAL FORCE MAGNET. Aug. 29^d, between 20^h and 22^h; and Sep. 4^d, between 0^h and 1^h. 50^m, considerable changes took place. Vertical Force Magnet. Sep. 44. Between 0b and 4b considerable changes occurred. | | | | | | Daily Obse | rvatio | as fro | om September 5 to | 11. | | | | | | |-------------------------|--|-------------------------|---|---|---|---------------|------------|--|-----------------------|---|---|---|---|------------| | Time (A
Recke
Dec | ngen Mean
Astronomical
oning) of
clination
ervation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.forTemp. | re di di | Observers. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.forTemp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor. for Temp | Thermometer of
Vertical Force
Magnetometer. | Observers. | | | d h m | 0 / 11 | | 0 | | 0 | | d h m | 0 1 11 | | 0 | | 0 | | | Sep. | 5. 14. 0 | 23. 0.46 | 0 .143088 | 56 0 | 0 .051426 | 5 7 ·0 | | Sep. 8.14. 0 | 22. 59. 44 | 0 ·142273 | 67.0 | 0 .051289 | 67 .0 | G H | | • | 16. 0 | 22.55 . 2 | 142509 | 55 .0 | 051423 | 56 .0 | | 16. 0 | 58. 3 5 | 141841 | 65 ·5 | 051229 | 66 .0 | | | | 18. 0 | 52. 14 | 142103 | 55 ·5 | 051715 | 55 .7 | | 18. 0 | 57. 49 | 141528 | 64 .0 | 051242 | 64 .7 | | | | 20. 0 | 51. 15 | 141002 | 56 ·0 | 052029 | 56 ·0 | | 20. 0 | 56. 20
22. 59. 46 | 140704 | 63 .0 | 051202
051128 | 60 ·8 | 1 | | | 22. 0 | 22. 54. 22 | 140122 | 56 ·0 | 051851 | 90 ·0 | I D | 22. 0 | 22. 09. 40 | 138944 | 61 .0 | 0.51120 | 00 0 | " | | Sep. | 6. 0. 0 | 23. 2.24 | 0 ·139963 | 57 .0 | 0 .051596 | 57 .0 | тр | Sep. 9. 0. 0 | 23. 10. 51 | 0 ·141078 | 62 ·3 | 0 .051166 | 62 .0 | L | | - 1 | [1.50] | 4.44 | 141185 | | 051923 | | 1 1 | 1.50 | 14. 30 | 141286 | | 051741 | | 1 | | | ₹ 2. 0 | 5.49 | 141485 | 60 .0 | 051923 | 60 .0 | 1 | ₹ 2. 0 | 14. 59 | 141471 | 64.8 | 051798 | 64 .7 | | | | 2.10 | 5. 8 | 141485 | | 051923 | | T D | 2. 10 | 13. 9 | 141633 | | 051812 | 40.0 | L | | | 4. 0 | 23. 0.51 | 141441 | 61 .2 | 051714 | 61 .5 | | 4. 0 | 8.45 | 140071 | 67.0 | 051851 | 68 .0 | I . | | | 6. 0 | 22. 57. 12 | 141862 | 63.0 | 051817 | 63 .5 | | 6. 0 | 23, 3.50 | 141802 | 69 .5 | 052021
051754 | 70 · 0
70 · 5 | , | | | 8. 0 | 55. 35 | 141991 | 64.0 | 051648
051470 | 64 ·0 | | 8. 0
10. 0 | 22. 59. 38
54. 54 | 140986
140132 | 70·3 | 051734 | 70 2 | 1 | | | 10. 0
12. 0 | 52.59
55.25 | 142223
141528 | 64 ·0 | 051470 | $64 \cdot 0$ | | 10. 0
12. 0 | 55. 15 | 139210 | 69 .2 | 051271 | 69 5 | | | | 14. 0 | 57. 25 | 141028 | 63 .0 | 051403 | 63 .0 | | 14. 0 | 52. 41 | 140620 | 69.0 | 051277 | 69 .0 | | | | 16. 0 | 55. 29 | 141825 | 60 .5 | 050727 | 60.6 | | 16. 0 | 55. 36 | 139492 | 67 .0 | 050890 | 67 .0 | | | | 18. 0 | 57. 18 | 141362 | 59.0 | 050810 | 59 .0 | | 18. 0 | 56. 38 | 139805 | 65 .0 | 050885 | 65 .0 | | | | 20. 0 | 22, 51, 33 | 140963 | 58 .0 | 051217 | 58 .0 | T D | 20. 0 | 22.57.4 | 138961 | 63 .2 | 051081 | 63 .7 | T D | | | 22. 0 | 23. 0. 4 | 138744 | 56 .8 | 051403 | 56 •4 | L | 22. 0 | 23. 1.18 | 138412 | 63 .2 | 050918 | 63 .0 | L | | Sep. | 7. 0. 0 | 23. 10. 7 | 0 ·138581 | 59 .0 | 0 .051483 | 58 .5 | L | Sep. 10. 0. 0 | 23. 9.29 | 0 ·139045 | 64 • 5 | 0 .051042 | 64 ·3 | L | | wep. | (1.50 | 14. 14 | 141978 | 30 0 | 051655 | | | (1.50 | 10. 34 | 140793 | | 051431 | | | | | ₹ 2. 0 | 12. 57 | 141284 | 63 .0 | 051584 | 62 .8 | | ₹ 2. 0 | 10. 34 | 140933 | 67 .2 | 051360 | 67.0 | 1 | | | 2. 10 | 11. 5 l | 141168 | | 051526 | | L | 2. 10 | 10.34 | 141071 |] | 051360 | | L | | | 4. 0 | 5. 0 | 142501 | 64 .0 | 051391 | 64 .0 | | | 4. 52 | 141037 | 69 .0 | 051343 | 69 3 | | | | 6. 0 | 2. 18 | 141111 | 64 .0 | 051007 | 64 .0 | | 6. 0 | 2.49 | 141343 | 70.7 | 051130 | 71 ·0
70 ·5 | | | | 8. 0 | 23. 0. 19 | 141428 | 65 .0 | 051241 | 65 .0 | | 8. 0 | 23. 1. 8 | 142159 | 70 4 | 050935
050773 | 69 .5 | | | | 10. 0 | 22. 59. 19 | 141729 | 65 .0 | 051326 | 65 .0 | | _ | 22. 59. 54
59. 25 | 141524
142013 | 69 ·5 | 1 | 68 2 | | | | $\begin{bmatrix} 12. & 0 \\ 14. & 0 \end{bmatrix}$ | 59. 58
59. 4 | 141482
141492 | 64 ·0 | 051161
051096 | 63 .8 | 1 1 | 12. 0
14. 0 | 58. 20 | 142157 | 67 .0 | i . | 67.0 | | | | 16. 0 | 57. 56 | 141452 | 62.0 | 051187 | 62 .0 | 1 1 | 16. 0 | 59. 18 | 142053 | 65 .0 | 050800 | 65 .0 | 1 | | | 18. 0 | 58, 35 | 141388 | 62 .0 | 051329 | | 1 1 | 18. 0 | 57.39 | 142094 | 63.0 | 050918 | 63 .0 | | | | 20. 0 | 56.41 | 141041 | 62 .0 | 051415 | 62 .0 | | 20. 0 | 22. 58. 13 | 140627 | 62 .4 | | 62 .2 | | | | 22. 0 | 22. 59, 12 | 140009 | 63 .0 | 051252 | 63 .0 | G H | 22. 0 | 23. 5. 5 | 138219 | 63 .2 | 051308 | 63 .7 | TD | | Sep. | 8. 0. 0 | 23. 6, 20 | 0 ·140537 | 63 ·5 | 0 .050998 | 63 .5 | Сн | Sep. 11. 0. 0 | 23. 11. 29 | 0 .138944 | 65 .5 | 0 .051336 | 66 .0 | T | | ·r. | 1.50 | 8.38 | 141845 | 55 9 | 051312 | 000 | " | (1.50 | 12. 52 | 140349 | | 051481 | 1 | | | | $\begin{cases} 2. & 0 \\ 2. & 0 \end{cases}$ | 8.23 | 141891 | 65 .0 | 051312 | 65 .0 | | 2. 0 | 12.41 | 140349 | | | 67 .5 | , ! | | | 2. 10 | 8, 37 | 141891 | ' | 051312 | | G H | 2. 10 | 12.48 | 140349 | | 051410 | 1 | TD | | | 4. 0 | 5. 9 | 1 1 | | 051411 | | | 4. 0 | 7. 0 | 141214 | | | | 1 | | | 6. 0 | 2, 52 | | | 051289 | | | 6. 0 | 2. 22 | 141853 | | | | 4 | | | 8. 0 | 0. 59 | | 67 .0 | 051147 | | | 8. 0 | 2. 22 | 141871 | | | 70 ·0 | | | | 10. 0 | 1. 12 | | 67 .0 | 051147 | 67.0 | L | 10. 0 | 0.35 | 141965
142338 | | 1 | 1 | | | | 12. 0 | 0. 38 | 142157 | 04.0 | 051218 | 67.0 | GH | 12. 0 | 0. 35 | 142000 | 00.0 | 000020 | 00 0 | J | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 269°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 37°. 45′. Reading for Brass Bar in the same position, 358°. 6′. Time of Vibration of Horizontal Force Magnetometer, 20°.5: Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°.97; in Vertical Plane, 23°.1. Declination Magnet. Sep. 5^d, between 14^h and 16^h, and between 22^h and 24^h; Sep. 6^d, between 18^h and 24^h; Sep. 7^d, between 2^h. 10^m and 4^h, and between 22^h and 24^h; Sep. 8^d and 9^d, between 22^h and 24^h; Sep. 10^h, between 2^h. 10^m and 4^h, considerable changes occurred. HORIZONTAL FORCE MAGNET. Sep. 6d, between 20h and 22h; Sep. 7d, between 0h and 1h. 50m; Sep. 8d, between 22h and 24h; and Sep. 10d, between 20h and 22h, considerable changes took place. | | | | |] | Daily Obser | vations | fron | September 12 to | 18. | | | | | | |-----------|---|----------------------------------|---|---|---|---------------------|------------|--|-------------------------|---|---|---|---|------------| | Time (Rec | ingen Mean (Astronomical (koning) of eclination eservation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor.for Temp. | ermome
rtical Fo | Observers. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor.
Force
cor.forTemp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | | | d h m | 0 / 1/ | | 0 | | 0 | | d h m | 0 / " | | 0 | | 0 | | | Sep. | 12.14. 0 | 23. 1.48 | 0 .143196 | 64 .0 | 0.051178 | 64 .0 | G | Sep. 15. 14. 0 | 22. 59. 50 | 0 .141631 | 63 .0 | 0 .050989 | 63 .0 | G | | | 16. 0 | 22 . 58 . 7 | 143266 | 64 .0 | 050950 | 64 .0 | | 16. 0 | 59. 25 | 142117 | 63 .0 | 051074 | 63 .0 | | | | 18. 0 | 22, 59, 38 | 145004 | 64 .0 | 051021 | 64 .0 | | 18. 0 | 58.16 | 141862 | 63 .0 | 051216 | 63 .0 | | | | 20. 0 | 23. 2.31 | 144077 | 64 .0 | 051150 | 64 .0 | G | 20. 0 | 55 . 34 | 141862 | 63 ·0 | 051167 | 63 .0 | | | | 22. 0 | 3. 49 | 139287 | 62 ·8 | 050989 | 63.0 | L | 22. 0 | 22.58. 1 | 141228 | 64 ·0 | 050936 | 64 .0 | TI | | Sep. | 13. 0. 0 | 23. 13. 52 | 0 ·139339 | 63 •2 | 0 .050989 | 63 .0 | L | Sep. 16. 0. 0 | 23. 8.11 | 0 · 140778 | 65 ·0 | 0 .050906 | 65 .0 | TI | | | $\begin{bmatrix} 1.50 \end{bmatrix}$ | 19 . 26 | 138863 | | 051434 | | | 1.50 | 13.49 | 142014 | | 051244 | | 1 | | | $\langle 2. 0 \rangle$ | 19. 34 | 138793 | 64 .0 | 051434 | 64 .0 | | ₹ 2. 0 | 12. 57 | 142130 | 66 .8 | 051244 | 67 .4 | | | | 2. 10 | 18.42 | 139605 | | 051556 | | L | 2.10 | 13. 1 | 142361 | | 051244 | | TI | | | 4. 0 | 11. 25 | 140949 | 64 .0 | 051506 | | ЕН | 4. 0 | 7. 58 | 142620 | 67 0 | 051183 | 67 .0 | | | | 6. 0 | 23. 4. 16 | 142173 | 64 .5 | 052160 | 64 .0 | G | 6. 0 | 3.36 | 143181 | 66 .0 | 050909 | 66.0 | • | | | 8. 0 | 22. 59. 25 | 142521 | 64.8 | 052289 | 64 .0 | | 8. 0 | 2. 24 | 143602 | 65 .5 | 051017 | 65 .5 | | | | 10. 0
12. 0 | 23. 0.26
22.55. 2 | 142984 | 64 .5 | 051363 | 64 .0 | G | 10. 0 | 23. 0.55 | 144320 | 65 .5 | 051267 | 65 .2 | | | | 14. 0 | 22. 55. 2
23. 0. 37 | 142269 | 64 .0 | 051221 | 64 .0 | L | 12. 0 | 22. 55. 18 | 145444 | 62 .0 | 050617 | 62 .0 | 1 | | | 16. 0 | 22.55.6 | 142094
141851 | $\begin{array}{c c} 63 \cdot 0 \\ 62 \cdot 0 \end{array}$ | 051202 | $63.0 \\ 62.0$ | | 14. 0 | 22. 56. 6 | 143877 | 60 .6 | 050745 | 61 .0 | | | | 18. 0 | 59. 13 | 141831 | 61 .0 | 051130
051386 | 61.0 | 1 | 16. 0 | 23. 0.45 | 143046 | 59 ·5
59 ·0 | 050907 | 59 .5 | 1 | | | 20. 0 | 22. 58. 2 | 142180 | 60 .0 | 051560 | 60.0 | L | 18. 0
20. 0 | 22. 57. 51
22. 56. 8 | 142567
141504 | 57.8 | 051152
051095 | 59 ·0
58 ·0 | 1 | | | 22. 0 | 23. 0.25 | 140095 | 60 .0 | 051517 | 90.0 | | 22. 0 | 23. 0.28 | 138581 | 59 .0 | 051508 | 59.0 | 1 | | Sep. | 14. 0. 0 | 23. 7.27 | 0. 140159 | 62 .0 | 0 .051749 | 62 .5 | тъ | Sep. 17. 0. 0 | 23. 6.51 | 0 ·138222 | 60 .4 | 0 .051625 | 60 .7 | T 1 | | • | (1.50 | 8. 5 | 141030 | - | 051977 | 02 0 | וייי | (1.50) | 13. 16 | 140978 | 00 1 | 051828 | | G I | | | ₹ 2. 0 | 7. 54 | 141030 | 65 .5 | 051977 | 66 .0 | | 2. 0 | 11. 46 | 140514 | 61 .5 | 051793 | 62 .0 | 1 | | | 2. 10 | 7. 54 | 141262 | | 051905 | - 1 | ΤО | 2. 10 | 11. 3 | 140862 | | 051814 | | G I | | | 4.0 | 2. 56 | 141852 | 66 .8 | 051539 | 67.0 | L | 4. 0 | 8. 55 | 142645 | 61 .2 | 052006 | 62 .0 | | | | 6. 0 | 2.56 | 143892 | 67 .5 | 051338 | 67 .2 | | 6. 0 | 23. 3. 0 | 142430 | 62 .0 | 052229 | 62 .2 | | | | 8. 0 | 4. 19 | | 67 .5 | 051291 | 67 .3 | | 8. 0 | 22. 59. 56 | 143176 | 62 .4 | 051871 | 62 .5 | | | | 10. 0 | 1. 24 | 142507 | 66 .2 | 050980 | 66 .0 | L | 10. 0 | 23. 1. 9 | 142982 | 62 .7 | 051701 | 63 .0 | L | | | 12. 0 | 23. 0.34 | 142122 | 65 .0 | 050992 | | TО | | 0. 32 | 142894 | 62 .0 | 051401 | 62 .0 | | | | 14. 0
16. 0 | 22. 58. 54
22. 58. 35 | 141927 | 63 .2 | 051078 | 64.0 | | 14. 0 | 0. 22 | 142662 | 62 .0 | 051343 | 62 .0 | 1 | | | 18. 0 | 59. 34 | 141304 | 60 .4 | 050705 | 60 .5 | | 16. 0 | 23. 0.11 | 142768 | 61.0 | 051244 | 61.0 | 1 | | | 20. 0 | 22. 58. 40 | 141223
140963 | 59 0 | 051170 | 59 5 | | 18. 0 | 22. 59. 8 | 142582 | 59 5 | 051403 | 60.0 | L . | | | 22. 0 | 23. 1. 5 | 139758 | 58 ·0
58 ·2 | 051371
051540 | 58 ·7
58 ·5 | T D
L | 20. 0
22. 0 | 58, 26
22, 56, 58 | 142150
139911 | 59 ·0
58 ·5 | 051450
051258 | 59 · 7
57 · 8 | 1 | | Sen. | 15. 0. 0 | 23. 7.42 | 0 ·138936 | 60.0 | 0.051450 | 50 -0 | | | | | | | | 1 | | ~~p. | (1.50 | 9. 12 | 140549 | טי טט | 0 ·051472
051940 | 59 .8 | L | Sep. 18. 0. 0 | 23. 5.58 | 1 • 139052 | 60.0 | 0 ·051495
051543 | 59 •9 | G I | | | 2. 0 | 9. 12 | | 63 .6 | 051940 | 62 .8 | | $\left\{\begin{array}{c} 1.50 \\ 2.0 \end{array}\right\}$ | 10. 8
9. 55 | 140408
140408 | 62 .5 | 051543 | 62 .0 | | | | 2.10 | 9. 12 | 141245 | 30 0 | 051897 | 02 0 | L | 2. 10 | 10. 8 | 140408 | U2 U | 051545 | | G I | | | 4. 0 | 5.41 | l l | 65 .0 | 051861 | 65 .3 | | 4. 0 | 6. 49 | 141453 | 62 .7 | 051715 | 63 .0 | T | | | 6. 0 | 2. 54 | | 66.0 | 051478 | 66 · 0 | - 2 | 6. 0 | 2. 27 | 142199 | 62 .0 | 051472 | 62 0 | T | | | 8. 0 | 0.31 | | 66 .0 | 051491 | 66 .2 | | 8. 0 | 23. 0.39 | 143182 | 60 .6 | 051384 | 60.8 | T. | | | 10. 0 | 23. 0.40 | | 66 .0 | 051336 | 66 .0 | ΤД | 10. 0 | 22. 57. 52 | 142799 | 59 .0 | 051339 | 59 . 2 | | | | 12. 0 | 22, 59, 50 | | 64 0 | 05105 7 | 64 .0 | ~ | 12. 0 | 56. 9 | 143393 | 57 .0 | 051244 | 57 ·8 | | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 269°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 37°. 45′. Reading for Brass Bar in the same position, 358°. 6′. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24.97; in Vertical Plane, 23.1. DECLINATION MAGNET. Sep. 12^d, between 22^h and 24^h; Sep. 13^d, between 0^h and 1^h, 50^m, between 2^h, 10^m and 6^h, between 10^h and 16^h, and between 22^h and 24^h; Sep. 14^d and 15^d, between 2^h and 1^h, 50^m, between 2^h, 10^m and 4^h, between 10^h and 12^h, and between 22^h and 24^h; Sep. 17^d, between 0^h and 1^h, 50^m, between 4^h and 6^h, and between 22^h and 24^h, considerable changes occurred. HORIZONTAL FORCE MAGNET. Sep. 12^d, between 20^h and 22^h; Sep. 13^d, between 20^h and 22^h; Sep. 14^d, between 4^h and 6^h; Sep. 16^d, between 20^h and 22^h; and Sep. 17^d, between 0^h and 1^h. 50^m, and between 20^h and 22^h, considerable changes took place. $[\]begin{array}{ll} V_{\,\rm ERTICAL}\,Force\,\,M_{\,\rm AGNET}.\\ Sep.\,13^d. & Between\,\,8^h\,\,and\,\,10^h\,\,a\,\,considerable\,\,change\,\,took\,\,place. \end{array}$ | | | | | | Daily Obse | rvation | as fro | om September 19 t | | | | | | | |---------------------------|---|-------------------------|---|---|--|---------------------------|------------|--|----------------------|---|---|---|---|-----| | Time (A:
Recke
Decl | gen Mean
stronomical
oning) of
lination
ervation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor. for Temp. | ermo
ertical
agneto | Observers. | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert, Force cor, for Temp. | Thermometer of
Vertical Force
Magnetometer. | 10 | | | d h m | 0 / " | | 0 | | 0 | | d h m | 0 , " | | 0 | | 0 | | | Sep. 1 | 19. 14. 0 | 22. 59, 42 | 0 •143645 | 56 .7 | 0 .051568 | 57 .0 | G H | Sep. 22. 14. 0 | 22.59.46 | 0 ·143083 | 67 •0 | 0 .050862 | 67 .0 | G | | cop. | 16. 0 | 23. 0.43 | 143645 | 56 .7 | 051782 | 57.0 | | 16. 0 | 23. 2.38 | 142194 | 65 .2 | 050861 | 65 .5 | | | | 18. 0 | 22. 55. 57 | 143448 | 59 .0 | 051617 | 58 .2 | | 18. 0 | 4. 4 | 143377 | 65 .2 | 050828 | 65 .3 | 1 | | | 20. 0 | 22. 56. 39 | 142292 | 60 .9 | 051697 | 60 .8 | GН | 20. 0 | 23. 1.47 | 142702 | 65 .0 | 050956 | 65 .0 | h | | | 22. 0 | 23. 0.55 | 140312 | 61 .0 | 051386 | 61 .0 | T D | | 22. 59. 55 | 141925 | 67.0 | 051374 | 67 .0 | C | | Sep. 2 | 20. 0. 0 | 23. 4.37 | 0 · 138876 | 63 .2 | 0 .051557 | 63 · 3 | L | Sep. 23. 0. 0 | 23. 4.57 | 0 •141925 | 67 .0 | 0 ·051147 | 6 7 ·0 | | | oop. | (1.50 | 8. 59 | 140031 | 00 2 | 051455 | | Тр | (1.50 | 6. 51 | 142496 | - • | 051601 | | 1 | | | 2. 0 | 8. 43 | 140031 | 65 .3 | 051455 | 65 .3 | i í | 2. 0 | 6. 2 | 142427 | 67.8 | 051601 | 68 .0 | 1 | | | 2. 10 | 8. 16 | 140077 | | 051455 | | L | 2.10 | 6. 7 | 142265 | | 051622 | | 1 | | | 4. 0 | 5 . 8 | 140566 | 65 .5 | 051384 | 66 .5 | GН | 4. 0 | 6.49 | 141648 | 67 .0 | 051574 | 67 .0 | 1 | | | 6. 0 | 23. 0.20 | 141627 | 66 .5 | 051360 | 67 .0 | | 6. 0 | 2.31 | 140833 | 67 .5 | 051610 | 67.0 | 1 | | | 8. 0 | 22.59. 2 | 142536 | 65 .5 | 051265 | 66 .0 | | 8. 0 | 0. 1 | 141508 | 6 7 · 0 | 051254 | 67 .0 | ŀ | | | 10. 0 | 56, 24 | 141428 | 65 .0 | 051288 | 65 .5 | G H | 10. 0 | 23. 0.56 | 142050 | 66 .2 | 050956 | 66 .5 | 1 | | | 12. 0 | 52.4 8 | 140899 | 64 · 5 | 050981 | 64 .8 | L | 12. 0 | 22. 56. 19 | 142380 | 65 .2 | 050837 | 66 .0 | - 6 | | | 14. 0 | 55. 36 | 141258 | 62 .8 | 050918 | 63 .0 | | 14. 0 | 57.26 | 141528 | 64 .0 | 050662 | 64 .5 | - 1 | | | 16. 0
 57 . 31 | 142304 | 61.0 | 050790 | 61 .2 | | 16. 0 | 22. 59. 12 | 142455 | 64 .0 | 050972 | 64 .0 | - 1 | | | 18. 0 | 58.48 | 142173 | 59 .0 | 050836 | 59 ·5 | 1 | 18. 0 | 23. 1.15 | 140833 | 64 .0 | 050769 | 64 .2 | - 1 | | | 20. 0 | 59. 27 | 142280 | 57.0 | 050999 | 57 .2 | L | 20. 0 | 10. 35 | 143030 | 64 .5 | 050270 | 64.5 | ł | | | 22. 0 | 22. 58. 56 | 140933 | 56 .0 | 051409 | 56 .0 | ΤО | 22. 0 | 4.29 | 140369 | 64 .0 | 050616 | 64 .0 | | | Sep. 2 | 21. 0. 0 | 23. 4. 6 | 0 ·139844 | 56·0 | 0 ·051302 | 56 .3 | тр | Sep. 24. 0. 0 | 23. 7.33 | 0 · 139906 | 64 .0 | 0 .050912 | 64 .2 | | | = | [1.50] | 8. 9 | 142003 | | 051435 | | 1 | 1.50 | 22. 57. 12 | 149181 | | 058123 | | ĺ | | | ₹ 2. 0 | 8.23 | 142165 | 57 ·6 | 051435 | 57.7 | | ₹ 2. 0 | 48.46 | 151869 | 65 · 1 | 056671 | 65 ·5 | ı | | | 2.10 | 7 . 51 | 142119 | | 051435 | | T D | 2. 10 | 22 . 44. 4 | 154650 | | 056522 | | | | | 4. 0 | 3. 20 | 142197 | 59 .5 | 051761 | 59 . 5 | L | 4. 0 | 23. 6.44 | 140196 | 66 .2 | 054599 | 66 .7 | - 1 | | | 6. 0 | 1.43 | 142279 | 6 0 ·8 | 051742 | 61 .0 | | 6. 0 | 23. 9.12 | 171937 | 67.0 | 054016 | 67.0 | - 1 | | | 8. 0 | 0. 35 | 142868 | 61 .8 | 051685 | 62 .0 | L | 8. 0 | 22. 58. 15 | 134741 | 67.0 | 054493 | | | | | 10. 0 | 2. 4 | 143057 | 62 .0 | 051486 | 62 .0 | G | 10. 0 | 22. 57. 28 | 137619 | 66.0 | 049698 | 66 0 | - 1 | | | 12. 0 | 2. 25 | 143176 | 63 .3 | 051461 | 63 .5 | T D | 12. 0 | 23. 16. 5 | 132979 | 64 .2 | 049415 | 64 ·5
63 ·5 | Ŀ | | | 14. 0 | 1. 28 | 142686 | 64 0 | 051391 | 64 .0 | 1 1 | 14. 0 | 7. 14 | 135876 | 63 .3 | 049325 | 63.5 | ı | | | 16. 0
18. 0 | 3. 1
1. 34 | 142686
142386 | 64 ·0
64 ·0 | 051235
051463 | 64 ·0 | | 16. 0
18. 0 | 23. 0.40 | 136224 | 63 · 3 | 051660
051856 | 61.5 | | | | 20. 0 | 0. 6 | 142133 | 63 .3 | 051318 | 63 .2 | T D | 20. 0 | 22, 59. 53
57. 28 | 136156
135221 | 59.0 | 051757 | 59.0 | | | | 22. 0 | 0. 32 | 140472 | 63 .0 | 051318 | | G H | 22. 0 | 22, 57. 56 | 135151 | 59.0 | 052220 | 59 .0 | ŧ | | en o | 22. 0. 0 | 23. 7.29 | 0 ·141039 | R4 . E | 0.051000 | R5 • 2 | | Sep. 25. 0. 0 | 00 4 10 | 0.125105 | 50 .0 | 0 .052291 | 59 .0 | , | | -y. 2 | 1. 50 | 23. 1. 29
8. 48 | 141694 | U4 0 | 051147 | 00.0 | ч п | Sep. 25. 0. 0 | 23, 4.13
6.46 | 0 ·135105
136211 | 00 0 | 052576 | 1 | | | | 2. 0 | 8. 52 | | 67 .0 | 051147 | 67 .0 | | 2. 0 | 6. 53 | 136443 | 62 .3 | 052505 | 62 .0 | | | | 2. 10 | 8. 36 | 142273 | 0, 0 | 051183 | | GН | 2. 0 | 6. 45 | 136211 | 02 0 | 052469 |] " | | | | 4. 0 | 23. 1.18 | | 67 ·0 | 051147 | | | 4. 0 | 6. 28 | 137562 | 63 .8 | 052458 | 63 . 5 | , [| | | 6. 0 | 22. 59. 15 | | 70.0 | 051345 | | | 6. 0 | 3. 52 | 139352 | 64 .2 | 052075 | 64.0 | - 1 | | | 8. 0 | 59. 13 | | 69 2 | | | | 8. 0 | 1. 38 | 139740 | 64 .5 | 051907 | 64 .5 | - 1 | | | 10. 0 | 22. 59. 25 | | 68 .0 | 050797 | | 1 | 10. 0 | 23. 0.17 | 139674 | | 051790 | 64 .0 | - 1 | | | 12. 0 | 23. 4.29 | | 67.0 | 050733 | | | | 22. 59. 49 | 139359 | | 051558 | 63 .0 | , I | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 269°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 37°. 45′. Reading for Brass Bar in the same position, 358°. 6′. Time of Vibration of Horizontal Force Magnetometer, 20°.5. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°.97; in Vertical Plane, 23°.1. Declination Magnet. Sep. 194, between 20h and 22h; Sep. 20d and 21d, between 22h and 24h; Sep. 22d, between 2h. 10m and 4h, between 10h and 12h, and between 22h and 24h; Sep. 23d, between 18h and 22h; and Sep. 24d, from 0h to 16h, and between 22h and 24h, the changes were very considerable. Horizontal Force Magnet. Sep. 21^d, between 0^h and 1^h. 50^m, a considerable change took place; Sep. 23^d, between 18^h and 22^h; and Sep. 24^d, the changes were very frequent and of large amount. Vertical Force Magnet. Sep. 24^d, between 0^h and 10^h, and between 14^h and 16^h, considerable changes occurred. | | | | | Dail | y Observatio | ons from | n Se | eptember 26 to Oct | tober 2. | | | | | | |---------------------|--|-------------------------|---|----------------|---|------------------------------------|------------|--|------------------------|--|---|--|---|------------| | Time (
Red
De | ingen Mean
Astronomical
koning) of
eclination
servation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | oriz
Agne | Vertical Force Reading in parts of the whole Vert. Force cor. for Temp. | rermomet
ertical Fo
agnetome | Observers. | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western . Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | | | d h m | 0 / " | | 0 | | 0 | | d h m | 0 ' " | | 0 | | 0 | | | Sep. | 26.14. 0 | 22. 44. 26 | 0 ·140949 | 57 .5 | 0 .048972 | 57 .5 | T D | Sep. 29. 14. 0 | 22. 46. 7 | 0 ·137422 | 64 .5 | 0 .049532 | 65 .0 | G | | | 16. 0 | 59. 35 | 139671 | 56 .5 | 049467 | 56 .2 | | 16. 0 | 49, 36 | 138465 | 64 .5 | 050757 | 65 .0 | | | | 18. 0 | 50.1 8 | 138291 | 55 .0 | 050641 | 55 .0 | | 18. 0 | 56. 3 | 137376 | 64 .5 | 051455 | 65.0 | | | | 20. 0 | 57. 10 | 137989 | 54.0 | 051171 | 53 .8 | | () | 58. 12 | 136756 | 61 .0 | 051251 | 61.0 | ı | | | 22. 0 | 56. 39 | 139380 | 54 .0 | 051854 | 54.0 | GН | 22. 0 | 22. 59. 4 0 | 135970 | 60 .0 | 051660 | 60 .0 | TD | | Sep. | 27 . 0. 0 | 22, 59, 52 | 0 ·128269 | 56 .5 | 0 .052634 | 56 .0 | GН | Sep. 30. 0. 0 | 23. 5.45 | 0 ·136194 | 61 .8 | 0 .052077 | 61 ·5 | T D | | 1 | f 1. 50 | $23.\ 10.\ 22$ | 141663 | | 057118 | | | 1.50 | 7. 27 | 138283 | | 052289 | | 1 | | | ₹ 2. 0 | 8. 33 | 142474 | 60 .5 | 056584 | 61 .0 | | ₹ 2. 0 | 6. 36 | 138237 | 64 .0 | 052289 | 64 .0 | 1 | | | 2. 10 | 9, 35 | 142706 | | 056299 | | G H | 2. 10 | 6. 36 | 138051 | | 052289 | | T D | | | 4. 0 | 7 . 39 | 136174 | 1 | 053964 | 62 0 | TD | | 5. 56 | 138567 | 63 .5 | 051568 | 63 .2 | | | | 6. 0 | 5. 56 | 135121 | 61.0 | 051956 | 61 .0 | | 6. 0 | 2. 5 | 138515 | 65 .2 | 051384 | 65.0 | 1 | | | 8. 0 | 0. 49 | 138618 | 63 .0 | 052128 | 63.0 | | 8. 0 | 0. 4 | 138515 | 64 .0 | 051150 | 64.0 | | | | 10. 0 | 3. 15 | 139476 | 63.0 | 051914 | 63 .0 | | 10. 0 | 23. 1. 33 | 138515 | 64 .0 | 051150 | 64 ·0
64 ·0 | • | | | 12. 0 | 1.54 | 139302 | 62 .0 | 052013 | 62 .5 | GН | | 22. 59. 44 | 138515 | 64 .0 | 051292
051448 | 64.0 | | | | 14. 0
16. 0 | 0.33
0.28 | 138704 | 60 ·0
59 ·0 | 052106
052087 | 60 .0 | | 14. 0 | 58. 30 | 138747
139406 | 64 ·0
63 ·0 | 051395 | 63.0 | | | | 18. 0 | 23. 2.20 | 138813
138459 | 58.0 | 052105 | 58.8 | | 16 0
18. 0 | 58. 9
58. 12 | 139570 | 61 .0 | 051315 | 61.0 | | | | 20. 0 | 22. 58. 8 | 137588 | 57·5 | 051995 | 1 1 | з н | 20. 0 | 58. 59 | 138828 | 61 .0 | 051628 | 61.0 | TD | | | 22. 0 | 23. 0. 2 | 135522 | 56.6 | 052380 | 56 .8 | L | 22. 0 | 22. 57. 20 | 137669 | 61 .0 | 051742 | 61.0 | | | Sep. | 90 0 0 | 00 # 94 | 0.195951 | 5 M . O | 0.050460 | 5P .5 | . | Oct. 1. 0. 0 | 09 0 40 | 0 ·136999 | 61.0 | 0 .051668 | 61 ·3 | L | | sep. | 28. 0. 0 | 23. 7.34
10.28 | 0 ·135351
136573 | 37.2 | 0 ·052460
052585 | 57 .5 | L | Oct. 1. 0. 0 | 23. 2.42
6.59 | 137575 | 01 2 | 051701 | 0. 0 | G H | | | $\begin{cases} 1.30 \\ 2.0 \end{cases}$ | 9. 54 | 136619 | 60 .0 | 052585 | 60.0 | | 2. 0 | 7. 13 | 137691 | 63 .0 | 051666 | 63 .0 | 4 | | | 2. 10 | 9. 19 | 137082 | 00 0 | 052514 | 00 0 | L | 2. 10 | 8. 17 | 137691 | 00 | 051701 | " | G H | | | 4. 0 | 5 . 20 | 138697 | 61 ·8 | 052583 | 62 .5 | 1 | 4. 0 | 7. 38 | 139805 | 65 .0 | 051740 | 65 .0 | 1 | | | 6. 0 | 3. 20 | 139650 | 62 .0 | 052149 | 62 .0 | | 6. 0 | 5, 2 | 139851 | 65 .0 | 051540 | 65 .0 | | | | 8. 0 | 23. 0.48 | 140345 | 62 .0 | 052091 | 62 .0 | - 1 | 8. 0 | 5. 25 | 140546 | 65 .0 | 051384 | 65 0 | | | | 10. 0 | 22, 42, 40 | 143589 | 62 .0 | 052041 | 62 .0 | GН | 10. 0 | 23. 1.59 | 140500 | 65 .0 | 051312 | 65 .0 | | | | 12. 0 | 54. 30 | 139230 | 60 .2 | 050892 | 60 .7 | L | 12. 0 | 22. 57. 25 | 139961 | 65 .3 | 051264 | | I . | | | 14. 0 | 49. 7 | 137770 | 59 .0 | 050440 | 59 .0 | | 14. 0 | 23. 0.28 | 139805 | 65 .0 | 051502 | 65 .5 | 1 | | | 16. 0 | 22. 56. 20 | 139564 | 58 · 5 | 051069 | 58 .3 | | 16. 0 | 22. 58. 19 | 139805 | 65 .0 | 051431 | 65 2 | 1 | | | 18. 0 | 23. 0. 0 | 140893 | 58.0 | 051715 | 58 .0 | _] | 18. 0 | 22. 59. 18 | 139921 | 65.0 | 051530 | 65 · 5
65 · 2 | | | | 20. 0
22. 0 | 22. 57. 14
23. 0. 11 | 139882
138674 | 57·3
59·0 | 052033
052277 | 57·5
59·0 | r D | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 23. 0. 0
22. 56. 51 | 139805
138581 | 65 · 0
64 · 5 | 051502
051352 | 64.5 | 1 | | | -2. | 20. 0.11 | 100014 | 00 0 | 002277 | 000 | ا ا | 22. 0 | 22. 00. 01 | 100001 | | | | - | | Sep. | 29. 0. 0 | | 0 ·137406 | 60.0 | | 60 .4 | гр | Oct. 2. 0. 0 | 23. 2.22 | 0 ·137498 | 64 .2 | 0.051221 | 64 .0 | } | | | $\begin{bmatrix} 1.50 \\ 2.00 \end{bmatrix}$ | 7. 52 | 136764 | | 052376 | 00 0 | | $\int_{0}^{1.50}$ |
7.43 | 137422 | | 051235 | 04.0 | T D | | | $\begin{cases} 2. & 0 \\ 0. & 10 \end{cases}$ | 7. 43 | 137112 | 63.0 | 052376 | 63 .3 | - } | $\begin{cases} 2. & 0 \\ 2. & 10 \end{cases}$ | 7. 51 | 137422 | 64 .2 | 051235 | 64 .0 | 1 | | | 2. 10 | 7.43 | 137112 | Q5 .0 | 052198 | 65.0 | | 2. 10 | 8. 7 | 137886 | 85 .0 | 051150
051740 | 65 .0 | TD | | | 4. 0
6. 0 | 23. 5. 6
22. 57. 54 | 138718 | 66.0 | 051839
052689 | | ام م | 4. 0
6. 0 | 7. 11
3. 13 | 138414
141065 | 65 ·0 | 051740 | 64 .0 | i . | | | 8. 0 | 54. 33 | 137619
136667 | 65.8 | 052069 | 66 .0 | L | 8. 0 | 4. 3 | 141003 | 63 .2 | 051402 | 63.5 | 1 | | | 10. 0 | 22, 43, 45 | | 64 .8 | 051455 | | L | 10. 0 | 2. 44 | 140588 | 63 .0 | 051487 | t . | | | | 12. 0 | 23. 0.55 | | 64.5 | 049426 | | G | 12. 0 | 1. 22 | 140330 | 1 | 051558 | 63 .0 | | | | | | | 0 | | | } | | | | | | l | - | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 269°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 37°.45′. Reading for Brass Bar in the same position, 358°. 6′. Time of Vibration of Horizontal Force Magnetometer, 20°.5. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°.97; in Vertical Plane, 23°.1. Declination Magnet. Sep. 27^d to 30^d . The changes were large and frequent. Between Oct. 1^d . 22^h and Oct. 2^d . 1^h . 50^m considerable changes occurred. HORIZONTAL FORCE MAGNET. Sep. 26^d, between 22^b and 24^h; Sep. 27^d, between 0^h and 1^h. 50^m, between 2^h. 10^m and 8^h, and between 20^h and 22^h; Sep. 28^d, between 8^h and 12^h; Sep. 29^d, between 8^h and 14^h; Sep. 30^d, between 0^h and 1^h. 50^m; Oct. 1^d, between 2^h. 10^m and 4^h; and Oct. 2^d, between 4^h and 6^h, considerable changes took place. Vertical Force Magnet. Sep. 26^d, between 16^h and 24^h; Sep. 27^d, between 0^h and 6^h; Sep. 28^d, between 10^h and 12^h; Sep. 29^d, between 4^h and 16^h; and Sep. 30^d, between 2^h. 10^m and 4^h, considerable changes occurred. | | | | | | Daily Ob | servati | ons f | rom O | ctober 3 to | 9. | | | | • | | |------------------------|---|---------------------------|---|---|--|---|------------|------------------------|--|----------------------|---|---|--|---|-----------| | Fime (A
Reck
Dec | ngen Mean
Astronomical
coning) of
clination
ervation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor.for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Time (A
Reck
Dec | ngen Mean
Astronomical
coning) of
clination
servation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor, for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor. forTemp. | Thermometer of
Vertical Force
Magnetometer. | Ohservers | | | d h m | 0 / " | | 0 | | 0 | | | d h m | 0 / " | | 0 | | 0 | | | Oct. | 3. 14. 0 | 23. 2.23 | 0 ·141378 | 60 .0 | 0 .051636 | 61 .0 | L | Oct. | 6, 14, 0 | 22, 58, 30 | 0 ·141528 | 64 .0 | 0.050794 | 64 .0 | I | | | 16. 0 | 22. 59. 51 | 141460 | 59 ·8 | 051660 | 60 .0 | | | 16. 0 | 58. 30 | 141399 | 63 .0 | 050775 | 63 .0 | | | | 18. 0 | 59. 16 | 141052 | 59 .3 | 051553 | 59 .2 | | .[| 18. 0 | 57. 25 | 141504 | 62 .0 | 050760 | 62 .0 | 1 | | | 20. 0 | 58. 1 | 141594 | 59 · 0 | 051473 | 59 0 | L | | 20. 0 | 56, 20 | 141209 | 61 .2 | 051002 | 61.2 | | | | 22, 0 | 22. 56. 10 | 139979 | 60.0 | 051852 | 60.0 | T D | | 22. 0 | 22, 56, 53 | 138850 | 63 .0 | 051238 | 63 .0 | T | | Oct. | 4. 0. 0 | 23. 3.53 | 0.141077 | 61 .0 | 0 .051386 | 61 .0 | T D | Oct. | 7. 0. 0 | 23. 5.43 | 0 ·138646 | 65 0 | 0 .050885 | 65 .0 | Т | | | [1.50] | 9.18 | 142048 | | 051715 | | | | (1.50 | 8. 59 | 139659 | | 050816 | | | | | ₹ 2. 0 | 8. 0 | 142048 | 63 .0 | 051715 | 63 .0 | | | $\langle 2, 0 \rangle$ | 8. 40 | 139705 | 66 .0 | 050816 | 66 · 0 | | | | 2. 10 | 8.17 | 141978 | | 051715 | | T D | | (2. 10 | 8.40 | 139705 | į | 050 766 | | T | | | 4. 0 | 4.48 | 141862 | 63 .0 | 051423 | | L | | 4. 0 | 4. 8 | 140931 | 66 · 5 | 050982 | 66 .7 | 1 | | | 6. 10 | 2. 5 | 140988 | 62 ·5 | 051156 | | | } | 6. 0 | 0. 34 | 141328 | 66 .0 | 050837 | 66 .0 | i | | | 8. 0 | 0. 24 | 141349 | 63 .2 | 051224 | | 1 1 | 1 | 8. 0 | 23. 0.34 | 141955 | 64 .6 | 050662 | 64 .5 | ı, | | | 10. 0 | 23. 0.24 | 141464 | 63 .5 | 051105 | | L | | 10. 0 | 22. 59. 32 | 141888 | 63 .2 | 050749 | 63 .5 | | | | 12. 0 | 22. 59 . 50 | 141627 | 63 .5 | 051233 | | T D | | 12. 0 | 56. 0 | 141504 | 62 .0 | 050760 | 62 .0 | ı | | | 14. 0 | 59. 4 | | 63.0 | 051202 | 4 | | | 14. 0 | 57.22 | 141022 | 60.0 | 050713 | 60.0 | 1 | | | 16. 0 | 58. 37 | 141957 | 61.0 | 051258 | 61.0 | | | 16. 0 | 58, 23 | 141362 | 59.0 | 050832 | 59.0 | | | | 18. 0 | 57. 55 | 141802 | 58 .8 | 051152 | | | | 18. 0 | 55. 59 | 141472 | 58 .0 | 050775 | 58.0 | | | | 20. 0 | 56. 11 | 141631 | 57.0 | 050821 | | 1 1 | 1 | 20. 0 | 52.54 | 141585 | 57.0 | 050750 | 57 ·0
59 ·0 | | | | 22. 0 | 22. 55. 48 | 142303 | 57 · 2 | 051157 | 57 .4 | L | | 22. 0 | 22. 57. 30 | 141131 | 59 ·0 | 051081 | 99 V | - | | ct. | 5. 0. 0 | 23. 4.13 | 0 ·142107 | 57 · 5 | | 57.5 | G H | Oct. | 8. 0. 0 | 23. 9. 8 | 0 •139095 | 57.5 | 0 ·050645 | 57 · 5 | 5 | | | $\begin{bmatrix} 1.50 \end{bmatrix}$ | 7.41 | 141262 | | 051457 | | | | [1. 50 | 11. 4 | 140327 | | 050663 | | | | | $\begin{cases} 2. & 0 \end{cases}$ | 8. 8 | 141725 | 61 .0 | 1 | 61 .0 | | | ₹ 2. 0 | 11. 4 | 140675 | 60 .0 | 050628 | 60.0 | - 1 | | | 2. 10 | 8. 56 | 141841 | | 051457 | | | | 2. 10 | 11. 33 | 140976 | | 050628 | 25.0 | 1 | | | 4. 0 | 6, 44 | 140035 | 63 .2 | 051558 | 63 .0 | | | 4. 0 | 7.42 | 141428 | 65.0 | 051170 | 65 .0 | - 1 | | | 6. 0 | 2.51 | 140964 | 65 .0 | | | T | | 6. 0 | 1.57 | 142023 | 66.0 | 051229 | 66 .0 | | | | 8. 0 | 3. 7 | 140663 | 65 .0 | 051338 | 65 .0 | - D | l | 8. 0 | 23. 1.38 | 142023 | 66 .0 | 051322 | 66 .0 | - 4 | | | 10. 0
12. 0 | 23. 0.23
22.57.28 | 140642
140601 | 65 ·2
64 ·0 | 051170
051078 | 65 ·0
64 ·0 | 1 1 | 11 | 10. 0 | 22.57.26 | 140269
139777 | 65 .0 | 051277
050846 | 65 ·0 | | | | 14. 0 | 22. 59. 51 | 140001 | 62 5 | 051167 | 1 | G.II | | 12. 0
14. 0 | 54. 1
51. 1 | 140176 | | 050518 | 62 .5 | - 1 | | | 16. 0 | 23. 0. 5 | | 61.0 | 1 | | | | 14. 0
16. 0 | 55.40 | 140176 | | 050646 | | - [| | | 18. 0 | 22. 59. 20 | 140203 | 60 .3 | 051002 | 60 .9 | | | 18. 0 | 58.55 | 140567 | 61.0 | 050546 | 61 0 | , | | | 20. 0 | 56, 53 | 139679 | 58 5 | 051232 | 60 .0 | G H | | 20. 0 | 55.40 | 140683 | 61.0 | 050639 | 61.0 | - ! | | | 22. 0 | 22. 57. 33 | 138581 | 59 .0 | 051223 | | 1 1 | | 22. 0 | 22. 56. 55 | 138954 | 1 | 050831 | 62 .0 | | | c t. | 6. 0. 0 | 00 5 54 | 0.100075 | 50.0 | 0 -05 1000 | <i>e</i> 0.0 | . | 0-4 | | an a a: | 0.100000 | CO . 5 | 0.050760 | 60.0 | | | CL. | 1.50 | 23. 5. 54
8. 34 | 0 ·139375
139751 | 99.8 | | 00.0 | " | Oct. | 9. 0. 0 | 23. 2.31 | | 63.9 | 0 ·050760
050962 | 62 0 | 1 | | | $\{2, 0\}$ | 7. 56 | 139519 | 60.0 | 051131
051131 | 63 .0 | | ì | $\int_{0}^{1.50}$ | 7. 44
8. 18 | 140305
140537 | 69.5 | | 62.5 | | | | 2. 10 | 7. 56 | 139519 | 04 0 | 051131 | 00 0 | L | | $\left\{ egin{array}{ll} 2. & 0 \ 2. & 10 \end{array} \right $ | 10. 5 | 141005 | 00.0 | 050902 | 00 0 | 1 | | | 4. 0 | 5. 0 | 140385 | 65 .0 | 051241 | 65 .0 | 1 1 | | 4. 0 | 7. 46 | 141528 | 64 .0 | 050722 | 64 .0 | | | | 6. 0 | 1. 0 | 140748 | | 051193 | | | | 6. 0 | 2.44 | 141631 | | | | | | | 8. 0 | 23. 0.34 | 141047 | | 051044 | | | | 8. 0 | 1. 0 | 141862 | | 050455 | 63 .0 | | | | 10. 0 | 22. 59. 53 | 141163 | | 051030 | | | | 10. 0 | 23. 0. 4 | 141891 | | 050942 | 65 .0 | (| | | 12. 0 | 59.40 | 141474 | | 050885 | | | i | 0) | , | 142238 | | 051076 | | | Reading of Torsion-Circle of Meridianal Magnet for Brass Bar resting in Magnetic Meridian, 269°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 37.45°. Reading for Brass Bar in the same position, 358°.6′. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°97; in Vertical Plane, 23°1. Declination Magnet. Oct. 3^d, between 22^h and 24^h; Oct. 4^d, between 0^h and 1^h. 50^m, and between 22^h and 24^h; Oct 5^d, 6^d, and 7^d, between 22^h and 24^h; Oct. 8^d, between 4^h and 6^h, and between 22^h and 24^h; and Oct. 9^d, between 0^h and 1^h. 50^m, and between 4^h and 6^h, considerable changes occurred. HORIZONTAL FORCE MAGNET. Oct. 6⁴, between 20^h and 22^h, and Oct. 7⁴, between 22^h and 24^h, considerable changes took place. | | | r | 1 0 | 1 | 1 | 1 1 | 1 | | Horizontal | - 8 | Vertical | | 1 | |---|---------------------------|---------------------------|---|-------------------------|---|------------|---|-------------------------|--------------------------|---|---------------------------
---|-----------| | Göttingen Mean | | Horizontal
Force Read- | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read- | Thermometer of
Vertical Force
Magnetometer. | gr. | Göttingen Mean | | Force Read- | Thermometer of
Horizontal Force
Magnetometer. | Force Read- | Thermometer of
Vertical Force
Magnetometer. | 2 | | Time (Astronomical | Western | ing in parts | net
net | ing in parts | For | Observers. | Time (Astronomical Reckoning) of | Western | ing in parts | ital
met | ing in parts | Form | Observers | | Reckoning) of | Declination. | of the whole | ton etco | of the whole | et a no | ser | Declination | Declination. | of the whole | zon | of the whole | ica l | 98 | | Declination
Observation. | Declination. | Hor. Force | oriz
agn | Vert. Force | lagr. | ರೆ | Observation. | Decimations | Hor. Force cor.for Temp. | Hori
fagn | Vert. Force cor.for Temp. | ert
lagr | 0 | | - Coscivation. | | cor.for Temp. | FEE | cor.forTemp. | | | | | Corner Temp. | | cor.ior remp. | | - | | d h m | 0 / " | | 0 | | 0 | | d h m | 0 / " | 0.140160 | 0 | 0.051010 | 0 | G | | Oct. 10.14. 0 | 22. 57. 30 | 0 .142822 | 60 .2 | 0.050677 | 60 4 | L | Oct. 13. 14. 0 | 22, 55, 1 | 0 ·140169
139573 | 66 ·0 | 0 ·051018
051219 | 67 .0 | 6 | | 16. 0 | 56. 16 | 141779 | 60 .5 | 050669 | 60 .5 | | 16. 0 | 55. 53 | 139880 | 63 .8 | 051219 | 66 ·0 | | | 18. 0 | 58. 12 | 140853 | 60 .5 | 051083 | 60 6 | _ | 18. 0 | 55. 3 | 1 | 63 .0 | 051220 | - | | | 20. 0 | 55. 54 | 142288 | 60 .2 | 051132 | 60 .5 | | 20. 0 | 53. 14 | 139591 | 63 .0 | 1 | 63 .2 | | | 22. 0 | 22. 54. 7 | 140257 | 61 .3 | 051004 | 61 .2 | GН | 22. 0 | 53. 40 | 137691 | 09 0 | 051416 | 63 .0 | G | | Oct. 11. 0. 0 | 23. 3.56 | 0 .139545 | 63 .0 | 0.051060 | 63 .0 | GН | Oct. 14. 0. 0 | 22. 57. 22 | 0 ·137194 | 60 .8 | 0 .050928 | 60 .7 | G | | (1.50 | 10.58 | 141464 | | 051032 | | | (1.50 | 23. 4.14 | 138407 | | 051110 | (| | | ₹ 2. 0 | 10.30 | 141233 | 63 .5 | 051104 | 63 .8 | | ₹ 2. 0 | 5. 2 | 138523 | 60 .4 | 051181 | 60.0 | 1 | | 2. 10 | 9.38 | 141349 | | 051032 | | GН | 2. 10 | 6. 7 | 139218 | | 051252 | ĺ | G | | 4. 0 | 4.53 | 142289 | 64 .5 | 051112 | 64 .6 | L | 4. 0 | 23. 1.54 | 141230 | 61 .3 | 051963 | 61 .5 | 6 | | 6. 0 | 23. 0.42 | 141791 | 66 .0 | 050968 | 65 .8 | | 6. 0 | 22. 57. 42 | 141209 | 61 .5 | 051465 | 61 '5 | | | 8. 0 | 22. 55. 59 | 141257 | 67 .2 | 050847 | 66 .7 | | 8. 0 | 56. 32 | 141504 | 62 .0 | 051387 | 62 .0 | | | 10. 0 | 59.48 | 141529 | 67 · 5 | 050840 | 67 ·5 | L | 10. 0 | 56. 4 | 141692 | 62 .0 | 051343 | 62 .0 | 1 | | 12. 0 | 5 9. 4 1 | 141925 | 67 .0 | 050705 | 67 .0 | GН | 12. 0 | 56. 11 | 141725 | 61 .0 | 051151 | 60 .9 | 1 | | 14. 0 | 59. 22 | 141791 | 66.0 | 050553 | 66 .0 | | 14. 0 | 53. 24 | 141725 | 61 .0 | 050954 | 60 .5 | 1 | | 16. 0 | 55 . 22 | 141096 | 66 .0 | 050766 | 66 .0 | | 16. 0 | 54. 52 | 141841 | 61 .0 | 051061 | 60 .2 | 1 | | 18. 0 | 53 . 52 | 141328 | 66 .0 | 050837 | 66 .0 | | 18. 0 | 55. 20 | 141957 | 61 .0 | 051145 | 60 .4 | 1 | | 20. 0 | 51. 50 | 140632 | 66 .0 | 050909 | 66 .0 | GН | 20. 0 | 53.38 | 141609 | 61 .0 | 051244 | 61.0 | G | | 22. 0 | 22 . 52 . 4 | 139303 | 64 .0 | 050366 | 64 .0 | ΤЪ | 22. 0 | 22. 54. 34 | 138473 | 60 .0 | 051090 | 60.0 | T | | Oct. 12. 0. 0 | 23. 1.52 | 0 · 139527 | 65 .0 | 0 .050672 | 65 .0 | σт | Oct. 15. 0. 0 | 23. 4. 25 | 0 ·139130 | 61 .0 | 0 .051244 | 61.0 | T | | (1.50 | 6. 12 | 140670 | 00 0 | 051103 | 00 | | (1.50 | 4. 8 | 139186 | | 051472 | | | | 2. 0 | 6. 53 | 141365 | 68 .0 | 051103 | 68 .0 | 1 | $\begin{cases} 2. & 0 \end{cases}$ | 6.11 | 139418 | 62 .0 | 051472 | 62 .0 | | | 2. 10 | 7. 9 | 141365 | 00 0 | 051032 | 000 | ΤД | 2.10 | 6. 14 | 139418 | | 051401 | ĺ | Т | | 4. 0 | 23. 2. 3 | 141639 | 70 .0 | 051272 | 71 .0 | | | 23. 1.37 | 141041 | 62 .0 | 051543 | 62 .0 | G | | 6. 0 | 22. 58. 21 | 141850 | 71 .5 | 050954 | 72 .0 | | 6. 0 | 22, 54, 29 | 139998 | 62 .0 | 051543 | 62 .0 | | | 8. 0 | 50. 5 | 141921 | 72.0 | 050811 | 72.0 | | l I | 55. 28 | 139211 | 62 .2 | 051436 | 62 .5 | | | 10. 0 | 52. 21 | 140550 | 70.5 | 050365 | 70 .5 | 1 1 | 1 | 22, 56, 42 | 139893 | 63 .0 | 051202 | 63 .0 | G | | 12. 0 | 56. 54 | 141338 | 69 . 5 | 050526 | 70 .0 | | 12. 0 | 23. 2.35 | 140369 | 64 .0 | 050730 | 64 .0 | T | | 14. 0 | 56. 54 | 141508 | 67 .0 | 049794 | 67 .0 | | 14. 0 | 22. 55. 13 | 140184 | 64 .0 | 050936 | 64 .0 | 1 | | 16. 0 | 56. 46 | 141560 | 66 .0 | 049677 | 66 .0 | | 16. 0 | 55. 13 | 140833 | 64 .0 | 051150 | 64 .0 | | | 18. 0 | 56. 45 | 141659 | 65 .0 | 049532 | 65 .0 | | is. 0 | 22. 55. 40 | 140972 | 62 .0 | 050973 | 62 .0 | | | 20. 0 | 53. 58 | 141343 | 64 .0 | 049797 | 64 .0 | ΤО | 20. 0 | 23, 0.20 | 140605 | 60.0 | 050841 | 60.0 | Т | | 22. 0 | 22. 53. 33 | 137835 | 65 .0 | 050458 | 65 •0 | GН | 22. 0 | 22, 55, 26 | 138113 | 59 .9 | 051090 | 60.0 | G | | Oct. 13. 0. 0 | 09 9 00 | 0.196540 | 61.5 | 0 :050544 | 64.7 | C II | Oct. 16. 0. 0 | 23, 3, 25 | 0 ·138704 | 60 ·0 | 0 :051055 | 60.0 | G | | | | | 04.9 | | 04 1 | GП | (1.50 | 8. 20 | 138009 | 00 0 | 050912 | 000 | E | | $\int_{0}^{1.50}$ | 10. 16 | 136097 | 65.0 | 051122
051051 | 66 .0 | | $\begin{cases} 1.50 \\ 2.0 \end{cases}$ | 9. 48 | 138473 | 60 .0 | 050912 | 60 .0 | | | $\begin{cases} 2. & 0 \\ 2. & 10 \end{cases}$ | 9. 24 | 136561
136329 | 00.0 | 051031 | | GН | 2. 10 | 9. 48
9. 44 | 138473 | 000 | 051019 | 000 | E | | 2. 10 | 9.46 | | 69.0 | | 68 .0 | | | 23. 4.16 | 139906 | 64 .0 | 051542 | 64 .0 | | | 4. 0 | 6. 45 | 138815 | | 052100
051957 | | עי | 6. 0 | 23. 4. 10
22. 57. 13 | 140671 | | 051363 | | | | 6. 0 | 23. 3. 4 | 137750 | | | | T - | 1 | 52. 51 | 140833 | 64 0 | 051007 | | 1 | | 8. 0 | 22. 57. 6 | 137753 | | 051481
051431 | 67.0 | | | 56. 5 | 141297 | | 051001 | | | | 10. 0 | 55.41 | 139376 | 67 .0 | U01431 | 010 | t H | 1 10. U 1 | | 141401 | UT U | 1000101 | ייט דיט | 1 - | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 269°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 37°. 45′. Reading for Brass Bar in the same position, 358°. 6′. Time of Vibration of Horizontal Force Magnetometer, 20°.5. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24.97; in Vertical Plane, 23.1. Oct. 10^d, between 22^h and 24^h; Oct. 11^d, between 0^h and 1^h. 50^m, between 6^h and 8^h, and between 22^h and 24^h; Oct. 12^d, between 2^h. 10^m and 4^h, between 6^h and 8^h, and between 22^h and 24^h; Oct. 13^d, between 0^h and 1^h. 50^m, and between 6^h and 8^h; Oct. 14^d, between 0^h and 1^h. 50^m, and between 22^h and 24^h; and Oct. 15^d, between 4^h and 6^h, between 10^h and 14^h, and between 22^h and 24^h; and Oct. 15^d, between 4^h and 6^h, considerable changes occurred. HORIZONTAL FORCE MAGNET. Oct. 10d and 12d, between 20h and 22h; Oct. 13d and 14d, between 2h. 10m and 4h; and Oct. 14d and 15d, between 20h and 22h, considerable changes took place. VERTICAL FORCE MAGNET Oct. 12^d, between 12^h and 14^h, and Oct. 13^d, between 2^h. 10^m and 4^h, considerable changes occurred. | | | | | | | | | | | -0 1 | | 4 | _ | |---|--------------------|---|---|--|------------------------------------|------------|--|----------------------|--|--|--|---|-----------| | Göttingen Mea
ime (Astronomi
Reckoning) of
Declination
Observation. | | Horizontal Force Reading in parts of the whole Hor. Force cor. forTemp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | nermomet
ertical Fo
ignetome | Observers. | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. forTemp. | Thermometer of
Horizontal Fore
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor. forTemp. | Thermometer of
Vertical Force
Magnetometer. | Ohearwore | | d h | m 0 , " | | 0 | | 0 | | d h m | 0 / " | | 0 | | 0 | Γ | | ct. 17. 14. | 0 22. 52. 37 | 0 · 142393 | 56 0 | 0 .050355 | 56 .0 | ЕН | Oct. 20, 14, 0 | 22, 59, 55 | 0 ·140602 | 62 2 | 0 .051087 | 62 .5 | T | | 16. | 0 52.14 | 142628 | 57 .0 | 050750 | 57.0 | | 16. 0 | 22, 58, 15 | 140856 | 62 .5 | 050945 | 62 ·5 | E | | | 0 51.49 | 142744 | 57 0 | 050821 | 57 .0 | | 18. 0 | 23. 2.15 | 141485 | 60.0 | 050734 | 60.0 | 1 | | 20. | | | 56 .5 | 050748 | 56 .5 | | · 2 0. 0. | 22. 56. 10 | 140531 | 62 .0 | 051329 | 62 .0 | - 1 | | 22. | 0 22. 57. 27 | 139734 | 58 .0 | 050897 | 58 .0 | G H | 22, 0 | 22, 52, 30 | 139223 | 61 .0 | 051301 | 61 .2 | 1 | | oct. 18. 0. | | 0 · 140198 | 58 .0 | 0 050861 | 58 .0 | GН | Oct. 21. 0. 0 | 23. 2. 2 | 0 · 138422 | 62 .0 | 0 ·051116 | 62 .0 | T | | ∫ 1.5 | 0 2.11 | 139516 | | 051375 | | тD | (1.50 | 5.42 | 139674 | | 051150 | | | | ₹ 2. | | 1 1 | 60 .0 | 051375 | 60 .0 | | ₹ 2. 0 | 5.42 | 139674 | 64 .0 | 051078 | 64 .0 | | | (2. 1 | | 139168 | | 051375 | | | (2, 10 | 5. 45 | 139674 | | 051035 | | | | 4. | | 140276 | | 052027 | | | 4. 0 | 2. 9 | 139921 | 65.0 | 051170 | 65 .0 | | | | 0 55.57 | | 63 .3 | 051602 | 63 .8 | | 1 | 1. 10 | 140269 |
65 .0 | 051099 | 65 ·0 | - 1 | | | 0 55. 56
53. 34 | 1 | 65 0 | 051267 | 1 1 | | 8. 0 | 23. 0.21 | 140936 | 63 ·0 | 050562 | 62.7 | -1 | | | 0 53. 34
52. 18 | 1 | 65 ·8 | 050757
050695 | 65 ·0 | G | 10. 0
12. 0 | 22. 58. 26
57. 39 | 141145
141272 | 62.0 | 050529
050760 | 62 0 | | | 14. | | , , | 66 .0 | 050861 | 65 .8 | GH | 12. 0
14. 0 | 57. 59
58. 10 | 141272 | 61.0 | 050888 | 61.0 | 1 | | 16. | | | 65 .5 | 050932 | 65 .8 | | 16. 0 | 57. 58 | 141370 | 60.0 | 051005 | 60.0 | | | | 0 55. 7 | | 66 .0 | 050909 | 66 .0 | | 18. 0 | 58. 54 | 141254 | 60.0 | 051055 | 60 .0 | 1 | | 20. | | 1 1 | 66 .0 | 050885 | 65 .9 | σн | 20. 0 | 57. 2 | 140791 | 60.0 | 051232 | 60 .0 | , | | 22. | | 1 | 64 .0 | 050509 | 64 •0 | , | | 22. 56. 24 | 139564 | 58 •5 | 051056 | 58 .5 | 1 | | ct. 19. 0. | 0 23. 1. 7 | 0 .138524 | 65 ·3 | 0 .050861 | 65 ·5 | ם ד | Oct. 22. 0. 0 | 23. 5.24 | 0 ·138365 | 61 .0 | 0 .051529 | 61 .0 | , | | [1.5 | - | 139932 | | 051460 | - | | (1.50 | 9.59 | 139499 | | 051515 | | ١ | | ₹ 2. | 6. 13 | 140071 | 67 .0 | 051460 | 67 .0 | | 2. 0 | 10. 15 | 139591 | 63 .0 | 051515 | 63 .0 | ,] | | 2. 1 | | 140071 | - | 051460 | | ΤО | 1 | 10.47 | 139940 | - | 051487 | | Ì | | 4. | | | 67 0 | 051673 | 67 .0 | GН | 4. 0 | 23. 3.20 | 140240 | 63 .0 | 051096 | 63.0 | - 1 | | | 51. 6 | | 67 .0 | 051154 | | | 6. 0 | 22, 59, 28 | 141001 | 63.5 | 050995 | 63 3 | - 1 | | | 56. 8 | | 66 2 | 050956 | | | 8. 0 | 57 . 48 | 141104 | 62 5 | 050874
051345 | 62 5 | - 1 | | | 51. 37 | | 65 1 | 050979 | 65 .7 | | | 50. 1 | 140240 | 63 .0 | 050973 | 63 ·0 | - L | | 12.
14. | | | 63 .0 | 050063 | | T D | 1 | 55. 41 | 140577
141272 | 62 ·0 | 050333 | 62 .0 | - 1 | | 16. | | 5 | 63 ·0 | 050718
050582 | | | 14. 0
16. 0 | 51. 2
58. 57 | 141272 | | 050923 | 1 | | | 18. | | , , | 62 0 | | 62 0 | | 16. 0
18. 0 | 54, 52 | 141272 | 62 .0 | 050973 | 62 .0 | | | | 51.41 | 1 1 | 61 0 | 051009 | 61 .0 | тр | 20. 0 | 22. 48. 7 | 138411 | 59 .5 | 050658 | 59 .5 | | | | 0 22.51.22 | | 60 .0 | 050876 | 60.0 | | 22. 0 | 23. 4, 32 | 128757 | 62 .0 | 050689 | 62 .0 |) | | et. 20. 0. | 23. 1.15 | 0.138444 | 60 . 7 | 0.050779 | 60 -2 | СН | Oct. 23. 0. 0 | 23. 3.37 | 0 -188549 | 63 .0 | 0 .050247 | 62 .5 | 5 | | (1.5 | 3. 33 | 139777 | | 051167 | | - 11 | (1.50 | 23. 15. 45 | 135605 | | 053544 | | | | ₹ 2. | | 139893 | 63 0 | 051131 | | | 2. 0 | 22. 44. 45 | 125640 | 63 .0 | 053971 | 62 . 5 | , | | (2. 1 | 0 4.13 | 139777 | | 051117 | | GН | | 22. 59. 0 | 132361 | | 055288 | | | | 4. | 0 2. 2 | 139805 | | 051469 | 65 .0 | T D | 4. 0 | 23. 9.20 | 142686 | | | 64 .0 | - 1 | | 6. | | 140732 | | 051156 | 65 .0 | | 6. 0 | 58. 21 | 145468 | 64 .0 | 056027 | 64 .0 | - 5 | | 8. | | 140833 | | 050964 | | | 8. 0 | 43. 11 | 137256 | | 054039 | 65 .0 | - 1 | | 10. | | 141688 | | 051136 | | | 10. 0 | 23. 15. 41 | 135105 | | 051532 | 63.5 | | | 12. | 57.45 | 141006 | 63.0 | 051202 | 63.0 | G | 12. 0 | 22. 50. 38 | 134783 | 62.0 | 048233 | 62 .0 | ١, | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 269°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 37°. 45′. Reading for Brass Bar in the same position, 358°. 6′. Time of Vibration of Horizontal Force Magnetometer, 20.5. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24.97; in Vertical Plane, 23.1. DECLINATION MAGNET. Oct. 18d, between 22h and 24h; Oct. 19d, between 2h and 8h, and between 22h and 24h; Oct. 20d, between 18h and 24h; and Oct. 22d, between 2h. 10m and 4h, considerable changes occurred. Oct. 22d and 23d. The changes were frequent and of large amount. HORIZONTAL FORCE MAGNET. Oct. 17d, between 20h and 22h, and Oct. 23d, the changes were frequent and of large amount. Vertical Force Magnet. Oct. 23d. Between 0h and 12h, the changes were frequent and of large amount. | | | | | Daily Obs | ervation | ns fr | om October 24 to | 30. | | | | | | |--|-------------------------|--|---|---|----------------------------------|---------------------------------|--|----------------------|--|---|--|---|-----------| | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor.for Temp. | ermomet
ertical Fo
gnetome | Observers. | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers | | d h m | 0 / " | | 0 | | 0 | | d h m | 0 / // | | 0 | | 0 | | | Oct. 24.14. 0 | 23. 5.35 | 0 .130980 | 54 .5 | 0 .050464 | 54 .5 | ЕН | Oct. 27. 14. 0 | 22. 57. 0 | 0 .141121 | 60 .8 | 0 .051636 | 61 .0 | G | | 16. 0 | 23. 2.35 | 136367 | 54 .0 | 051035 | 54 .0 | | 16. 0 | 55. 4 3 | 141121 | 60 ·8 | 051671 | 61.0 | | | 18. 0 | 22. 57. 31 | 137180 | 53 .0 | 052286 | 53 0 1 | ЕН | 18. 0 | 54. 8 | 140777 | 58 .0 | 051827 | 61.0 | | | 20. 0 | 23. 31. 39 | 126011 | 53 .0 | 050790 | 53 .0 | ТО | 20. 0 | 53. 20 | 140838 | 58.5 | 051430 | 58 .0 | 1 | | 22. 0 | 6. 13 | 126057 | 53 .0 | 052143 | 53 .0 | G H | 22. 0 | 22. 53. 13 | 138984 | 58 .2 | 051430 | 58 •0 | T | | Oct. 25. 0. 0 | 23, 2, 5 | 0 ·138685 | 54 .0 | 0 .053135 | 54 .0 | GН | Oct. 28. 0. 0 | 23. 0. 1 | 0 · 138744 | 59 .0 | 0 .051522 | 59 ·0 | T | | (1.50 | 9. 39 | 140655 | | 054379 | | ГΟ | (1.50 | 0.48 | 140327 | | 051660 | | | | ₹ 2. 0 | 5. 56 | 139844 | 56 .0 | 054549 | 56.0 | | ₹ 2. 0 | 0. 59 | 140559 | 60.0 | 051660 | 60.0 | | | 2. 10 | 1. 20 | 138221 | l | 054648 | 7 | T D | 2. 10 | 23 . 0. 59 | 140559 | | 051660 | | T | | 4. 0 | 23. 7.52 | - 143668 | 55 .0 | 055198 | 55 ·0 I | ЕН | 4. 0 | 22.58.27 | 141138 | 60.0 | 051446 | - | 1 | | 6. 0 | 22.58.45 | 137584 | 55 .5 | 052883 | 55 5 I | | 6. 0 | 56. 58 | 141763 | 60.0 | 051446 | 60.0 | | | 8. 0 | 49. 39 | 138109 | 57 .0 | 051782 | 57 .0 | | 8. 0 | 56. 58 | 141763 | 60.0 | 051382 | 60.0 | 1 | | 10. 0 | 53. 43 | 138209 | 57 .0 | 052081 | 57 ·0 I | | 10. 0 | 54. 42 | 141717 | 60 .0 | 051517 | 60.0 | | | 12. 0 | 56. 11 | 138105 | 55 .0 | 051801 | 55 .5 | r D | 12. 0 | 53, 17 | 141347 | 58 .5 | 051255 | 58 .2 | | | 14. 0 | 5 8. 59 | 138995 | 53 ·5 | 051393 | 53 .2 | | 14. 0 | 53. 19 | 141347 | 58 • 5 | 051347 | 58 .5 | | | 16. 0 | 56. 23 | 138922 | 52 ·0 | 051581 | 52 .0 | | 16. 0 | 54. 40 | 141254 | 60 .0 | 051517 | 60.0 | L | | 18. 0 | 54, 40 | 139944 | 51 .8 | 052268 | 52 5 | i | 18. 0 | 53. 25 | 141254 | 60.0 | 051460 | 60 ·0 | | | 20. 0 | 52. 32 | 138928 | 51.0 | 052792 | 52 .0 | 3 н | 1 1 | 50. 30 | 141949 | 60 ·0 | 051517
051609 | 60 .2 | 1 | | 22. 0 | 22. 56. 15 | 136958 | 51 .0 | 053016 | 51 .0 | - 1 | 22. 0 | 51. 32 | 139872 | 01 0 | V31008 | | 1 | | Oct. 26. 0. 0 | 23. 2.21 | 0 · 136429 | 52 .5 | 0 .052966 | 52 .5 | | Oct. 29. 0. 0 | 22, 56, 18 | 0 ·140319 | 61 .8 | 0.051218 | 61 .2 | G | | (1.50 | 3. 15 | 138337 | _ | 052777 | | 1 | (1.50 | 23. 5.46 | 144986 | | 051439 | | | | ₹ 2. 0 | 3. 9 | 138801 | 55 .0 | 052706 | 55 .0 | | ₹ 2. 0 | 6. 58 | 145404 | 63 .5 | 051439 | 63 ·1 | | | 2.10 | 3. 9 | 138337 | | 052670 | d | 3 H | 2. 10 | 5.38 | 144245 | | 051190 | | G | | 4. 0 | 23. 0. 0 | 140082 | 58 .0 | 052783 | 58 .0 1 | $\mathbf{r} \mathbf{p}_{i}^{l}$ | 4. 0 | 23. 5. 8 | 141760 | 64 .0 | 051434 | 64 .0 | 1 | | 6. 0 | 22. 59. 39 | 139972 | 59 .0 | 052433 | 59 .0 | | 6. 0 | 22. 57. 15 | 141413 | 64 .0 | 051969 | 64 .0 | | | 8. 0 | 58. 22 | 140580 | 59 .8 | 052074 | 59 .5 | | 8. 0 | 56. 49 | 141991 | 64 0 | 051627 | 64 0 | | | 10. 0 | 56. 52 | 140928 | 59 .8 | 051904 | 59 5 7 | r D | 10. 0 | 54. 23 | 141399 | 63 ·0 | 051131 | 63 .0 | | | 12. 0 | 56. 43 | 140875 | 58 .8 | 051469 | 58 .5 | 3 H | 1 | 50.34 | 141747 | 63.0 | 051202 | 63 .0 | | | 14. 0 | 57. 24 | 140082 | 58 .0 | 051688 | 58 2 | | 14. 0 | 52. 58 | 141836 | 62 .8 | 050817 | 62 .2 | | | 16. 0 | 57.47 | 140662 | 58 .0 | 051786 | 58 .0 | - | 16. 0 | 55. 4 | 140125 | 63 .0 | 051131 | 63.0 | | | 18. 0 | 57 . 16 | 140082 | 58 .0 | 051822 | 58 0 | - 1 | 18. 0 | 54. 19 | 140472 | 63.0 | 051260 | 63 .0 | | | 20. 0 | 54. 42 | 139456 | 58 .0 | 052071 | | r d | 20. 0 | 53. 47 | 140577 | 62 .0 | 051187 | 62 ·0
59 ·5 | | | 22. 0 | 22. 55. 19 | 139370 | 59 .0 | 052234 | 59 .0 | | 22. 0 | 52. 59 | 137886 | 59 0 | 050907 | 09 0 | | | Oct. 27. 0. 0 | | 0 ·138520 | 58 .5 | 0 ·051861 | 58 .5 | | Oct. 30, 0. 0 | 22.58. 2 | 0 · 139086 | 58 .0 | 0.050861 | 58 .0 | | | 1.50 | 3. 33 | 139801 | | 051904 | | ĺ | | 59. 34 | 139443 | E 174 . E | 050716 | 57.5 | I | | $\begin{cases} 2. & 0 \\ 2. & 10 \end{cases}$ | 3. 7 | 139686 | 59 •5 | 051904 | 59 •5 | | $\begin{cases} 2. & 0 \\ 2. & 10 \end{cases}$ | 59. 20 | 139443 | 57 .5 | 050766 | 57 .5 | 1 | | 2. 10 | 3. 31 | 139686 | | 051904 | | ГЪ | 2. 10 | 59. 28 | 140022 | | 050788 | 60.0 | I |
| 4. 0 | 23. 0.54 | i | 59 .5 | 051619 | 59 5 | 3 H | | 57. 27 | 140791 | 60 .0 | 051375 | 60 .0 | - 1 | | 6. 0 | 22. 57. 54 | | 59 .8 | 051811 | 59 .5 | | 6. 0 | 56. 36 | 141460 | 59 .8 | 051330 | 59 .8 | 1 | | 8. 0 | 58. 31 | | 60.0 | 051802 | 60.0 | _ | 8. 0 | 55. 14 | 141423 | 59 ·5 | 051298 | 59 .4 | | | 10. 0 | 57. 23 | | 60 3 | 051705 | 60 2 | | 1 1 | 54. 25 | 141594 | 59 · 0 | 051280
050819 | 59 ·0
56 ·5 | | | 12. 0 | 57. 23 | 141192 | 01.0 | 051685 | 61.0 | G i | 12. 0 | 53. 36 | 141525 | 56 .5 | RICORO | 00.00 | 12 | Reading of Torsion-Circle of Meridianal Magnet for Brass Bar resting in Magnetic Meridian, 269°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 37°. 45′. Reading for Brass Bar in the same position, 358°. 6′. Time of Vibration of Horizontal Force Magnetometer, 20°.5. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°.97; in Vertical Plane, 23°.1. DECLINATION MAGNET. Oct. 25^d. The changes were frequent and of large amount. Oct. 25^d, 26^d, and 27^d, between 22^h and 24^h; and Oct. 29^d, between 0^h and 1^h. 50^m, and between 4^h and 6^h, considerable changes occurred. HORIZONTAL FORCE MAGNET. Oct. 25^a. The changes were frequent and of large amount. Oct. 28^a, between 20^b and 22^b; and Oct. 29^a, between 0^b and 1^b. 50^m, between 2^b. 10^m and 4^b, and between 20^b and 22^b, considerable changes took place. Vertical Force Magnet. Oct. $25^{\rm d}$. The changes were frequent and of large amount. | | | | Dail | y Observati | ons fro | m O | ctober 31 to N | Jovem | ber 6. | | | | | | |--|-------------------------|--|---|---|---|------------|--|-----------|-------------------------|--|---|--|---|------------| | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western
Declination. | Horizontal Force Reading in parts of the whole Hor. Force cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor.forTemp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen Mea
Time (Astronomi
Reckoning) of
Declination
Observation. | ical
f | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor, forTemp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor. for Temp | Thermometer of
Vertical Force
Magnetometer. | Observers. | | d h m | 0 / 11 | | ٥ | | 0 | | d h | m | 0 1 " | | 0 | | 0 | | | Oct. 31. 14. 0 | 22.50, 4 | 0 ·141641 | 56 .5 | 0 .050571 | 56 .5 | ЕН | Nov 3. 14. | 0 | 22. 54. 54 | 0 · 141102 | 58 2 | 0 .051345 | 58 .0 | L | | 16. 0 | 49. 19 | 141816 | 57 .0 | 050870 | 57.0 | | 16, | 0 | 56. 50 | 141400 | 57.4 | 051250 | 57 .5 | 1 | | 18. 0 | 48.42 | 141829 | 57 .5 | 050823 | 57 .5 | | 18. | 0 | 53. 55 | 140644 | 56.8 | 051426 | 57.0 | 1 | | 20. 0 | 50.53 | | 58 .0 | 050875 | 58 .0 | | | 0 | 54. 24 | 140539 | 56.0 | 051352 | 56 0 | 1 | | 22. 0 | 22. 52. 44 | 140784 | 59 0 | 051049 | 59 • 5 | T D | 22. | 0 | 22. 56. 3 | 138744 | 56·5 | 051717 | 56 .7 | TI | | Nov. 1. 0. 0 | 23. 0.31 | 0 · 141254 | 60 .0 | 0 .050948 | 60 .0 | T D | Nov. 4. 0. | 0 | 23. 1. 4 | 0 ·139139 | 56 · 5 | 0 .051411 | 56 .7 | T J | | (1.50 | 7. 32 | 141851 | | 051258 | | | ſ 1. ā | 50 | 1. 57 | 139339 | | 051644 | 1 | | | ⟨ 2. 0 | 10.45 | 142430 | 62 .0 | 051258 | 62 .0 | | 1 1 | 0 | 2. 10 | 139339 | 57 .6 | 051644 | 58 .0 | t | | 2. 10 | 9. 28 | 142430 | | 051329 | | TВ | 2. 1 | | 23. 1.47 | 139756 | | 051644 | | TJ | | 4. 0 | 15. 39 | | 62 .0 | 052077 | 62 · 0 | ВH | | 0 | 22, 58, 38 | 140570 | 58 2 | 051786 | 58 .0 | 1 | | 6. 0 | 23. 7. 3 | | 61 .0 | 051030 | 61 .0 | | | 0 | 55. 16 | 141070 | 58.5 | 051589 | 58 4 | | | 8. 0 | 22. 57. 1 | | 61.0 | 050853 | 61 .0 | | | 0 | 51. 51 | 141264 | 58 2 | 051487 | 58 ·0
57 ·5 | | | 10. 0 | 53. 54 | 11 | 60 .0 | 050606 | 60.0 | | | 0 | 51.51 | 141540 | 57 ·6 | 051464
051464 | 57.5 | 1 | | 12. 0 | 43. 49 | | 60 .5 | 050161 | 60 .3 | ТВ | | 0 | 54. 41
54. 5 | 141285
141061 | 56.5 | 051404 | 56.5 | | | 14. 0 | 34. 13 | | 60.0 | 049452 | 60.0 |] | | 0 | 54. 3
54. 24 | 141049 | 55.0 | 051257 | 55.0 | t | | 16. 0
18. 0 | 51.15 | | 60.0 | 049310 | 60·0 | | i . | 0 | 57. 5 | 140516 | 55.0 | 051353 | 55 .0 | ı | | 18. 0
20. 0 | 49. 4
53. 29 | 1 | 60·0
59·0 | 049381
050775 | 59 .0 | T T | l . | 0 | 52. 48 | 140076 | 54.0 | 051498 | 54.0 | 1 | | 22. 0 | 53. 29
52. 51 | | 59 ·5 | 050773 | 59 ·5 | 1 7 | li . | o | 51. 53 | 139728 | 55 0 | 051424 | 55.0 | | | Nov. 2. 0. 0 | 00 50 40 | 0.120479 | 60.0 | 0.051446 | <i>6</i> 0 ·0 | CI | Nov. 5. 0. | | 22. 59. 9 | 0 ·138685 | 56 .0 | 0 ·051673 | 56.0 | G I | | Nov. 2. 0. 0 | 22. 59. 40
23. 1. 38 | 139650 | 00 0 | 0.051446
051814 | 60 .0 | GН | 1.5 | , | 23. 2.31 | 139036 | 00 0 | 051818 | 000 | | | 2. 0 | 0. 22 | 1 | 62 .0 | 051757 | 62 .0 | • | | | 2. 15 | 139268 | 57.0 | 051782 | 57.0 | 1 | | 2. 10 | 23. 0, 29 | 139650 | 02 0 | 051685 | 02 0 | G H | $\frac{\tilde{\mathbf{z}}}{2.1}$ | - 1 | 1, 12 | 139268 | | 051711 | 1 | G I | | 4. 0 | 22. 58. 8 | 1 1 | 64 .0 | 051634 | 64 · 0 | | | 0 | 23. 0. 17 | 140546 | 58 .0 | 051644 | 58 .0 | T | | 6. 0 | 57. 12 | 1 | 64 .0 | 051235 | 64 .0 | | 1 | 0 | 22. 56. 32 | 141333 | 58 .0 | 051373 | 58.0 | | | 8. 0 | 56. 51 | 1 1 | 63 .0 | 050918 | | 1 | il . | 0 | 55.40 | 141777 | 58 .6 | 051321 | 58 8 | | | 10. 0 | 54. 29 | 1 1 | 61.0 | 050674 | 61.0 | T D | 1 | 0 | 55. 12 | 141826 | 59 .0 | 051294 | | | | 12. 0 | 55 . 9 | 141184 | 61 .3 | 051016 | 61 .5 | G H | 12. | 0 | 54. 3 8 | 141362 | | 051223 | 59.0 | 1 | | 14. 0 | 55. 29 | 141584 | 60 .8 | 051159 | | | 14. | 0 | 5 5. 38 | 141362 | 59 .0 | 051223 | 59 .0 | 1 | | 16. 0 | 56 . 10 | | 60.0 | 051104 | 1 | | · - | 0 | 55. 41 | 141192 | 59 .5 | | 59.5 | 1 | | 18. 0 | 56. 2 | 1 | 61 0 | 051230 | | , , | 18. | 1 | 56. 28 | 142011 | 60 .5 | 051192 | 60 .2 | 1 | | 20. 0 | 59.14 | 1 | 61 0 | 051173 | 61 .0 | G | | 0 | 54. 5 | 142304
139292 | 61.0 | 051173
051173 | | 1 | | 22. 0 | 22.58. 3 | 138642 | 59 .5 | 050899 | 59 ·3 | T D | 22. | 0 | 56. 1 | 139292 | 01.0 | 031173 | 01 0 | - | | Nov. 3. 0. 0 | 23. 1.55 | | 59 .5 | | 59 ·3 | T D | Nov. 6. 0. | | 22, 59, 39 | 0 139060 | 61 .0 | 0.051101 | 61 .0 | L | | (1.50 | 4. 20 | 138225 | | 051304 | | [] | $\int 1.5$ | | 23. 1.18 | 139756 | | 051173 | | | | ₹ 2. 0 | 3, 43 | 137947 | 59 .2 | 051290 | 59 .3 | 1 1 | ₹ 2. _ | | 1. 3 | 139756 | 61.0 | 051137 | 01.0 | 1 | | 2. 10 | 2. 21 | 138202 | 00.0 | 051290 | 00.5 | T D | | | 23. 1. 3 | 139918 | 61.0 | 051137
051315 | 61 .0 | L | | 4. 0 | 23. 0. 7 | 140327 | _ | 051588 | | | | | 22. 57. 26 | 140799 | | | | | | 6. 0 | 22. 55. 13 | 1 | 59 .5 | 051735 | | | 6. | | 56. 27 | 141309
142073 | | | | | | 8. 0 | 57. 0
52.40 | | 59·0 | 051508 | | | 8. | | 54. 37
49. 52 | 142073 | | 1 | | | | 10. 0
12. 0 | 53.40
55.12 | 140552
140436 | | 051 63 6
0515 79 | | | | | 49. 32
53. 22 | 141146 | | , | | | | 14. U j | JU. 12 | 140490 | 50 U | 001019 | 00 U | 1 24 | 1 | ٠, | UU. 44 | 141740 | 1 - 0 | 1 | 1 | 1 - | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 269°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 37°. 45′. Reading for Brass Bar in the same position, 358°. 6′. Time of Vibration of Horizontal Force Magnetometer, 20°.5. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°.97; in Vertical Plane, 23°.1. Declination Magnet. Nov. 1^d and 2^d. Considerable changes occurred. Nov. 3^d and 4^d. Between 22^h and 24^h considerable changes took place. Horizontal Force Magnet. Nov. 1^d. Between 2^h. 10^m and 4^h, and between 12^h and 14^h; Nov. 3^d, between 2^h. 10^m and 4^h; and Nov. 5^d, between 20^h and 22^h, considerable changes occurred. Vertical Force Magnet. Nov. 1^d, between 2^h, 10^m and 6^h, between 12^h and 14^h, and between 18^h and 20^h, considerable changes took place. | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | Daily Obser | rvation | s fro | m November 7 to | 13. | | | | | |
--|--|--|--|---|---|---|------------|--|------------|---|---|--|---|------------| | Nov. 7. 14. 0 | Time (Astronomical
Reckoning) of
Declination | | Force Reading in parts of the whole Hor. Force | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor.forTemp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Time (Astronomical
Reckoning) of
Declination | | Force Read-
ing in parts
of the whole
Hor. Force | Thermometer of
Horizontal Force
Magnetometer. | Force Read-
ing in parts
of the whole
Vert. Force | Thermometer of
Vertical Force
Magnetometer. | Observers. | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 0 / 1/ | | 0 | | 0 | | d h m | o , " | | 0 | | 0 | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Nov. 7.14. 0 | 22.45. 1 | 0 .142628 | 57 ·0 | 0.051070 | 57 .0 | L | Nov. 10. 14. 0 | 22. 58. 46 | 0 .142220 | 56 .5 | 0.050892 | 57.0 | · G | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | 1 : | | | 53. 31 | 141582 | 56 .0 | 050890 | 56 .0 | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | , | | 1 | | 1 | | | 54 .0 | | | Nov. 8. 0. 0 | | | | | 1 | 1 | | | | | 1 | | | | | $ \begin{cases} 1.50 \\ 2.0 \\ 2.10 \\ 23. 1. 27 \\ 2.0 \\ 2.10 \\ 23. 3. 8 \\ 139980 \\ 6.0 \\ 22. 57. 12 \\ 140640 \\ 62. 5 \\ 051437 \\ 05143$ | 22. 0 | 59. 21 | 140899 | 59 .0 | 051294 | 59.0 | G H | 22. 0 | 22, 53, 10 | 138744 | 53 .2 | 051393 | 53 .2 | L | | $ \begin{cases} 1.50 \\ 2.0 \\ 2.10 \\ 23.1 \\ 23.2 \\ 2.0 \\ 22.57 \\ 12 \\ 10 \\ 23.3 \\ 3.8 \\ 13980 \\ 61.6 \\ 6.0 \\ 22.57 \\ 12 \\ 14064 \\ 62.5 \\ 62.0 \\ 63.147 \\ 62.0 \\ 63.147 \\ 62.0 \\ 63.147 \\ 62.0 \\ 63.147 \\ 62.0 \\ 62.0 \\ 62.0 \\ 62.0 \\ 62.0 \\ 63.147 \\ 62.0 \\ 63.148 \\ 62.0 \\ 63.148 \\ 62.0 \\ 63.148 \\ 62.0 \\ 63.148 \\ 62.0 \\ 63.148 \\ 62.0 \\ 63.148 \\ 62.0 \\ 63.148 \\ 62.0 \\ 63.148 \\ 62.0 \\ 63.148 \\ 62.0 \\ 63.148 \\ 62.0 \\ 63.148 \\ 62.0 \\ 63.148 \\ 62.0 \\ 63.148 \\
63.148 \\ 63.$ | Nov. 8. 0. 0 | 22, 56, 55 | 0 .138820 | 60 .0 | 0 .051161 | 60 .0 | GН | Nov. 11. 0. 0 | 23. 0. 2 | 0 · 138371 | 54 ·3 | 0 .051498 | 54 .0 | T. | | $ \begin{bmatrix} 2. \ 10 \\ 4. \ 0 \\ 22. \ 57. \ 12 \\ 140640 \ 62 \ 5 \\ 62. \ 5 \\ 63. \ 0 \\ 55. \ 13 \\ 141297 \ 62 \ 2 \\ 62. \ 0 \\ 63. \ 0 \\ 63. \ 0 \\ 63. \ 0 \\ 63. \ 0 \\ 63. \ 0 \\ 64. \ 0 \\ 64. \ 0 \\ 65. \ 0 \\ 64. \ 0 $ | [1. 50] | | 139856 | | 051474 | |) | | 1 | 1 | - | 1 | | | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 2.13 | 139856 | 61 .8 | 051439 | 61 .7 | | ₹ 2. 0 | | 140018 | 55 :5 | 051815 | 55 .5 | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | 1 1 | | | | GН | 2. 10 | 23. 1.18 | 140064 | | 051815 | | L | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | L | 4. 0 | 22. 58. 58 | 140308 | | | 56.0 | G | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1 | | | | • | | | | 56. 21 | 140937 | | 1 | 57 · 5 | 1 | | 12. 0 52. 31 141531 60 0 050805 60 0 T D 12. 0 50. 42 140561 58 5 051149 58 5 L 14. 0 51. 25 142280 59 3 050778 59 5 14. 0 51. 56 141533 58 5 050866 58 5 18. 0 50. 35 141988 59 0 050725 59 0 16. 0 54. 28 141533 58 5 050757 58 5 18. 0 50. 40 141747 57 0 050764 57 0 18. 0 53. 41 141704 58 0 050757 58 5 18. 0 50. 50 141697 56 0 050764 57 0 18. 0 53. 41 141704 58 0 050932 58 0 20. 0 50. 50 141697 56 0 050765 56 0 T D 20. 0 51. 6 141240 58 0 050932 58 0 22. 0 22. 51. 13 139380 56 0 051067 56 0 G H 22. 0 50. 5 139277 59 0 050725 59 0 T 1 Nov. 9. 0 0 23. 2. 8 0 139960 55 0 051796 57 0 051782 | | | 1 1 | | | | | 4 | | 1 | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | 1 1 | | | | | | ſ | | 1 | ı | | 1 - | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | 1 | | ΤЪ | • | • | 1 | | | | L | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | 1 1 | | | | | | | | | i . | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | J. | | | ı | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | The state of s | | | | 1 | T D | | | | | t | | ١. | | Nov. 9. 0. 0 23. 2. 8 0 139960 55 0 0 051210 55 0 G H Nov. 12. 0. 0 22. 56. 18 139238 50 0 051304 $\begin{cases} 1.50 \\ 2. 0 \\ 2. 10 \end{cases}$ 6. 45 139499 051782 051786 57 0 051796 57 0 G H $\begin{cases} 1.50 \\ 2. 10 \end{cases}$ 7. 35 139384 051782 051782 051782 6. 0 051786 58 0 T D 4. 0 58. 45 140320 59 0 051304 051304 60 0 051204 50 0 051304 60 0 051204 50 0 051204 50 0 051204 50 0 051204 50 0 051204 50 0 051204 50 0 051204 50 0 051204 50 0 051304 60 0 051404 50 051204 50 0 051404 50 051204 50 0 051404 50 051204 50 0 051404 50 051204 50 0 051404 50 051204 50 0 051404 50 051204 5 | · · | | | - 1 | | | | | | | | | | 1 | | | Nov o o | on o | 0.100000 | | 0.051010 | | | 77 - 10 - 0 | | | | | | | | | | 1 | | 99.0 | | 99.0 | GН | 1 | | | 59.0 | | 59.0 | T D | | $ \begin{bmatrix} 2.10 \\ 4.0 \\ 23. & 2.25 \\ 140082 \\ 58.0 \\ 0 \end{bmatrix} = \begin{bmatrix} 39384 \\ 4.0 \\ 23. & 2.25 \\ 140082 \\ 58.0 \\ 0 \end{bmatrix} = \begin{bmatrix} 39384 \\ 4.0 \\ 23. & 2.25 \\ 140082 \\ 58.0 \\ 0 \end{bmatrix} = \begin{bmatrix} 39384 \\ 4.0 \\ 23. & 2.25 \\ 140082 \\ 58.0 \\ 0 \end{bmatrix} = \begin{bmatrix} 39384 \\ 4.0 \\ 23. & 2.25 \\ 140082 \\ 58.0 \\ 0 \end{bmatrix} = \begin{bmatrix} 39384 \\ 4.0 \\ 22. & 58.40 \\ 0 \\ 140960 \\ 59.5 \\ 0 \end{bmatrix} = \begin{bmatrix} 39384 \\ 4.0 \\ 0 \\ 58.45 \\ 140320 \\ 59.5 \\ 0 \end{bmatrix} = \begin{bmatrix} 39238 \\ 0 \\ 051364 \\ 0 \\ 051152 \\ 59.0 \\ 0 \\ 051152 \\ 59.0 \\ 0 \\ 051145 \\ 59.0 \\ 0 \\ 051145 \\ 59.0 \\ 0 \\ 051127 \\ 57.0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$ | 1 1 | | 1 | 57 .0 | | 57 .0 | | 1 1 | | | 60.0 | | 60 .0 | 1 | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | <i>.</i> 0 | | - 1 | СН | | • | | 00 0 | 1 | 00 0 | TD | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | - 1 | | - 1 | 58.0 | | , | | | | B . | 59 .0 | l . | 59 .0 | ł | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 6. 0 | l l | | | | 1 | | |) | 1 | | 1 | | 1 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 8. 0 | 56. 29 | 141354 | 59.5 | | 59 5 | | | l e | | | | i ' | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 48. 38 | 140954 | 58 .5 | 051255 | 58 .5 | ΤЪ | 1 | | 1 | | 1 | 57.0 | L | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | i | | | 1 | G H | 12. 0 | | 1 | | Į. | 54 .0 | į. | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1 | | | | 1 | _ | | 14. 0 | 53.57 | 141465 | 54 .0 | 1 | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1 | | 1 | | | | | 1 | | l . | | 1 | 1 | 1 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | i | | | | | i i | f . | 1 | | , | | | | Nov. 10. 0. 0 23. 4. 28 0 ·138986 54 ·0 0 ·051463 54 ·0 T D Nov. 13. 0. 0 22. 59. 23 0 ·138946 51 ·8 0 ·051734 51 ·7 L | | | • | | | | 1 | 3 | F | 1 | | | | 1 | | | | 22.00.00 | 100,20 | 00 0 | 001000 | 35 0 | ı D | 22. 0 | JU. JO | 109020 | 01.9 | 001104 | 01 1 | L | | $ \begin{bmatrix} 1.50 \\ 2.0 \\ 2.10 \\ 4.0 \\ 6.0 \\ 23. \\ 1.12 \\ 139277 \\ 59.0 \\ 139021 \end{bmatrix} \begin{bmatrix} 140135 \\ 56.5 \\ 051559 \\ 051630 \\ 051630 \\ 051630 \\ 051630 \\ 051630 \\ 1. \\ 1. \\ 1. \\ 1. \\ 1. \\ 1. \\ 1. \\ 1$ | | | 0 ·138986 | 54.0 | 0 .051463 | 54 .0 | тр | | 22, 59, 23 | 0 ·138946 | 51 .8 | 0 .051734 | 51 .7 | L | | 2. 10 8. 14 140598 051630 L 2. 10 23. 4. 35 140307 051868 L 4. 0 5. 1 140036 58 0 051896 58 5 G H 4. 0 22. 59. 10 141002 56 0 051851 56 0 051851 56 0 T 1 6. 0 23. 1. 12 139277 59 0 051888 59 2 6. 0 57. 35
140609 56 0 051851 56 0 8. 0 22. 56. 44 139546 59 3 051681 59 2 G H 8. 0 56. 51 140936 57 0 051796 57 0 10. 0 49. 16 139021 58 8 051365 59 0 L 10. 0 54. 15 142048 57 0 051355 57 0 T 1 | | | | | | | L | | 23. 4.59 | 139728 | | | | 1 | | 4. 0 5. 1 140036 58 ·0 051896 58 ·5 G H 4. 0 22. 59. 10 141002 56 ·0 051851 56 ·0 T 1 6. 0 23. 1. 12 139277 59 ·0 051888 59 ·2 6. 0 57. 35 140609 56 ·0 051851 56 ·0 8. 0 22. 56. 44 139546 59 ·3 051681 59 ·2 G H 8. 0 56. 51 140936 57 ·0 051796 57 ·0 10. 0 49. 16 139021 58 ·8 051365 59 ·0 L 10. 0 54. 15 142048 57 ·0 051355 57 ·0 T 1 | | | | 56 .2 | | 56.3 | | | | | 54 .0 | | 54 .0 | | | 6. 0 23. 1. 12 139277 59·0 051888 59·2 6. 0 57. 35 140609 56·0 051851 56·0 8. 0 22. 56. 44 139546 59·3 051681 59·2 G H 8. 0 56. 51 140936 57·0 051796 57·0 10. 0 49. 16 139021 58·8 051365 59·0 L 10. 0 54. 15 142048 57·0 051355 57·0 T 1 | | | | | | | | | | | | | | L | | 8. 0 22. 56. 44 139546 59 ·3 051681 59 ·2 G H 8. 0 56. 51 140936 57 ·0 051796 57 ·0 10. 0 49. 16 139021 58 ·8 051365 59 ·0 L 10. 0 54. 15 142048 57 ·0 051355 57 ·0 T 1 | | | | - 1 | | | G H | | | | ł. | | | | | 10. 0 49. 16 139021 58 8 051365 59 0 L 10. 0 54. 15 142048 57 0 051355 57 0 T | | | | - 1 | | , | | | | | | 1 | ı | | | | | 1 | 1 | - 1 | | | | 1 | | | | | | | | 12. 0 41.40 14208 01 3 001122 07 3 61 | | | | | | | | | | | | | | | | | | -5. 5 | 123012 | 35 0 | V01200 | 30 0 | J | 12. 0 | 37.40 | 172000 | 01 3 | 001122 | 0,0 | GH | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 269°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 37°.45′. Reading for Brass Bar in the same position, 358°. 6′. Time of Vibration of Horizontal Force Magnetometer, 20°.5. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°.97; in Vertical Plane, 23°.1. DECLINATION MAGNET. Nov. 8^d, between 2^h. 10^m and 8^h, and between 22^h and 24^h; Nov. 9^d, between 2^h. 10^m and 4^h, between 14^h and 16^h, and between 22^h and 24^h; Nov. 10^d, between 8^h and 16^h, and between 22^h and 24^h; Nov. 11^d and 12^d, between 22^h and 24^h; and Nov. 13^d, between 0^h and 4^h, and between 10^h and 12^h, the changes were considerable, HORIZONTAL FORCE MAGNET. Nov. 7d, between 22h and 24h, and Nov. 8d, 10d, and 12d, between 20h and 22h, considerable changes took place. Vertical Force Magnet. Nov. 12d. Between 0h and 1h. 50m a considerable change occurred. | | | | | Daily Obse | ervation | ns fr | om November 14 t | o 20. | | | | | | |--|----------------------|---|---|--|---|------------|--|-----------------------|---|---|--|---|------------| | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | | d h m | 0 / " | | 0 | | 0 | | d h m | 0 / # | | 0 | | 0 | | | Nov. 14. 14. 0 | 22.52.6 | 0 ·141697 | 54 .0 | 0.051249 | 54 .0 | G H | Nov. 17. 14. 0 | 22, 50. 27 | 0 .142520 | 51 ·0 | 0.051948 | 51 .0 | G H | | 16. 0 | 53. 17 | 142277 | 55 ·0 | 051638 | 55 .0 | | 16. 0 | 55 . 21 | 142520 | 51.0 | 052161 | 51.0 | 1 | | 18. 0 | 53. 25 | 142393 | 56 ·0 | 051651 | 56 .0 | | 18. 0 | 56.38 | 142295 | 50.0 | 052031 | 50.0 | 1 | | 20. 0 | 54. 2 | 142002 | 57.0 | 051476 | | GН | 20. 0 | 56. 50 | 142093 | 49 .2 | 052098 | | 1 | | 22. 0 | 55. 8 | 140607 | 58 •5 | 051324 | 58 .0 | L | 22. 0 | 55.47 | 140692 | 48.0 | 052240 | 48 .0 | L | | Nov. 15. 0. 0 | 22. 57. 16 | 0 · 139384 | 59 :5 | 0 .051441 | 59 .5 | L | Nov. 18. 0. 0 | 22. 59. 27 | 0 ·141672 | 47 .4 | 0.052249 | 47 .5 | L | | [1.50] | 58.35 | 140194 | | 051457 | | | ∫ 1.50 | 23. 4. 2 | 141655 | | 052472 | | | | ₹ 2. 0 | 58. 35 | 140426 | 6 0 ·8 | 051457 | 61 .0 | | ₹ 2. 0 | 3.42 | 141145 | 49 •0 | 052544 | 49 .0 | | | 2. 10 | 58. 27 | 140426 | | 051400 | | L | 2.10 | 3. 31 | 141145 | | 052544 | | L | | 4. 0 | 57. 2 | 141441 | 61 .2 | 051465 | 61 .2 | G H | 4. 0 | 2. 5 | 142057 | 51.0 | 052614 | 52.0 | 1. | | 6. 0 | 54. 53 | 141954 | 61 .9 | 051319 | 61 .8 | | 6. 0 | 23. 1, 5 | 142918 | 52.5 | 052111 | 52.5 | • | | 8. 0 | 55. 48 | 142430 | 62 .0 | 051116 | 62 .0 | | 8. 0 | 22. 59. 28 | 143082 | 52.3 | 051930 | 53.0 | ſ | | 10. 0 | 55. 0 | 142616 | 62 .0 | 051084 | | GH | 10. 0 | 58. 35 | 143048 | 52.0 | 051866 | 52 ·0
51 ·0 | 1 | | 12. 0 | 53.22 | 142020 | 61 .5 | 050859 | 61.5 | L | 12. 0 | 56. 21 | 142868 | 51 .0 | 051663
051760 | 49.0 | 1 | | 14. 0
16. 0 | 52. 12 | 141841 | 61 .0 | 050959 | 61 .0 | | 14. 0
16. 0 | 55. 8
55. 45 | 141841
140033 | 49 · 0
45 · 0 | 051700 | 65.0 | | | 18. 0 | 50. 37
51. 52 | 142802
142878 | 59 ·4
58 ·5 | 050 764
050842 | 59 · 5
58 · 5 | | 4 | 55, 45
55, 14 | 142447 | 44 .8 | 051979 | 44.6 | | | 20. 0 | 51. 52
53. 24 | 142878 | 57 ·6 | 050842 | 57.5 | L | 18. 0
20. 0 | 53, 14
54, 27 | 142183 | 43 .3 | 052181 | 43.0 | | | 22. 0 | 22. 53. 55 | 142489 | 57.0 | 050994 | 57.0 | | 20. 0
22. 0 | 55. 56 | 140763 | 43 0 | 052679 | 43 .0 | | | Nov. 16. 0. 0 | 09 A A | 0 · 140731 | 50 .O | 0 .051145 | 50.0 | 77 D | Nov. 19. 0. 0 | 22. 59. 29 | 0 ·141966 | 42 .5 | 0 .052908 | 42 .5 | TD | | (1.50 | 23. 0. 8
1. 56 | 141408 | 99.0 | 051145 | 58.0 | GH | Nov. 19. 0. 0 | 59. 41 | 142113 | 42 0 | 053248 | 12 0 | 1. | | 2. 0 | 1. 30
2. 49 | 141362 | 59 ·0 | 050582 | 59 .0 | ; | \ \frac{1.50}{2.0} | 59. 55 | 142438 | 44.0 | 053248 | 44 .0 | ,] | | 2. 10 | 23. 3. 12 | 141362 | US U | 050582 | 03 0 | TD | | 59. 55 | 142252 | ••• | 053248 | | T D | | 4. 0 | 22. 58. 58 | 142173 | 59 0 | 051971 | 59 .0 | L | 4. 0 | 59. 55 | 142734 | 44 .2 | 052921 | 44 .0 | L | | 6. 0 | 59. 28 | 142237 | 58 .2 | 051501 | 58 .2 | _ | 6. 0 | 58. 2 | 142351 | 45 .0 | 052555 | 45 .0 | 1 | | 8. 0 | 58. 57 | 140681 | 57 .2 | 051568 | 57·0 | | 8. 0 | 22. 55. 44 | 142917 | 46 .0 | 052579 | 46.0 | | | 10. 0 | 50. 18 | 140367 | 56 .5 | 051531 | 56.5 | L | 10. 0 | 23. 2.40 | 144140 | 45 .5 | 051827 | 45 .3 | | | 12. 0 | 50. 22 | 141303 | 54 ·0 | 051263 | 54 .0 | тр | 12. 0 | 22, 49, 39 | 139285 | 44 .0 | 052864 | | 1 | | 14. 0 | 52. 23 | 141188 | 54 ·0 | 051355 | 54 .0 | | 14. 0 | 53. 19 | 140097 | 44 .0 | 052843 | 44.0 | 1 | | 16. 0 | 54. 34 | 141746 | 53 .0 | 051659 | 53 .0 | | 16. 0 | 50. 27 | 140117 | 43 5 | 052515 | 43 .5 | | | 18. 0 | 53. 45 | 141703 | 52 ·0 | 051866 | 52 0 | | 18. 0 | 51.56 | 141012 | 42.7 | 052587 | 42 .5 | | | $egin{array}{c c} 20. & 0 \\ 22. & 0 \\ \end{array}$ | 52. 56
53. 29 | 141871
141361 | 51 ·0 | 051904
052233 | 50 ·5
51 ·0 | | 20. 0
22. 0 | 54. 1
22. 55. 7 | 141854
141808 | 42 ·3
42 ·3 | 052830
053143 | 42 .0 | , | | | 33. 29 | 141301 | 31.0 | 032233 | 91.0 | G H | 22. 0 | 22. 55. 7 | 141808 | 42 3 | 000140 | 42 0 | , G | | Nov. 17. 0. 0 | 22. 59. 39 | 0 ·140673 | 50 .0 | | 50 .0 | GН | Nov. 20. 0. 0 | 23. 1. 3 | 0 ·142289 | 42 .0 | 0 .053172 | 42 .0 | G H | | [1. 50] | 23. 2.47 | 141239 | | 052250 | i | | [1.50 | 3. 3 | 140299 | 1 | 053676 | | | | { 2. 0 | 2. 12 | | 52 ·0 | 052222 | 52 ·0 | i | ₹ 2. 0 | 0. 23 | 139604 | 43 .0 | 053605 | 43 .0 | 1 | | 2. 10 | 23. 2.28 | 141471 | | 052165 | | GН | | 0.38 | 140531 | | 053534 | 45 | GH | | 4. 0 | 22. 58. 33 | 1 | 53.0 | 052001 | | TО | | 23. 0, 40 | 141378 | 45 0 | 053635 | 45 .0 | | | 6. 0 | 58. 17 | 142398 | 52 .0 | 051965 | 52.0 | | 6. 0 | 22. 56. 14 | 140877 | 46 0 | 053291 | 46 .0 | | | 8. 0 | 57. 12
55. 97 | , | 51.0 | | 51.0 | | 8. 0 | 54. 10 | 142047 | 47 .0 | 053105 | 47.0 | | | 10. 0
12. 0 | 55. 27 |) | 51 .0 | 051962 | 51.0 | | | 53. 54
51. 40 | 140970
1406 5 0 | 48 ·0
48 ·7 | 052916
052658 | 48 0 | | | 14. V I | 58. 2 | 143447 | 51.0 | 051877 | OT O | G H | 12. 0 | 51.40 | 140000 | 1 40 / | 0.02000 | 130 | ى تى | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 269°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 37°. 45′. Reading for Brass Bar in the same position, 358°. 6′. Time of Vibration of Vertical Force Magnetometer, 20°.5. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°.97; in Vertical Plane, 23°.1. Declination Magnet. Nov. 15^d and 16^d, between 22^h and 24^h; Nov. 17^d, between 12^h and 14^h; Nov. 19^d, between 8^h and 12^h, and between 22^h and 24^h, considerable changes occurred. HORIZONTAL FORCE MAGNET. Nov. 18³, between 16³ and 18⁵, and Nov. 19³, between 10⁵ and 12⁵, considerable changes occurred. Vertical Force Magnet. Nov. 16^d ,
between 2^h . 10^m and 4^h , and Nov. 19^d , between 8^h and 12^h , considerable changes occurred. | | | | | Daily Obser | rvation | s fro | m November 21 to | 27. | | | | | | |--|-------------------------|--|---|---|--------------------------------|------------|--|----------------------|--|---|---|---|-----------| | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor.forTemp. | ermome
rtical Fo
gnetome | Observers. | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.forTemp. | Thermometer of
Vertical Force
Magnetometer. | Observers | | d h m | 0 / " | | 0 | | 0 | _ | d h m | 0 1 11 | | 0 | | 0 | Ì | | Nov. 21. 14. 0 | 22. 51. 31 | 0 .142849 | 43 .0 | 0 .052864 | 44 .0 | G H | Nov. 24. 14. 0 | 22. 57. 14 | 0 .140515 | 55 .8 | 0.051644 | 55 .7 | G | | 16. 0 | 49.50 | 142849 | 43 .0 | 052971 | 44.0 | | 16. 0 | 23. 1.19 | 138453 | 56 .0 | 051139 | 56 .0 | | | 18. 0 | 45.44 | 143776 | 43 .0 | 052935 | 44 .0 | | 18. 0 | 22.50.28 | 137248 | 56 ·0 | 051210 | 56 .0 | | | 20. 0 | 48. 24 | 143626 | 45 .0 | 052923 | 45 .0 | GН | 20. 0 | 56. 14 | 140632 | 56 .7 | 051567 | 56 .5 | 1 | | 22. 0 | 49.32 | 142963 | 46 .0 | 052565 | 46 .0 | L | 22. 0 | 56. 21 | 139671 | 56 ·5 | 051460 | 56 · 5 |] | | Nov. 22. 0. 0 | 22, 55, 46 | 0 ·142841 | 47.5 | 0 .052423 | 47 ·3 | L | Nov. 25. 0. 0 | 22. 58. 3 | 0 ·140181 | 56 • 5 | 0 .051603 | 56 .5 | | | (1.50 | 58. 19 | 143134 | _, _ | 052993 | | ΤЪ | (1.50 | 23. 2. 5 | 140122 | | 051865 | | T | | ₹ 2. 0 | 58.44 | 142856 | 54 .0 | 052993 | 54 .0 | | ₹ 2. 0 | 3. 14 | 140539 | 56 ·0 | 051851 | 56 .0 | T | | 2. 10 | 59. 44 | 142856 | | 052993 | | T D | 2. 10 | 8. 36 | 141234 | | 051851 | | | | 4. 0 | 22. 56. 14 | 141998 | 54 .6 | 052109 | 54 .2 | GН | 4. 0 | 7. 28 | 141061 | 56 .2 | 052172 | 56 .5 | 1 | | 6. 0 | 23. 5. 38 | 146101 | 55 ·0 | 051780 | 55 ·0 | | 6. 0 | 23. 1.59 | 140598 | 56 5 | 052315 | 56 .5 | | | 8. 0 | 23. 1.22 | 142161 | 56 ·0 | 053631 | 56 .0 | | 8. 0 | 22. 38. 26 | 139439 | 56 .5 | 052528 | 56 .5 | | | 10. 0 | 22. 40. 23 | 137645 | 57 · 0 | 055413 | 57 ·0 | GН | 10. 0 | 47. 31 | 137518 | 57 .8 | 052888 | 57.5 | | | 12. 0 | 58. 29 | 137413 | 57 ·0 | 052921 | 57 · 0 | L | 12. 0 | 46. 46 | 134312 | 58 2 | 050291 | 58 ·0
58 ·2 | | | 14. 0 | 59. 11 | 138418 | 56 ·6 | 051780 | 55 .2 | | 14. 0 | 38. 3 | 137593 | 58 .5 | 050406
050213 | 56 0 | | | 16. 0 | 51.30 | 133309 | 56 .0 | 047757 | 56 .0 | | 16. 0 | 41. 19 | 136136 | 56.5 | 050413 | 56.5 | | | 18. 0 | 48. 28 | 136486 | 57.0 | 050827 | 56 .7 | _ | 18. 0 | 53. 46 | 140903 | 56 · 5
56 · 2 | 050498 | 56.0 | 1 | | $\begin{bmatrix} 20. & 0 \\ 22. & 0 \end{bmatrix}$ | 54. 22
57. 43 | 136486
135 7 25 | 57 ·0
58 ·0 | 051796
05233 5 | 57 ·0
58 ·0 | L
T D | 20. 0
22. 0 | 58. 19
22. 56. 52 | 138244
138500 | 56 ·4 | 051439 | 56 ·5 | | | Nov. 23. 0. 0 | | | | | 50.0 | | | 00 0 05 | 0.199990 | 50.5 | 0 .051887 | 56 ·5 | T | | (1.50 | 22. 58. 16
57. 36 | 0 137422 | 99.0 | 0.052077 | 99.0 | ТВ | Nov. 26. 0. 0 | 23. 2.35 | 0 ·138280
138049 | <i>5</i> 0 <i>5</i> | 052400 | 000 | 1 | | 2. 0 | 58. 16 | 138767
138767 | 50.0 | 052077 | 59 .0 | | $\begin{cases} 1.50 \\ 2.0 \end{cases}$ | 1. 46
23. 0. 46 | 138907 | 56 .5 | 052457 | 56 .5 | | | 2. 10 | 58. 8 | 138767 | 59 ·0 | 052077
052077 | 39 0 | тр | 2. 10 | 23. 0.40
22.59.41 | 138976 | 50 0 | 052671 | | Т | | 4. 0 | 57. 45 | 138358 | 58 .5 | 051932 | 58 .5 | L | 4. 0 | 23. 0.48 | 139208 | 56 . 5 | 052178 | 56.3 | 1 | | 6. 0 | 59. 17 | | 57.0 | 051497 | 57 .0 | - | 6. 0 | 22. 52. 13 | 140076 | 56 0 | 052221 | 56 .0 | | | 8. 0 | 56.38 | 138744 | 56 5 | 051674 | 56.5 | | 8. 0 | 56. 7 | 140182 | 55 .4 | 051672 | 55 .5 | 1 | | 10. 0 | 55. 56 | 138569 | 55.0 | 051709 | 55 .0 | L | 10. 0 | 51. 13 | 139148 | 54 .0 | 051647 | 54 .2 | | | 12. 0 | 56. 12 | 138639 | 54.0 | 051683 | 54.0 | 1 | 12. 0 | 45. 40 | 137932 | 54.5 | 051326 | 54 .2 | | | 14. 0 | 54. 47 | 138922 | 52 ·0 | 051581 | 52 ·0 | _ | 14. 0 | 49. 4 | 138500 | 55 .0 | 051452 | 55 .0 | 1 | | 16. 0 | 55.47 | 139399 | 50 .0 | 051675 | 50.0 | | 16. 0 | 56. 40 | 139496 | 55 .0 | 051474 | 55 .0 | | | 18. 0 | 54. 24 | 139060 | 49 .0 | 051825 | 49 .4 | 1 | 18. 0 | 57. 6 | 140840 | 55 .0 | 051531 | 55 ·0 | | | 20. 0 | 53.57 | 138782 | 49 .0 | 052180 | 49 .5 | TО | 20. 0 | 56. 59 | 139809 | 55 .7 | 051787 | 55 .7 | | | 22. 0 | 22. 53. 37 | 140673 | 50 .0 | 052529 | 50 .0 | G H | 22. 0 | 22. 57. 13 | 138893 | 55 .8 | 051459 | 55 .5 | | | Nov. 24. 0. 0 | 23. 1.44 | 0 ·138124 | 50 ·0 | 0 .052458 | 50 .0 | GН | Nov. 27. 0. 0 | 23. 0.38 | 0 ·138804 | 57 ·0 | | 57 .0 | T | | (1.50) | 2. 21 | 138917 | | 052708 | | | (1.50 | 2.48 | 139211 | | 051820 | | G | | ₹ 2. 0 | 1.57 | | 54 .0 | 052708 | 54 .0 | | ₹ 2. 0 | 2. 15 | 139327 | 57 .5 | 051820 | 57 · 5 | ١. | | [2. 10] | 23. 1.11 | 139033 | | 052637 | | GН | 2. 10 | 23. 1.41 | 139327 | | 051820 | | G | | 4. 0 | 22. 58. 53 | | 56 · 0 | 052271 | 56 ·0 | T D | 4. 0 | 22. 52. 48 | 139248 | 58.0 | 052036 | 58.0 | | | 6. 0 | 57. 0 | | 56 .0 | 051779 | 56 .0 | | 6. 0 | 58.28 | 141082 | 58 .6 | 051825 | 58.5 | | | 8. 0 | 56. 44 | | 57.0 | 051796 | 57 .0 | | 8. 0 | 56. 0 | 144022 | 58.0 | 051573 | 58.0 | | | 10. 0 | 54. 25 | | 57.0 | 051832 | 5 7 · 0 | | | 47. 28 | 139972 | 59 0 | 051365 | 59.0 | | | 12. 0 | 52. 54 | 140771 | 56.0 | 051281 | 56 .0 | CH | 12. 0 | 49. 52 | 137764 | 58 .0 | 051124 | 58 .0 | T | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 269°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 37°. 45′. Reading for Brass Bar in the same position, 358°. 6′. Time of Vibration of Horizontal Force Magnetometer, 20•.5. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24•.97; in Vertical Plane, 23•.1. Declination Magnet. Nov. 22^d to Nov. 27^d. The changes in the position of the magnet were frequent and of large amount. HORIZONTAL FORCE MAGNET. Nov. 22^d, between 4^h and 10^h, and between 14^h and 18^h; Nov. 23^d, between 22^h and 24^h; Nov. 24^d, between 14^h and 20^h; Nov. 25^d, between 10^h and 20^h; and Nov. 27^d, between 6^h and 12^h, considerable changes occurred. Vertical Force Magnet. Nov. 22^d, from 6^h to 20^h, and Nov. 25^d, between 10^h and 14^h, considerable changes occurred. | Reckoning) of Declination Observation. d | restern lination. c 7 | 0 ·141861
142093
142371
142441
141218
0 ·140976
141593
141593
141593
142279
142093
14263
142343
142288
141996
142029
142107
142161 | 47 · 0
47 · 0
47 · 1
47 · 0
47 · 5 | 051917
052109
052152
052377 | 1.5 0 47 · 0 47 · 0 47 · 0 47 · 0 47 · 0 47 · 5 48 · 0 51 · 5 53 · 0 | T D B T D B | Time (Recl | \begin{cases} 1.50 \\ 2.0 \\ 2.10 \\ 4.0 \\ 6.0 \\ 8.0 \\ 10.0 \\ 12.0 \\ 14.0 \\ 16.0 \\ 18.0 | Western Declination. 0 | 0 ·140886
141048
141648
142411
142853
0 ·142411
142173
142173
142288
142810
142323
140018
142347
138284
138344
139503
140027 | 55 · 0
54 · 0
51 · 5
50 · 0
49 · 8
50 · 0
51 · 0
51 · 0
55 · 0
55 · 5
56 · 0
57 · 5
58 · 0
58 · 0
58 · 0 | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. 0 .051246 050999 051048 051176 051675 051877 051877 051877 051925 051638 051758 051355 051573 050612 050861 050789 | ermome
rtical Fo | T 1 L B T 1 B |
--|---|---|---|--|--|----------------------|-------------|---|--|--|--|--|--|---------------| | Reckoning) of Declination Observation. A h m O Nov. 28. 14. 0 22. 16. 0 18. 0 22. 0 22. 0 22. 0 23. 23. 22. 4. 0 6. 0 8. 0 10. 0 12. 0 14. 0 16. 0 18. 0 22. 0 2. 10 4. 0 6. 0 8. 0 10. 0 12. 0 14. 0 6. 0 8. 0 10. 0 12. 10 4. 0 6. 0 8. 0 10. 0 12. 0 14. 0 6. 0 8. 0 10. 0 12. 0 14. 0 16. 0 18. 0 20. 0 18. 0 20. 0 18. 0 20. 0 18. 0 20. 0 18. 0 20. 0 18. 0 20. 0 18. 0 20. 0 18. 0 20. 0 18. 0 20. 0 18. 0 20. 0 18. 0 20. 0 18. 0 20. 0 18. 0 20. 0 18. 0 20. 0 19. 0 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0 ·141861
142093
142371
142441
141218
0 ·140976
141593
141593
141593
142279
142093
14263
142343
142288
141996
142029
142107
142161 | 0
47·0
47·0
47·1
47·0
47·5
48·5
51·0
53·0
52·7
51·5
51·8
52·5
52·0 | of the whole Vert. Force cor.for Temp. 0 .051724 | 47·0
47·0
47·0
47·0
47·5
48·0
51·5
53·0
53·0
52·0
51·5
51·8
52·0
52·0 | T D L B T D T D B | Reci De Obs | 20. 0 0 22. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Declination. 0 | 0 ·140886
141048
141648
142411
142853
0 ·142411
142173
142173
142288
142810
142323
140018
142347
138284
138344
139503
140027 | 55 · 0
54 · 0
51 · 5
50 · 0
49 · 8
50 · 0
51 · 0
51 · 0
51 · 0
55 · 0
55 · 5
56 · 0
57 · 5
58 · 0
58 · 0
58 · 0
58 · 0 | of the whole Vert. Force cor.for Temp. 0 .051246 | 55 · 0
54 · 0
52 · 0
50 · 0
50 · 0
51 · 0
51 · 0
56 · 0
56 · 0
57 · 0
58 · 0
58 · 0
58 · 0 | T 1 L B T 1 B | | Declination Observation. A | 1001.
1001. | 0 ·141861
142093
142371
142441
141218
0 ·140976
141593
141593
141593
142279
142093
14263
142343
142288
141996
142029
142107
142161 | 0
47·0
47·0
47·1
47·0
47·5
48·5
51·0
53·0
52·7
51·5
51·8
52·5
52·0 | Vert. Force cor.for Temp. 0 .051724 | 47·0
47·0
47·0
47·0
47·5
48·0
51·5
53·0
53·0
52·0
51·5
51·8
52·0
52·0 | T D L B T D T D | Dec. | clination servation. d h m 1. 14. 0 16. 0 18. 0 20. 0 22. 0 2. 0. 0 1. 50 2. 10 4. 0 6. 0 8. 0 10. 0 12. 0 14. 0 16. 0 18. 0 | 0 , " 22. 55. 21 54. 29 51. 50 53. 46 51. 32 22. 54. 34 55. 13 55. 2 56. 46 57. 21 56. 46 55. 31 58. 53 54. 38 46. 28 43. 22 48. 15 | 0 ·140886
141048
141648
142411
142853
0 ·142411
142173
142173
142288
142810
142323
140018
142347
138284
138344
139503
140027 | 55 · 0
54 · 0
51 · 5
50 · 0
49 · 8
50 · 0
51 · 0
51 · 0
51 · 0
55 · 0
55 · 5
56 · 0
57 · 5
58 · 0
58 · 0
58 · 0
58 · 0 | Vert. Force cor.for Temp. 0 .051246 | 55 · 0
54 · 0
52 · 0
50 · 0
50 · 0
51 · 0
51 · 0
56 · 0
56 · 0
57 · 0
58 · 0
58 · 0
58 · 0 | T 1 L B T 1 B | | Nov. 28. 14. 0 16. 0 18. 0 20. 0 22. 0 Nov. 29. 0. 0 2. 10 4. 0 6. 0 8. 0 10. 0 12. 0 14. 0 16. 0 18. 0 20. 0 22. 0 Nov. 30. 0. 0 2. 10 4. 0 6. 0 8. 0 10. 0 12. 0 14. 0 16. 0 18. 0 20. 0 21. 10 4. 0 6. 0 8. 0 10. 0 11. 50 21. 10 4. 0 6. 0 8. 0 10. 0 12. 0 14. 0 6. 0 8. 0 10. 0 12. 0 14. 0 6. 0 8. 0 10. 0 12. 0 14. 0 16. 0 18. 0 20. 0 10. 0 12. 0 14. 0 16. 0 18. 0 20. 0 | 50. 37
52. 5
51. 8
51. 12
51. 46
56. 47
6. 56. 47
6. 0. 43
6. 0. 2
6. 59. 57
58. 16
57. 12
55. 56
55. 32
54. 39
55. 28
54. 7
54. 21
52. 17
54. 19 | 0 ·141861
142093
142371
142441
141218
0 ·140976
141593
141593
141593
142279
142093
14263
142343
142288
141996
142029
142107
142161 | 0
47·0
47·0
47·1
47·0
47·5
48·5
51·0
53·0
52·7
51·5
51·8
52·5
52·0 | 0 · 051724
051917
052109
052152
052377
0 · 052347
052618
052512
052512
052570
052051
051994
051978
052039
052003
051973
051902 | 47·0
47·0
47·0
47·0
47·5
48·0
51·5
53·0
53·0
52·0
51·5
51·8
52·0
52·0 | T D L B T D T D | Dec. | 1. 14. 0
16. 0
18. 0
20. 0
22. 0
2. 0. 0
{1. 50
2. 10
4. 0
6. 0
8. 0
10. 0
12. 0
14. 0
16. 0
18. 0 | 22. 55. 21
54. 29
51. 50
53. 46
51. 32
22. 54. 34
55. 13
56. 46
57. 21
56. 46
57. 21
56. 46
57. 31
58. 53
54. 38
46. 28
43. 22
48. 15 | 0 ·140886
141048
141648
142411
142853
0 ·142411
142173
142173
142288
142810
142323
140018
142347
138284
138344
139503
140027 | 55 · 0
54 · 0
51 · 5
50 · 0
49 · 8
50 · 0
51 · 0
51 · 0
51 · 0
55 · 0
55 · 5
56 · 0
57 · 5
58 · 0
58 · 0
58 · 0
58 · 0 | 0 · 051246
050999
051048
051176
051675
0 · 051853
051877
051877
051877
051877
051925
051638
051908
051758
051573
050612
050861 | 55 · 0
54 · 0
52 · 0
50 · 0
50 · 0
51 · 0
51 · 0
56 · 0
56 · 0
57 · 0
58 · 0
58 · 0
58 · 0 | T 1 L B T 1 B | | Nov. 28. 14. 0 16. 0 18. 0 20. 0 22. 0 Nov. 29. 0. 0 21. 50 2. 10 4. 0 6. 0 8. 0 10. 0 12. 0 14. 0 16. 0 18. 0 20. 0 22. 0 Nov. 30. 0. 0 2. 10 4. 0 6. 0 8. 0 10. 0 12. 0 14. 0 16. 0 18. 0 20. 0 21. 10 4. 0 6. 0 8. 0 10. 0 12. 0 14. 0 6. 0 8. 0 10. 0 12. 0 14. 0 6. 0 8. 0 10. 0 12. 0 14. 0 6. 0 8. 0 10. 0 12. 0 14. 0 16. 0 18. 0 20. 0 | 50. 37
52. 5
51. 8
51. 12
51. 46
56. 47
6. 0. 43
6. 0. 2
59. 57
58. 16
57. 12
55. 56
55. 32
54. 39
55. 28
54. 7
54. 19 | 142093
142371
142441
141218
0 ·140976
141593
141593
142599
142093
142663
142343
142288
141996
142029
142107
142167 | 47·0
47·0
47·1
47·0
47·5
48·5
51·0
53·0
52·7
51·5
51·8
52·5
52·0 | 051917
052109
052152
052377
0 ·052347
052618
052512
052512
052570
052015
051994
051978
052039
052003
051973
051902 | 47·0
47·0
47·0
47·5
48·0
51·5
53·0
53·0
52·0
51·5
51·8
51·8
52·0
52·0 | T D B T D B | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 22. 55. 21
54. 29
51. 50
53. 46
51. 32
22. 54. 34
55. 13
56. 46
57. 21
56. 46
57. 21
56. 46
57. 31
58. 53
54. 38
46. 28
43. 22
48. 15 | 141048
141648
142411
142853
0·142411
142173
142173
142288
142810
142323
140018
142347
138284
138344
139503
140027 | 55·0
54·0
51·5
50·0
49·8
50·0
51·0
51·0
55·0
55·5
56·0
57·5
58·0
58·0
58·5 | 050999
051048
051176
051675
0 ·051853
051877
051877
051877
051925
051638
051908
051758
051355
051673
050612 | 55 · 0
54 · 0
52 · 0
50 · 0
50 · 0
51 · 0
51 · 0
56 · 0
56 · 0
57 · 0
58 · 0
58 · 0
58 · 0 | T I B | | 16. 0 18. 0 20. 0 22. 0 Nov. 29. 0. 0 1. 50 2. 0 2. 10 4. 0 6. 0 8. 0 10. 0 12. 0 14. 0 16. 0 18. 0 20. 0 22. 0 Nov. 30. 0. 0 1. 50 2. 10 4. 0 6. 0 8. 0 10. 0 12. 0 14. 0 16. 0 18. 0 20. 0 21. 10 4. 0 6. 0 8. 0 10. 0 12. 0 14. 0 6. 0 8. 0 10. 0 12. 0 14. 0 16. 0 18. 0 20. 0 | 52. 5
51. 8
51. 12
51. 46
. 56. 47
. 0. 43
. 0. 2
. 59. 57
58. 16
57. 12
55. 56
55. 32
54. 39
55. 28
54. 7
54. 21
52. 17
54. 19 | 142093
142371
142441
141218
0 ·140976
141593
141593
142599
142093
142663
142343
142288
141996
142029
142107
142167 | 47·0
47·1
47·0
47·5
48·5
51·0
53·0
52·7
51·5
51·8
52·5
52·0 | 051917
052109
052152
052377
0 ·052347
052618
052512
052512
052570
052015
051994
051978
052039
052003
051973
051902 | 47 · 0
47 · 0
47 · 0
47 · 5
48 · 0
51 · 5
53 · 0
53 · 0
51 · 5
51 · 8
51 · 8
52 · 0
52 · 0 | T D B T D B | | $\begin{array}{c} 16. & 0 \\ 18. & 0 \\ 20. & 0 \\ 22. & 0 \\ \end{array}$ $\begin{array}{c} 2. & 0. & 0 \\ \begin{cases} 1.50 \\ 2. & 0 \\ 2.10 \\ 4. & 0 \\ 6. & 0 \\ 8. & 0 \\ 10. & 0 \\ 12. & 0 \\ 14. & 0 \\ 16. & 0 \\ 18. & 0 \\ \end{array}$ | 54. 29
51. 50
53. 46
51. 32
22. 54. 34
55. 13
55. 2
56. 46
57. 21
56. 46
55. 31
58. 53
54. 38
46. 28
43. 22
48. 15 | 141048
141648
142411
142853
0·142411
142173
142173
142288
142810
142323
140018
142347
138284
138344
139503
140027 | 54 · 0
51 · 5
50 · 0
49 · 8
50 · 0
51 · 0
51 · 0
54 · 0
55 · 5
56 · 0
57 · 5
58 · 0
58 · 0
58 · 5 | 050999
051048
051176
051675
0 ·051853
051877
051877
051877
051925
051638
051908
051758
051355
051673
050612 | 54 · 0
52 · 0
50 · 0
50 · 0
51 · 0
51 · 0
54 · 0
56 · 0
57 · 0
58 · 0
58 · 0 | T I B | | 18. 0 20. 0 22. 0 Nov. 29. 0. 0 1. 50 2. 0 2. 10 4. 0 6. 0 8. 0 10. 0 12. 0 14. 0 16. 0 18. 0 20. 0 22. 0 Nov. 30. 0. 0 2. 10 4. 0 6. 0 8. 0 10. 0 12. 0 14. 0 16. 0 18. 0 20. 0 21. 10 4. 0 6. 0 8. 0 10. 0 12. 0 14. 0 16. 0 18. 0 20. 0 20. 0 20. 0 20. 0 20. 0 20. 0 20. 0 20. 0 20. 0 20. 0 20. 0 20. 0 20. 0 20. 0 20. 0 | 51. 8
51. 12
51. 46
. 56. 47
. 0. 43
. 0. 2
. 59. 57
58. 16
57. 12
55. 56
55. 32
54. 39
55. 28
54. 21
52. 17
54. 19 | 142371
142441
141218
0 ·140976
141593
141593
141599
142099
142093
142663
142343
142288
141996
142029
142107
142167 | 47·1
47·0
47·5
48·5
51·0
53·0
52·7
51·5
51·8
52·5
52·0 | 052109
052152
052377
0 ·052347
052618
052512
052512
052570
052051
052015
051994
051978
052039
052003
051973
051902 | 47 · 0
47 · 0
47 · 5
48 · 0
51 · 5
53 · 0
53 · 0
52 · 0
51 · 8
51 · 8
52 · 0
52 · 0 | T D B T D T D B | Dec. | 18. 0 20. 0 22. 0 2. 0. 0 { 1. 50 2. 0 2. 10 4. 0 6. 0 8. 0 10. 0 12. 0 14. 0 16. 0 18. 0 | 51. 50
53. 46
51. 32
22. 54. 34
55. 13
55. 2
56. 46
57. 21
56. 46
55. 31
58. 53
54. 38
46. 28
43. 22
48. 15 | 141648
142411
142853
0 ·142411
142173
142173
142288
142810
142323
140018
142347
138284
138344
139503
140027 | 51 · 5
50 · 0
49 · 8
50 · 0
51 · 0
51 · 0
55 · 0
55 ·
5
56 · 0
57 · 5
58 · 0
58 · 0
58 · 0 | 051048
051176
051675
0 ·051853
051877
051877
051925
051638
051908
051758
051573
050612
050861 | 52 · 0
50 · 0
50 · 0
51 · 0
51 · 0
54 · 0
56 · 0
56 · 0
57 · 0
58 · 0
58 · 0 | T] B B T] | | 20. 0 22. 0 Nov. 29. 0. 0 1. 50 2. 0 2. 10 4. 0 6. 0 8. 0 10. 0 12. 0 14. 0 16. 0 18. 0 20. 0 22. 0 Nov. 30. 0. 0 1. 50 2. 10 4. 0 6. 0 8. 0 10. 0 12. 0 14. 0 16. 0 18. 0 20. 0 21. 10 4. 0 6. 0 8. 0 10. 0 12. 0 14. 0 16. 0 18. 0 20. 0 10. 0 12. 0 14. 0 16. 0 18. 0 20. 0 | 51. 12
51. 46
. 56. 47
. 0. 43
. 0. 2
. 59. 57
58. 16
57. 12
55. 56
55. 32
54. 39
55. 28
54. 7
54. 21
52. 17
54. 19 | 142441
141218
0 ·140976
141593
141593
141593
142279
142093
142663
142343
142288
141996
142029
142107
142167 | 47·0
47·5
48·5
51·0
53·0
52·7
51·5
51·5
51·8
52·5
52·0 | 052152
052377
0 ·052347
052618
052512
052512
052570
052051
052015
051994
051978
052039
052003
051973
051902 | 47 · 0
47 · 5
48 · 0
51 · 5
53 · 0
53 · 0
52 · 0
51 · 5
51 · 8
51 · 8
52 · 0
52 · 0 | B B T D B | Dec. | 20. 0
22. 0
2. 0. 0
{1.50
2. 0
2. 10
4. 0
6. 0
8. 0
10. 0
12. 0
14. 0
16. 0
18. 0 | 53. 46
51. 32
22. 54. 34
55. 13
55. 2
56. 46
57. 21
56. 46
55. 31
58. 53
54. 38
46. 28
43. 22
48. 15 | 142411
142853
0 ·142411
142173
142173
142288
142810
142323
140018
142347
138284
138344
139503
140027 | 50 · 0
49 · 8
50 · 0
51 · 0
51 · 0
55 · 0
55 · 5
56 · 0
57 · 5
58 · 0
58 · 0
58 · 5 | 051176
051675
0 ·051853
051877
051877
051877
051925
051638
051908
051758
051355
051573
050612
050861 | 50·0
50·0
51·0
51·0
51·0
55·0
56·0
56·0
58·0
58·0 | T : B | | 22. 0 Nov. 29. 0. 0 \begin{pmatrix} 1.50 & 22. & 23. & 23. & 22. & 4. & 0 & 6. & 0 & 0. & 0. & 0. & 0. & 0. | 51. 46
. 56. 47
. 0. 43
. 0. 2
. 59. 57
58. 16
57. 12
55. 56
55. 32
54. 39
55. 28
54. 7
54. 21
52. 17
54. 19 | 141218
0 ·140976
141593
141593
141593
142279
142063
142343
142343
142288
141996
142029
142107
142167 | 47.5
48.5
51.0
53.0
52.7
51.5
51.0
51.5
52.5
52.0 | 052377
0 052347
052618
052512
052512
052570
052051
051994
051978
052039
052003
051973
051902 | 47 · 5
48 · 0
51 · 5
53 · 0
53 · 0
52 · 0
51 · 8
51 · 8
52 · 0
52 · 0
52 · 0 | B B T D B | Dec. | $\begin{array}{c} 22 & 0 \\ 2. & 0. & 0 \\ \begin{cases} 1.50 \\ 2. & 0 \\ 2.10 \\ 4. & 0 \\ 6. & 0 \\ 8. & 0 \\ 10. & 0 \\ 12. & 0 \\ 14. & 0 \\ 16. & 0 \\ 18. & 0 \\ \end{array}$ | 51. 32 22. 54. 34 55. 13 55. 2 56. 46 57. 21 56. 46 55. 31 58. 53 54. 38 46. 28 43. 22 48. 15 | 142853
0 ·142411
142173
142173
142288
142810
142323
140018
142347
138284
138344
139503
140027 | 49 ·8 50 ·0 51 ·0 51 ·0 51 ·0 55 ·0 55 ·5 56 ·0 57 ·5 58 ·0 58 ·0 58 ·5 | 051675 0 ·051853 051877 051877 051877 051925 051638 051908 051758 051355 051573 050612 | 50·0
51·0
51·0
51·0
54·0
56·0
56·0
56·0
58·0
58·0 | B
B
T: | | Nov. 29. 0. 0 22. 23. 23. 22. 4. 0 6. 0 8. 0 10. 0 12. 0 14. 0 16. 0 22. 0 Nov. 30. 0. 0 22. 0 Nov. 30. 0. 0 22. 0 10. 0 10. 0 12. 0 14. 0 16. 0 18. 0 20. 0 10. 0 12. 0 14. 0 16. 0 18. 0 20. 0 10. 0 12. 0 14. 0 16. 0 18. 0 20. 0 | 56. 47
. 0. 43
. 0. 2
. 59. 57
58. 16
57. 12
55. 56
55. 32
54. 39
55. 28
54. 7
54. 21
52. 17
54. 19 | 0 ·140976
141593
141593
141593
142279
142093
142663
142343
142288
141996
142029
142107
142167 | 48 · 5
51 · 0
53 · 0
52 · 7
51 · 5
51 · 6
51 · 8
52 · 5
52 · 0 | 0 ·052347
052618
052512
052512
052570
052051
052015
051994
051978
052039
052003
051973
051902 | 48 ·0 51 ·5 53 ·0 53 ·0 53 ·0 52 ·0 51 ·5 51 ·8 51 ·8 52 ·0 52 ·0 | B
T D
T D
B | Dec. | 2. 0. 0
{ 1. 50
2. 0
2. 10
4. 0
6. 0
8. 0
10. 0
12. 0
14. 0
16. 0
18. 0 | 22, 54, 34
55, 13
55, 2
56, 46
57, 21
56, 46
55, 31
58, 53
54, 38
46, 28
43, 22
48, 15 | 0·142411
142173
142173
142288
142810
142323
140018
142347
138284
138344
139503
140027 | 50 · 0
51 · 0
51 · 0
51 · 0
55 · 0
55 · 5
56 · 0
57 · 5
58 · 0
58 · 0
58 · 5 | 0 ·051853
051877
051877
051877
051925
051638
051908
051758
051355
051573
050612 | 50 ·0
51 ·0
51 ·0
51 ·0
54 ·0
56 ·0
56 ·0
57 ·0
58 ·0
58 ·0
58 ·0 | B
T | | \begin{array}{cccccccccccccccccccccccccccccccccccc | 5. 0. 43
6. 0. 2
6. 59. 57
68. 16
67. 12
65. 32
64. 39
65. 28
64. 7
64. 21
65. 17
64. 19 | 141593
141593
141593
142279
142093
142663
142343
142288
141996
142029
142107
142167 | 51 ·0
53 ·0
53 ·0
52 ·7
51 ·5
51 ·0
51 ·5
51 ·8
52 ·5
52 ·0 | 052618
052512
052512
052570
052051
052015
051994
051978
052039
052003
051973
051902 | 51 ·5
53 ·0
53 ·0
52 ·0
51 ·5
51 ·8
51 ·8
52 ·0
52 ·0 | B
T D
T D
B | Dec. | \begin{cases} 1.50 \\ 2.0 \\ 2.10 \\ 4.0 \\ 6.0 \\ 8.0 \\ 10.0 \\ 12.0 \\ 14.0 \\ 16.0 \\ 18.0 | 55. 13
55. 2
56. 46
57. 21
56. 46
55. 31
58. 53
54. 38
46. 28
43. 22
48. 15 | 142173
142173
142288
142810
142323
140018
142347
138284
138344
139503
140027 | 51 ·0
51 ·0
51 ·0
54 ·0
55 ·0
55 ·5
56 ·0
57 ·5
58 ·0
58 ·0
58 ·5 | 051877
051877
051877
051925
051638
051908
051758
051355
051573
050612 | 51 ·0
51 ·0
51 ·0
54 ·0
55 ·0
56 ·0
57 ·0
58 ·0
58 ·0
58 ·0 | T
B | | \begin{cases} \begin{cases} 2. & 0 & 23. & 22. & \\ 4. & 0 & 6. & 0 & \\ 8. & 0 & 10. & 0 & \\ 12. & 0 & 14. & 0 & \\ 20. & 0 & 22. & 0 & \\ \end{cases} \begin{cases} \begin{cases} 1. & 50 & \\ 2. & 0 & \\ 2. & 10 & \\ 4. & 0 & \\ 6. & 0 & \\ 8. & 0 & \\ 10. & 0 & \\ 12. & 0 & \\ 14. & 0 & \\ 16. & 0 & \\ 18. & 0 & \\ 20. & 0 & \\ \end{cases} \end{cases} | 50. 2
59. 57
58. 16
57. 12
55. 56
55. 32
54. 39
55. 28
54. 7
54. 21
52. 17
54. 19 | 141593
141593
142279
142093
142663
142343
142288
141996
142029
142107
142167 | 53 ·0
53 ·0
52 ·7
51 ·5
51 ·5
51 ·8
52 ·5
52 ·0 | 052512
052512
052570
052051
052015
051994
051978
052039
052003
051973
051902 | 53 · 0
53 · 0
53 · 0
52 · 0
51 · 5
51 · 8
52 · 0
52 · 0 | B
T D
T D
B | | 2. 0
2. 10
4. 0
6. 0
8. 0
10. 0
12. 0
14. 0
16. 0
18. 0 | 55. 2
56. 46
57. 21
56. 46
55. 31
58. 53
54. 38
46. 28
43. 22
48. 15 | 142173
142288
142810
142323
140018
142347
138284
138344
139503
140027 | 51 ·0
51 ·0
54 ·0
55 ·0
55 ·5
56 ·0
57 ·5
58 ·0
58 ·0
58 ·5 | 051877
051877
051925
051638
051908
051758
051355
051573
050612 | 51 ·0
51 ·0
54 ·0
55 ·0
56 ·0
57 ·0
58 ·0
58 ·0
58 ·0 | T B | | \begin{array}{cccccccccccccccccccccccccccccccccccc | 59. 57
58. 16
57. 12
55. 56
55. 32
54. 39
55. 28
54. 7
54. 21
52. 17
54. 19 | 141593
142279
142093
142663
142343
142288
141996
142029
142107
142167 | 53 ·0
53 ·0
52 ·7
51 ·5
51 ·5
51 ·8
52 ·5
52 ·0 | 052512
052570
052051
052015
051994
051978
052039
052003
051973
051902 | 53 · 0
53 · 0
53 · 0
52 · 0
51 · 5
51 · 8
52 · 0
52 · 0 | B
T D
T D
B | | 2. 10 4. 0 6. 0 8. 0 10. 0 12. 0 14. 0 16. 0 18. 0 | 56. 46
57. 21
56. 46
55. 31
58. 53
54. 38
46. 28
43. 22
48. 15 | 142288
142810
142323
140018
142347
138284
138344
139503
140027 | 51 ·0
54 ·0
55 ·0
55 ·5
56 ·0
57 ·5
58 ·0
58 ·0
58 ·5 | 051877
051925
051638
051908
051758
051355
051573
050612 | 51 · 0
54 · 0
55 · 0
56 · 0
56 · 0
57 · 0
58 · 0
58 · 0 | T
B | | 4. 0 6. 0 8. 0 10. 0 12. 0 14. 0 16. 0 18. 0 20. 0 22. 0 Nov. 30. 0. 0 | 58. 16
57. 12
55. 56
55. 32
54. 39
55. 28
54. 7
54. 21
52. 17
54. 19 | 142279 142093 142663 142343 142288 141996 142029 142107 142167 | 53 · 0
52 · 7
51 · 5
51 · 0
51 · 5
51 · 8
52 · 5
52 · 0 | 052570
052051
052015
051994
051978
052039
052003
051973
051902 | 53 ·0
53 ·0
52 ·0
51 ·5
51 ·8
51 ·8
52 ·0
52 ·0 | T D B | | 4. 0
6. 0
8. 0
10. 0
12. 0
14. 0
16. 0
18. 0 | 57. 21
56. 46
55. 31
58. 53
54. 38
46. 28
43. 22
48. 15 | 142810
142323
140018
142347
138284
138344
139503
140027 | 54 ·0
55 ·0
55 ·5
56 ·0
57 ·5
58 ·0
58 ·0
58 ·5 | 051925
051638
051908
051758
051355
051573
050612
050861 | 54 · 0
55 · 0
56 · 0
56 · 0
57 · 0
58 · 0
58 · 0 | T | | 6. 0
8. 0
10. 0
12. 0
14. 0
16. 0
18. 0
20. 0
22. 0
Nov. 30. 0. 0
{ 1. 50
2. 10
4. 0
6. 0
8. 0
10. 0
12. 0
14. 0
16. 0 | 57. 12
55. 56
55. 32
54. 39
55. 28
54. 7
54. 21
52. 17
54. 19 | 142093
142663
142343
142288
141996
142029
142107
142167 | 53 · 0
52 · 7
51 · 5
51 · 0
51 · 5
51 · 8
52 · 5
52 · 0 |
052051
052015
051994
051978
052039
052003
051973
051902 | 53 ·0
53 ·0
52 ·0
51 ·5
51 ·8
51 ·8
52 ·0
52 ·0 | T D
B | | 6. 0
8. 0
10. 0
12. 0
14. 0
16. 0
18. 0 | 56. 46
55. 31
58. 53
54. 38
46. 28
43. 22
48. 15 | 142323
140018
142347
138284
138344
139503
140027 | 55 · 0
55 · 5
56 · 0
57 · 5
58 · 0
58 · 0
58 · 5 | 051638
051908
051758
051355
051573
050612
050861 | 55 · 0
56 · 0
56 · 0
57 · 0
58 · 0
58 · 0 | T | | 8. 0
10. 0
12. 0
14. 0
16. 0
18. 0
20. 0
22. 0
Nov. 30. 0. 0
2 0
2 10
4. 0
6. 0
8. 0
10. 0
12. 0
14. 0
16. 0
18. 0
20. 0
21. 0
22. 0
21. 0
22. 0
20. 0
21. 0
22. 0
22. 0
23. 0
24. 0
25. 0
26. 0
27. 0
28. 0
29. 0
2 | 55. 56
55. 32
54. 39
55. 28
54. 7
54. 21
52. 17
54. 19 | 142663
142343
142288
141996
142029
142107
142167 | 52 ·7
51 ·5
51 ·5
51 ·5
51 ·8
52 ·5
52 ·0 | 052015
051994
051978
052039
052003
051973
051902 | 53 ·0
52 ·0
51 ·5
51 ·8
51 ·8
52 ·0
52 ·0 | T D
B | | 8. 0
10. 0
12. 0
14. 0
16. 0
18. 0 | 55. 31
58. 53
54. 38
46. 28
43. 22
48. 15 | 140018
142347
138284
138344
139503
140027 | 55 ·5
56 ·0
57 ·5
58 ·0
58 ·0
58 ·5 | 051908
051758
051355
051573
050612
050861 | 56 · 0
56 · 0
57 · 0
58 · 0
58 · 0
58 · 0 | T | | 10. 0 12. 0 14. 0 16. 0 18. 0 20. 0 22. 0 Nov. 30. 0. 0 | 55. 32
54. 39
55. 28
54. 7
54. 21
52. 17
54. 19 | 142343
142288
141996
142029
142107
142167 | 51 ·5
51 ·0
51 ·5
51 ·8
52 ·5
52 ·0 | 051994
051978
052039
052003
051973
051902 | 52 · 0
51 · 5
51 · 8
51 · 8
52 · 0
52 · 0 | В | | 10. 0
12. 0
14. 0
16. 0
18. 0 | 58. 53
54. 38
46. 28
43. 22
48. 15 | 142347
138284
138344
139503
140027 | 56 · 0
57 · 5
58 · 0
58 · 0
58 · 5 | 051758
051355
051573
050612
050861 | 56 ·0
57 ·0
58 ·0
58 ·0
58 ·0 | I | | 12. 0 14. 0 16. 0 18. 0 20. 0 22. 0 Nov. 30. 0. 0 1. 50 2. 0 2. 10 4. 0 6. 0 8. 0 10. 0 12. 0 14. 0 16. 0 18. 0 20. 0 | 54. 39
55. 28
54. 7
54. 21
52. 17
54. 19 | 142288
141996
142029
142107
142167
142161 | 51 ·0
51 ·5
51 ·8
52 ·5
52 ·0 | 051978
052039
052003
051973
051902 | 51 · 5
51 · 8
51 · 8
52 · 0
52 · 0 | В | | 12. 0
14. 0
16. 0
18. 0 | 54. 38
46. 28
43. 22
48. 15 | 138284
138344
139503
140027 | 57 · 5
58 · 0
58 · 0
58 · 5 | 051355
0515 7 3
05061 2
050861 | 57 · 0
58 · 0
58 · 0
58 · 0 | I | | 14. 0 16. 0 18. 0 20. 0 22. 0 Nov. 30. 0. 0 1. 50 2. 0 2. 10 4. 0 6. 0 8. 0 10. 0 12. 0 14. 0 16. 0 18. 0 20. 0 | 55. 28
54. 7
54. 21
52. 17
54. 19 | 141996
142029
142107
142167
142161 | 51 ·5
51 ·8
52 ·5
52 ·0 | 052039
052003
051973
051902 | 51 ·8
51 ·8
52 ·0
52 ·0 | В | | 14. 0
16. 0
18. 0 | 46. 28
43. 22
48. 15 | 138344
139503
140027 | 58 ·0
58 ·5 | 051573
050612
050861 | 58 ·0
58 ·0
58 ·0 | | | 16. 0 18. 0 20. 0 22. 0 Nov. 30. 0. 0 1. 50 2. 0 2. 10 4. 0 6. 0 8. 0 10. 0 12. 0 14. 0 16. 0 18. 0 20. 0 | 54. 7
54. 21
52. 17
54. 19 | 142029
142107
142167
142161 | 51 ·8
52 ·5
52 ·0 | 052003
051973
051902 | 51 ·8
52 ·0
52 ·0 | 1 | | 16. 0
18. 0 | 43. 22
48. 15 | 13950 3
14002 7 | 58 · 0
58 · 5 | 050612
050861 | 58 ·0
58 ·0 | | | 18. 0 20. 0 22. 0 Nov. 30. 0. 0 | 54. 21
52. 17
54. 19 | 142107
142167
142161 | 52 ·5
52 ·0 | 051973
051902 | 52 ·0
52 ·0 | 1 | | 18. 0 | 48. 15 | 140027 | 58 .5 | 050861 | 58 .0 | 1 | | 20. 0
22. 0
Nov. 30. 0. 0
{ 1. 50
2. 0
2. 10
4. 0
6. 0
8. 0
10. 0
12. 0
14. 0
16. 0
18. 0
20. 0 | 52. 17
54. 19 | 142167
142161 | 52 .0 | 051902 | 52 .0 | 1 | | 1 | | | ł | 1 | 4 | İ | | 22. 0 Nov. 30. 0. 0 | 54. 19 | 142161 | | I . | | 1 | | | | | | 1 050720 | 1.58 .0 | 1 | | Nov. 30. 0. 0 22. \[\begin{cases} 1.50 \\ 2.0 \\ 2.10 \\ 4.0 \\ 6.0 \\ 8.0 \\ 10.0 \\ 12.0 \\ 14.0 \\ 16.0 \\ 18.0 \\ 20.0 \end{cases} \] | | | 54 ·0 | 051783 | 54 .0 | 1 - | | 20. 0 | 50. 35 | 139503 | 58 .0 | | 3 | 1 | | \$\begin{cases} 1.50 \\ 2.0 \\ 2.10 \\ 4.0 \\ 6.0 \\ 8.0 \\ 10.0 \\ 14.0 \\ 16.0 \\ 18.0 \\ 20.0 \end{cases}\$ | . 56. 37 | 0.140989 | | 1 . | | L, | } | 22. 0 | 51. 28 | 140204 | 59 .0 | 051223 | 59 .0 | L | | 2. 0
2. 10
4. 0
6. 0
8. 0
10. 0
12. 0
14. 0
16. 0
18. 0
20. 0 | | 0 140002 | 54 ·8 | 0 .051709 | 55 .0 | L | Dec. | 1 | 22. 56. 0 | 0 ·139161 | 59 0 | 0 .051152 | 59 .0 | 1 | | 2. 10 4. 0 6. 0 8. 0 10. 0 12. 0 14. 0 16. 0 18. 0 20. 0 | 56. 49 | 141644 | | 051282 | | | 1 | 1.50 | 58. 46 | 140621 | | 051465 | | | | 4. 0
6. 0
8. 0
10. 0
12. 0
14. 0
16. 0
18. 0 | 57. 2 | | 57 ·5 | 051282 | 57 .5 | | ł | ₹ 2. 0 | 58. 32 | 140853 | 60 .2 | 051394 | 60 .4 | 1 | | 6. 0
8. 0
10. 0
12. 0
14. 0
16. 0
18. 0
20. 0 | 58. 3 | 141644 | | 051820 | | L | } | 2. 10 | 58. 19 | 140621 | | 051394 | 00.0 | I | | 8. 0
10. 0
12. 0
14. 0
16. 0
18. 0
20. 0 | 53. 40 | | 57 .5 | 052176 | 57.5 | В | 1 | 4. 0 | 55. 8 | 138071 | 60 .5 | 051482 | 60 0 | | | 10. 0
12. 0
14. 0
16. 0
18. 0
20. 0 | 53. 7 | | 58 .5 | 052997 | 58 .0 |] | | 6. 0 | 55. 10 | 140567 | 61 .0 | 051493 | 61 .0 | 1 | | 12. 0
14. 0
16. 0
18. 0
20. 0 | 52. 59 | 1 | 58 . 5 | 051751 | 58.0 | | | 8. 0 | 55, 59 | 140729 | 61 .0 | 051315
051215 | 61.5 | | | 14. 0
16. 0
18. 0
20. 0 | 52.56 | | 60.0 | 051268 | 60.0 | В | Ī | 10. 0 | 53, 45 | 140577 | 62 .0 | 051215 | 61 .0 | i | | 16. 0
18. 0
20. 0 | 53.19 | | 61 .0 | 051244 | 61.0 | | | 12. 0 | 49, 11 | 140940 | 61 ·2
59 ·7 | 050845 | 59 .8 | 1 | | 18. 0
20. 0 | 55. 53 | | 61 .0 | 051066 | 61 .0 | | 1 | 14. 0 | 50. 24 | 140290
139911 | 58.5 | 050757 | 58.5 | | | 20. 0 | 53.21 | | 60 .0 | 050948 | 60 ·0 | 1 | Ì | 16. 0
18. 0 | 51. 29 | 140427 | 57.0 | 050871 | 57 .2 | | | | 52. 3 | | 59.5 | 050907 | 58 5 | | } | | 51, 29
52, 26 | 141072 | 55 .0 | 050926 | 55 .0 | | | 22. 0 | 53. 30
58. 13 | 1 | 58 ·6
57 ·0 | 050899
050821 | 57.0 | L
G | } | 20. 0
22. 0 | 52, 26
50, 55 | 140944 | 55 ·5 | 051389 | 55 ·0 | - 1 | | | 1 | 0.140000 | | 0.050051 | 5~.0 | | D | 4 0 0 | 00 50 04 | 0.140770 | 54.0 | 0 .051355 | 54 .0 | | | | | | 57.5 | 0.050251 | 97.0 | 1 | l . | 4. 0. 0 | 22. 58. 34 | 0 · 140770 | 34 0 | 051674 | 04 0 | | | | 58. 0 | 140777 | 50.0 | 051217 | 58 .0 | T D | ł | $\begin{cases} 1.50 \\ 2.0 \end{cases}$ | 23. 0.55
0.37 | 139646
139646 | 54 .3 | 051674 | 54 .5 | 1 | | | 57. 59 | . 1 | 58 .0 | 051217 | 90 0 | 1 3 | | 2. 10 | 1.36 | 139646 | 94.9 | 051710 | 0.2 | | | | 59. 52
59. 13 | 141009 | ام. وء | 051217 | 58 .5 | TD | 1 | 4. 0 | 23. 0. 12 | 139380 | 54 .0 | 051640 | 54 .0 | 1 | | | 4127. 125 | | 58 ·8
59 ·0 | 051120
051152 | | |] | 6. 0 | 23. 0. 12
22. 56. 7 | 140366 | 55 5 | 051788 | 55 2 | | | | | 142007 | 57.8 | 051152 | | | l | 8. 0 | 54. 9 | 140609 | 55.0 | 051723 | 55 .0 | 1 | | | . 57. 51 | 1/1/200 | | 091149 | 57.0 | | 1 | 10. 0 | 49. 24 | 141234 | 54 .0 | 051498 | 54 .0 | , | | 10. 0 22.
12. 0 | | 1 | 57.0 | 051283 | | L | • | | | | 54.0 | 051676 | 54 .0 | , | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 269°. Reading of Torsion-Circle for Horizontal Magnetometer, 37°, 45′. Reading for Brass Bar in the same position, 358°. 6′. Time of Vibration of Horizontal Force Magnetometer, 20°.5. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°.97; in Vertical Plane, 23°.1. Declination Magnet. Dec. 2^d , between 12^h and 14^h , and Dec. 3^d , between 22^h and 24^h , considerable changes occurred. HORIZONTAL FORCE MAGNET. Nov. 30^d, between 20^h and 22^h; Dec. 2^d, between 6^h and 12^h; and Dec. 3^d, between 2^h, 10^m and 6^h, considerable changes took place. VERTICAL FORCE MAGNET. Nov. 30^d, between 4^h and 8^h; Dec. 1^d, between 0^h and 1^h. 50^m; and Dec. 2^d, between 14^h and 16^h, considerable changes occurred. | | | * | | | Daily Obser | vations | s fro | m December 5 to 1 | 11. | | | | | | |------------------------|---|-----------------------|---|---|--|------------------------------------|------------|--|-------------------------|---|---|---|---|------------| | Time (A
Reck
Dec | agen Mean
astronomical
oning) of
dination
ervation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.forTemp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | iermomet
irtical Fo
ignetome | Observers. | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.forTemp. | Thermometer of
Horizontal
Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | | | d h m | 0 1 11 | | 0 | | 0 | | d h m | 0 / // | | 0 | | 0 | | | Dec, | 5.14. 0 | 22. 59. 40 | 0 .143033 | 46 .0 | 0 .052237 | 46 .0 | G | Dec. 8. 14. 0 | 22. 47. 15 | 0 · 142119 | | 0 .051841 | 45 0 | T | | | 16. 0 | 57. 11 | 143157 | 47 .2 | 052581 | 46 .9 |] | 16. 0 | 50.16 | 141725 | 45 .0 | 052126 | 45 .0 | | | | 18. 0 | 52.41 | 143411 | 47 .0 | 052506 | 46 .8 | | 18. 0 | 22. 55. 15 | 141990 | 46 .0 | 052316 | 46 .0 | 1 | | | 20. 0 | 52 . 24 | 144053 | 48 .0 | | 49 .0 | G | 20. 0 | 23. 6. 15 | 142686 | 46 .0 | 052401 | 46 .0 | | | | 22. 0 | 52. 56 | 141926 | 49 .8 | 051931 | 49 .5 | L | 22. 0 | 2. 1 | 141966 | 48 .0 | 052489 | 48 .0 | E | | Dec. | 6. 0. 0 | 22. 52. 56 | 0 ·141350 | 55 .0 | 0 .052492 | 55 .0 | ЕН | Dec. 9. 0. 0 | 23. 2. 2 | 0 · 141214 | 52 .8 | 0 .052871 | 52 .8 | E | | | [1.50] | 56. 30 | 141581 | | 052065 | | | (1.50 | 46. 9 | 141929 | | 052317 | | 1 | | | ₹ 2. 0 | 56. 17 | 141697 | 55 .0 | 052065 | 55 .0 | 1 | ₹ 2. 0 | 40. 25 | 141465 | 54 .0 | 052352 | 54 .0 | | | | 2. 10 | 56. 38 | 141583 | | 052030 | | ЕН | 2.10 | 8. 40 | 141581 | | 052281 | | E | | | 4. 0 | <i>5</i> 5. 47 | 142277 | 55 · 0 | 051638 | 55 .0 | G | 4. 0 | 23. 0.42 | 140771 | 56.0 | 052292 | 56 .0 | | | | 6. 0 | 54. 4 | 142045 | 55 · 0 | 051638 | 55 .0 | | 6. 0 | 22. 56. 58 | 141571 | 56 .2 | 052103 | 57 ·0 | | | | 8. 0 | 54. 55 | 142277 | 54 ·0 | 051640 | 54 .0 | | 8. 0 | 55. 42 | 142339 | 57 .5 | 051729 | 58 .0 | | | | 10. 0 | 54. 2 | 142336 | 53 .2 | 051820 | 53 .5 | G | 10. 0 | 52.47 | 141644 | 57.5 | 051494 | 58 .0 | | | | 12. 0 | 54. 2 | 142064 | 50.0 | 051475 | 50 .0 | EH | | 54. 58 | 141935 | 58 .0 | 051181 | 58 .0 | | | | 14. 0 | 53. 58 | 142367 | 48 .5 | 051341 | 48 .5 | | 14. 0 | 54. 32 | 142107 | 57.5 | 051022 | 57 .5 | | | | 16. 0
18. 0 | 54, 21
54, 39 | 141887
142073 | 45 .0 | 051000 | 45 ·0
45 ·0 | | 16. 0 | 54. 23 | 141883
142045 | 56 ·0
55 ·0 | 050676
050427 | 56 ·0 | 1 | | | 20. 0 | 54. 59
53. 14 | 142073 | 45 ·0
45 ·0 | 050986
050809 | | ЕН | 18. 0
20. 0 | 55. 12
55. 9 | 142049 | 56·0 | 050534 | 56 .0 | | | | 22. 0 | 52. 2 | 141841 | 49 .0 | 051512 | 49.0 | L | 20. 0
22. 0 | 56. 15 | 141802 | 58.8 | 051113 | 58.5 | | | Dec. | 7. 0. 0 | 22, 53. 51 | 0.141841 | 49 .0 | 0 .051547 | 49 :0 | L | Dec. 10. 0. 0 | 22. 57. 46 | 0 ·140668 | 59 •0 | 0 .051009 | 59 .0 | | | 200. | (1.50 | 57. 42 | 142536 | 10 0 | 051760 | 40.0 | - | 1.50 | 23. 1. 6 | 141547 | 00 0 | 051132 | " | | | | ₹ 2. 0 | 57. 54 | 142397 | 49 •0 | 051760 | 49 .0 | | 2. 0 | 0. 26 | 141547 | 60 .5 | 051132 | 60 .5 | | | | 2. 10 | 57. 54 | 142304 | | 051760 | | L | 2, 10 | 23. 0.45 | 141316 | | 051132 | | | | | 4. 0 | 57.42 | 142546 | 48.0 | 051478 | 48 .0 | | 4. 0 | 22. 53. 50 | 140095 | 60 .0 | 050948 | 60 .0 | E | | | 6.0 | 55. 48 | 142894 | 48 .0 | 051421 | 48 .0 | ЕН | 6. 0 | 23. 2.47 | 140491 | 58~5 | 050651 | 58 .5 | | | | 8. 0 | 55. 57 | 143338 | 50.0 | 051782 | | GН | 11 | 22. 54. 26 | 140314 | 58 .0 | 050875 | 58 .0 | | | | 10, 0 | 55, 45 | 143238 | 49 .5 | 051888 | | G H | | 54. 2 | 140893 | 58 .0 | 050718 | 58 .0 | • | | | 12. 0 | 54. 55 | 142768 | 49.0 | 051760 | 49 .0 | L | 12. 0 | 45. 26 | 140290 | 59 .7 | 050764 | 59 .5 | - 1 | | | 14. 0
16. 0 | 49. 26
52. 22 | 142483 | 48 .5 | 051804 | 48 5 | | 14. 0 | 44. 23 | 140607 | 58 5 | 050543 | 58 .5 | | | | 16. 0
18. 0 | 52. 22
52. 22 | 140473
143329 | 47 ·0
45 ·5 | 051867
051884 | 47·0
45·6 | | 16. 0
18. 0 | 47. 2
48. 27 | 141353
142393 | 57 · 0
56 · 0 | 050215
050711 | 57 · 0
56 · 0 | | | | 20. 0 | 53. 31 | 143329 | 44 .0 | 051939 | 44 .0 | L | 20. 0 | 45. 12 | 141929 | 56.0 | 050890 | 56 .0 | | | | 22. 0 | 57. 8 | 142066 | 44.0 | 052117 | 1 6 | TD | 22. 0 | 22. 57. 7 | 140423 | 55 .0 | 050854 | 55 .0 | - 1 | | Dec. | 8. 0. 0 | 22, 59, 49 | 0 ·141093 | 44 .0 | 0 .052402 | 44 · 0 | ЕН | Dec. 11. 0. 0 | 23. 1.29 | 0 ·140018 | 55 ·5 | 0 .050783 | 55 .5 | F | | | ſ 1. 5 0 | 5 8. 19 | 141921 | | 053028 | | Tр | ſ 1. 5 0 | 1. 58 | 139966 | | 051288 | ĺ | | | | ₹ 2. 0 | 58. 19 | 141990 | 46 .0 | 053028 | 46 .0 | | ₹ 2. 0 | 2.41 | 140082 | 58 .0 | 051253 | 58 .0 | | | | 2. 10 | 22. 58. 32 | 141990 | | 053028 | | T D | 2. 10 | 23. 2.39 | 140082 | | 051302 | | E | | | 4. 0 | 23. 0.36 | 141039 | 48 .0 | 053284 | 47.7 | L | 4. 0 | 22. 57. 5 | 141107 | 58 .8 | 051650 | 59 .0 | | | | 6. 0 | 22. 56. 44 | 141957 | 49 .0 | 052828 | 49.0 | | 6. 0 | 53. 51 | 141996 | 1 | 051255 | 58 .5 | | | | 8. 0 | 56. 13 | 142715 | 48 .5 | 052353 | 48 .4 | _ | 8. 0 | 52. 12 | 142339 | 57 .5 | 051036 | 57 .5 | 1 | | | 10. 0 | 55. 23 | | 47.5 | 052210 | 47 .3 | | 10. 0 | 51. 21 | 141465 | 54 .0 | 050964 | 54 .0 | | | | 12. 0 | 54. 55 | 142555 | 40 '4 | 052078 | 45.8 | T D | 12. 0 | 01.21 | 141400 | 04.0 | 000804 | 04.0 | 1 | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 269°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 37°. 45′. Reading for Brass Bar in the same position, 358°. 6′. Time of Vibration of Horizontal Force Magnetometer, 20°.5. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°.97; in Vertical Plane, 23°.1. Dec. 7d, between 12h and 14h; Dec. 8d, between 12b and 14h; and between 18h and 20h; Dec. 9d, between 0h and 4h; Dec. 10d, between 2d. 10m and 12h, and between 20h and 22h; and Dec. 11d, between 2b. 10m and 4h, considerable changes occurred. Dec. 9d, 1h, 50m. This unusual reading is correct, as the magnet was examined at the time by Mr. Glaisher, and found to be perfectly free. Horizontal Force Magnet. Dec. 5^d, between 20^h and 22^h, and Dec. 7^d, between 14^h and 16^h, and between 16^h and 22^h, considerable changes took place. Dec. 11^d. 10^h. The observations of the three magnets were inadvertently omitted. | | | | | Daily Obser | vations | fro | n December 12 to | 18. | | | | | | |--|-------------------------|---|---|---|----------------|------------|--|----------------------|---|---|---|---|------------| | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation, | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor.forTemp. | rtic
gn | Observers. | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor, forTemp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | | d h m | 0 ! " | | 0 | | ٥ | | d h m | 0 ′ ″ | | 0 | | 0 | - | | Dec. 12. 14. 0 | 22. 58, 40 | 0 .142511 | 47 .0 | 0.051440 | 47.0 | тр | Dec. 15. 14. 0 | 22. 53. 39 | 0 142740 | 54 0 | 0 .050894 | 53 ·5 | G | | 16. 0 | 22. 59. 12 | 142191 | 47.5 | 051506 | 48 0 | | 16. 0 | 53.45 | 142856 | 54 ·0 | 050894 | 53 .5 | | | 18. 0 | 23. 5.17 | 142609 | 47.5 | 051421 | 48 .0 | ТД | 18. 0 | 54. 17 | 143134 | 54 0 | 050894 | 53 .5 | | | 20. 0 | 9. 10 | 142894 | 48.0 | 051435 | | EН | 20, 0 | 54.41 | 143088 | 54.0 | 050894 | 53 5 | • | | 22. 0 | 23. 14. 0 | 141788 | 48 .5 | 051413 | 48 .5 | | 22. 0 | 53, 15 | 142047 | 53 .0 | 050826 | 53 ·0 | E | | Dec. 13. 0. 0 | 22. 57, 44 | 0 ·141377 | 49 .0 | 0 .051 134 | 49.0 | ЕН | Dec. 16. 0. 0 | 22. 56. 38 | 0 · 141697 | 54 0 | 0 .050952 | 54 .0 | E | | (1.50 | 23. 0.49 | 142624 | | 051819 | | | (1.50 | 58. 51 | 142509 | | 050962 | | | | ₹ 2. 0 | 22, 59, 35 | 142161 | 54 0 | 051725 | 54 .0 | | ₹ 2. 0 | 58.48 | 142161 | 55 0 | 050940 | 55 .0 | | | 2.10 | 58. 49 | 142277 | | 051676 | ļ | | 2. 10 | 58.55 | 142161 | | 050926 | | E | | 4. 0 | 56. 41 | 141929 | 54 0 | 051071 | 54 .0 | : 1 | 4. 0 | 57. 59 | 142856 | 56 0 | 050711 | 56 0 | 1 | | 6. 0 | 55, 48 | 142567 | 55 5 | 051274 | | L | 6. 0 | 57. 21 | 143034 | 57.5 | 050714 | 57.0 | | | 8. 0 | 53.49 | 141697 | 56.0 | 051302 | | G | 8. 0 | 57. 44 | 143730 | 57.5 | 050585 | 57.0 | • | | 10. 0
12. 0 | 58, 10
51, 45 | 142440 | 55.0 | 051175 | 55 .0 | | 10. 0 | 57. 1
50.40 | 143382 | 57.5 | 050728
050783 | 57·0
56·0 | | | 14. 0 | 51. 45
53. 23 | 142451
142393 | 54 · 5
55 · 0 | 051090
051246 | 54 ·5
55 ·0 | ЕН | 4 | 56. 42
53. 36 | 142 7 41
142393 | 56 · 0
54 · 0 | 050783 | 54.0 | i | | 16. 0 | 53. 23
53. 18 | 142624 | 54 0 | 050964 | | | 14. 0
16. 0 | 52. 52 | 142045 | 55.0 | 050498 | 55 () | 4 | | 18. 0 | 53. 30 | 143031 | 53 .5 | 050894 | | | 18. 0 | 51. 47 | 142043 | 55 0 | 050356 | 55 .0 | | | 20. 0 | 54, 36 | 142510 | 53 .0 | 050898 | 53 .0 | E H | 20. 0 | 54. 25 | 142625 | 55 .0 | 050342 | 55 .0 | 1 | | 22. 0 | 53, 22 | 142233 | 53.0 | 051075 | 53 .0 | G | 22. 0 | 57. 35 | 143436 | 56 0 | 050725 | 56 .0 | | | Dec. 14. 0. 0 | 22. 58. 19 | 0 ·140888 | 59 •0 | 0 .051075 | 53 ·0
 G | Dec. 17. 0. 0 | 22, 55, 21 | 0 ·143668 | 55 •0 | 0 .050285 | 55 ·0 | | | (1, 50 | 23. 0. 21 | 142336 | ou o | 051322 | 90 0 | 6 | 1.50 | 22, 59, 32 | 143320 | 00 0 | 050761 | 00 " | ` | | $\left\langle \begin{array}{cc} 2, & 0 \end{array} \right\rangle$ | 0. 53 | 142336 | 53 ·5 | 051322 | 53 .5 | 1 | 2. 0 | 23, 0.43 | 143436 | 56 .0 | 050747 | 55 ·5 | | | 2. 10 | 23. 1. 14 | 142336 | | 051250 | | G | 2. 10 | 3.43 | 145406 | | 050925 | ł | | | 4. 0 | 22. 58. 45 | 142395 | 53 .0 | 051218 | 53 .0 | 1 1 | | 23. 8. 7 | 144363 | 55 0 | 051353 | 55 .0 | E | | 6. 0 | 55, 55 | 142858 | 53 .0 | 051040 | 53 .0 | | 6. 0 | 22, 53, 57 | 144595 | 55 .0 | 058259 | 55 .0 | 1 | | 8. 0 | 54, 36 | 141991 | 52 .5 | 050901 | | | 8. 0 | 22. 58. 25 | 141813 | 55 .0 | 055824 | 55 .0 | | | 10. 0 | 53, 58 | 142858 | 53.0 | 051075 | l . | ЕН | 10. 0 | 23. 1.27 | 135557 | 55 .0 | 052136 | 55 .0 | , | | 12. 0 | 53. 19 | 143263 | 53.5 | 051215 | | L | 12. 0 | 22. 53. 40 | 136486 | 57 .0 | 052849 | 56.5 | , | | 14. 0 | 53. 19 | 143557 | 52 .0 | 051083 | | | 14. 0 | 52. 13 | 135732 | 56 5 | 051495 | | | | 16. 0
18. 0 | 52. 5 7 | 143679 | 51 .0 | 051165 | l | | 16. 0 | 53. 48 | 138744 | 56.5 | 051851
051210 | 56 ·0 | | | 20. 0 | 52. 9
57. 35 | 143516
143463 | 49 · 5
49 · 0 | 051219
051504 | 49 ·5
49 ·0 | | 18. 0
20. 0 | 55. 12
55. 11 | 139265
139844 | 56 ·0 | 051210 | 55 .5 | ſ | | 22. 0 | 51.38 | 142420 | 49.0 | 051583 | 49 0 | | 20. 0
22. 0 | 56. 44 | 141871 | 55 .5 | 051395 | 55 .7 | 1 | | Dec. 15. 0. 0 | 00 55 0 | 0.740070 | in c | 0.051401 | | | D. 10 0 0 | | 0.10004* | | 0.057615 | SE .~ | _ | | 1.50 | 22.57. 6 | | 49.0 | | 49.0 | | Dec. 18. 0. 0 | 22, 56, 53 | | 99 .4 | 0 ·051715
051780 | | 16 | | 2. 0 | 59. 22
59. 19 | 142902
142856 | 54 ·0 | 051854
051783 | 54.0 | G | $\int_{2}^{1.50}$ | 23. 5.50
22.59.31 | 139496
136946 | 55 .0 | 1 | | | | 2. 10 | 59. 19
59. 46 | 142856 | 0.4 A | 051783 | 0.4.O | G | $ \begin{cases} 2. & 0 \\ 2. & 10 \end{cases} $ | 59. 31 | 136483 | 000 | 051851 | 55 0 | | | 4. 0 | 56. 54 | | 54 .0 | 051417 | 54 .0 | | 4. 0 | 52. 34 | 140192 | 55 .0 | 052813 | 55 .0 | G | | 6. 0 | 54. 45 | 143088 | 54.0 | 051249 | | | 6. 0 | 56. 31 | 139728 | 55 .0 | 051922 | | | | 8. 0 | 55. 14 | 1 / | 55.0 | 051389 | 55.0 | | 8. 0 | 53. 31 | 140655 | 55 .0 | 051851 | | | | 10. 0 | 53. 52 | 1 3 | 54.5 | 051212 | | | 10. 0 | 53. 36 | 139971 | | 050773 | 51 .0 | E | | 12. 0 | 53. 25 | | 54.0 | 050894 | | | 12. 0 | 54. 2 | 140325 | | 050621 | 50 .0 | E | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 269°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 37°.45′. Reading for Brass Bar in the same position, 358°. 6′. Time of Vibration of Horizontal Force Magnetometer, 20°.5. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°.97; in Vertical Plane, 23°.1. Declination Magnet. Dec. 12^d, between 16^h and 18^h, and between 22^h and 24^h; Dec. 14^d, between 18^h and 24^h; Dec. 17^d, between 4^h and 6^h, and between 10^h and 12^h; and Dec. 18^d, between 0^h and 4^h, considerable changes took place. HORIZONTAL FORCE MAGNET. Dec. 17^d, between 6^h and 10^h, considerable changes occurred; and on Dec. 18^d, the changes were considerable and of frequent occurrence. Vertical Force Magnet. Dec. 17^d , from 4^b to 14^h , and Dec. 18^d , between 2^h . 10^m and 10^h , considerable changes occurred. | | | | | Daily Obser | rvation | s fro | m December 19 to | 24. | | | | | | |--|---------------------------|--|--------------------------------|--|---|------------|--|-----------------------|--|---|--|---|------------| | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | ermomet
rizontal
gnetome | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor.forTemp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor.for Temp. | Thermometer of
Vertical Force
Magnetometer. | Oliservers | | d h m | 0 / " | | 0 | | 0 | | d h m | 0 / " | | 0 | | 0 | | | Dec. 19. 14. 0 | 23. 0.58 | 0 .129012 | 46 .0 | 0 .044772 | 46.0 | G H | Dec. 22, 14, 0 | 22. 53. 45 | 0 ·139961 | 47 .0 | 0.053006 | 47 .0 | G | | 16. 0 | 22. 58. 5 | 122796 | 46 .4 | 044864 | 46.5 | | 16. 0 | 55. 35 | 140071 | 46 .5 | 052590 | 46 .5 | , | | 18. 0 | 23. 8. 25 | 133624 | 48 .0 | 049063 | 48 .5 | | 18. 0 | 59. 25 | 141630 | 47 .0 | 052188 | 47 .0 | E | | 20 . 0 | 23. 7. 3 | 137522 | 49 .8 | 051888 | 50.0 | G H | 20. 0 | 56. 56 | 141904 | 48 .5 | 052502 | 48 .5 | | | 22. 0 | 22.41.51 | 128213 | 49 .0 | 053327 | 49 .0 | EH | 22. 0 | 22.57.25 | 140860 | 48 .5 | 052116 | 49 .0 | (| | Dec. 20. 0. 0 | 22. 26. 17 | 0 .144020 | 49 .0 | 0 .057884 | 49 .0 | L | Dec. 23. 0. 0 | 23. 0.56 | 0 · 139755 | 49 •0 | 0 ·052366 | 49 •0 | G | | $\int 1.50$ | 22 . 54. 16 | 142072 | | 054238 | | ЕН | f 1. 50 | 22. 58. 26 | 140503 | | 052358 | | E | | ₹ 2. 0 | 23. 6. 8 | 143000 | 49 .0 | 053861 | 49 .0 | | ₹ 2. 0 | 23. 0.15 | 140619 | 49 .5 | 052536 | 49 .5 | | | 2. 10 | 4. 50 | 149488 | | 055428 |] | ЕН | | 23. 0.17 | 141082 | | 052394 | | E | | 4. 0 | 11. 0 | 151117 | 51 .2 | 056107 | 51 .2 | G H | 1 - 1 | 22.59. 2 | 139808 | 49 .5 | 052405 | 49 2 | | | 6. 0 | 23. 1.42 | 138117 | 51 .0 | 058000 | 51.0 | | 6. 0 | 23. 0.47 | 140374 | 50 .5 | 052547 | 51 5 | | | 8. 0
10. 0 | 22. 33. 58 | 140931 | 51.3 | 060450 | 51.5 | | 8. 0 | 22. 57. 47 | 141245 | 51.0 | 052304
052304 | 51 ·0
51 ·0 | - 1 | | 10. 0
12. 0 | 52. 32
57. 6 | 132875 | 51 '8 | 052293 | 52.0 | 1 1 | 10. 0 | 54.17 | 140203
140865 | 51·0
50·7 | 052304 | 51 0 | ı | | 14. 0 | 44. 57 | 131109
129790 | 50 ·5
49 ·0 | 052096
052116 | 50 ·5
49 ·0 | EH | 12. 0
14. 0 | 55. 34
55. 20 | 140633 | 50 .7 | 052304 | 51 .0 | 1 | | 16. 0 | 54. 33 | 133160 | 48.0 | 052703 | 48 0 | | 16. 0 | 56. 17 | 141175 | 51.0 | 052411 | 51 .0 | - 1 | | 18. 0 | 57. 55 | 134446 | 47.0 | 052472 | 47.0 | | 18. 0 | 56. 38 | 140959 | 49 .0 | 052273 | 49 0 | - 1 | | 20. 0 | 57. 37 | 135501 | 46.0 | 052209 | 46.0 | вн | 20. 0 | 56. 13 | 141145 | 49 .0 | 052330 | 49.0 | | | 22. 0 | 58. 11 | 138259 | 48 .0 | 052845 | 48 0 | L | 22. 0 | 53. 13 | 141377 | 49.0 | 052259 | 49 .0 | ١ . | | Dec. 21. 0. 0 | 22. 57. 35 | 0 · 137795 | 48 .0 | 0 .052875 | 47 ·5 | GН | Dec. 24. 0. 0 | 22, 57, 38 | 0 ·141145 | 49 .0 | 0 .052273 | 49 .0 | G | | ſ 1. 50 | 59. 48 | 138102 | | 053291 | | L | (1.50 | 59. 6 | 141430 | | 052443 | | | | ₹ 2. 0 | 22. 59. 48 | 138333 | 46 .5 | 053148 | 47 .0 | | ₹ 2. 0 | 58.31 | 141012 | 49 .5 | 052785 | 49 .5 | | | 2. 10 | 23. 0.23 | 138102 | | 053291 | | L | 2. 10 | 5 8. 31 | 141314 | | 052358 | 1 | ١ | | 4. 0 | 22. 59. 39 | 138514 | 46 0 | 053241 | 46 .0 | ЕН | 4. 0 | 5 8. 19 | 141230 | 49 .8 | 052387 | 50 .0 | - 1 | | 6. 0 | 57. 51 | 139094 | 46 .0 | 053206 | 46.0 | | 6. 0 | 59. 28 | 141244 | 49 .5 | 052251 | 49 '5 | | | 8. 0 | 57. 42 | 138926 | 45 .5 | 052613 | 45 .5 | | 8. 0 | 58. 19 | 141012 | 49 .5 | 052251 | 49 .5 | • | | 10. 0
12. 0 | 57.34 | 138593 | 44.5 | 052281 | 44 .5 | 1 1 | 10. 0 | 58. 2 | 141198 | 49 5 | 052002
052345 | 49 · 5
50 · 5 | - 1 | | 14. 0 | 56. 19
55. 24 | 139418
139261 | 48 ·0
46 ·5 | $052843 \\ 052839$ | 47 · 7
46 · 5 | L | 12. 0 | 55. 6 | 140756 | 49 .7 | | 1 | | | 16. 0 | 55. 7 | 139107 | 45 0 | 052838 | 45 .0 | | •••• | • • • | ••• | •• | | | | | 18. 0 | 53. 37 | 139702 | 44 .0 | 052935 | 44 .0 | | | • • • | • • • | • • | | :: | | | 20. 0 | 52. 33 | | 44 .0 | 053078 | 44 .0 | L | | ••• | | | | | 1 | | 22. 0 | 54. 39 | 139983 | 44 .5 | 053114 | 44 .5 | , , | •••• | ••• | ••• | •• | • • • | | | | Dec. 22. 0. 0 | 22. 54. 8 | 0 ·139338 | 45 .0 | 0 .053194 | 45 .0 | GН | | | | | ••• | | | | (1.50 | 22. 59. 10 | 140265 | | 053265 | _ | - | | ••• | | • • | | | | | ₹ 2. 0 | 23. 0. 4 | | 45 .0 | 053336 | 45 .0 | | • • • • | | • • • | •• | | | | | 2. 10 | 23. 0.11 | 140033 | | 053478 | | G H | | ••• | ••• | •• | | | | | 4. 0 | 22. 59. 16 | 139359 | | 053265 | 45 .0 | L | •••• | | • • • | | • • • | • • | | | 6. 0 | 57. 9 | 1 | 45 2 | 052909 | 45.0 | | • • • • | ••• | ••• | •• | | ••• | | | 8. 0 | 55. 52 | | 1 | 052933 | 45 5 | | • • • • | • • • | • • • | •• | ••• | | | | 10. 0 | 22.54. 9 | 1 | 46.0 | 053004 | 45 .5 | G | •••• | ••• | ••• | •• | ••• | ••• | | | 12. 0 | 23. 2.59 | 138051 | 46 .0 | 052505 | 45.5 | G | •••• | | | • • | • • • • | • • | | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 269°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 37°. 45′. Reading for Brass Bar in the same position, 358°. 6′. Time of Vibration of Horizontal Force Magnetometer, 20•.5. Time of Vibration of Vertical Force Magnetometer
in Horizontal Plane, 24•.97; in Vertical Plane, 23•.1. Declination Magnet. Dec. 19^a. 16^h to Dec. 20^d. 16^h, the changes were frequent and of large amount; and Dec. 22^h, between 10^h and 14^h, the changes were considerable. HORIZONTAL FORCE MAGNET. Dec. 19d, from 14h to 24h; Dec. 20d, from 2h to 10h, between 14h and 16h, and between 20h and 22h; and Dec. 22d, between 10h and 12h, the changes were very considerable. Vertical Force Magnet. Dec. 20d. The changes were frequent and of large amount. After December 24d, observations were discontinued to the end of the year. ## ROYAL OBSERVATORY, GREENWICH. ## TERM-DAY OBSERVATIONS MAGNETOMETERS. 1847. | | | | | Term-D | ay Obs | erva | tions of February 2 | 26. | | | | | | |--|---|--|---|--|---|------------|--|--|--|---|---|---------------------------------|------------| | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western
Declination, | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.forTemp. | ermomet
rtical Fo
gnetome | Observers. | | d h m | 0 / " | | 0 | | 0 | | d h m | 0 / // | | 0 | | 0 | | | Feb. 26. 10. 0 5 10 15 20 25 30 | 22. 47. 23
47. 5
46. 53
46. 21
46. 1
45. 43
45. 29 | 0 ·025677
025788
025943
026009
025876
025788 | 1 | 0·055071
055121
055143
055143
055143
055143
055179 | 44 ·0 | Т D | 5
10
15
20
25
30 | 22. 44. 22
44. 17
46. 1
47. 17
48. 12
48. 44
48. 44 | 0·024842
024710
024488
024378
024444
024488
024510 | 43 .0 | 0 ·055221
055250
055214
055356
055285
055392 | 44 ·0 | GН | | 35
40
45
50
55
Feb. 26. 11. 0 | 45. 26
45. 11
46. 11
46. 54
47. 16 | 025788
025788
025788
025788
025456
0 ·024902 | 49.7 | 055193
055193
055214
055214
055214 | 44 •0 | T D | 35
40
45
50
55
Feb. 26. 15. 0 | 48. 25
47. 68
49. 29
50. 0
50. 16 | 024488
024488
024267
024267
024488
0.024488 | 43 :0 | 055356
055356
055356
055356
055413
0 055427 | 44 .0 | G H | | 20. 11. 0
5
10
15
20
25
30
35
40
45
50
55 | 47. 41
46. 54
45. 41
44. 30
45. 3
45. 47
46. 14
46. 33
46. 58
47. 20
47. 7 | 024902
026009
026009
026265
026442
026663
026774
026553
026432
026432
026255
025989 | 42 7 | 055250
055250
055193
055179
055143
055100
055071
055071
055050
055036
055000
055000 | 44 0 | | 20. 13. 0
5
10
15
20
25
30
85
40
45
50 | 50. 57
51. 27
50. 56
50. 56
50. 16
49. 32
49. 20
49. 14
48. 47
48. 47
48. 47 | 024482
024622
024710
024710
024820
024931
025153
025153
025153
025153
025153 | 10 0 | 055392
055377
055413
055413
055356
055392
055392
055356
055356
055356 | | | | Feb. 26. 12. 0 5 10 15 20 25 30 35 40 45 50 55 | 22. 47. 1
46. 56
46. 47
46. 31
45. 50
45. 17
44. 54
44. 36
44. 23
44. 23
43. 48
43. 44 | 0·025954
025701
025546
025436
025281
025215
025104
024882
024882
025215
025325
025325 | | 0 ·055000
055000
055000
055071
055071
055143
055164
055164
055193
055214 | 44.0 | | Feb. 26. 16. 0 5 10 15 20 25 30 35 40 45 50 | 22. 48. 23
48. 8
48. 13
48. 23
47. 56
47. 52
47. 46
47. 23
47. 23
47. 2 | 0·024975
025109
024921
024921
024899
024921
024978
025000
025067
025089
024991
024991 | | 0 ·055356
055342
055356
055392
055338
055409
055390
055397
055371
055353
055353 | 44 .0 | G Н | | Feb. 26. 13. 0 5 10 15 20 25 30 35 40 45 50 55 | 22. 43. 43
44. 2
44. 26
45. 16
45. 36
45. 17
45. 22
44. 39
44. 46
45. 5
44. 43
44. 40 | 0 · 025480
025546
025778
025778
025721
025744
025575
025354
025244
025143
024921
024710 | 42 · 5 | 0·055228
055250
055264
055242
055257
055250
055250
055214
055214
055214
055214
055214 | | Т D | Feb. 26. 17. 0 5 10 15 20 25 30 35 40 45 50 55 | 22. 47. 11
46. 56
46. 43
46. 30
46. 28
46. 25
46. 27
46. 27
46. 10
46. 20
46. 14 | 0 · 024946
025013
025111
025089
025111
025067
025010
025099
025143
025143
025087
025131 | 42 · 7 | 0·055355
055355
055363
055392
055399
055399
055399
055399
055406
055406 | 43 .5 | HE | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 220°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°.8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°.97; in Vertical Plane, 23°.1. | | <u> </u> | | | Term-Day | Ubserv | ation | s of February | 26 a | | | | | | _ | |--|--------------------------------------|--|--------|---|-----------------------|------------|---|----------------------|--|--|---|--|----------------------|---| | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | E i d | Vertical Force Reading in parts of the whole Vert. Force cor.forTemp. | ermomel
rtical For | Observers. | Göttingen Me
Time (Astronor
Reckoning) of
Declination
Observation | nical
of
1 | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor.for Temp. | ermomet
rtical Fo | | | d h m | 0 , " | 1 | 0 | | 0 | | d h | m | 0 / " | | 0 | | 0 | | | Feb. 26. 18. 0 5 10 15 | 22.46. 2
46. 2
46. 7
46. 27 | 025153
025131
025119 | 43 °0 | 0 *055406
055406
055413
055427 | 43 -5 | нв | Feb. 26. 22. | 5
10
15 | 22. 48. 20
48. 2
48. 2
48. 12 | 0 ·024655
024911
024857
024781 | 44 •7 | 0 ·055485
055427
055427
055427 | 44 ·0 | T | | 20
25
30 | 46. 28
46. 19
46. 19 | 025097
025097
025163 | | 055446
055446
055446 | | | | 20
25
30 | 48. 13
48. 14
48. 25 | 024771
024827
024817 | | 055420
055420
055370 | | | | 35
40
45 | 47. 0
46. 51
46. 4
46. 32 | 025052
024906
025083 | | 055439
055443
055443 | | | | 35
40
45
50 | 48. 54
49. 2
49. 17
49. 51 | 024830
024776
024766
024822 | | 055406
055406
055370 | | | | 50
55 | 46. 58 | 025172
024906 | | 055457
055469 | | | | 5 5 | 49. 44 | 024822 | | 055356
055356 | | | | Feb. 26. 19. 0 | 22. 46. 41
46. 49 | 0 025106
025194 | 43 • 2 | 0 ·055462
055483 | 43 .8 | н в | Feb. 26. 23. | 0
5 | 22. 49. 56
50. 23 | 0 ·024914
024759 | 43 .2 | 0 ·055392
055356 | 44 ·0 | 3 | | 10
15 | 46. 32
46. 51 | 025204
025182 | | 055498
055505 | | | | 10
15 | 51. 3
50. 48 | 024638
024749 | | 055406
055406 | } | | | 20 | 46. 24 | 025182 | | 055512 | | | | 20 | 50.48 | 024739 | | 055427 | | | | 25 | 46. 13 | 025027 | | 055505 | | | | 25 | 50. 59 | 024739 | | 055427 | | | | 30
35 | 46. 2
46. 4 | 025103
024904 | | 055488
055438 | | | | 30
35 | 51. 24
51. 44 | 024618
024729 | | 055427
055427 | | | | 40 | 46. 13 | 024881 | | 055474 | | | | 40 | 51. 55 | 024729 | | 055427 | | | | 45 | 47. 2 | 024749 | | 055509 | | | | 45 | 52, 22 | 024498 | | 055427 | | | | 50
55 | 46. 15
46. 13 | 024693
024581 | | 055467
055499 | | нв | i e | 50
55 | 52, 36
52, 27 |
024498
024599 | | 055406
055406 | | | | eb. 26 , 20, 0 | 22. 46. 37 | 0 '024648 | 49 .E | 0 .055499 | 44 0 | G | Feb. 27. 0. | 0 | 22. 52. 46 | 0 .024918 | 44 0 | 0 .055406 | 44 0 | | | 5 | 46. 31 | 024693 | 40 0 | 055499 | 44 U | G | 100. 27. 0. | 5 | 53. 0 | 024931 | 44 U | 055392 | 44 0 | | | 10 | 46. 40 | 024759 | | 035535 | | | | 10 | 53. 0 | 024941 | | 055392 | | | | 15 | 46. 18 | 024715 | | 055535 | | | | 15 | 53. 18 | 025074 | | 055375 | | | | 20
25 | 46. 3
46. 4 | 024715
024737 | | 055527
055527 | | | | 20
25 | 53. 19 | 025128
024950 | | 055375
055393 | | | | 30 | 46. 34 | 024759 | | 055535 | | | | 30 | 53. 5
53. 16 | 024960 | | 055393 | | | | 35 | 46. 34 | 024759 | | 055535 | | | | 35 | 53, 19 | 024916 | | 055412 | | | | 40 | 46. 34 | 024759 | | 055520 | | | | 40 | 53. 10 | 024960 | | 055412 | 1 | | | 45 | 46. 35 | 024781 | | 053527 | | | | 45 | 53. 17 | 025192 | | 055430 | | | | 50
55 | 46, 35
46, 5 5 | 024759
024759 | | 055527
055527 | | | | 50
55 | 53. 5 3
53. 5 4 | 025148
025534 | | 055485
055492 | | | | eb. 26. 21. 0 | 22. 47. 1 | 0 .024759 | 43 5 | 0 .055527 | 44 0 | G | Feb. 27. 1. | 0 | 22. 54. 7 | 0 ·025644 | 48 % | 0 .055520 | 44 · 5 | | | 5 | 46. 58 | 024746 | | 055527 | | | | 5 | 54. 7 | 025423 | | 055534 | | - | | 10 | 46. 44 | 024623 | j | 055527 | | - 1 | | 10 | 54. 0 | 025875 | i | 055520 | | | | 15 | 46.46 | 024500 | | 055513 | | 1 | | 15 | 54. 0 | 025764 | | 055541 | | ١ | | 20
25 | 46. 46
46. 24 | 024554
024586 | 1 | 055513
055499 | | | | 20 | 54. 6
54. 1 | 025685
025663 | - 1 | 055556
055556 | | 1 | | 30 | 46. 24 | 024595 | } | 055535 | | | | 25
30 | 54. 1
53. 44 | 025784 | l | 055541 | | | | 35 | 41. 51 | 024649 | | 055535 | | | | 35 | 53. 48 | 025784 | | 055556 | | | | 40 | 47. 5 | 024637 | 1 | 055499 | 1 | | | 40 | 53. 55 | 025761 | 1 | 055556 | | 1 | | 45 | 47. 10 | 024426 | | 055499 | i | | | 45 | 53. 52 | 025661 | 1 | 055556 | | I | | 50
55 | 47. 8
47. 44 | 024857
024756 | | 055499
055485 | | G | | 50 | 53. 46 | 025671 | - 1 | 055556 | | | | 00 | 71.74 | V4-1100 | - 1 | 000400 | . 1 | u | . "i | 55 | 53. 39 | 025671 | J | 055556 | | ı | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 220°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°97; in Vertical Plane, 23°1. | | 11 11 11 11 | 1 | 1. 0 | 1 | | , | II | 1 | 1 TT | | 77 1 1 | | ī | |-------------------------------------|-----------------------|---|---|-----------------------------|---|------------|-------------------------------------|------------------|------------------------------|---|------------------------------|---|------------| | Göttingen Mean | VI 7 -4 | Horizontal
Force Read- | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read- | Thermometer of
Vertical Force
Magnetometer. | rs. | Göttingen Mean | Western | Horizontal
Force Read- | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read- | Thermometer of
Vertical Force
Magnetometer. | irs. | | fime (Astronomical
Reckoning) of | Western | ing in parts | in i | ing in parts | Tro one | rve | Time (Astronomical
Reckoning) of | Western | ing in parts
of the whole | ntal | ing in parts
of the whole | ome
Ome | Ž | | Declination | Declination. | of the whole
Hor. Force | rizo | of the whole
Vert. Force | tica
gnet | Observers. | Declination | Declination. | Hor. Force | rizo | Vert. Force | ern
Fric | Observers. | | Observation. | _ | cor, for Temp. | E H | cor. for Temp. | M V P | 0 | Observation. | | cor. for Temp. | Th
Ho
Ma | cor.forTemp. | A A A | 1_ | | d h m | 0 1 11 | | 0 | | 0 | | d h m | 0 1 11 | | . 0 | | 0 | | | Feb. 27. 2. 0 | 22. 53. 39 | 0 .025649 | 45 0 | 0 .055520 | 44 .5 | нв | Feb. 27. 6. 0 | 22.47. 8 | 0.024464 | 45 .0 | 0.055448 | 46 .0 | G I | | 5 | 53. 25 | 025073 | | 055541 | | нв | 5 | 46. 56 | 024575 | | 055719 | | | | 10 | 53. 35 | 025615 | | 055556 | | G | 10 | 46. 56 | 024454 | Ì | 055785 | | | | 15
20 | 53. 32
53. 23 | 025871 | | 055556 | | | 15 | 45. 52
45. 34 | 024675
024675 | | 055750
055714 | | | | 20
25 | 53. 25
53. 11 | 025893
025915 | | 055520
055520 | | | 20
25 | 45. 44 | 024675 | | 055700 | | | | 30 | 53. 17 | 025915 | | 055556 | | | 30 | 45. 10 | 024887 | İ | 055624 | | | | 35 | 53. 26 | 025959 | | 055592 | | | 35 | 45. 46 | 024887 | l | 055624 | ! | | | 40 | 53. 20 | 025915 | | 055606 | | | 40 | 46. 29 | 024953 | | 055624 | 1 | | | 45 | 52. 55 | 025871 | | 055592 | | | 45 | 46. 39 | 024887 | | 055641 | | 1 | | 50 | 52 . 55 | 025804 | | 055592 | | | 50 | 46.48 | 024877 | | 055605 | | | | 55 | 52. 19 | 025804 | | 055592 | | | 55 | 47. 7 | 025009 | | 055605 | | l | | Feb. 27. 3. 0 | 22. 52. 25 | 0 .025893 | 44 .0 | 0 .055592 | 44 • 5 | G | Feb. 27. 7. 0 | 22. 47. 18 | 0 .025142 | 44 .7 | 0 .055605 | 45 .7 | G I | | 5 | 52. 21 | 025857 | | 055592 | -1.0 | | 5 | 47. 29 | 025209 | • | 055591 | | | | 10 | 52. 8 | 025867 | | 055611 | | | 10 | 47. 50 | 025320 | İ | 055534 | ĺ | | | 15 | 51.41 | 025612 | ļ | 055553 | | | 15 | 48. 14 | 025310 | | 055515 | l | | | 20 | 51.22 | 025722 | | 055572 | | | 20 | 48. 16 | 025310 | | 055551 | ļ | Ì | | 25 | 51.18 | 025732 | I | 055572 | | | 25 | 48. 4 | 025421 | ì | 055515 | ĺ | l | | 30 | 51.14 | 025742 |] | 055577 | | | 30 | 48. 7 | 025531 | l | 055515 | Ì |] | | 35 | 50. 59 | 025752 | - 1 | 055577 | | | 35 | 48. 7 | 025531 | ļ | 055515 | | | | 40 | 51. 0 | 025752 | 1 | 055577 | | | 40 | 47. 59 | 025531 | 1 | 055515 | | l | | 45
50 | 50. 52
50. 47 | $\begin{array}{c c} 025762 \\ 025883 \end{array}$ | l | 055667 | | l | 45 | 47. 59 | 025521
025521 | ļ · | 055496
055496 | | | | 55 | 50. 52 | 025826 | | 055609
055650 | | G | 50
55 | 47. 59
47. 59 | 025521 | | 055496 | | G I | | | | · | | | | | | | | | | | | | Feb. 27. 4. 0 | 22. 50. 29 | | 45 .0 | 0.055686 | 45 .0 | T D | | 22. 47. 58 | 0.025455 | 44.5 | | 45 .5 | HI | | 5
10 | 49. 2
48. 9 | 025792 | | 055757 | | .] | 5 | 47. 29 | 025477
025499 | l | 055482
055475 | | l | | 15 | 48. 1 | 025792
025726 | 1 | 055776
055790 | | | 10
15 | 47. 25
47. 20 | 025499 | 1 | 055475 | | | | 20 | 46. 56 | 025720 | | 055809 | | | 20 | 47. 24 | 025609 | | 055475 | | | | 25 | 46. 28 | 025461 | | 055809 | | 1 | 25 | 47. 30 | 025587 | 1 | 055475 | | | | 30 | 46, 19 | 025461 | | 055828 | | | 30 | 47. 33 | 025632 | İ | 055494 | | | | 35 | 46. 16 | 025350 | - 1 | 055828 | | | 35 | 47. 20 | 025632 | · | 055494 | | | | 40 | 45. 53 | 025726 | 1 | 055828 | | | 40 | 47. 35 | 025676 | İ | 055494 | | | | 45 | 46. 33 | 025792 | - 1 | 055869 | | | 45 | 47.44 | 025676 | 1.5 | 055487 | | | | 50
55 | 46. 54 | 025792 | | 055869 | | | 50 | 47.44 | 025654 | 1 | 055487
055472 | | 1 | | 99 | 47. 21 | 025792 | | 055923 | | | 55 | 46.58 | 025720 | | 055472 | | | | Feb. 27. 5. 0 | 22. 47. 38 | 0 · 025682 | 45 .0 | 0 .055923 | 45 .5 | TD | Feb. 27. 9. 0 | 22. 46. 9 | 0.025942 | 44 .5 | 0 .055465 | 45 .6 | H. | | 5 | 48. 22 | 025571 | | 055866 | | | 5 | 45. 26 | 026451 | | 055465 | 1 | | | 10 | 48. 32 | 025350 | | 055871 | | | 10 | 45. 11 | 026783 | l | 055444 | 1 | | | 15 | 48.48 | 025284 | | 055800 | | | 15 | 46. 1 | 026871 | | 055451 | į | | | 20 | 49. 10 | 025128 | | 055747 | | | 20 | 46.18 | 026385 | | 055444 | Į | | | 25
30 | 49. 1 | 025128 | | 055747 | | | 25 | 46. 14 | 026207
026207 | 1 | 055408
055412 | l | | | 35 | 48. 46
48. 29 | 025128
024907 | | 055745
055731 | | | 30
35 | 46. 2
46. 13 | 026207 | | 055398 | | 1 | | 40 | 48. 4 | 024907 | | 055731 | | | 40 | 46. 13 | 026363 | l | 055398 | 1 | | | 45 | 48. 16 | 024907 | | 055750 | | | 45 | 46. 38 | 026473 | 1 | 055405 | 1 | | | 50 | 47. 53 | 024685 | | 055785 | | | 50 | 47. 15 | 026407 | | 055405 | 1 | | | 1 | -,, -0 | | | 5-5.00 | | | | , -,, 20 | , | | 055391 | • | н | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 220°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°97; in Vertical Plane, 23°1. | | | | | Term-I | Day Ob | serv | ations of March 24 | • | | | | | | |--|--|--|---|--|---------|------------|--|--
--|---|---|----------------------------------|------------| | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer, | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | Friting | Observers. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor. for Temp. | ermomel
ertical Fo
gnetome | Observers. | | d h m | 0 / " | | 0 | | 0 | | d h m | 0 / " | | 0 | | 0 | | | Mar. 24. 10 0 5 10 15 20 25 30 35 40 45 50 | 22. 42. 10
42. 0
41. 39
41. 39
41. 39
42. 28
43. 14
42. 18
44. 42
44. 30 | 0 ·025133
025045
024545
024612
024612
024523
024490
024313
024091
024136
025298 | 49.5 | 0·054181
054181
054211
054232
054305
054326
054334
054384
054364
054358 | 50 ·0 | G | Mar. 24. 14. 0 5 10 15 20 25 30 35 40 45 | 22. 46. 14
46. 19
46. 27
46. 32
47. 21
47. 12
46. 57
46. 53
46. 31
46. 28
46. 6 | 0·024394
024338
024282
024447
024425
024569
024602
024568
024667
024701
024656 | 49 0 | 0 · 054903
054867
054888
054936
054944
054964
054965
054965
054984
055005 | 51.0 | G H | | 55 | 43. 1 | 025409 | | 054365 | | | 55 | 46. 8 | 024712 | | 055039 | | | | Mar. 24. 11. 0 5 10 15 20 25 30 35 40 45 50 55 Mar. 24. 12. 0 5 10 15 20 25 30 35 | 22. 42. 9 42. 22 45. 35 46. 37 50. 39 51. 45 51. 37 50. 54 49. 25 47. 40 46. 46 45. 26 22. 44. 56 44. 56 44. 56 46. 20 46. 45 47. 24 46. 48 | 0·026184
027169
027944
028088
026705
026373
025344
024890
024580
024559
024825
0·025124
025368
025134
025223
024349
024371
024314
024093 | | 0 ·054365
054423
054410
054367
054304
054205
054078
053850
053829
053774
053790
0 ·053804
053831
053962
054047
054067
054165
054212
054232 | 49 .0 | G | Mar. 24. 15. 0 5 10 15 20 25 30 45 50 55 Mar. 24. 16. 0 5 10 15 20 25 30 35 | 22. 46. 2
46. 2
45. 57
46. 0
46. 3
46. 9
46. 4
45. 53
46. 5
46. 10
46. 10
46. 5
22. 46. 7
46. 5
46. 13
46. 13
46. 13
46. 13
46. 13
46. 58
45. 43
45. 56 | 024700
024656
024767
024723
024545
024545
024767
024723
024612
024545
024545
024545
024545
024545
024545
024566
024767
024700
024700
024656 | 50·0 | 0 ·055025
055039
055005
055019
054999
054985
054959
054959
054959
054938
054938
054938
054938
054903
054903
054867
054867 | 51 · 0 | G H
L | | 40 | 45.28 | 024248 | | 054309 | | GН | | 45. 56 | 024589 | | 054867 | | | | 45
50
55 | 44. 52
44. 52
44. 52 | 024215
024591
024447 | | 054366
054441
054532 | | | 45
50
55 | 45. 34
45. 40
45. 40 | 024634
024545
024545 | - | 054867
054867
054867 | | | | Mar. 24. 13. 0 5 10 15 20 25 30 35 40 45 60 55 | 22. 44. 54
44. 27
43. 45
44. 1
44. 2
44. 2
44. 21
44. 41
44. 40
44. 19
45. 5
45. 28 | 0 ·024425
024270
024303
024237
024248
024469
024548
024349
024349
024227
024183
024394 | 49 · 5 | 0·054552
054502
054645
054659
054715
054756
054756
054756
054756
054776
054790
054832 | 50 •5 | G H | Mar. 24. 17. 0 5 10 15 20 25 30 35 40 45 50 | 22. 45. 40
45. 24
45. 16
45. 16
45. 16
45. 16
45. 16
45. 29
45. 53
46. 41
47. 3 | 0·024457
024368
024324
024324
024324
024324
024435
02413
024102
023881
023771
023660 | 50 •0 | 0·054853
054846
054846
054826
054826
054812
054812
054812
054790
054756
054756 | 51 .0 | L | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 220°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°.8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°.97; in Vertical Plane, 23°.1. | | | | | Term-Day | Observ | ation | s of March 24 and | l 25 . | *. | | | | | |--|-----------------------|---|-------------------------------|--|---------|------------|--|-------------------------|---|-------------------------------|--|-------|------------| | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force | ermome
rizontal
gnetome | Vertical Force Reading in parts of the whole Vert. Force | 1 5 5 6 | Observers. | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force | ermome
rizontal
gnetome | Vertical Force Read- ing in parts of the whole Vert. Force | ne Fe | Observers. | | Observation. | | cor, for Temp. | THE S | cor. for Temp | E > M | | Observation. | | cor for Temp. | T H | cor. for Temp. | Me Ve | | | d h m | 0 / " | | 0 | | 0 | | d h m | 0 ' " | | 0 | | ٥ | | | Mar. 24. 18. 0 | 22. 47. 31 | 0 023438 | 50 0 | 0 .054756 | 50 .8 | L | Mar. 24. 22. 0 | 22. 47. 16 | 0 .022883 | 51 .0 | 0 .054933 | 51 .2 | G | | 5 | 48. 4 | 023372 | } | 054756 | | | 5 | 47. 4 | 022673 | | 054933 | | | | 10
15 | 48. 28
49. 0 | 023372
023438 | ł | 054756
054776 | İ | | 10
15 | 46. 54
46. 54 | 022684
022695 | | 054854
054868 |] | | | 20 | 49. 56 | 023261 | | 054776 | | | 20 | 47. 20 | 022651 | | 054867 | 1 | 1 | | 25 | 50. 16 | 023217 | | 054776 | | L | 25 | 47. 31 | 022484 | | 054867 | | | | 30 | 49. 52 | 023217 | | 054741 | | ΤО | 1 1 | 47. 36 | 022495 | | 054851 | | 1 | | 35 | 49. 43 | 023217 | | 054705 | | | 35 | 47.46 | 022462 | | 054865 | 1 | | | 40 | 49. 23 | 023217 | | 054676 | 1 | | 40 | 47. 46 | 022473 | | 054851 | | | | 45 | 49. 14 | 023217 | | 054653 | | | 45 | 47. 46 | 022728 | | 054836 | | | | 50
55 | 49. 12 | 023328
023328 | | 054653 | | | 50 | 48.15 | 022528 | | 054836 | | | | 35 | 49. 12 | 023323 | | 054632 | | | 55 | 48. 12 | 022495 | | 054856 | | | | Mar. 24. 19. 0 | 22.49.12 | 0 .023438 | 50 .0 | 0 .054618 | 51 .0 | тр | Mar. 24. 23. 0 | 22. 48. 11 | 0 .022373 | 52 0 | 0 .054835 | 52 .0 | G | | 5 | 49. 8 | 023505 | | 054618 | | | 5 | 48.11 | 022384 | - | 054799 | | | | 10 | 49. 5 | 023505 | | 054653 | | | 10 | 48. 11 | 022462 | ľ | 054820 | | | | 15 | 49. 21 | 023660 | ĺ | 054633 | | | 15 | 48. 31 | 022695 | | 054842 | ١. | | | 20
25 | 49. 19 | 023947 | | 054633 | | | 20 | 48. 54 | 023027 | | 054862 | | _ | | 30 | 49. 19
49. 19 | 024036
024102 | | 054633
054633 | | | 25 | 49. 57
49. 14 | 023038 | | 054755
054776 | • | G
G I | | 35 | 48. 52 | 023991 | | 054633 | | | 30
35 | 49. 14 | 023270
022883 | | 054710 | ĺ | Gr | | 40 | 48. 26 | 023881 | | 054633 | | | 40 | 49. 43 | 022895 | | 054705 | | G I | | 45 | 48. 11 | 024036 | 1 | 054613 | | | 45 | 49. 47 | 022640 | | 054712 | ĺ | G | | 50 | 48. 2 | 024146 | | 054685 | | | 50 | 49. 29 | 023017 | | 054691 | | | | 55 | 48. 11 | 024146 | | 054685 | | | 55 | 50. 39 | 023293 | | 054668 | | | | Mar. 24. 20. 0 | 22, 47, 50 | 0 .024102 | 50.0 | 0 .054685 | 50 .8 | ΤЪ | Mar. 25. 0. 0 | 22. 50. 59 | 0 .023348 | 59 .0 | 0 .054675 | 52 .5 | G | | 5 | 47. 26 | 024036 | | 054756 | 00 0 | | 5 | 51. 12 | 023448 | 90 0 | 054716 | 02 0 | - | | 10 | 47. 7 | 023881 | | 054770 | | | 10 | 51.11 | 023360 | | 054679 | | | | 15 | 46. 54 | 023881 | · | 054826 | | | 15 | 50. 55 | 023616 | | 054671 | ĺ | 1 | | 20 | 46. 54 | 023881 | | 054826 | | | 20 | 51. 29 | 023716 | | 054712 | | | | 25
30 | 46. 35
46. 26 | 023881
023881 | | 054826 | | | 25 | 51.47 | 023771 | | 054733 | ļ. | | | 35 | 46. 54 | 023881 | | 054826
054826 | | | 30
35 | 52. 14
52. 31 | 023661
023806 | | 054789
054760 | | | | 40 | 46. 15 | 023748 | | 054826 | | | 40 | 53. 2 | 023839 | | 054696 | | | | 45 | 46. 15 | 023660 | | 054867 | | | 45 | 53. 3 | 023717 | | 054688 | İ | | | 50 | 46 . 15 | 023549 | | 054867 | | | 50 | 53. 9 | 023740 | | 054730 | | | | 55 | 45. 5 8 | 023549 | | 054867 | | | 55 | 53. 36 | 023819 | | 054744 | | | | Mar. 24. 21. 0 | 22. 45. 45 | 0 ·023505 | 50.0 | 0 .054867 | 51 ·A | T D | Mar. 25. 1. 0 | 22. 54 . 18 | 0 .023676 | 54.5 | 0 .054730 | 54 .3 | G | | 5 | 45. 54 | 023448 | 00 0 | 054867 | 31 0 | י די | 5 | 54. 16 | 023509 | 04 0 | 054715 | 04.0 | " | | 10 | 45. 54 | 023238 | | 054888 | | | 10 | 54. 10 | 023134 | | 054693 | 1 | | | 15 | 46. 18 | 023404 | | 054888 | | | 15 | 53. 24 | 023124 | | 054700 | ļ | | | 20 | 46. 33 | 023470 | | 054908 | | | 20 | 53.11 | 023269 | | 054678 | | |
| 25 | 46.45 | 023481 | | 054908 | | | 25 | 53. 14 | 023589 | | 054756 | 1 | | | 30 | 46.41 | 023492 | | 054928 | , | | 30 | 53. 8 | 023790 | | 054742 | | | | 35
40 | 46. 58
46. 46 | 023282 | | 054978
054978 | | | 35 | 52. 55
52. 48 | 023925
023836 | | 054763
054678 | } | 1 | | 45 | 46. 46
46. 33 | 023115
023193 | | 054978 | | | 40
45 | 52. 48
52. 53 | 024290 | | 054678 | } | G I | | 50 | 46. 37 | 023038 | | 054913 | | | 50 | 53. 17 | 024293 | | 054770 | | ١٠ | | 55 | 47. 0 | 023093 | | 054911 | 1 | 1 } | 55 | 53. 17 | 024656 | | 054678 | | 1 | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 220°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°97; in Vertical Plane, 23°1. | | | | | | Term-D | ay Obs | erva | tions c | f Ma | rch 25 | • | | | | | | |--|---------------------------|-------------------------|---|---|--|---------------------------------|------------|----------------------|-------------|------------|----------------------|---|---|--|---|------------| | Göttingen
Time (Astro
Reckonin
Declinat
Observat | nomical
ng) of
tion | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | ermomet
rtical Fo
gnetome | Observers. | Time (.
Rec
De | | tion | Western Declination. | Horizontal Force Reading in parts of the whole Hor. Force cor, forTemp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor. forTemp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | | d | h m | 0 1 " | | 0 | | 0 | | | d | h m | 0 / " | | 0 | | 0 | - | | Mar. 25. | i | 22. 53. 26 | 0 .024558 | 56.0 | 0 .054656 | l | с н | Mar. | | | 22. 47. 15 | 0 .024598 | 60 .0 | 0 .054092 | 61 .0 | T | | Mar. 20. | 5 | 53. 26 | 024702 | 000 | 054670 | 00 0 | - | IVACAI. | 20. | 5 | 47. 8 | 024610 | 00 0 | 054129 | 01 0 | [] | | | 10 | 53. 26 | 024593 | | 054620 | | | | | 10 | 47.48 | 024623 | | 054151 | | | | | 15 | 53. 19 | 024384 | | 054593 | 1 | | l | | 15 | 47. 8 | 024635 | | 054174 | | } | | | 20 | 53. 1 | 024507 | • | 054636 | | | | | 20 | 47. 8 | 024648 | | 054197 | | | | | 25 | 52. 52 | 024484 | 1 | 054587 | | | | | 25 | 47. 8 | 024427 | | 054112 | | | | | 30 | 52. 52 | 024464 | } | 054595 | | G H | | | 30 | 47. 27 | 024439 | | 054135 | | 1 | | | 35 | 53. 54 | 024852 | ł | 054602 | 1 | L | | | 35 | 47. 22 | 024606 | | 054157 | | L. | | | 40 | 53. 4 | 025009 | | 054624 | İ | | | | 40 | 47. 22 | 024685 | | 054180
054203 | | T I | | | 45
50 | 53, 39
53, 30 | 025020 | ł | 054596 | | | l | | 45 | 47.17 | 024932 | | 054203 | | GI | | | 55 | 53. 0 | 024977
024989 | | 054582
054604 | | | } | | 50
- 55 | 47. 20
47. 17 | 024932
024976 | | 054226 | | | | : | | | | | | | | | | | | 1 | | | | | | Mar. 25. | 3. 0 | 22. 53. 0 | 0 .025356 | 57 .5 | | 58 .0 | L | Mar. | 25 . | | 22.47. 8 | 0.024922 | 61 .0 | | 62 .0 | G 1 | | | 5 | 53. 0 | 025412 | | 054465 | | | l | | 5 | 45. 44 | 024821 | | 054249 | { | 1 | | | 10 | 53. 16 | 025225 | | 054509 | | | 1 | | 10 | 45. 20 | 024786 | | 054154 | ł | 1 | | | 15
20 | 52. 43 | 025348 | | 054446 | | | l | | 15 | 45. 13 | 024894 | | 054175
054174 | ł | | | | 20
25 | 52, 13
51, 56 | 025017 | ł | 054454 | | | ŀ | | 20 | 45. 8 | 024882
024870 | | 054145 | 1 | 1 | | | 30 | 51. 56
53. 0 | 025073
025939 | ĺ | 054356
054409 | | | j | | 25
30 | 44. 55
45. 9 | 024870 | | 054122 | Ì | | | | 35 | 53. 14 | 025731 | | 054453 | ł | 1 | 1 | | 35 | 45. 22 | 024845 | 1 | 054122 | } | | | • | 40 | 52. 59 | 025699 | | 054441 | 1 | 1 | ĺ | | 40 | 45. 26 | 024832 | | 054108 | 1 | | | | 45 | 52. 10 | 025644 | 1 | 054379 | } | ·] | | | 45 | 44. 58 | 024786 | | 054085 | | | | | 50 | 52. 23 | 025669 | | 054373 | 1 | | | | 50 | 45. 10 | 024551 | İ | 054085 | İ | | | | 55 | 51, 51 | 025580 | | 054398 | | | | | 55 | 44. 41 | 024318 | | 054063 |] | | | far. 25. | 4. 0 | 22. 51. 44 | 0 .025582 | 50 .0 | 0 .054407 | 60 .5 | L | Mar. | 95 | 8. 0 | 22, 43, 53 | 0 .024327 | 59 .6 | 0 .054063 | 61 .5 | G | | | 5 | 51, 19 | 025417 | 00 0 | 054407 | 000 | _ | mai. | 20. | 5 | 43. 36 | 024548 | | 054063 | ł | | | | 10 | 50.55 | 025385 | | 054401 | | | | | 10 | 43. 47 | 024650 | | 054135 | 1 | Į | | | 15 | 51. 0 | 025398 | | 054358 | | | | | 15 | 43.46 | 024783 | | 054084 | 1 | 1 | | | 20 | 51. 0 | 025309 | 1 | 054381 | 1 | | | | 20 | 44.46 | 024783 | 1 | 054135 | 1 | | | | 25 | 50, 49 | 025232 | ļ · | 054353 | | } | | | 25 | 44.57 | 024672 | 1 | 054106 | , | 1 | | | 30 | 50, 25 | 025089 | • | 054332 | | | | | 30 | 45. 32 | 024573 | | 054135 | 1 | 1 | | | 35 | 49.35 | 025212 | | 054332 | ľ | . | ł | | 35 | 45. 39 | 024374 | 1 | 054099 | 1 | | | | 40 | 49. 18 | 025225 | } | 054260 | | L | 1 | | 40 | 45. 20 | 024374 | ļ · | 054113 | 3 | | | | 45
50 | 48.57
48.16 | 025393
025459 | İ | 054283 | | T D | | | 45 | 45. 14 | 024241 | ì | 054099
054077 | | | | | 55 | 47. 38 | 025459 | | 054319
054341 | | | | | 50
55 | 44. 37
44. 26 | 024143 | | 054063 | ł | G | Iar. 25. | | 22. 46. 41 | | 60 .0 | 0 .054377 | 61 .0 | T D | Mar. | 25. | | 22, 44. 7 | 0.023988 | 59 .9 | 0 ·054056
054040 | 61 .2 | G | | | 5 | 45. 29 | 025484 | | 054305 | | | | | 5 | 43. 53 | 023922 | | 054040 | | | | | 10
15 | 44. 55
45. 0 | 025484 | | 054284 | | | | | 10 | 43. 53 | 023909
023909 | | 054025 | | | | | 20 | 45. 9
45. 53 | 025484
025484 | | 054234
054234 | | | | | 15
20 | 43. 53
43. 53 | 023909 | 1 | 054007 | | | | | 25 | 46. 54 | 025484 | | 054234 | | | l | | 20
25 | 43. 43 | 023875 | | 053962 | | 1 | | | 30 | 40. 54
47. 13 | 025329 | | 054234 | | | | | 30 | 43. 39 | 023875 | l | 053917 | 1 | | | | 35 | 47. 39 | 025329 | | 054177 | | | 1 | | 35 | 43. 26 | 023831 | | 053895 | 1 | | | | 40 | 47. 23 | 025196 | | 054163 | | | 1 | | 40 | 43. 7 | 023818 | | 053879 | 1 | | | | 45 | 47. 23 | 025041 | | 054142 | | | } | | 45 | 43. 29 | 023818 | } | 053841 | | | | | 50 | 47. 19 | 024931 | | 054106 | | | | | 50 | 43. 44 | 023884 | | 053818 | 1 | | | | 55 | 47. 6 | 024820 | | 054092 | | | 1 | | 55 | 44. 6 | 023828 | | 053774 | | 1 | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 220°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°.27′. Time of Vibration of Horizontal Force Magnetometer, 20°.8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°.97; in Vertical Plane, 23°.1. | | | | | Term- | Day Ob | serv | vations of April 21. | | | | | | | |--|---|--|---|---|---|------------|--|--|--|---|---|---|------------| | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.forTemp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | | d h m | 0 / " | | 0 | | 0 | | d h m | 0 1 11 | | 0 | | 0 | | | April 21. 10. 0 5 10 15 20 25 30 35 40 45 | 22. 45. 22
45. 27
45. 32
45. 41
45. 9
45. 51
49. 12
48. 22
46. 45
46. 21 | 0 ·022203
022225
022247
022446
022380
022446
02246
022269
022159 | 60 -5 | 0·054362
054362
054355
054355
054355
054333
054282
054226
054248 | 60 •9 | G | April 21. 14. 0 5 10 15 20 25 30 35 40 45 | 22. 48. 4 46. 59 46. 38 46. 45 47. 9 47. 39 47. 30 47. 6 46. 55 46. 57 | 0
·022329
022507
022839
022993
023082
022993
023048
022981
023048 | 59 •2 | 053256
053256
053270
053328
053385
053399
053413
053399 | 59 · 5 | L | | 50 | 46. 6 | 022335 | | 054084 | | | 50 | 47. 12 | 023159 | | 053420 | | | | 55
April 21. 11. 0 | 44. 17
22, 42, 56 | 022335 | 60 ·5 | 054070
0 ·053920 | 60 .9 | G | 55
April 21, 15, 0 | 47. 5
22. 46. 9 | 023203 | 59 · 1 | 053470 | 59 .5 | L | | 5
10
15
20
25
30
35
40 | 43. 54
45. 4
49. 56
54. 1
54. 44
54. 45
52. 3
49. 56 | 023996
024660
026122
025767
024439
023221
022269
022225 | | 053856
053578
053548
053349
053128
052730
052480
052345 | | | 5
10
15
20
25
30
35
40 | 46. 20
45. 52
45. 26
44. 58
44. 32
44. 5
44. 0
44. 4 | 023048
022893
022937
022760
022606
022638
022704
022483 | | 053541
053506
053506
053484
053577
053648
053684
053741 | | L
T D | | 45
50
55
April 21. 12. 0 | 44. 25
45. 31
46. 50
22. 45. 46 | 023221
023487
023553
0 ·023553 | 60 · 5 | 052387
052387
052544
0 ·052615 | 60 • 7 | G | 45
50
55
April 21, 16, 0 | 44. 21
44. 38
44. 38
22. 44. 44 | 022483
022483
022483
0 022638 | 59 .0 | 053769
053769
053826
0 053883 | 59 .5 | т | | 5
10
15
20
25
30
35
40
45
50 | 45. 42
46. 29
44. 31
44. 17
44. 13
44. 35
44. 54
44. 50
44. 26
44. 26 | 022899
022700
022465
022355
022276
022396
022396
022384
022495
022594
022749 | | 052656
052784
052762
052919
052960
053030
(J53188
053214
053342
053298
053333 | | G
L | 5
10
15
20
25
30
35
40
45
50 | 44. 43
44. 27
44. 15
44. 15
44. 15
44. 7
44. 7
44. 34
45. 3
45. 10 | 022702
022547
022459
022459
022446
022434
022367
022355
022355
022343 | | 053861
053861
053853
053831
053831
053808
053786
053822
053800
053813 | | | | April 21. 13. 0 5 10 15 20 25 30 35 40 45 50 55 | 22. 44. 38
44. 47
45. 3
45. 16
46. 47
49. 17
50. 1
50. 36
50. 57
50. 17
49. 5
48. 35 | 0 · 022802
022657
022436
022334
022268
022101
022101
022089
022133
022187
022285 | 59 · 8 | 0 ·053418
053440
053468
053489
053480
053502
053518
053515
053501
053479
053387
053314 | 60 0 | L | April 21.17. 0 5 10 15 20 25 30 35 40 45 50 | 22. 45. 20
46. 17
46. 53
46. 53
46. 19
46. 12
46. 10
46. 4
46. 4
45. 41
45. 10 | 0 · 022175
022385
022385
022373
022594
022582
022580
022580
022580
022773
022777 | 58 :3 | 0 ·053791
053769
053877
053840
053840
053847
053846
053874
053895
053901
053958 | 58 .7 | TD | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 220°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°97; in Vertical Plane, 23°1. | | | | | Term-Da | y Obse | rvat | ions of April 21 an | d 22. | | | | | | |--|----------------------|--|---|---|---|------------|--|-------------------------|--|---|--|---|------------| | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor.for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | Thermometer of
Vertical Force
Magnetometer, | Observers. | | d h m | 0 / // | | 0 | | 0 | | d h m | 0 / " | | 0 | | 0 | | | April 21. 18. 0 | 22. 44. 55 | 0 .022866 |) | 0 .053936 | | TD | April 21. 22. 0 | 22, 49, 57 | 0 .022236 | 57 .0 | 0 .054310 | 57 .0 | G | | 5 | 44. 25 | 022977 | 0.0 | 053972 | 000 | | 5 | 50. 14 | 022137 | | 054374 | | Ĭ | | 10 | 44. 15 | 022755 | | 053993 | | | 10 | 50.44 | 022181 | | 054375 | | | | 15 | 44. 3 | 022777 | | 054036 | | | 15 | 51. 4 | 022183 | | 054419 | | | | 20 | 44. 24 | 022933 | ł | 054051 | | | 20 | 51. 5 | 022250 | | 054440 | | | | 25 | 44. 23 | 022999 | - | 054136 | | | 25 | 51.14 | 022306 | | 054462 | | | | 30
35 | 44. 22 | 022999 | | 054150 | | | 30
35 | 51. 27 | 022341
022363 | | 054484 | | | | 40 | 44. 30
44. 16 | 023109
023220 | | 054150
054150 | | T D | 40 | 51.38
51.50 | 022363 | | 054528
054550 | | | | 45 | 45. 54 | 023232 | | 054150 | | GH | 45 | 51. 50
52. 14 | 022397 | ì | 054545 | | | | 50 | 45.56 | 023099 | - | 054193 | | - | 50 | 52. 18 | 022410 | | 054567 | | | | 55 | 45. 7 | 023011 | | 054207 | | | 55 | 52. 20 | 022232 | | 054611 | | ļ | | 1 2 20 0 | 00 11 00 | 0.000055 | | | FO -0" | | A | | 0 000011 | 50 · 5 | 0.074707 | | _ | | April 21. 19. 0 | 22. 44. 52 | 0 .023055 | 57.8 | 0 .054207 | 98.0 | G H | April 21, 23, 0 | 22. 52. 20 | 0.022311 | 58 .2 | | 58 .8 | G | | 5
10 | 45. 20
45. 10 | 022999
023065 | | 054207 | | | 5
10 | 46. 15
46. 22 | 022355
022367 | | 054597
054597 | | | | 15 | 45. 10
45. 35 | 023110 | | 054199
054242 | | | 15 | 52. 48 | 022478 | | 054619 | | | | 20 | 45. 59 | 023031 | | 054234 | | | 20 | 52. 48 | 022335 | | 054619 | | | | 25 | 45. 50 | 022943 | | 054270 | | | 25 | 52. 51 | 022446 | | 054568 | | 1 | | 30 | 45. 26 | 022753 | | 054212 | | | 30 | 53. 6 | 022459 | | 054561 | | l | | 35 | 45. 37 | 022675 | | 054212 | | | 35 | 53. 23 | 022459 | | 054561 | | | | 40 | 45. 20 | 022564 | | 054248 | | | 40 | 53. 30 | 022459 | | 054526 | | G | | 45 | 45. 7 | 022641 | | 054247 | | | 45 | 53. 37 | 022526 | | 054534 | | T D | | 50
55 | 45. 26
45. 22 | 022695
022618 | | 054226 | | | 50
55 | 53, 53 | 022481
022571 | | 054427
054427 | | | | 30 | 40. 22 | 022018 | . , | 054226 | | | 00 | 54. 14 | 022071 | | 004427 | | | | April 21. 20. 0 | 22, 45, 11 | 0 .022684 | 57.0 | 0 .054226 | 57 .5 | G H | April 22. 0. 0 | 22. 54. 38 | 0 .022571 | 59 .0 | 0 .054427 | 59 0 | T D | | 5 | 45. 21 | 022551 | | 054240 | | | 5 | 55. 7 | 022716 | | 054449 | | | | 10 | 45. 26 | 022485 | | 054240 | | | 10 | 55. 22 | 022728 | | 054494 | | | | 15 | 45. 21 | 022574 | . ' | 054298 | | | 15 | 55. 33 | 022741 | | 054196 | | | | 20
25 | 45. 17
45. 30 | 022485
022485 | | 054290
054348 | | ١., | 20
25 | 55. 30
55. 30 | 022620
022544 | | 053684
053707 | | 1 | | 30 | 45. 34 | 022662 | | 054312 | | | 30 | 55. 26 | 022556 | | 054391 | | 1 | | 35 | 45. 48 | 022463 | | 054319 | | | 35 | 55. 19 | 022436 | - | 054414 | |] | | 40 | 46. 4 | 022441 | | 054348 | | | 40 | 55. 21 | 022669 | | 054436 | Ì | 1 | | 45 | 46. 9 | 022684 | | 054362 | | | 45 | 55. 36 | 022992 | | 054458 | | T D | | 50 | 46. 44 | 022529 | | 054383 | | | 50 | 55. 25 | 022938 | | 054483 | | L | | 55 | 47.15 | 022375 | | 054383 | | | 55 | 55. 25 | 022950 | | 054455 | | | | April 21, 21, 0 | 22. 46. 2 | 0 .022529 | 57.0 | 0 .054383 | 57 -5 | G H | April 22. 1. 0 | 22. 55. 25 | 0 .022852 | 60 .2 | 0 .054407 | 60 .5 | L | | 5 | 47. 26 | 022562 | " " | 054397 | 5 | | 5 | 55. 12 | 022820 | - | 054429 | | ~ | | 10 | 47.48 | 022319 | | 054375 | | | 10 | 55. 12 | 022933 | | 054474 | | | | 15 | 47. 32 | 022353 | | 054389 | | | 15 | 55. 12 | 022901 | | 054454 | | | | 20 | 47. 55 | 022277 | | 054410 | | | 20 | 55. 12 | 023135 | | 054462 | | | | 25 | 48. 8 | 022277 | | 054410 | | | 25 | 55. 41 | 023316 | | 054471 | | | | 30 | 47. 17 | 022510 | | 054317 | | | 30 | 55. 56 | 023216 | | 054516 | | | | 35
40 | 47.58
47.51 | 022522
022588 | | 054317
054331 | | | 35
40 | 56. 4
56. 4 | 023296
023388 | | 054539
054562 | | L | | 45 | 49. 9 | 022091 | | 054338 | | , | 45 | 56. 4 | 023665 | | 054527 | | G H | | 50 | 49. 27 | 022291 | | 054316 | | | 50 | 56. 11 | 023678 | | 054559 | | ~ .1 | | 55 | 48, 33 | 022224 | | 054302 | | GН | | 56. 19 | 023592 | | 054582 | | | | | | | | | | | | - | j | - 1 | | | | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 220°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°97; in Vertical Plane, 23°1. | | | | | Term-l | Day Ob | serv | ations of A | pril 22. | | | | ***** | | | |--|-----------------------
--|---|--|---|------------|--|---------------------------|----------------------|--|---|---|---------------------------------|------------| | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen
Time (Astro
Reckonin
Declina
Observa | nomical
ng) of
tion | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of Horizontal Force Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.forTemp. | ermomet
rtical Fo
gnetome | Observers. | | d h m | 0 / " | | 0 | | 0 | | d | h m | 0 / // | | 0 | | 0 | | | April 22. 2. 0 | 22. 56. 15 | 0 .023494 | 61 .8 | 0 .054569 | 62 .0 | G H | April 22. | | 22, 49, 50 | 0 .026056 | 64 5 | 0 .054264 | 65 0 | G H | | April 22. 2. 0 | 56. 22 | 023285 | 02 | 054555 | 0_ | | | 5 | 50. 35 | 025834 | | 054588 | | 1 | | 10 | 55. 57 | 023077 | | 054587 | | | | 10 | 50. 54 | 025156 | | 054565 | | | | 15 | 55. 7 | 022580 | | 054553 | | | | 15 | 51. 19 | 025466 | | 054536 | 1 | 1 | | 20 | 54 . 52 | 022659 | | 054562 | | | | 20 | 51. 19 | 025865 | | 054505
054469 | | | | 25 | 54. 52 | 022472 | | 054585 | | | ļ | 25
30 | 51. 16
51. 16 | 025365
025463 | | 054446 | | | | 30
35 | 54. 31
54. 34 | 022684
022919 | | 054602
054618 | | | | 35 | 51. 16 | 025219 | İ | 054460 | 1 | G H | | 40 | 54. 26 | 022975 | | 054634 | | GН | | 40 | 50. 31 | 025130 | | 054460 | | TI | | 45 | 54. 17 | 023121 | | 054643 | | L | | 45 | 50. 11 | 025117 | | 054422 | | | | 50 | 54. 6 | 023244 | | 054690 | | | | 5 0 | 50. 11 | 025184 | İ | 054422 | l | 1 | | 55 | 53. 48 | 023257 | | 054699 | | | | 55 | 49. 5 | 025171 | | 054399 | | | | April 22. 3. 0 | 22. 53. 29 | 0 .023094 | 63 .0 | 0 ·054665 | 63 •5 | L | April 22. | 7. 0 | 22.49. 5 | 0.025171 | 64 0 | 0 .054399 | 64 .5 | TI | | 5 | 53. 7 | 023027 | | 054665 | | | • | 5 | 49. 5 | 025326 | | 054399 | | | | 10 | 53. 7 | 023107 | | 054617 | | | | 10 | 49. 1 | 025424 | | 054448
054484 | | | | 15 | 52. 49 | 023261 | | 054617 | | | | 15 | 49. 43 | 025689 | <u> </u> | 054424 | | 1. | | 20
25 | 52. 54
52. 52 | 023407
023562 | | 054588
054545 | | | | 20
25 | 49. 40
49. 52 | 025742
025742 | | 054424 | | 1 | | 30 | 52. 52
52. 58 | 023907 | | 054548 | | | | 30 | 49. 33 | 025065 | | 054401 | İ | | | 35 | 53. 13 | 023996 | | 054498 | | | | 35 | 49. 19 | 024800 | | 054350 | 1 | Ì | | 40 | 53. 4 | 024018 | | 054498 | | | | 40 | 41. 5 | 025065 | | 054308 | | | | 45 | 52.49 | 024098 | . | 054498 | | | | 45 | 40. 16 | 025605 | | 054305 | | | | 50 | 52. 41 | 024186 | | 054463 | | | | 50 | 42. 7 | 025783 | • | 054355 | | 1 | | 55 | 52. 55 | 024376 | | 054486 | | | : | 55 | 43. 13 | 027254 | | 054354 | | | | April 22. 4. 0 | 22. 52. 44 | 0 .024553 | 63 .5 | 0 .054521 | 63 .8 | L | April 22. | | 22. 45. 13 | 0.027121 | 63 .5 | 0.054318 | 64 .0 | TI | | 5 | 52. 40 | 024487 | - | 054464 | | | | 5 | 44. 57 | 026811 | 1 | 054140
054060 | | | | 10 | 52. 44
50. 51 | 024831 | | 054450 | | | | 10
15 | 45. 1
45. 29 | 026422
026134 | | 053975 | | | | 15
20 | 52. 54
52. 59 | 024942
024955 | • | 0544 7 3
054473 | | | | 20 | 45. 25 | 026134 | | 053952 | | | | 25 | 52.48 | 024888 | | 054430 | | | | 25 | 46. 13 | 024615 | | 053952 | | | | 30 | 52.37 | 024857 | | 054430 | | | | 30 | 47. 35 | 024271 | | 053929 | | | | 35 | 52. 37 | 023971 | | 054416 | | I. | | 35 | 48. 13 | 024005 | | 053943 | | | | 40 | 51.44 | 024082 | | 054331 | | GН | | 40 | 49. 0 | 023894 | | 053929 | j | TI | | 45 | 50. 42 | 024006 | | 054354 | | | | 45 | 49. 8
48. 58 | 023881
023881 | | 053905
053905 | | G | | 50
55 | 49. 0
48. 52 | 024228
024307 | | 054340
054354 | | | | 50
55 | 49. 0 | 023861 | | 053882 | | | | April 22. 5. 0 | 22. 47. 52 | 0 .025326 | 64 10 | 0 ·054318 | 84 ·0 | Сн | April 22. | 9. 0 | 22, 49, 15 | 0.023868 | 63 .0 | 0 .053882 | 63 .5 | G | | 11pin 22. 0. 0 | 47. 56 | 026389 | 3. 0 | 054434 | .U-2 V | - 11 | P 22 | 5. 5 | 49. 17 | 023868 | " | 053882 | ĺ , | 1. | | 10 | 48. 15 | 026424 | | 054508 | | | | 10 | 49. 17 | 023656 | | 053859 | | 1 | | 15 | 48. 29 | 026711 | | 054545 | | | | 15 | 49. 11 | 023634 | | 053859 | | | | 20 | 48. 27 | 026592 | | 054566 | | | | 20 | 49. 12 | 023842 | | 053836
053836 | | | | 25 | 49. 9 | 026658 | | 054519 | | | | 25
30 | 49. 13
49. 15 | 023842
023829 | | 053813 | 1 | | | 30
35 | 49. 5
48. 23 | 026250
025807 | | 054578
054601 | | | | 30
35 | 49. 13 | 023829 | | 053813 | | | | 40 | 45. 23
47. 57 | 026250 | • | 054589 | | | | 40 | 49. 37 | 023896 | | 053813 | 1 | | | 45 | 48. 24 | 026485 | | 054612 | | | | 45 | 48.56 | 023927 | 1 | 053789 | 1 | 1 | | 50 | 50. 10 | 026263 | | 054612 | | | | 50 | 48.41 | 024149 | 1 | 053789
053766 | | | | | 49. 0 | 026056 | | | | | | 55 | 48. 29 | 024247 | | | | | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 220°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°.8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°.97; in Vertical Plane, 23°.1. | | | | | Term-l | Day Ob | serv | ations | of M | lay 28. | | | | | | | |--|-------------------------|---|--|---|--------------------------------|------------|------------|--------|------------|----------------------|---|---|--|---|--------------| | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation, | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.forTemp. | hermometer of
lorizontal Force
lagnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.forTemp. | ermome
rtical Fo
gnetome | Observers. | Time
Re | (Astro | | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor, for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor, for Temp. | hermometer of
ertical Force
fagnetometer. | Observers. | | | | cor. for remp. | | cor.ior temp. | | _ | | | | | COT, TOT T CHIP. | | Cor, for remp. | | | | d h m | 0 / / | | . 0 | | 0 | | | d | h m | 0 / " | | 0 | | 0 | | | May 28. 10. 0 | 22. 44. 53 | 0 .024103 | 79 .6 | | 79 .8 | G | May | 28. | 14. 0 | 22.44.32 | 0.024018 | 75 8 | 0.051652 | 76 .0 | L | | 5
10 | 44. 2
43. 41 | 023977 | | 052357 | | | | | 5 | 43.50 | 023958 | | 051669 | | | | 15 | 43. 41 | 024021 | | 052330
052330 | | | 1 | | 10
15 | 43. 36
43. 30 | 023958
023943 | | 051643
051617 | | | | 20 | 43. 24 | 024073 | | 052337 | | 7. | | | 20 | 43, 30 | 023974 | | 051617 | | | | 25 | 43. 41 | 024290 | | 052317 | | | | | 25 | 43. 41 | 024084 | | 051627 | | | | 30 | 43. 26 | 024611 | | 052346 | | | | | 30 | 43, 44 | 024203 | | 051601 | | | | 35 | 43. 38 | 024751 | | 052346 | | | l | | 35 | 43. 44 | 024188 | | 051610 | | | | 40 | 43. 31 | 024751 | | 052324 | | | | | 40 | 43. 54 | 024143 | 6,0 | 051584 | | | | 45 | 43.34 | 024691 | | 052283 | | | | | 45 | 43, 42 | 024217 | | 051572 | | | | 5 0 | 43.48 | 024580 | | 052283 | | | | | 50 | 42, 39 | 024268 | | 051594 | | | | 5 5 | 43. 48 | 024344 | | 052256 | | | | | 55 | 42. 4 | 024202 | | 051568 | | | | May 28. 11. 0 | 22, 43, 43 | 0 .024123 | 79 .0 | 0 .052256 | 79 4 | G | May | 28. | 15. 0 | 22, 42, 23 | 0 .024188 | 75 .0 | 0 .051577 | 75 :0 | L | | 5 | 42. 55 | 023945 | | 052256 | | _ | | | 5 | 42, 30 | 023995 | | 051601 | | | | 10 | 42. 29 | 023857 | | 052283 | | | | | 10 | 42, 54 | 023936 | | 051596 | | | | 15 | 42. 7 | 024721 | | 052283 | | , | | | 15 | 42, 49 | 023811 | | 051570 | [| | | 20 | 41.59 | 024721 | | 052283 | | | | | 20 | 43. 0 | 023686 | 4.1 | 051545 | | | | 25 | 41. 55 | 024499 | | 052290 | | | | | 25 | 43, 14 | 023672 | | 051519 | } | 1 | | 30 | 41.56 | 024388 | | 052297 | | | | | 30 | 43. 14 | 023436 | | 051467 | ļ | | | 35 | 46. 39 | 024344 | | 052319 | | | | | 35 | 43.14 | 023421 | | 051441 | | | | 40 | 46. 45 | 024388 | | 052326 | | | 11 | | 40 | 43. 14 | 023407 | Ì | 051415 | 1 | L | | 45 | 42. 9 | 024278 | | 052340 | | | | | 45 | 43. 21 | 023547 | | 051462 | | T: | | 50 :
55 : | 42. 55
43. 44 | 024234
024079 | | 052340
052340 | | | | | 50
55 | 43. 21
43. 21 | 023599
023585 | | 051486
051482 | | | | | 10. 11 | | | 002010 | ' | |
| | | 40, 21 | 02000 | | [| | | | May 28. 12. 0 | 22. 44. 48 | 0 .023975 | 79 ·2 | 0 .052333 | 79 .5 | G | May | 28. | 16. 0 | 22, 43, 33 | 0 .023658 | 73 .8 | 0.051470 | 73 .7 | T | | 5 | 43. 34 | 023449 | | 052279 | | |]] | | 5 | 43.38 | 023933 | | 051467 | } | | | 10 | 43.53 | 023412 | | 052232 | | | | | 10 | 43. 3 | 023984 | | 051490 | | | | 15 | 43.45 | 023381 | | 052178 | 1 | | | | 15 | 42. 54 | 024125 | | 051501 | Ì | | | 20 | 43. 10 | 023351 | , | 052138 | } . | , | | | 20 | 42. 8 | 024221 | 1 | 051496 | 1 | | | 25 | 43. 9 | 023335 | | 052085 | 1 | | ll . | | 25 | 41. 8 | 024385 | | 051471 | | | | 30 | 43. 39
43. 46 | 023394 | | 052076 | ĺ | | | | 30 | 41. 1 | 024436 | | 051495
051491 | 1 | | | 35
40 | 44. 12 | 023526 | | 052066
052006 | | _ | | | 35 | 40.14 | 024525
024577 | | 051491 | 1 | | | 45 | 44. 12 | 023563 | | 051960 | j | G.
L | | | 40
45 | 40. 0
42. 40 | 024377 | | 051512 | | | | 50 | 44. 12 | 023754 | | 051907 | 1 | 1 | | | 50 | 42. 14 | 024489 | | 051487 | | Ì | | 55 | 44. 12 | 023850 | | 051868 | | | | | 55 | 38. 59 | 024468 | | 051461 | | 1 | | May 28, 13, 0 | 22. 44. 35 | 0 .023865 | 77.0 | 0 .051815 | 77.0 | | M | . 00 | 16 0 | 00 00 0A | 0 -024631 | 70.7 | 0 .051592 | 72 .5 | Tr. | | may 28. 13. 0 | 44. 51 | 023973 | 11.0 | 051789 | 11.0 | L | May | Z6. | 17. 0
5 | 22. 38. 39
38. 7 | 024859 | 14 1 | 051624 | , u | 1 | | 10 | 45. 3 | 024002 | | 051762 | | 1 | | | 10 | 37. 53 | 024845 | | 051656 | 1 | | | 15 | 45. 3 | 023710 | | 051736 | | 1 | 1 | | 15 | 37. 43 | 024876 | | 051645 | 1 | | | 20 | 45. 14 | 023761 | | 051736 | | | | | 20 | 37. 32 | 024920 | l an | 051691 | 1 | | | 25 | 45. 14 | 023746 | | 051709 | | | | | 25 | 37. 53 | 025994 | | 051666 | 1 | | | 30 | 45. 31 | 023842 | | 051697 | | | | | 30 | 37. 34 | 025113 | 114 | 051641 | | 1 | | 35 | 45. 19 | 023937 | | 051693 | | | | | 35 | 36. 47 | 025365 | 100 | 051698 |] | | | 40 | 44. 55 | 023922 | | 051703 | | | | | 40 | 36. 20 | 025528 | Ī | 051715 | | | | 45 | 44. 33 | 023907 | | 051677 | | | | | 45 | 35. 52 | 025514 | | 051733 | | | | 50 | 44. 39 | 024003 | | 051677 | | | | | 50 | 35. 23 | 025514 | | 051758 | | | | 55 | 44. 39 | 024099 | | 051679 | | | ll | | 55 | 35. 17 | 025434 | 1 | 051753 | 1 | 1 | Reading of Torsion-Circle of Meridianal Magnet for Brass Bar resting in Magnetic Meridian, 220°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°.8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°.97; in Vertical Plane, 23°.1. | | | | | Term-Day | Obser | vatio | ns of M | ay 28 | and S | 29. | | | | | | |--|-------------------------|---|---|--|-----------|------------|------------------------|---|------------------|-------------------------|---|---|--|---|------------| | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor, for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor. for Temp. | 15 E 25 E | Observers. | Time (A
Reck
Dec | gen Me
stronom
oning)
lination | nical
of
n | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor, Force
cor, for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor.forTemp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | | | | Cor. for remp. | 0 | 00111011011 | 0 | | | d h | | 0 / 11 | | 0 | | 0 | | | d h m | 0 / // | 0 -005000 | | 0.051750 | 71 .4 | T D | May 2 | | - 1 | 22, 46, 24 | 0.021278 | 69 .0 | 0 .052092 | 70 .0 | G | | May 28. 18. 0 5 | 22. 35. 15
35. 21 | 0 ·025308
025028 | 17.1 | 0 ·051756
051753 | 11 4 | 1 1 | May 2 | 20. 22. | 5 | 49. 21 | 021123 | | 052092 | | | | 10 | 35, 38 | 025028 | | 051753 | | | | | 10 | 49. 5 | 021602 | | 052142 | | | | 15 | 34. 58 | 024571 | | 051779 | | | | | 15 | 49. 40 | 022066 | | 052156 | | | | 20 | 35. 53 | 025014 | | 051779 | | 1 1 | | | 20 | 49. 35 | 022124 | | 052142 | | | | 25 | 36. 55 | 025000 | | 051861 | | | | | 25 | 49. 31 | 022368 | | 052149 | | | | 30 | 37. 20 | 024809 | | 051875 | | | | | 30 | 49. 26 | 022492 | | 052149
052149 | | | | 35 | 37 . 2 0 | 024986 | | 051972 | | | | | 35 | 49. 21 | 02249 2
022692 | , | 052149 | | | | 40
45 | 38. 27
36. 58 | 024528
024528 | | 051972
051997 | | T D
G H | | | 40
45 | 48. 44
47. 53 | 022032 | | 052163 | | | | 50 | 36. 26 | 024528 | | 051997 | | G II | | | 50 | 48. 17 | 022706 | | 052163 | | | | 55 | 35. 1 | 023850 | | 051993 | | | | | 55 | 48. 21 | 022742 | | 052163 | | | | May 28. 19. 0 | 22. 38. 20 | 0 .024058 | 71 .0 | 0 .051950 | 72.0 | G H | May 2 | 28. 23. | 0 | 22, 47, 43 | 0 .023140 | 69 .5 | 0 .052162 | 70 .0 | | | 5 | 36. 16 | 023615 | | 052093 | 120 | | ling 2 | HO. 20. | 5 | 47. 54 | 023840 | | 052187 | | | | 10 | 39. 36 | 024088 | | 052058 | | | 1 | | 10 | 48. 5 | 023832 | | 052226 | | 1 | | 15 | 42.10 | 023933 | | 052150 | | | ļ | | 15 | 5 8. 32 | 024554 | | 052251 | | | | 20 | 43. 20 | 023587 | | 052129 | | | | | 20 | 49. 1 | 024731 | | 052251 | | ı | | 25 | 43. 26 | 023144 | | 052164 | | | | | 25 | 49. 28 | 024745 | 1 | 052276 | | | | 30 | 44. 28 | 022909 | | 052107 | | | | | 30 | 50. 1 | 024803 | | 052301
052326 | | | | 35
40 | 45. 3
44. 49 | 022687 | | 052164 | | | | | 35
40 | 50. 44
50. 55 | 024485
024544 | | 052337 | | ı | | 45 | 44. 49 | 021137
020902 | | 052164
052093 | | | | | 45 | 51. 4 | 024446 | | 052361 | | ١, | | 50 | 46. 21 | 020302 | | 052164 | ! | | | | 50 | 51. 43 | 024181 | | 052361 | | T | | 55 | 47. 57 | 020888 | | 052200 | | | | | 55 | 51. 30 | 024195 | | 052386 | | | | May 28. 20. 0 | 22, 49, 14 | 0 .020445 | 70 .5 | 0 .052292 | 72 .0 | G H | May 2 | 29. 0. | . 0 | 22.52. 2 | 0 .024209 | 70 .5 | 0 .052411 | 71 .0 | T | | 5 | 47. 50 | 020431 | | 052221 | | - | | -0. 0. | 5 | 52.17 | 024364 | | 052411 | | 1 | | 10 | 47. 21 | 020816 | | 052139 | | | | | 10 | 52. 31 | 024223 | | 052411 | | 1 | | 15 | 47. 29 | 020846 | | 052210 | | | 1 | | 15 | 52. 16 | 024223 | | 052411 | | | | 20 | 46. 28 | 020846 | | 052185 | | | | | 20 | 52. 42 | 024400 | | 052411
052411 | | l | | 25
30 | 47. 55
47. 59 | 020788
020375 | | 052185 | | | | | 25
30 | 52. 3
52. 33 | 024334
024237 | | 052411 | | l | | 35 | 47. 55
49. 45 | 020373 | | 052196
052160 | | | | | 35 | 53. 3 | 024237 | } | 052411 | | l | | 40 | 50. 56 | 021199 | | 052231 | | | 1 | | 40 | 52.35 | 024237 | | 052411 | | 1 | | 45 | 50.29 | 020997 | | 052206 | | | | | 45 | 52.35 | 023972 | | 052497 | | l | | 50 | 49. 25 | 021219 | | 052135 | | | | | 50 | 53. 25 | 024251 | l | 052597 | | | | 55 | 49. 8 | 020983 | | 052145 | | | | | 55 | 54.44 | 025004 | | 052597 | | | | May 28. 21. 0 | 22. 48. 27 | 0.020528 | 69 · 5 | 0 .052109 | 71 .5 | G H | May s | 29. 1. | . 0 | 22. 54. 23 | 0.024915 | 70 .8 | 0 .052625 | 71 .0 | T | | 5 | 47. 43 | 020417 | | 052084 | | | | | 5 | 54. 4 | 024442 | | 052579 | | | | 10 | 46. 30 | 019849 | | 052034 | | | (| | 10 | 54. 4 | 024235 | ļ | 052604 | | l | | 15 | 45. 2 | 019517 | | 051974 | | | | | 15 | 53.54 | 023850 | | 052672
052643 | | - | | 20 | 45. 17 | 019702 | | 051970 | | | 1 | | 20 | 53. 54
53. 32 | 024086
023791 | <u> </u> | 052668 | | | | 25
30 | 44. 44
44. 39 | 019614 | | 052030
052017 | | | 1 | | 25
30 | 53. 32
53. 32 | 023791 | | 052715 | | | | 35 | 44, 39
45, 40 | 019710
019887 | | 052017 | | | | | 35 | 53. 20 | 023464 | | 052705 | | T | | 40 | 46. 44 | 020308 | | 052033 | | G H | 1 | | 40 | 53. 27 | 023921 | | 052702 | | | | 45 | 47.45 | 020517 | | 052120 | | G | | | 45 | 53. 12 | 023935 | 1 | 052755 | | G | | 50 | 46.57 | 020628 | | 052141 | | | | | 50 | 53. 21 | 024393 | | 052755 | | 1 | | 55 | 46.40 | 021167 | | 052066 | 1 | 1 1 | 1 | | 55 | 53. 27 | 023743 | l | 052780 | | 1 | The times of Observation of the Vertical Force and Horizontal Force Magnetometers are respectively 2^m. 30^s before, and 2^m. 30^s after the time of Observation of the Declination Magnetometers. Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 220°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°97; in Vertical Plane, 23°1. | | | | | Term- | Day O | bser | vations of I | May 29. | | | | | | | |--|--|---|---|---
--------------------------------|------------|--|---|--|---|---|---|---|------------| | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.forTemp. | ermome
rtical Fe
gnetome | Observers. | Göttingen
Time (Astro
Reckonin
Declina
Observa | nomical
g) of
tion | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | | d h m | 0 , " | | 0 | | 0 | | d | h m | 0 / " | | 0 | | 0 | | | May 29. 2. 0 5 10 15 20 25 30 35 40 45 | 22. 53. 25
52. 52
52. 47
52. 54
52. 54
53. 25
53. 25
53. 25
53. 8 | 0 ·024864
024355
024214
024103
024582
024560
024463
024950
025127
024698 | 72 ·0 | 0·052770
052795
052759
052785
052785
052831
052863
052835
052896
052931 | 72 -0 | G H
G H | May 29. | 6. 0
5
10
15
20
25
30
35
40 | 22. 47. 56
47. 54
47. 48
47. 41
48. 37
47. 31
47. 47
47. 47
47. 52
47. 44 | 0 · 025753
025819
025819
025819
025863
025863
026218
026262
026152 | 72 · 5 | 0·053149
053114
053078
053090
053104
053104
053104
053104
053083
052987 | 72 ·8 | T I | | 50 | 52. 46 | 024831 | | 052956 | | | | 50 | 47. 40 | 026262 | | 052987 | | - | | 55 | 52.46 | 024712 | | 052956 | | | | 55 | 47. 32 | 026041 | | 052987 | | | | May 29. 3. 0 5 10 15 20 25 30 | 22. 53. 17
53. 43
53. 43
53. 30
52. 48
53. 16 | 025598
025709
025598
024756
024668
025155 | 72 · 5 | 0·052982
053053
053078
053149
053149
053135
053175 | 72 -7 | L | May 29. | 7. 0
5
10
15
20
25 | 22. 47. 32
47. 32
47. 26
47. 16
47. 22
46. 20
46. 54 | 0 · 026041
025997
025916
025805
024684
024906
025113 | 72 ·5 | 0 ·052973
052951
052915
052915
052908
052844
052844
052880 | 73 ·0 | G F | | 35
40
45
50
55 | 53. 32
53. 14
45. 13
50. 40
50. 40 | 025155
024823
025598
025377
024934 | | 053389
053403
053414
053592
053627 | | | W 80 | 35
40
45
50
55 | 46. 57
46. 59
46. 59
46. 59
47. 5 | 025135
025157
025210
025299
025107 | 79 .0 | 052980
052844
052858
052880 | 73 •0 | C I | | May 29. 4. 0 5 10 15 20 25 30 35 40 45 50 55 | 22. 50. 3
48. 46
46. 12
45. 45
45. 58
45. 34
46. 11
46. 38
47. 9
47. 21 | 024602
024616
024505
024410
024520
024799
025110
025420
025324
025612
025670 | | 0 ·053641
053641
053641
053641
053699
053685
053627
053627
053627
053527
053570
053556 | | L
T D | May 29. | 8. 0
5
10
15
20
25
30
35
40
45
50 | 22. 47. 21
47. 4
46. 58
46. 50
46. 40
46. 40
46. 6
46. 15
46. 15 | 0 ·025727
025257
025131
025125
025000
024971
024846
024708
024849
024887
024829
024859 | 72 0 | 052800
052742
052692
052642
052591
052541
052440
052426
052411
052361 | | G 1 | | May 29. 5. 0 5 10 15 20 25 30 35 40 45 50 55 | 22. 48. 24
48. 46
48. 23
48. 20
48. 20
48. 20
48. 20
48. 20
48. 20
48. 14
47. 59
47. 56 | 0 ·025670
025537
025435
025479
025376
025376
025406
025406
025406
025435
025612
025598 | 73 · 0 | 0 ·053521
053428
053414
053318
053318
053260
053246
053246
053246
053206
053185 | 73 · 0 | T D | May 29. | 9. 0
5
10
15
20
25
30
35
40
45
50
55 | 22. 46. 15
46. 14
45. 53
45. 58
46. 10
46. 12
46. 12
46. 12
46. 12
46. 12
46. 12
46. 12 | 0·024734
024640
024568
024554
024526
024499
024471
024436
024364
024403
024376
024352 | 70 · 3 | 0 ·052237
052287
052287
052187
052163
052128
052136
052087
052038
051996
052001
051986 | 70 .7 | G | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 220°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°.8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°.97; in Vertical Plane, 23°.1. | | | | | Term | Day C | bser | vations of June 23. | • | | | | | | |---|--------------------------------|--|---|---|---|------------|--|--------------------------------|---|---|--|---------------------------------|-----------| | Göttingen Mean
ime (Astronomical
Reckoning) of
Declination
Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.forTemp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.forTemp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | ermomet
rtical Fo
gnetome | Observers | | d h m | 0 , " | | 0 | | 0 | | d h m | 0 1 " | | 0 | | 0 | | | Tune 23. 10. 0 5 | 22. 40. 18
40. 12
40. 11 | 0 ·026029
025940
025927 | 64 .8 | 0 ·052750
052750
052727 | 65 •0 | G | June 23. 14. 0
5
10 | 22. 39. 40
39. 52
39. 52 | 0 ·025521
025350
025337 | 63 ·8 | 0 ·052380
052394
052394 | 62 ·7 | T | | 15
20 | 39. 49
39. 6 | 025927
025860 | | 052727
052703 | | | 15
20 | 39. 32
39. 26 | 025337
025324 | | 052392
052392 | | | | 25
30
35 | 38. 47
38. 47
38. 46 | 025927
025914
025936 | | 052703
052680
052680 | | | 25
30
35 | 39. 20
39. 20
39. 20 | 025280
025223
025223 | | 052392
052371
052335 | | | | 40
45 | 38. 43
38. 45 | 026003
026003 | | 052680
052656 | | | 40
45 | 39. 20
39. 20 | 025223
025210 | | 052371
052369 | | | | 50
55 | 38. 47
38. 52 | 026012
026056 | | 052656
052633 | | | 50
55 | 39. 20
39. 18 | 025210
025197 | | 052369
052405 | | | | June 23.11. 0 | 22. 38. 56
38. 36 | 0 ·026078
026078 | 64 .2 | 0 ·052633
052617 | 64 .5 | G | June 23. 15. 0 | 22, 39, 15
38, 59 | 0 ·025197
025197 | 63 .0 | 0 ·052405
052419 | 62 • 5 | т | | 10 | 38. 29 | 026064 | | 052578 | | | 10 | 38. 59 | 025197 | | 052440 | | | | 15
20 | 38. 17
38. 26 | 026064
026086 | | 052554
052508 | | | 15
20 | 38. 59
38. 59 | 025197
025131 | | 052440
052490 | | l | | 25 | 38. 31 | 026117 | | 052308 | | | 25 | 38.43 | 025131 | | 052490 | | | | 30 | 38. 31 | 026184 | | 052474 | • | | 30 | 38. 38 | 025197 | | 052513 | | | | 35
40 | 38. 34
38. 39 | 026095
026016 | | 052435
052389 | | | 35
40 | 38. 43
38. 43 | 025086
024975 | | 052534
052534 | | | | 45 | 39. 4 | 025972 | | 052365 | | | 45 | 38. 53 | 025197 | | 052534 | ļ | | | 50
55 | 39. 4
39. 0 | 025905
025848 | | 052342
052319 | | | 50
55 | 38. 46
38. 44 | 025197
025197 | | 052534
052555 | | | | une 23. 12. 0 | 22. 38. 51
38. 52 | 0 ·025848
025848 | 64 · 1 | 0 ·052296
052296 | 62 ·8 | G | June 23. 16. 0 | 22. 38. 47
38. 34 | 0 ·025131
025118 | 63. 0 | 0 ·052555
052569 | 62 ·6 | 1 | | 10 | 39, 5 | 025825 | | 052296 | | | 10 | 38. 34 | 025118 | | 052569 | | | | 15 | 39. 1 | 025825 | | 052319 | | } | 15 | 38. 25 | 025105
025047 | | 052560
052560 | | | | 20
25 | 39. 1
39. 1 | 025825
025825 | | 052319
052319 | | | 20
25 | 38. 25
38. 25 | 025047 | | 052537 | | 13 | | 30 | 39. 0 | 025812 | | 052319 | | | 30 | 38. 25 | 025034 | | 052537 | | | | 35
40 | 38. 49
38. 46 | 025812
025768 | | 052319
052319 | | G
T D | 35
40 | 38. 25
38. 25 | 025022
025067 | | 052514
052514 | | | | 45 | 38. 58 | 025768 | | 052342 | | עיו | 45 | 38. 37 | 025009 | | 052527 | | | | 50
55 | 39. 12
39. 5 | 025768
025768 | | 052342
052342 | | | 50
55 | 38. 32
38. 32 | 024996
024996 |
| 052541
052540 | | | | une 23, 13. 0 | 22. 39. 5 | 0 .025768 | 64 • 0 | 0 .052399 | 63 .0 | T D | June 23. 17. 0 | 22. 38. 5 | 0 ·024873
024873 | 62 •2 | 0 ·052540
052540 | 62 .0 | | | 5
10 | 39. 5
39. 5 | 025768
025755 | | 052413
052390 | | | 5
10 | 38. 2
38. 2 | 024904 | į | 052517 | | | | 15 | 39.28 | 025755 | | 052404 | | | 15 | 38. 14 | 024904 | | 052517 | | | | 20 | 39. 28 | 025742 | | 052404 | | 1 | 20 | 37. 39
35. 50 | 024971
024959 | | 052517
052547 | | | | 25
30 | 39. 16
39. 27 | 025676
025618 | | 052404
052381 | | | 25
30 | 35. 59
37. 18 | 024959 | | 052547 | | | | 35 | 39. 27 | 025618 | | 052381 | | | 35 | 37. 18 | 025070 | | 052565 | | | | 40 | 39. 42 | 025552 | | 052403 | | | 40 | 37. 18 | 025057 | | 052565
052601 | | | | 45
50 | 39. 42
39. 33 | 025539
025672 | | 052380
052380 | | | 45
50 | 37. 18
37. 18 | 024924
024946 | | 052578 | | | | 55 | 39. 38 | 025571 | | 052380 | | l | 55 | 37. 25 | 024822 | , | 052627 | | 1 | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 17°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°97; in Vertical Plane, 23°1. | | | | | Term-Day | Observ | ation | s of Jur | e 23 and | 24. | | | | | | |--|-------------------------|---|---|---|--------|------------|-------------------------|--|----------------------|---|---|--|---|------------| | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.forTemp. | 658 | Observers. | Time (A
Recke
Dec | gen Mean
stronomical
oning) of
lination
rvation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor, for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor. forTemp. | Thermometer of
Vertical Foree
Magnetometer. | Observers. | | d h m | 0 / # | - | 0 | | 0 | | | d h m | 0 1 " | | 0 | | 0 | - | | June 23. 18. 0 | 22. 37. 25 | 0.024822 | | 0 .052613 | 61 .7 | L | Inno | 23. 22. 0 | 22. 36. 53 | 0 .024359 | 63 · 2 | 0 • 052633 | 62 .5 | 10 | | 5 | 37, 25 | 024822 | 01.0 | 052613 | U. | 1 " | June 2 | 5 | 37.14 | 024372 | 00 - | 052640 | 02 0 | | | 10 | 37. 13 | 024822 | ł | 052664 | } | | | 10 | 37. 26 | 024350 | | 052663 | | | | 15 | 37. 4 | 024835 | } . | 052686 | 1 | | | 15 | 38.10 | 024363 | | 052606 | | 1 | | 20 | 36, 50 | 024835 | } | 052707 | | } | | 20 | 38. 20 | 024363 | <u> </u> | 0526 36 | | | | 25 | 36, 55 | 024835 | 1 | 052707 | l | | | 25 | 38. 21 | 024376 | 1 | 052636 | | | | 30 | 36. 55 | 024725 | | 052730 | l | | | 30 | 38. 1 | 024310 | | 052659 | | | | 35 | 36, 43 | 024791 | 1 | 052709 | ļ | _ | | 35 | 38. 2
38. 2 | 024322
024300 | | 052652
052652 | ł | | | 40
45 | 36. 43
36. 52 | 024791
024760 | | 052730
052767 | | G H | | 40
45 | 38. 11 | 024300 | | 052675 | | | | 50 | 36. 56 | 024693 | | 052825 | İ | GH | 1 | 50 | 38.10 | 024335 | | 052675 | | | | 55 | 37. 21 | 024649 | | 052825 | | | | 55 | 38. 19 | 024414 | | 052676 | | Т | | | | | | | | | | | | | | | | | | une 23, 19. 0 | 22. 37. 13 | 0 .024671 | 62 .0 | 0 .052825 | 62 .0 | G H | June : | 23. 23. 0 | 22. 38. 16 | 0 .024237 | 63 .8 | 0 .052655 | 63 .0 | 1 | | 5 | 36. 53 | 024627 | | 052839 | } | | | 5 | 38. 36 | 024304 | l | 052605 | 1 | | | 10 | 36. 57 | 024627 | | 052861 | [| | | 10 | 39. 30 | 024304 | | 052614 | 1 | | | 15 | 36. 57 | 024627 | | 052882 | l | | | 15 | 39. 37 | 024427 | 1 | 052578
052578 | | | | 20 | 36. 47
36. 43 | 024627 | | 052861 | 1 | | | 20
25 | 39. 55
40. 23 | 024427 | | 052557 | | - | | 25
30 | 30. 43
37. 7 | 024649
024605 | | 052861
052861 | | 1 | | 30 | 39. 7 | 024427 | | 052581 | | | | 35 | 36. 53 | 024516 | | 052882 | | | | 35 | 40. 41 | 024317 | } . | 052581 | 1 | 1 | | 40 | 34. 53 | 024583 | | 052882 | | | | 40 | 40.41 | 024250 | | 052531 | | 1 | | 45 | 37.11 | 024184 | | 052861 |] | | | 45 | 41. 22 | 024374 | 1 | 052531 | | | | 50 | 37. 15 | 024184 | | 052861 | | | | 50 | 41.48 | 024263 | | 052554 | | | | 55 | 37. 19 | 024184 | | 052861 | | | | 55 | 42. 41 | 024263 | | 052533 | | | | une 23, 20, 0 | 22. 37. 9 | 0 .024184 | 60.0 | 0 .052839 | 62 .0 | CH | Tuno | 24. 0. 0 | 22. 42. 55 | 0 .024396 | 64 .0 | 0 .052519 | 63 ·3 | 2 7 | | 5 dile 23, 20, 0 | 37. 9 | 024184 | 02 0 | 052882 | 02 0 | GH | June | 24. U. U. 5 | 1 | 024453 | 04 0 | 052542 | 00 0 | 1 | | 10 | 36. 44 | 024130 | | 052825 |] | | | 10 | 43. 29 | 024466 | | 052543 | | | | 15 | 56. 18 | 024076 | l | 052753 | 1 | | ll . | 15 | 43. 29 | 024479 | 1 | 052590 | 1 | - | | 20 | 35. 59 | 024133 | | 052753 | 1 | | | 20 | 43. 36 | 024492 | 1 | 052599 | | 1 | | 25 | 36. 38 | 024111 | 1 | 052753 | 1 | | | 25 | 43. 56 | 024506 | 1 | 052601 | | 1 | | 30 | 36, 38 | 024013 | 1 | 052753 | | | | 30 | 43. 56 | 024532 | | 052624 | | | | 35 | 36. 53 | 024026 | | 052739 | | | | 35 | 43. 48 | 024611 | 1 | 052597 | | | | 40 | 36. 33 | 024114 | | 052696 | 1 | | | 40 | 43.54 | 024558 | | 052621 | 1 | 1 | | 45 | 36. 35 | 024082 | 1 | 052682 | | | | 45 | 44. 9 | 024571 | | 052668 | 1 | | | 50 | 36. 32 | 024095 | | 052682 | | | | 50 | 44. 1 | 024584 | | 052691
052714 | | | | 55 | 36. 32 | 024073 | | 052682 | | | | 55 | 44. 7 | 024597 | | 002/14 | | 1 | | une 23.23. 0 | 22. 36. 32 | 0.024108 | 62 .0 | 0 .052668 | 62 .8 | G H | June | 24. 1. 0 | 22. 44, 39 | 0 .024832 | | 0 052738 | 64 7 | 7 | | 5 | 36. 40 | 024108 | 1. | 052625 | 1 | | | 5 | 44. 54 | 024956 | 1 | 052618 | | | | 10 | 36, 38 | 024298 | | 052633 | | | | 10 | 44. 57 | 024991 | | 052642 | } | | | 15 | 36. 9 | 024298 | | 052619 | | | | 15 | 45. 16 | 025093 | 1 | 052666 | | | | 20 | 36. 12 | 024298 | | 052642 | } | |]] | 20 | 45. 20 | 025106 | | 052689 | | ١ | | 25 | 36. 3 | 024453 | | 052621 | | | ll . | 25 | 45. 35 | 025120 | | 052677
052689 | | 1 | | 30 | 35. 58 | 024466 | | 052608 | | | 1 | 30 | 45.41 | 025133 | | 052689 | | | | 35 | 36. 0 | 024333 | ĺ | 052608 | | | | 35 | 45. 50 | 025146
025115 | 1 | 052712 | | | | 40 | 36. 1 | 024479 | | 052608 | | | | 40 | 1 | 025062 | | 052701 | | | | 45
5 0 | 36. 34
36. 52 | 024368
024346 | | 052596
052581 | 1 | G H | }} | 45
50 | 1 | 025053 | | 052712 | | | | 55. | 36. 52 | 024340 | | 052619 | | GH | 1 | 50
55 | | 024978 | | 052701 | | 1 | | | 20.04 | 1 22.000 | 1 | 1 000000 | i . | | 11 | | | | 1 | | 1 | - 1 | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 17°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°.8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°.97; in Vertical Plane, 23°.1. | | | | | Term | -Day C | bser | vations | of June 2 | 4. | | | | | | |--|----------------------|--|---|---|--------|------------|-------------------------|--|----------------------|---|---|--|---|-----------| | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.forTemp. | ertin | Observers. | Time (A
Recke
Dec | gen Mean
stronomica
oning) of
ination
rvation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.forTemp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers | | d h m | 0 / " | | . 0 | | 0 | | | d h m | 0 / " | | 0 | | 0 | | | June 24. 2. 0 | 22, 45, 30 | 0.024991 | 66 .5 | 0 .052689 | 1 | СН | June 2 | | 22. 40. 33 | 0.026948 | 69 .5 | 0 .052558 | 69 .0 | G | | 5 June 24. 2. 0 | 45. 54 | 025048 | . 00 0 | 052676 | 00 0 | 0 11 | June 2 | 5 5 | 1 | 027170 | | 052558 | | | | 10 | 45. 35 | 025107 | | 052688 | | | | 10 | 1 | 027059 | | 052544 | | | | 15 | 45, 23 | 025075 | | 052698 | | | | 15 | 45. 9 | 027170 | } . | 052523 | | | | 20 | 45.24 | 025156 | ! | 052679 |] | | | 20 | | 027281 |) | 052544 | } | | | 25 | 45. 40 | 025258 | 1 | 052674 | |
 1 | 25 | | 027235 | 1 | 052523 | | } | | 30 | 45. 35 | 025271 | | 052665 | | | | 30 | 1 | 027325 | | 052487 | | | | 35 | 44. 54 | 025351 | | 052689 | | | | 35 | | 027391 | } | 052487
052487 | } | 1 | | 40 | 44, 10 | 025431 | | 052713 | | G H | | 40 | 1 | 027391 | İ | 052487 | | 1 | | 45 | 44. 15 | 025644 | | 052694 | | L | | 45 | 1 | 027391 | ļ | 052487 | | - | | 50 | 43. 42
43. 42 | 025657 | | 052715 | | | | 50
55 | 21. 0 | 027391
027347 | 1 | 052487 |) | 1 | | 55 | 43.42 | 025693 | | 052739 | | | | 90 | 21.17 | 02/34/ | | 002101 | | | | June 24, 3. 0 | 22, 43, 27 | 0 .025706 | 67 .7 | 0 .052706 | 67 .5 | L | June 2 | 4. 7. 0 | 23. 20. 57 | 0.027170 | 69 .5 | 0 .052473 | 69 .0 | G | | 5 | 42, 41 | 026038 | •••• | 052706 | ••• | - | June 2 | 5 | 1 | 027281 | | 052459 | l | l | | 10 | 42. 25 | 025986 | | 052656 | 1 | | | 10 | 20. 29 | 027170 | 1 | 052430 | | 1 | | 15 | 42. 14 | 026118 | | 052620 | [| | | 15 | | 027170 | | 052416 | 1 | 1 | | 20 | 41.35 | 026406 | | 052620 | İ | | | 20 | | 027170 | 1 | 052416 | 1 | 1 | | 25 | 41. 21 | 026406 | | 052620 | ŀ | | | 25 | | 027170 | | 052416 | | | | 30 | 40. 52 | 026419 | | 052644 | [| | | 30 | 18. 1 | 027170 | 1 | 052416 | 1 | | | 35 | 40. 39 | 026508 | | 052644 | | 1 | | 35 | • | 027170 | | 052416
052416 | | G | | 40 | 40. 29 | 026508 | | 052644 | | | | 40 | | 027170
027170 | l | 052416 | | 16 | | 45 | 40. 29 | 026566 | | 052644 | | . | | 45
50 | 1 | 027176 | | 052416 | 1 | - | | 50
55 | 40. 32
40. 14 | 026566
026743 | | 052644
052644 | | L
T D | 1 | 55 | 1 | 027170 | | 052416 | | | | 00 | 40.14 | 020145 | | 002044 | | ן ד | | 00 | | | | | | | | June 24. 4. 0 | 22. 40. 14 | 0 .026743 | 68 .0 | 0 .052644 | 67 .6 | ΤЪ | June 2 | 4. 8. 0 | 23. 8. 33 | 0 .027126 | 69 .5 | 0 052416 | 69 .0 | | | 5 | 40.14 | 026756 | | 052597 | | | | 5 | _ | 027126 | | 052416 | | | | 10 | 40. 54 | 026756 | | 052576 | 1 | | | 10 | L . | 027126 | 1 | 052395 | l | l | | 15 | 42.18 | 026770 | | 052550 | | |) | 15 | | 027126 |] | 052381 | | | | 20 | 41.55 | 026773 | | 052550 | | | | 20 | | 027126 | | 052381
052359 | | | | 25 | 40. 54 | 026773 | | 052531 | | | | 25 | | 027126
026992 | | 052345 | ļ | 1 | | 30 | 40. 30 | 026787 | | 052555 | Ì | | | 30
35 | | 026992 | 1 | 052381 | | 1 | | 35
40 | 40. 25
40. 25 | 026811
026811 | | 052506
052516 | | | ł | 40 | I . | 026948 | 1 | 052381 | 1 | ١ | | 45 | 40. 36 | 026811 | | 052480 | | | | 45 | • | 026948 | ĺ | 052359 | | | | 50 | 40. 36 | 026838 | | 052505 | | | | 50 | | 026948 | } | 052359 | 1 | 1 | | 55 | 40. 26 | 026838 | | 052483 | | | | 55 | 1 | 026948 | | 052345 | | i | | | | (| | | | | _ | | | | - | 0.050400 | 00.0 | | | June 24. 5. 0 | 22. 40. 26 | 0 .026851 | 68 •8 | 0 .052457 | 68 .3 | T D | June 2 | 4. 9. 0 | | 0.026948 | 69.2 | 0 ·052402
052345 | 69 .0 |) | | 5 | 40. 26 | 026851 | | 052495 | | | | 5 | | 026948
026934 | | 052343 | | 1 | | 10 | 40. 32 | 026865 | | 052495 | | | | 10
15 | 1 | 026824 | 1 | 052321 | | ŀ | | 15
20 | 40. 33
40. 38 | 026879 | | 052506
052506 | 1 | | | 20 | | 026743 | | 052342 | | (| | 20
25 | 40. 38 | 026879
026827 | | 052531 | 1 | | | 25 | | 026743 | . ∤ | 052342 | | | | 30 | 40.47 | 026840 | | 052555 | | | | 30 | 1 | 026685 | | 052296 | | l | | 35 | 40. 31 | 026906 | | 052555 | | | | 35 | 7 | 026685 | | 052296 | | | | 40 | 40. 31 | 026920 | | 052566 | | T D | 1 | 40 | | 026685 | 1 | 052296 | 1 | 1 | | 45 | 40.40 | 026920 | | 052509 | 1 | GН | | 45 | 38. 39 | 026672 | | 052271 | | 1 | | 50 | 40. 31 | 026934 | | 052534 | | | | 5 0 | | 026672 | 1 | 052271 | | | | 55 | 40. 25 | 026934 | | 052534 | 1 | GН | 1 | 55 | 38.55 | 026658 | 1 | 052271 | l | - 1 | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 17°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°97; in Vertical Plane, 23°1. June 24. 6h. 15m. After this time additional observations were taken. (See section of extraordinary observations.) | | | | | Term- | Day O | bser | vations of July 21 | • | | | | | | |--|----------------------|---|---|--|---|------------|--|----------------------|---|---|--|---|------------| | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor, for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor. forTemp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | | d h m | 0 / " | | - | | 0 | _ | d h m | 0 / " | | 0 | | 0 | <u> </u> | | July 21. 10. 0 | 22. 59. 43 | 0.025452 | 73 .8 | 0 .051618 | 73 · 5 | G | July 21. 14. 0 | 22. 57. 31 | 0 .025006 | 73 .0 | 0 .051741 | 73 •0 | G H | | 5 diy 21. 10. 0 | 22. 59. 52 | 025432 | 10 0 | 051618 | 100 | | 5 buly 21. 14. 5 | 57. 36 | 024948 | | 051762 | | | | 10 | 23. 0.19 | 025430 | | 051586 | | | 10 | 57. 27 | 024933 | * 12.7 | 051737 | | | | 15 | 0. 19 | 025385 | | 051586 | | | 15 | 57. 32 | 024830 | 1.1 | 051751 | | | | 20 | 0. 19 | 025327 | } | 051560 | | 1 | 20 | 57. 18 | 024874 | | 051725 | | 1 | | 25 | 0. 19 | 025438 | | 051560 | | | 25 | 57. 24 | 024948 | | 051725 | | | | 30 | 0. 19 | 025490 |] | 051521 | | | 30 | 57. 36 | 024934 | 4.3 | 051771
051771 | | 1 | | 35
40 | 0. 19 | 025490 | Ì | 051514 | | | 35
40 | 57. 39
57. 35 | 025141
025349 | 3.5 | 051771 | | | | 40
45 | 0. 19
0. 20 | 025512
025586 | | 051507
051473 | | | 45 | 57. 40 | 025157 | 11 | 051745 | | 1 | | 50 | 0.20 | 025586 | { | 051473 | | | 50 | 58. 3 | 024958 | 7. | 051781 | | | | 55 | 0.17 | 025586 | | 051448 | | | 55 | 57.42 | 024922 | | 051770 | | | | July 21. 11. 0 | 23. 0.16 | 0 .025586 | 73 .5 | 0 .051456 | 73 .0 | G | July 21. 15. 0 | 22. 57. 35 | 0 .024864 | 72 .0 | | 72 .5 | G F | | 5 | 0. 16 | 025572 | 1 | 051456 | | | 5 | 57. 19 | 024836 | | 051728 | | 1 | | 10 | 0. 12 | 025603 | | 051456 | | | 10 | 57. 9 | 024821 | 3 | 051691 | | 1 | | 15 | 23. 0. 1 | 025610 | l | 051456 | | 1 | 15 | 57. 4 | 024793 | | 051641
051648 | | 1 | | 20
25 | 22. 59. 55
59. 44 | 025632 | l | 051456 | | | 20 | 56. 43
56. 39 | 024787
024772 | - 252 | 051576 | | I | | 30 | 59. 44
59. 41 | 025640
025604 | l | 051456 | | | 25
30 | 56. 44 | 024772 | - 25 | 051522 | | 1 | | 35 | 59. 41 | 025590 | | 051456
051456 | | 1 | 35 | 56. 44 | 024650 | | 051472 | | | | 40 | 59. 40 | 025420 | | 051456 | | | 40 | 56. 27 | 024680 | | 051436 | | G I | | 45 | 59. 34 | 025406 | | 051470 | | | 45 | 56. 27 | 024718 | | 051387 | } | L | | 50 | 59. 32 | 025627 | | 051470 | | | 50 | 56. 27 | 024624 | | 051365 | | | | 55 | 59. 32 | 025612 | | 051470 | | | 55 | 56. 27 | 024610 | | 051358 | | | | July 21. 12. 0 | 22. 59. 27 | 0 .025199 | 72 .5 | | 73 .0 | G | July 21. 16. 0 | 22. 56. 45 | 0 024847 | 70 .0 | | 70 .0 | L | | 5 | 59. 25 | 025236 | | 051516 | | | 5 | 56. 57 | 024789 | | 051285 | | Ì | | 10 | 59. 25 | 025251 | | 051542 | | | 10 | 56. 43 | 024789 | ļ · | 051310
051271 | | ì | | 15
20 | 59. 17
59. 21 | 025287 | 1 | 051567 | | 1 | 15
20 | 56. 33
56. 20 | 024642
024540 | | 051271 | | | | 25 | 59. 21
59. 18 | 025302
025294 | | 051581
051607 | | | 25 | 56. 12 | 024761 | 1 | 051210 | | | | 30 | 59. 11 | 025255 | | 051690 | | G | 30 | 56. 4 | 024747 | | 051222 | | | | 35 | 58. 55 | 025270 | | 051716 | | G H | 11 | 56. 4 | 024646 | | 051197 | | İ | | . 40 | 58. 52 | 025262 | | 051741 | | | 40 | 56. 15 | 024778 | | 051207 | | | | 45 | 58.46 | 025254 | | 051781 | | | 45 | 56. 38 | 024720 | ļ · | 051233 | | 1 | | 50
55 | 58. 31
58. 5 | 025268
025283 | | 051803
051798 | | | 50
55 | 56, 52
57. 7 | 024706
024884 | 1. | 051254
051229 | | | | July 21. 13. 0 | 22. 57. 46 | 0 .025120 | 79.0 | 0 .051875 | 74 .0 | | July 21. 17. 0 | 22. 57. 7 | 0 .024914 | 69 .2 | 0.051255 | 69 .0 | L | | 5 | 57. 46 | 025120 | 10.9 | 051863 | 17 0 | G H | July 21. 17. 0 | 57. 7 | 024914 | | 051277 | - | _ | | 10 | 57. 38 | 025283 | | 051838 | | | 10 | 57.14 | 024901 | [| 051289 | | | | 15 | 57.47 | 025091 | | 051812 | | | 15 | 57. 3 | 024835 | | 051289 | | | | 20 | 57. 59 | 025099 | 1 | 051848 | | | 20 | 56. 57 | 024901 | | 051310 | | | | 25 | 57.44 | 025077 | ł : | 051823 | | | 25 | 56. 57 | 024887 | | 051299
051335 | | | | 30 | 57. 42 | 025063 | 1 | 051797 | | | 30 | 57. 16 | 024843
024709 | ł | 051333 | 1 | | | 35
40 | 57. 30
57. 34 | 025049
025049 | | 051772 | | | 35
40 | 57. 41
58. 5 | 024709 | | 051416 | | | | 45 | 57. 30 | 025049 | | 051781
051756 | | l | 45 | 58.26 | 024540 | | 051416 | l | | | 50 | 57. 33 | 025020 | |
051756 | | | 50 | 58.48 | 024540 | | 051452 | | | | | | | | | | | | | | | 051463 | | 1 | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 93\frac{1}{2}^\circ. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317^\circ. Reading for Brass Bar in the same position, 358^\circ.27'. Time of Vibration of Horizontal Force Magnetometer, 20\cdot 8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24\cdot 97; in Vertical Plane, 23\cdot 1. | | | | | | | | | i | | - 0 | | | <u> </u> | |---|------------------------|--|------------------------------|--|--|------------|---|------------------------|---|---|---|---|------------| | Göttingen Mean
Fime (Astronomical
Reckoning) of | Western | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | meter of
ital Force | Vertical
Force Read-
ing in parts | meter of
l Force
ometer. | Observers. | Göttingen Mean
Time (Astronomical
Reckoning) of | Western | Horizontal
Force Read-
ing in parts
of the whole | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole | Thermometer of
Vertical Force
Magnetometer. | Observers. | | Declination
Observation. | Declination. | Hor. Force cor.for Temp. | Thermo
Horizor
Magnete | of the whole
Vert. Force
cor.for Temp. | Thermometer o
Vertical Force
Magnetometer. | Obse | Declination
Observation. | Declination. | Hor. Force
cor.for Temp. | Therm
Horizo
Magned | Vert. Force
cor.for Temp. | Therm
Vertics
Magne | đ | | d h m | 0 1 " | | 0 | | 0 | | d h m | 0 / " | | 0 | | 0 | 1 | | July 21. 18. 0 | 22. 59. 48 | 0 .024526 | 6 8 ·8 | 0 .051463 | 68 .6 | L | July 21. 22. 0 | 22. 59. 2 | 0 .023600 | 68 .0 | 0 .051672 | 68 .0 | 0 | | 5 | 23. 0.33 | 024416 |] | 051463 |] | | 5 | 59. 13 | 023533 | | 051672 | 1 | | | 10 | 1.42 | 024460 | l | 051449 | | | 10 | 59. 26 | 023435 | | 051696 | 1 | | | 15 | 1. 20 | 024637 | | 051487 | 1 | | 15 | 59. 25 | 023435 |) | 051696
051721 | | | | 20
25 | 1. 20
1. 0 | 024593
024571 | l | 051487
051473 | | | 20
25 | 22, 59. 54
23, 0. 7 | 023405
023427 | | 051721 | | | | 25
30 | 0.45 | 024571 | 1 | 051473 | 1 | | 30 | 0. 52 | 023452 | | 051745 |] | | | 35 | 0. 23 | 024637 | [| 051487 | | | 35 | 0.58 | 023452 | | 051766 | ļ | | | 40 | 0. 23 | 024637 | 1 | 051487 | 1 | L | 40 | 0.59 | 023386 | 1 | 051766 | | | | 45 | 23. 0. 7 | 024815 | l | 051512 | ļ | TЪ | 45 | 1. 18 | 023311 | | 051790 | | | | 50 | 22. 59. 49 | 024815 | | 051512 | 1 | | 50 | 1.45 | 023267 | | 051790 | | 1 | | 55 | 59. 32 | 024815 | | 051512 | | | 55 | 2. 6 | 023247 | | 051830 | | | | July 21.19. 0 | 22. 59. 32 | 0 .024748 | 68 .8 | 0 .051541 | 68 .8 | T D | July 21. 23. 0 | 23, 2, 11 | 0.023158 | 68 .5 | 0 .051830 | 68 .5 | | | 5 | 59. 19 | 024637 | | 051516 | | | 5 | 2. 8 | 023091 | | 051852 | | | | 10 | 59. 7 | 024624 | } | 051537 | 1 | 1 | 10 | 1. 54 | 022936 | 1 | 051891 | | | | 15 | 58.43 | 024558 | } | 051535 | 1 | | 15 | 1. 37 | 023069 | | 051891 | | | | 20 | 58. 6 | 024558 | | 051510 | 1 | 1 | 20 | 1. 27 | 023047 | } | 051915
051915 | | | | 25
30 | 58. 6
57. 56 | 024499
024389 | | 051510
051485 | | | 25
30 | 1.23
1.34 | 023047
023225 | | 051910 | | | | 35 | 57. 47 | 024389 | | 051461 | 1 | | 35 | 2. 9 | 023223 | | 051947 | 1 | | | 40 | 57.45 | 024376 | | 051461 | | | 40 | 2.58 | 023313 | | 051954 | | | | 45 | 57. 28 | 024376 | | 051437 | ļ | | 45 | 3. 24 | 023047 | | 051979 | l | G | | 50 | 58. 6 | 024310 | | 051462 | | | 50 | 3.47 | 022826 | | 052036 | | | | 55 | 58.22 | 024130 | | 051483 | | | 55 | 3, 36 | 023047 | | 052060 | | | | July 21.20. 0 | 22. 58. 32 | 0 .024130 | 68 •4 | 0 .051459 | 68 •0 | тр | July 22. 0. 0 | 23. 3.49 | 0 .023047 | 68 .5 | 0 .052060 | 69 .0 | G | | 5 | 59. 3 | 024130 | | 051473 | } | | 5 | 4. 4 | 023269 | 1 | 052060 | 1 | | | 10 | 59. 40 | 024130 | | 051495 | | | 10 | 5. 5 | 023060 | | 052060 | | | | 15 | 59. 56 | 024116 | | 051495 | } | | 15 | 5. 3 | 023060 | 1 | 052060 | 1 | | | 20 | 59. 55
50. 91 | 024050 | Ì | 051473 | | | 20 | 5. 11 | 023185 | l | 052046
052060 | | 7 | | 25
30 | 59. 21
58. 50 | 024050
024116 | | 051473
051473 | | | 25
30 | 5. 27
5. 54 | 023296
023464 | | 052060 | | 1 | | 35 | 58. 50 | 024116 | | 051509 | | | 35 | 5. 54 | 023530 | | 052060 | ļ | | | 40 | 58. 34 | 024028 | | 051530 | | | 40 | 6. 13 | 023530 | i | 052088 | 1 | | | 45 | 58. 23 | 024025 | | 051580 | | | 45 | 6. 27 | 023810 | ļ | 052088 | | | | 50 | 58. 7 | 024025 | | 051601 | | | 50 | 6. 27 | 023766 | | 052096 | | | | 55 | 58.33 | 023892 | | 051622 | | | 55 | 6. 16 | 023713 | | 052096 | | | | July 21. 21. 0 | 22. 58. 23 | 0 .023892 | 68 .2 | 0 .051637 | 68 .0 | TD | July 22. 1. 0 | 23, 6, 9 | 0.023647 | 69 .0 | 0.052096 | 69 .0 | 1 | | 5 | 5 8. 2 3 | 023892 | | 051637 | | | 5 | 6. 4 | 023794 | | 052120 | | | | 10 | 58. 24 | 023892 | | 051637 | - | | 10 | 6. 16 | 023807 | 1 | 052145 | | | | 15 | 58. 32 | 023878 | | 051672 | | | 15 | 6. 24 | 023821 | | 052183 | | | | 20 | 57. 56 | 023812 | | 051672 | | | 20 | 6.24 | 023821 | 1 | 052194 | | | | 25
30 | 57. 55
57. 52 | 023812
023657 | | 051672 | | : | 25
30 | 6. 19 | 023857 | | 052219
052246 | | | | 35 | 57. 52
57. 40 | 023657 | | 051672
051672 | | | 35 | 6. 35
6. 35 | 023849
023795 | | 052240 | 1 | | | 40 | 57. 49 | 023657 | | 051672 | | | 40 | 6. 24 | 023183 | | 052282 | 1 | | | 45 | 58. 11 | 023644 | | 051672 | 1 | | 45 | 6. 49 | 024111 | | 052306 | | | | 50 | 58. 27 | 023688 | | 051672 | | | 50 | 6. 41 | 025218 | | 052330 | | | | 55 | 58.46 | 023688 | | 051672 | | TD | 55 | 6. 39 | 025232 | 1 | 052320 | 1 | 1 | Reading of Torsion-Circle of Meridianal Magnet for Brass Bar resting in Magnetic Meridian, 93½°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°. 8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°.97; in Vertical Plane, 23°.1. | | | | | Tern | a-Day | Obse | rvations of | July 22 | 2. | | | | | | | |--|-------------------------|--|---|--|---|------------|--|--------------------------|----------------|----------------|--|---|--|--------------------------------|------------| | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen
Time (Astro
Reckonin
Declina
Observa | nomical
g) of
tion | West
Declin | | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | ermome
rtical Fo
gnetome | Observers. | | d h m | 0 / " | | 0 | | 0 | | d | h m | ۰ | , ,, | | 0 | | • | | | July 22. 2. 0 | 23. 6.27 | 0 .025025 | | 0 .052345 | 70 •3 | тъ | July 22. | 6, 0 | 23. | 1. 38 | 0 .026334 | 73 .0 | 0 .052472 | 73 ·3 | T | | 5 5 | 5. 59 | 024803 | .00 | 052309 | | } | oury 22. | 5 | | 1.46 | 026490 | • | 052493 | | | | 10 | 5. 59 | 024803 | | 052262 | | | | 10 | L . | 1.46 | 026586 | | 052493 | | 1 | | 15 | 6. 15 | 025069 | | 052262 | | | | 15 | | 1.46 | 026586 | | 052468 | | | | 20 | 6. 33 | 025136 | | 052284 | | | | 20 | | 1. 33 | 026763 | | 052468 | | 1 | | 25 | 6 .33 | 025136 | | 052284 | | | | 25 | | 1. 33 | 026873 | | 052425 | | | | 30 | 6. 47 | 025910 | | 052259 | | | | 30 | | 1. 21 | 026763 | | 052425 | | | | 35 | 6.47 | 025800 | | 052259 | | T D | 1 | 35 | | 1. 8 | 026630 | | 052397 | | | | 40 | 6.20 | 025467 | | 052216 | | G H | 1 | 40 | | 1. 12 | 026542 | | 052328 | | T I | | 45 | 6. 26 | 025246 | | 052223 | | | 1 | 45 | | 1.12 | 025663 | | 052300 | | G | | 50 | 6. 12 | 024582 | | 052163 | | } | | 50 |] | 0. 52 | 025531 | | 052286 | | | | 55 | 5. 55 | 024139 | | 052092 | | | } | 55 | i | 0.47 | 025450 | | 052235 | | | | July 22. 3. 0 | 23. 5.21 | 0 .023807 | 70 .0 | 0 .052092 | 70 .0 | G H | July 22. | 7. 0 | 23. | 0. 44 | 0 .025406 | 72 .7 | 0 .052228 | 73 · 1 | G | | 5 | 5. 21 | 023807 | | 052045 | | | 1 | 5 | | 0.45 | 025384 | | 052221 | 1 | l | | 10 | 5. 2 | 024043 | | 052131 | | | | 10 | | 0.46 | 025517 | | 052214 | 1 | | | 15 ' | 4.57 | 023976 | | 052120 | | ĺ | | 15 | j | 0.47 | 025848 | | 052193 | ļ | | | 20 | 4. 57 | 024610 | | 052159 | | | | 20 | | 0. 47 | 025833 | | 052193 | 1 | - | | 25 | 5. 10 | 024610 | |
052206 | | ĺ | | 25 | | 0.47 | 025855 | | 052193 | l | | | 30 | 4.44 | 024580 | | 052219 | | ļ | | 30 | | 0.44 | 025877 | | 052168 | 1 | 1 | | 35 | 4. 44 | 024956 | | 052244 | | | | 35 | ŀ | 0.33 | 025877 | | 052132 | Ì | | | 40 | 4.36 | 025509 | | 052269 | | | | 40 | ĺ | 0.40
0.40 | 025833
025819 | | 052132
052132 | l | | | 45
50 | 4. 47
4. 38 | 025745
025745 | | 052294
052309 | | İ | ļ | 45
50 | 1 | 0.40 | 025930 | İ | 052132 | 1 | | | 55
55 | 4. 22 | 025316 | | 052309 | | | | 55 | | 0.41 | 025930 | | 052192 | | | | Y 1 | | | | | | | T 1 00 | | | | 0.007010 | | 0.050001 | | | | July 22. 4. 0 | 23. 4. 2 | 0.025095 | 70 .5 | 0.052288 | 71.5 | G H | July 22. | 8. 0 | 23. | 0.45 | 0 ·025819
025819 | 72.5 | 0 ·052061
052029 | 73 .0 | G | | 5 | 4. 2 | 025153 | | 052288 | | ł | 1 | 5 | | 0.45 | 025916 | | 052029 | ļ | | | 10
15 | 4. 9
3. 49 | 024915
024929 | | 052314
052278 | | į | | 10
15 | İ | 0. 50
0. 52 | 026005 | | 051964 | | | | 20 | 3. 49
3. 49 | 024325 | | 052278 | | | | 20 | | 0. 52 | 025991 | | 051964 | | G | | 25
25 | 3. 55 | 025304 | | 052303 | | ĺ | Ì | 25 | } | 0. 52 | 025791 | | 051938 | l | L | | 30 | 3. 55 | 025664 | | 052328 | | | | 30 | | 0. 52 | 025556 | | 051899 | 1 | - | | 35 | 3.47 | 025900 | | 052228 | | GН | | 35 | | 0. 52 | 026043 | | 051852 | | | | 40 | 4. 8 | 026578 | | 052328 | | T D | 1 | 40 | | 0.52 | 025888 | | 051827 | 1 | | | 45 | 4.21 | 026607 | | 052353 | | | | 45 | | 0.52 | 025542 | | 051788 | | | | 50 | ,3. 55 | 026621 | | 052353 | | | | 50 | | 0.52 | 025985 | | 051788 | | | | 55 | 3. 55 | 026649 | | 052378 | | | | 55 | | 0.52 | 025971 | | 051819 | | 1. | | July 22. 5. 0 | 23. 3.45 | 0 .026331 | 72 .9 | 0 .052306 | 72 .0 | T D | July 22. | 9. 0 | 23. | 0. 52 | 0 .025572 | 72 .0 | 0.051808 | 72.0 | I. | | 5 | 3.41 | 026234 | 2 | 052288 | | - | | 5 | | 0. 39 | 025625 | | 051748 | | 1 | | 10 | 3. 11 | 026124 | | 052286 | | | | 10 | | 0. 36 | 025611 | | 051701 | 1 | | | 15 | 3. 0 | 026027 | | 052290 | | | | 15 | | 0.36 | 025596 | | 051672 | 1 | | | 20 | 3.45 | 026041 | | 052315 | | 1 | | 20 | | 0.36 | 025662 | | 051676 | | | | 25 | 2.38 | 025974 | | 052340 | | | | 25 | | 0.32 | 025692 | | 051637 | | | | 30 | 2, 38 | 025988 | | 052412 | | | | 30 | | 0. 26 | 025634 | | 051647 | | | | 35 | 2. 29 | 026070 | | 052416 | | | 1 | 35 | | 0. 21 | 025775 | | 051622 | | | | 40 | 2. 22 | 026070 | | 052442 | | | | 40 | | 0.21 | 025694 | | 051597 | | | | 45 | 2. 10 | 026195 | | 052453 | | | 1 | 45 | | 0. 21 | 025635 | | 051572 |] | | | 50
55 | 1.51 | 026210 | | 052478 | | | 1 | 50 | | 0. 21 | 025635 | | 051536 | } | _ | | 5 5 | 1. 29 | 026320 | ļ | 052468 | | | 1 | 55 | | 0. 21 | 025555 | | 051511 | l | L | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 93½°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 317°. Reading for Brass Bar in the same position, 358°. 27′. Time of Vibration of Horizontal Force Magnetometer, 20°8. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°97; in Vertical Plane, 23°1. | | | | | Term-D | ay Obs | erva | tions of August 27 | 7. | | | | | | |--|---|---|---|---|---|------------|--|---|---|---|---|---|------------| | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | | d h m | 0 / " | | 0 | | 0 | | d h m | 0 ' " | | 0 / | | 0 | | | Aug. 27. 10. 0 5 10 15 20 25 30 35 40 45 50 55 | 23. 0.44
0.43
0.37
0.33
0.25
0.30
0.38
0.39
0.40
0.41
0.53 | 0·142274
142274
142288
142288
142241
142241
142255
142255
142255
142255
142316
142386 | 72 •2 | 0 · 051181
051181
051181
051181
051152
051153
051167
051167
051167 | 72.0 | G | Aug. 27. 14. 0 5 10 15 20 25 30 35 40 45 50 | 22. 59. 31
22. 59. 35
23. 0. 12
1. 6
0. 41
0. 41
0. 25
0. 6
23. 0. 6
22. 59. 49 | 0 ·141588
141760
141946
142095
142095
142242
142414
142414
142400
142400
142387
142433 | 69 · 3 | 0 ·050898
050873
050873
050849
050825
050800
050800
050847
050847
050823 | 69 •2 | L | | Aug. 27. 11. 0 5 10 15 20 25 30 | 23. 0.57
1. 5
1. 5
1. 5
0.57
0.43
0.38 | 0 ·142246
142232
142218
142204
142204
142190
142176 | 72 · 5 | 0·051174
051181
051163
051178
051192
051199
051181 | 72 ·0 | G | Aug. 27. 15. 0 5 10 15 20 25 | 22. 59. 50
59. 50
59. 50
59. 54
22. 59. 54
23. 1. 35
1. 35 | 0 ·142304
142104
141856
141643
141733
141761
141721 | 68 •6 | 0 ·050798
050777
050771
050723
050675
050627 | 68 • 5 | L | | 35
40
45
50
55 | 0. 35
0. 37
23. 0. 19
22. 59. 48
59. 24
58. 30 | 142162
142241
142342
142296
142282 | | 051188
051188
051188
051163
051163 | | | 30
35
40
45
50
55 | 1. 35
23. 1. 28
22. 59. 38
59. 2
58. 43 | 141721
141925
141783
141640
141614
141518 | | 050506
050458
050424
050413
050365 | | T | | Aug. 27. 12. 0 5 10 15 20 25 30 35 40 45 50 55 | 22. 58. 2
58. 7
57. 48
57. 35
57. 35
57. 31
58. 5
58. 44
58. 40
59. 1 | 0·142383
142300
142286
142271
142257
142243
142169
141992
141723
141663
141649
141635 | 71 •5 | 0 ·051156
051131
051080
051055
051037
050994
050951
050934
050960
050946
050956 | 71 ·7 | G | Aug. 27. 16. 0 5 10 15 20 25 30 35 40 45 50 55 | 22. 58. 25
57. 47
57. 5
56. 38
56. 14
55. 54
55. 46
55. 44
56. 16
56. 25
56. 42
56. 49 | 0 ·141444
141328
141328
141328
141328
141259
141212
141189
141212
141212
141212
141212 | 66 · 0 | 0 ·050339
050367
050367
050389
050424
050481
050510
050553
050603
050652 | 66 -0 | T | | Aug. 27. 13. 0 5 10 15 20 25 30 35 40 45 50 55 | 22. 59. 37
23. 0. 0
0. 12
0. 5
0. 5
23. 0. 5
22. 59. 40
59. 44
59. 31
59. 31 | 0 ·141713
141885
141871
142034
142274
142306
142292
142061
142163
141848
141556
141602 | 70 ·2 | 0 ·050882
050929
050908
050904
050964
050950
050996
050972
050947
050922
050922 | 70 ·0 | L | Aug. 27.17. 0 5 10 15 20 25 30 35 40 45 50 55 | 22. 57. 10
57. 39
57. 42
57. 56
57. 27
57. 3
56. 39
56. 12
55. 47
55. 19
55. 15 | 0·141328
141374
141444
141514
141444
141474
141374
141374
141374
141421
141491
141537 | 66 0 | 0 ·050695
050723
050745
050766
050766
050794
050816
050837
050837
050887
050887 | 66 •0 | T | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 269°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 37°. 45′. Reading for Brass Bar in the same position, 358°. 6′. Time of Vibration of Horizontal Force Magnetometer, 20°. 5. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°. 97; in Vertical Plane, 23°. 1. | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.forTemp. | Thermometer of
Vertical Force
Magnetometer. | Observers, | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of Horizontal Force Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | |--|---|---
---|---|---|------------|--|---|--|---|--|---|------------| | d h m | 0 / " | | 0 | | 0 | | dhm | 0 / // | | 0 | ŧ | 0 | | | Aug. 27. 18. 0 5 10 15 20 25 30 35 40 | 22. 55. 30
55. 33
55. 16
55. 55
55. 48
55. 59
55. 52
56. 24
56. 24 | 0 ·141560
141547
141534
141334
141334
141275
141262
141412
141468 | 66 .0 | 0 ·050980
050970
050946
050922
050958
050956
050932
050838
050885 | 66 .0 | T D
E H | 5
10
15
20
25 | 23. 4.28
4.55
5.44
6.20
6.50
7.13
7.46
8.36
8.49 | 0 · 139494
139564
139622
139622
139645
139645
139658
139658 | 63.·5 | 0 · 050856
050856
050856
050891
050928
050928
050974
050974 | 63 ·5 | G | | 45
50
55
Aug. 27. 19. 0 | 56. 52
56. 52
56. 38
22. 56. 47 | 141454
141454
141209 | 65 ·0 | 050861
050861
050874
0 .050850 | 65 ·O | ru | 45
50
55
Aug. 27. 23. 0 | 9. 4
9. 18
9. 48
23. 10. 25 | 139635
139648
139648
0 •139648 | 63 -8 | 050974
051011
051011
0 · 051032 | 63 .8 | G | | 5
10
15
20
25
30 | 57. 36
56. 48
56. 20
56. 20
55. 41
55. 41 | 141183
141402
141389
141273
141028
141015 | | 050827
050838
050851
050851
050827
050839 | | 13 11 | 5
10
15
20
25
30 | 10. 29
11. 0
11. 0
11. 38
12. 2
12. 38 | 139648
139880
139777
139870
139893
139893 | | 051032
051032
051113
051113
051113 | 30 3 | G | | 35
40
45
50
55 | 55. 16
55. 16
55. 16
54. 46
53. 29 | 141117
140872
140859
140859
140730 | | 050874
050850
050841
050855
050817 | | | 35
40
45
50
55 | 13. 28
14. 15
14. 45
14. 50
14. 50 | 140056
140184
140138
140092
140022 | | 051120
051150
051150
051150
051150 | | T
T | | Aug. 27. 20. 0 5 10 15 20 25 30 35 40 45 50 | 22. 53. 50
54. 34
54. 34
56. 2
57. 1
57. 2
57. 18
57. 12
57. 34
58. 35
59. 25
59. 20 | 140601
140601
140485
140485
140485
140485
140601
140485
140323
140022
140138 | | 0 ·050794
050794
050808
050865
050865
050865
050901
050901
050901
050865
050865 | 64 · 0 | | 5
10
15
20
25
30
35
40
45
50 | 23. 15. 2
15. 2
14. 56
14. 56
14. 41
14. 32
14. 9
14. 36
14. 26
14. 16
14. 7 | 0 ·140439
140369
140382
140800
140859
140859
140988
140988
141336
140931
141303 | 64 0 | 051150
051173
051173
051247
051268
051291
051291
051263
051315
051338 | 64 .0 | | | Aug. 27. 21. 0 5 10 15 20 25 30 35 40 45 50 | 22. 59. 20
22. 58. 40
23. 0. 21
1. 16
1. 16
1. 43
2. 42
2. 14
3. 3
3. 30
4. 14 | 0 ·140138
140022
140009
139939
139834
139764
139635
139589
139171
139158
139158 | 64 0 | 0 ·050879
050879
050842
050842
050784
050805
050832
050810
050832
050808
050808 | | ЕН | Aug. 28. 1. 0 5 10 15 20 25 30 35 40 45 50 | 23. 14. 36
14. 52
14. 55
15. 13
15. 49
15. 43
15. 34
15. 54
16. 3
15. 36
15. 29 | 0·141363
141471
142079
142201
142486
142563
142616
142749
142803
142811
142785
142781 | 64 5 | 0·051338
051389
051455
051477
051572
051668
051787
051884
051980
052077
052154
052238 | 64 · 5 | G | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 269°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 37°. 45′. Reading for Brass Bar in the same position, 358°. 6′. Time of Vibration of Vertical Force Magnetometer, 20°.5. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°.97; in Vertical Plane, 23°.1. | | | | | | | | tions of Au | gust 28 | ·• | · | 1 6 | | | 1 | |--|----------------------|---|---|--|---|------------|--|----------------------------|--|---|---|--|----------|------------| | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor. for Temp. | rmometer of
tical Force
inetometer. | Observers. | Göttingen
Time (Astro
Reckoni
Declina | nomical
ng) of
ition | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force | rtical | Observers. | | Observation. | | cor. for Temp. | The
Hol | cor. for Temp. | The
Ver
Mag | <u> °</u> | Observa | tion. | | cor.forTemp. | T S S | cor.forTemp. | 3 4 H | _ | | d b m | 0 , " | | 0 | | 0 | | d | h m | 0 / 11 | | 0 | | 0 | | | Aug. 28. 2. 0 5 | 23. 15. 6
15. 29 | 0 ·142775
142686 | 69 .0 | 0 ·052286
052314 | 69 •4 | тр | Aug. 28. | 6. 0
5 | 23. 4.14
4. 1 | 0 ·142385
142362 | 72 ·0 | 0 ·052022
052022 | 72 .0 | G | | 10 | 15. 51 | 142891 | | 052328 | | | | 10 | 3. 56 | 142339 | | 051964 | | | | 15 | 16. 35 | 142987 | | 052377 | | ļ., | | 15 | 3. 43 | 142199
142153 | | 051939
051939 | | | | 20
25 | 16. 52
16. 38 | 143145
143243 | | 052426
052476 | | | | 20
25 | 3. 38
3. 38 | 142153 | | 051939 | | | | 30 | 16. 22 | 143331 | | 052530 | | | | 30 | 3. 41 | 142153 | | 051954 | | | | 35 | 16. 14 | 143359 | | 052529 | | | | 35 | 3. 55 | 142501 | | 051925 | | | | 40 | 15. 21 | 143169 | | 052579 | | TО | | 40 | 3.59 | 142176 | | 051918 | | | | 45 | 14. 45 | 143243 | | 052654 | | ЕН | | 45 | 3. 40 | 142316 | | 051822 | | | | 50
55 | 14. 7
13. 34 | 143194 | | 052705 | | | | 50 | 3. 16
2. 58 | 142431
142385 | | 051687
051723 | | | | | 10. 04 | 143167 | | 052720 | | | | 55 | 2. 55 | 142000 | | 001120 | | | | Aug. 28. 3. 0 | 23. 13. 10 | 0 ·143079 | 72 0 | 0 .052734 | 72 .0 | ЕН | Aug. 28. | 7. 0 | 23. 2.39 | 0 ·142662 | 72 ·0 | 0.051744 | 71 .8 | L | | 5 | 13. 10 | 143051 | | 052648 | | | | 5 | 2, 39 | 142964 | | 051723 | | | | 10 | 12. 29 | 143008 | | 052536 | | | | 10 | 2.28 | 142848 | | 051758
051701 | | | | 15
20 | 12, 19
11, 56 | 143050
143053 | | 052486
052340 | | | | 15 | 2. 28
2. 28 | 142848
142894 | | , 051701 | | | | 25 | 11. 54 | 142863 | | 052340 | | | | 20
25 | 2. 40 | 142802 | | 051687 | | | | 30 | 11.54 | 142867 | | 052181 | | | | 30 | 2. 40 | 142848 | | 051619 | | | | 35 | 11.54 | 142895 | | 052106 | | | | 35 | 2.48 | 142848 | | 051591 | | | | 40 | 12. 3 | 143015 | - 1 | 052033 | | | | 40 | 2. 51 | 142917 | | 051591 | | | | 45
50 | 11. 50
11. 38 | 143205 | | 051936 | | | | 45 | 2.51 | 142964
143079 | | 051569
051519 | | | | 55 | 11. 38 | 143178
143150 | 1 | 051873
051824 | | | | 50
55 | 2.51
2.51 | 143079 | | 051519 | | | | Aug. 28. 4. 0 | 23. 11. 1 | 0 ·143007 | 60 .0 | 0 .051775 | 69 .0 | | Ana 90 | | 23, 2.51 | 0 ·142848 | 72 .0 | 0 .051519 | 71 .7 | L | | 5 | 10.48 | 142918 | 09 0 | 051789 | 09 0 | ЕН | Aug. 28. | 5 | 2.25 | 142862 | , 2 0 | 051530 | | - | | 10 | 10. 6 | 142728 | l | 051827 | | | | 10 | 2. 22 | 142876 | | 051463 | | | | 15 | 9. 24 | 142709 | | 051805 | | 1 | | 15 | 2. 12 | 142890 | | 051402 | | | | 20 | 8.46 | 142520 | 1 | 051807 | | | | 20 | 2. 12 | 142890 | | 051406
051382 | | | | 25
30 | 8. 46
8. 46 | 142247
142289 | | 051821
051860 | | | | 25
30 | 2. 12
2. 12 | 142904
142918 | | 051362 | ļ | | | 35 | 8. 52 | 142432 | 1 | 051910 | | | | 35 | 2. 12 | 142932 | | 051436 | | 1 | | 40 | 8. 52 | 142706 | | 051984 | | | | 40 | 2. 5 | 142576 | | 051461 | | L | | 45 | 8. 38 | 142749 | 1 | 052059 | | ЕН | | 45 | 2. 13 | 142590 | | 051444 | | T | | 50
55 | 8. 31
8. 13 | 142 777
142866 | | 052095
052171 | | G | | 50
55 | $egin{array}{c} 2.13 \ 2.13 \end{array}$ | 142498
142513 | | 051440
051466 | | | | | ĺ | (| ĺ | | | | | | | (| | | - | | | Aug. 28. 5. 0 | 23. 8. 6
8. 6 | 0·143010
143033 | 72 .0 | 0.052235 | 72 .0 | G | Aug. 28. | | 23. 1.56 | 0.142643 | 73 0 | 0 ·051491
051487 | 73 .0 | T | | 10 | 8. 0 | 143033 | - [| 052235
052235 | | | | 5
10 | 1. 48
1. 48 | 142513
142498 | | 051461 | | | | 15 | 7. 56 | 143033 | | 052235 | | | | 15 | 1.43 | 142484 | | 051436 | | | | 20 | 7. 9 | 142848 | | 052178 | | | | 20 | 1. 39 | 142484 | | 051410 | | | | 25 | 6.41 | 142732 | | 052093 | | |
 25 | 1. 39 | 142400 | | 051385 | | | | 30 | 6. 13 | 142616 | | 052093 | | | | 30 | 1. 39 | 142339 | - | 051339 | | | | 35
40 | 6. 5
5. 38 | 142616
142616 | 1 | 052093
052093 | | | | 35
40 | 1. 39
1. 39 | 142255
142241 | | 051314
051289 | | | | 45 | 5. 37 | 142662 | 1 | 052093 | | | | 45 | 1. 29 | 142344 | | 051263 | | | | 50 | 5. 29 | 142639 | | 052093 | | | | 50 | 1. 27 | 142413 | | 051238 | | | | 55 | 4.48 | 142616 | 1 | 052093 | | i i | | 55 | 1. 21 | 142399 | | 051213 | 1 | 1 | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 269°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 37°. 45′. Reading for Brass Bar in the same position, 358°. 6′. Time of Vibration of Vertical Force Magnetometer, 20°. 5. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°. 97; in Vertical Plane, 23°. 1. | | | | • | Term-Day C | bserva | tions | s of September 22. | | | , | | | | |--|---|---|---|---|---|------------|--|--|---|---|---|---|------------| | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor.for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. forTemp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor. forTemp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | | d h m | 0 / " | | 0 | | 0 | | d h m | 0 / " | | 0 | | 0 | | | Sep. 22. 10. 0 5 10 15 20 25 30 35 40 45 50 65 | 22. 59. 26
59. 31
59. 35
59. 43
22. 59. 47
23. 0. 3
0. 22
0. 25
1. 45
2. 7
2. 18
2. 11 | 0 ·142361
142523
142509
142509
142542
142496
142482
142482
142505
142492
142492
142618 | 68 •0 | 0 ·050797
050797
050773
050787
050763
050777
050782
050803
050803
050793
050793 | 68 0 | G | Sep. 22. 14. 0 5 10 15 20 25 30 35 40 45 50 55 | 22. 59. 45
23. 0. 11
0. 35
0. 29
0. 17
1. 12
1. 13
0. 27
1. 22
1. 36
1. 58 | 0 ·143083
143083
143083
143083
142968
142968
142620
142620
142620
142620
142620
142620 | 67 · 0 | 0 · 050862
050898
050933
050933
050933
050933
050969
051004
051040
051075 | 67.0 | G H | | Sep. 22, 11, 0 5 10 15 20 25 30 35 | 23. 2. 11
2. 10
2. 1
1. 56
1. 50
1. 54
1. 54 | 0 ·142803
142873
142975
143045
143100
143146
143133
143133 | 67 • 5 | 0·050812
050812
050802
050809
050792
050792
050768
050768 | 67 · 5 | G | Sep. 22. 15. 0 5 10 15 20 25 30 35 | 23. 1, 58
2, 23
2, 6
2, 14
2, 22
3, 1
3, 1
3, 16 | 0 · 142620
142593
142812
142669
142772
142745
142499
142473
142460 | 67 · 0 | | 67 · 0 | G 1 | | 40
45
50
55
Sep. 22.12. 0 | 2. 42
2. 44
3. 2
3. 5
23. 4.29
2.56 | 143087
142934
142865
142852
0 ·142643
142643 | 6 7 ·0 | 050768
050757
050757
050733
0 ·050733
050748 | 67 ·0 | G | 40
45
50
55
Sep. 22. 16. 0 | 3. 30
3. 22
2. 51
3. 1
23. 2. 38
2. 38 | 142317
142351
142325
0 ·142194
142148 | 65 •2 | 050921
050908
050864
0 050861
050861 | 65 ·5 | G
L | | 10
15
20
25
30
35
40
45
50 | 2. 39
2. 39
2. 37
2. 37
2. 47
2. 33
2. 33
2. 40
3. 16 | 142643
142666
142643
142620
142620
142713
142968
143315
143315
143547 | | 050745
050755
050784
050805
050805
050798
050798
050862
050862
050834 | | GН | 10
15
20
25
30
35
40
45
50 | 2. 8
2. 2
2. 2
1. 40
1. 23
1. 23
1. 19
1. 32
1. 45 | 142264
142135
142135
142135
142020
142181
142367
142354
142354 | | 050838
050838
050828
050828
050804
050804
050826
050838
050838 | | | | Sep. 22.13. 0 5 10 15 20 25 30 35 40 45 50 55 | 23. 1.29 23. 1.24 22.59.6 58.54 59.47 59.35 59.25 22.59.42 23. 0. 4 22.59.30 22.59.24 23. 0.14 | 0 ·143547
143292
143315
143315
143083
143315
143269
143269
143315
143315
143199 | 67 ·0 | 0·050805
050827
050862
050791
050719
050791
050862
050791
050862
050862
050898 | 67 · 0 | GН | Sep. 22. 17. 0 5 10 15 20 25 30 35 40 45 50 55 | 23. 4.55
3.30
2.58
2.58
2.18
1.49
1.7
0.48
1.15
1.5 | 0 ·142748
142817
142817
142946
142946
143294
143526
143526
143526
143470
143423 | | 0 ·050814
050828
050838
050838
050824
050861
050861
050885
050885
050871
050850 | | I | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 269°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 37°.45′. Reading for Brass Bar in the same position, 358°. 6′. Time of Vibration of Horizontal Force Magnetometer, 20°.5. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°.97; in Vertical Plane, 23°.1. | | | | Te | erm-Day Ob | servati | ons (| of Sept | embe | er 22 ar | nd 23. | • | | | | _ | |--|---|--|---|--|-----------|------------|----------------------|-------|---|---|--|---|--|---|------------| | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | Partie de | Observers. | Time (.
Rec
De | | ion | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.forTemp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | | d h m | 0 , " | | 0 | | 0 | | | d | 1 | 0 / " | | 0 | | 0 | | | Sep. 22. 18. 0 5 10 15 20 25 30 35 40 45 50 55 | 23. 4. 4
1. 5
0. 35
23. 0. 19
22. 59. 51
59. 51
22. 59. 51
23. 0. 27
0. 47
1. 22
1. 22
1. 30 | 0 ·143377
143423
143423
143410
143526
143526
143526
143513
143513
143513 | 65 •2 | 0 ·050828
050814
050790
050790
050790
050767
050824
050838
050838
050814
050814 | 65 ·3 | L
T D | Sep. | 22. 2 | 22. 0
5
10
15
20
25
30
35
40
45
50 | 22. 59. 54
22. 59. 54
23. 0. 2
0. 2
0. 14
1. 13
1. 35
1. 57
2. 46
3. 0
3. 7 | 0·141925
141810
141740
141740
141740
141740
141740
141810
141810
141925
141925 | 67 •0 | 0 · 051374
051374
051346
051346
051325
051289
051275
051275
051254
051232
051218 | 67 .0 | BF | | Sep. 22, 19. 0 5 10 15 20 25 30 35 40 45 50 55 | 23. 0. 40
0. 37
0. 32
0. 32
0. 40
0. 47
0. 43
0. 43
0. 43
1. 8 | 0 ·143513
143444
143281
143281
143165
143049
142910
142817
142817
142748
142702
142702 | 65 •0 | 0 ·050814
050850
050871
050885
050885
050864
050842
050885
050913
050913
050942 | 65 •0 | тр | Sep. | 22. 2 | | 23. 3. 7
3. 13
3. 12
3. 15
3. 34
3. 57
4. 18
4. 12
4. 26
4. 49
4. 49
4. 19 | 0·141925
141694
141925
141925
142157
141925
142157
141925
141810
141925
141810 | 67 •0 | 0
·051183
051183
051147
051147
051147
051147
051111
051147
051111
051111 | 67 .0 | E I
E I | | Sep. 22. 20. 0 5 10 15 20 25 30 35 40 45 50 55 | 23. 1.46
1.53
2. 7
1.47
1.33
1. 7
0.53
0.32
0.25
0.25
0.32
0.40 | 0·142702
142702
142586
142586
142586
142586
142586
142586
142586
142586
142586
142470
142447 | 65 .0 | 0 ·050956
050956
050956
050956
050956
050956
050956
050956
050956
050956 | 65 ·0 | TD | Sep. | 23. | 0. 0
5
10
15
20
25
30
35
40
45
50 | 23. 4. 56
5. 13
6. 21
6. 36
6. 30
6. 48
6. 41
7. 18
6. 58
7. 13
7. 28 | 0·141925
141925
141971
141925
142157
142041
142041
141925
141925
141925
142157
142088 | 67 .0 | 0·051147
051147
051147
051183
051204
051183
051183
051218
051218
051218
051218 | 67 .0 | G I | | Sep. 22, 21. 0 5 10 15 20 25 30 35 40 45 50 55 | 23. 0.50
23. 0.12
22.59.32
59.13
59.17
22.59.31
23. 0.10
23. 0.12
22.59.59
59.48
59.48
59.48 | 0 ·142447
142311
142162
142119
142145
142113
142069
142050
141947
141858
141885
141898 | 65 •0 | 0·050956
051003
051027
051060
051107
051131
051179
051226
051250
051269
051316
051440 | | T D
E H | Sep. | 23. | 1. 0
5
10
15
20
25
30
35
40
45
50
55 | 23. 7. 4
6. 44
6. 49
7. 4
7. 17
7. 36
7. 30
7. 2
7. 2
6. 50
6. 38 | 0 ·141925
141707
141707
141883
141965
142359
142442
142641
142641
142655
142482 | 67 •0 | 0 ·051232
051256
051338
051376
051433
051457
051502
051550
051559
051553
051577 | 67 •(| T | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 269°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 37°. 45′. Reading for Brass Bar in the same position, 358°. 6′. Time of Vibration of Horizontal Force Magnetometer, 20••5. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24••97; in Vertical Plane, 23••1. | | | · · · · · · · · · · · · · · · · · · · | Horizontal | ا ب | | 1 . | 1 | ons of September | | I II amin and a | - 9 | Vortical | 1 | <u> </u> | |--|---|---|---|-------|--|--------------------------------|------------|--|--|--|---|---|---|------------| | Göttingen
Time (Astro
Reckonin
Declina
Observa | nomical
g) of
tion | Western
Declination | Force Reading in parts of the whole Hor. Force | griz | Vertical
Force Read-
ing in parts
of the whole
Vert. Force | ermome
rtical Fe
gnetome | Observers. | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation, | Western Declination. | Horizontal Force Read- ing in parts of the whole Hor. Force | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force | Thermometer of
Vertical Force
Magnetometer. | Observers. | | d | h m | 0 1 1 | cor. for Temp. | 0 | cor.forTemp. | FAE
0 | | d h m | 0 , " | cor. forTemp. | 0 | cor. for Temp. | - AAH | _ | | Sep. 23. | | 23. 6. 1
6. 6
6. 6
6. 26
6. 40
6. 7
5. 57
5. 46
5. 56 | 0 ·142427
142265
142251
142343
142251
142238
142238
142238
142238
142234
142340 | | 0 ·051601
051622
051598
051598
051574
051574
051550
051579
051579 | 68 .0 | T D
E H | i | 23. 2. 32
2. 59
3. 2
3. 6
2. 31
2. 26
1. 56
1. 23
0. 58
0. 23 | 0·140833
140833
140658
140612
140297
140389
140562
140816
141025
141243 | 67 · 5 | 0·051610
051588
051560
051517
051489
051431
051374
051360
051360 | 67 .0 | G
T I | | | 50
55 | 6. 6
5. 56 | | | 051576
051566 | | | 50
55 | 23. 0.15
22.59.57 | 141406
141879 | | 051360
051360 | | | | Sep. 23. | 3. 0
5
10
15
20
25
30
35
40
45
50
55 | 23. 5. 32
5. 48
6. 42
6. 10
5. 45
5. 40
7. 3
7. 28
6. 15
6. 5 | 142095
142105
141965
141965
141837
141952
142138
142355
141823
141707 | 67 •4 | 0 ·051566
051552
051564
051564
051562
051538
051552
051552
051598
051634
051588 | 67 · 5 | ЕН | Sep. 23. 7. 0 5 10 15 20 25 30 35 40 45 50 55 | 22. 59. 44
59. 27
59. 37
59. 38
59. 27
59. 2
59. 11
59. 11
58. 47
59. 9
59. 35
22. 59. 56 | 0·142157
142157
142434
142620
142481
142273
141694
140998
141230
141462
141671
141508 | 67 • 0 | 0 ·051360
051360
051360
051360
051360
051289
051289
051289
051289
051289
051268 | 67 · 0 | TI | | Sep. 23. | 4. 0 5 10 10 15 20 25 30 35 40 45 50 55 | 23. 6. 48
6. 48
6. 26
7. 33
7. 47
8. 18
7. 45
7. 13
6. 37
5. 17
3. 50
4. 1 | 141648
141694
142157
142388
142666
142620
142388
141810
141508
140882 | 67 ·0 | 0 ·051574
051610
051617
051631
051666
051716
051716
0517752
051773
051780
051787 | 67 · 0 | ЕН
G | Sep. 23. 8. 0 5 10 15 20 25 30 35 40 45 50 | 23. 0. 0
0. 7
0. 41
1. 0
1. 38
1. 0
0. 59
1. 0
0. 58
0. 39
0. 44
1. 4 | 0·141508
141625
141810
141925
141694
141694
141694
141694
141893
141925 | 67 ·0 | 0·051254
051254
051218
051242
051242
051221
051171
051171
051176
051196
051196 | 67 -0 | T I | | Sep. 23. | 5. 0
5
10
15
20
25
30
35
40
45
50
55 | 23. 3.31
2.44
2.42
2.39
2.22
2. 3
1.15
0.51
0.46
0.45
1.46 | 141044
141498
141359
141373
140608
140366
140343
140111
140403
140543 | 67 ·0 | 0·051787
051859
051859
051859
051859
051859
051773
051787
051659
051659 | 67 ·0 | G | Sep. 23. 9. 0 5 10 15 20 25 30 35 40 45 50 | 23. 1. 19 1. 20 1. 28 1. 16 1. 5 1. 10 1. 10 1. 10 1. 10 0. 57 | 0·142041
142375
142283
142407
142580
142673
142566
142553
142461
142424
142294
142109 | 67.0 | 0 ·051196
051171
051142
051089
051075
051051
051027
051027
051003
051003
050979 | 67 ·2 | L | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 269°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 37°. 45′. Reading for Brass Bar in the same position, 358°. 6′. Time of Vibration of Horizontal Force Magnetometer, 20°.5. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°.97; in Vertical Plane, 23°.1. | | | Horizontal | ~ 8 | Vertical | ۳. | 1 1 | 1 | | 1 | | Horizontal | 4 8 . ∫ | Vertical | of . | ١. | |--------------------------------------|------------------|----------------------------|---|------------------------------|-----------------------------|------------|-------|---------|----------------|------------------|------------------------------|---|------------------------------|---|------------| | Göttingen Mean | 337 ant aus | Force Read- | For
For | Force Read- | Thermometer overtical Force | rs. | Götti | ingen i | Mean
omical | Western | Force Read- | Thermometer of
Horizontal Force
Magnetometer. | Force Read- | Thermometer of
Vertical Force
Magnetometer. | Observers. | | me (Astronomical
Reckoning) of | Western | ing in parts | ome | ing in parts
of the whole | ome
ome | Observers. | | koning | | | ing in parts
of the whole | onta
tom | ing in parts
of the whole | a.l F | er l | | Declination | Declination. | of the whole
Hor. Force | rizo | Vert. Force | rtice | psq | | clinat | | Declination. | Hor. Force | ern
Fize | Vert. Force | ern
ertic | اخ | | Observation. | | cor, for Temp. | Thermometer of
Horizontal Force
Magnetometer. | cor. for Temp. | The Wa | | Ob | servati | on. | | cor.for Temp. | HH | cor. for Temp. | T. A. | Ŀ | | d h m | 0 / " | - | 0 | | 0 | | | d | h m | 0 ' " | | 0 | | 0 | l | | ct. 20.10. 0 | 22. 58. 30 | 0 .141688 | 63 .8 | 0 .051136 | 64 .0 | G | Oct. | 20. 1 | 1 | 22. 59. 55 | 0 · 140602 | 62 .2 | 0.051087 | 62 .2 | T | | 5 | 5 8. 30 | 141582 | | 051076 | İ | | į | | 5 | 23. 0.16 | 140602 | | 051087 | | | | 10 | 58.37 | 141592 | | 051045 | | 1 1 | | | 10 | 0.32 | 140614 | | 051087 | | l | | 15 | 58.46 | 141580 | | 051057 | ļ | | | | 15 | 1. 24 | 140614 | | 051087 | | | | 20 | 58.43 | 141914 | | 051034 | l | | | | 20 | 23. 0.44 | 140846
140892 | | 051073
051052 | | | | 25 | 58.43 | 141909 | | 051068 | 1 | | | | 25 | 22, 59, 57 | 140892 | | 051052 | | | | 30 | 58. 43 | 141875 | | 051022 | | | | |
30
35 | 59. 57
56. 30 | 141045 | | 051002 | | | | 35
40 | 58. 42
58. 42 | 141793
141664 | | 050998
050982 | ļ | | 1 | | 40 | 59. 10 | 140905 | | 051016 | } | ١ | | 45 | 58. 39 | 141651 | | 050962 |] | | | | 45 | 58. 54 | 140836 | | 050945 | 1 | 1 | | 50 | 58.33 | 141708 | | 050956 | | | | | 50 | 58.47 | 140849 | l | 050931 | | | | 55 | 58, 26 | 141695 | | 050954 | İ | | | | 55 | 58. 26 | 140756 | } | 050924 | | | | ct. 20.11. 0 | 22. 58. 16 | 0 ·141798 | 60.5 | 0 .050945 | 62 .5 | G | Oct | 20. 1 | 15.0 | 22. 58. 26 | 0.140872 | 62 .5 | 0 .050924 | 62 .5 | T | | 5 | 58. 39 | 141798 | 02.0 | 050945 | 02 3 | G | Oct. | 20. | 5 | 59. 2 | 140872 | 02 0 | 050945 | | - | | 10 | 59. 1 | 141787 | | 051004 | | | | | 10 | 59. 27 | 140918 | • | 050945 | | | | 15 | 59. 2 | 141347 | | 050989 | | | | | 15 | 59. 13 | 140872 | | 050945 | | | | 20 | 58.46 | 141314 | | 050991 | | | l | | 20 | 58.56 | 140640 | | 050931 | ļ | - | | 25 | 58. 33 | 141314 | | 050991 | | | | | 25 | 58.41 | 140640 | | 050902 | | | | 30 | 58.32 | 141211 | | 051014 | | | | | 30 | 58. 37 | 140640 | l | 050888 | | | | 35 | 57 . 33 | 141188 | | 051014 | | | | | 35 | 58. 7 | 140756 | | 050888 | | | | 40 | 57. 27 | 141304 | | 051121 | | | | | 40 | 58. 7 | 140872 | | 050910 | ŀ | E | | 45 | 57.22 | 141224 | | 051144 | | | | | 45 | 58. 7 | 140756 | 1 | 050945 | | | | 50 | 57. 25 | 141201 | | 051094 | | | | | 50 | 58. 15 | 140826 | | 050945
050959 | | | | 55 | 57 . 19 | 141145 | | 051167 | | | | | 55 | 58. 15 | 140918 | | 000000 | | | | ct. 20.12. 0 | 22.57.45 | 0 · 141006 | 63 .0 | 0 .051202 | 63 .0 | G | Oct. | 20. | 16. 0 | 22. 58. 15 | 0 ·140856 | 62 5 | 0.050945 | 62 .5 | E | | 5 | 57.21 | 141132 | | 051202 | 1 | | 1 | | 5 | 58, 23 | 140743 | 1 | 050936 | | | | 10 | 57. 51 | 140691 | | 051179 | | | | | 10 | 22. 59. 49 | 140846 | | 050935 | } | 1 | | 15 | 58.17 | 140469 | | 051193 | | | | | 15 | 23, 0.40 | 140888 | | 050912
050924 | | 1 | | $egin{array}{c} 20 \ 25 \end{array}$ | 58. 20
58. 27 | 140016 | | 051170 | | | | | 20
25 | 1. 32
0. 58 | 140705
140809 | ļ | 050916 | | 1 | | 30 | 58. 27 | 140016
140073 | | 051170
051147 | | G
T D | } | | 30 | 23, 0.48 | 140809 | i | 050870 | | 1 | | 35 | 58. 4 | 140073 | | 051147 | | ענ | | | 35 | 22. 59. 50 | 140771 | İ | 050869 | | | | 40 | 57. 44 | 140176 | | 051147 | } | | | | 40 | 59. 50 | 140712 | 1 | 050796 | | ١ | | 45 | 57. 54 | 139163 | | 051124 | | | | | 45 | 59. 33 | 140862 | | 050774 | ļ | | | 50 | 57.4 0 | 140150 | | 051110 | | | | | 50 | 59. 38 | 140733 | | 050765 | | 1 | | 55 | 57. 31 | 140150 | | 051110 | | | | | 55 | 59. 16 | 140605 | | 050778 | | | | ct. 20. 13. 0 | 22. 57. 22 | 0 ·140138 | 62 .2 | 0 ·051066 | 62 .5 | ΤЪ | Oct. | 20. 1 | 17. 0 | 22. 58. 49 | 0 ·140476 | 61 .2 | 0 .050776 | 61 .2 | F | | 5 | 57. 22 | 140138 | - | 051152 | | | 00. | | 5 | 58. 56 | 140510 | | 050782 | | | | 10 | 57. 5 | 140138 | | 051052 | | | | | 10 | 59. 0 | 140637 | | 050817 | 1 | | | 15 | 57. 13 | 140138 | | 051073 | ļ | | | | 15 | 59. 0 | 140555 | 1 | 050809 | | | | 20 | 57. 18 | 140138 | | 051073 | 1 | | | | 20 | 58.46 | 140658 | 1 | 050786 | 1 | | | 25 | 57 . 40 | 140254 | | 051087 | | | | | 25 | 58.45 | 140646 | 1 | 050750 | | - | | 30 | 57. 42 | 140347 | | 051087 | | | | | 30 | 58. 15 | 140749 |] | 050763 | | | | 35 | 57. 48 | 140370 | | 051087 |] | | | | 35 | 58. 15 | 140737 |] . | 050741 | | 1 | | 40 | 57. 51 | 140370 | | 051087 | | | | | 40 | 22. 59. 15 | 140841 | 1 | 050753 | 1 | | | 45 | 58. 19 | 140463 | | 051087 | | | | | 4 5 | 23. 0.31 | 140944 | <u> </u> | 050745
050744 | | | | 50
55 | 58. 46
59. 15 | 140533
140602 | | 051087
051087 | |] | 1 | | 5 0 | 1. 51
2. 39 | 140932
141266 | l | 050744 | l | 1 | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 269°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 37°. 45′. Reading for Brass Bar in the same position, 358°. 6′. Time of Vibration of Horizontal Force Magnetometer, 20°. 5. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°. 97; in Vertical Plane, 23°. 1. | | | | י | Term-Day O | bserva | tions | of October 20 and | 1 21. | | | | | | |---|-----------------------|---|---|--|-------------|------------|--|------------------------|---|---|--|---|------------| | Göttingen Mean Time (Astronomical Reckoning) of Declination | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force | For | Observers. | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force | Thermometer of
Vertical Force
Magnetometer. | Observers. | | Observation. | | cor. for Temp. | The
Hor
Mag | cor. for Temp. | The
Veri | Op | Observation. | | cor. for Temp. | The
Hor
Mag | cor. for Temp. | The
Ver | É | | d h m | 0 / 11 | | 0 | | 0 | _ | d h m | 0 / " | | 0 | | 0 | - | | Oct. 20. 18. 0 | 23. 2. 15 | 0 ·141485 | 60 .0 | 0 .050734 | 60 :0 | ЕН | Oct. 20. 22. 0 | 22. 52. 30 | 0 .139223 | 61 .0 | 0.051301 | 61 .2 | G | | 5 | 1. 6 | 141279 | | 050765 | | | 5 | 53. 36 | 139213 | | 051287 | | | | 10 | 0.42 | 141059 | | 050696 | j | | 10 | 54. 19 | 139225 | | 051309 | | | | 15 | 23. 0. 5 | 141084 | 1 | 050719 | l | | 15 | 54.45 | 139075 | | 051309
051332 | | | | 20
25 | 22, 59, 40
59, 29 | 140994
140890 | ľ | 050764
050772 | | | 20
25 | 55. 54
55. 59 | 138866
138809 | | 051332 | | | | 30 | 59. 15 | 140799 | 1 | 050831 | } | | 30 | 56. 6 | 138776 | | 051355 | | | | 35 | 59. 11 | 140708 | | 050876 | 1 | ЕН | 35 | 56. 10 | 138672 | | 051355 | | | | 40 | 58. 39 | 140721 | } | 050899 | | GН | 40 | 56. 28 | 138639 | | 051355 | | | | 45 | 58. 14 | 140630 | | 051002 | j | | 45 | 57. 5 | 138511 | | 051378 | | | | 50 | 58. 14 | 140539 | | 051033 | } | | 50
55 | 57. 22
57. 30 | 138743
138687 | | 051342
051343 | | | | 55 | 58. 33 | 140551 | | 051070 | | | 99 | 31. 30 | 199091 | | 091949 | | 1 | | Oct. 20. 19. 0 | 22.58 . 8 | 0 .140577 | 62 .0 | 0 .051116 | 62 :0 | GН | Oct. 20, 23, 0 | 22. 58. 14 | 0 .138723 | 62 :0 | 0 .051322 | 62 .0 | 1 | | 5 | 58.15 | 140485 | ļ | 051102 | | | 5 | 58, 22 | 138723 | | 051322 | | 1 | | 10 | 58, 16 | 140438 | | 051116 | | | 10 | 58. 45 | 138723 | | 051329 | | T | | 15 | 57. 52 | 140461 | | 051130 | | 1 | 15 | 59. 16 | 138537 | | 051308 | | | | 20
25 | 57. 45
57. 42 | 140345
140461 | | 051187 | | | 20
25 | 22. 59. 43
23. 0. 3 | 138491
138491 | | 051294
051244 | | | | 30 | 57.42 | 140461 | | 051187
051230 | | | 30 | 0, 23 | 138259 | | 051244 | 1 | | | 35 | 57. 22 | 140461 | | 051152 | 1 | | 35 | 0. 26 | 138259 | | 051187 |] | | | 40 | 57. 34 | 140461 | | 051294 | | | 40 | 0.41 | 138259 | | 051144 | 1 | | | 45 | 57. 9 | 140577 | | 051223 | | | 45 | 1. 7 | 138259 | | 051116 | | | | 50 | 56. 55 | 140531 | | 051258 | | | 50 | 1. 19 | 138259 | | 051116 | | | | 55 | 56. 17 | 140531 | | 051329 | | | 55 | 1, 58 | 138259 | | 051116 | | | | Oct. 20, 20, 0 | 22, 56, 1 0 | 0 ·140531 | 62 .0 | 0 .051329 | 62.0 | GН | Oct. 21. 0. 0 | 23. 2. 2 | 0 .138422 | 62 .0 | 0 .051116 | 62 .0 | T | | 5 | 55. 15 | 140485 | | 051343 | | | 5 | 2.43 | 138491 | | 051116 | | | | 10 | 55. 1 | 140461 | | 051365 | | | 10 | 2. 43 | 138491 | | 051116 | | | | 15 | 54. 3 | 140461 | | 051401 | 1 | | 15 | 3. 8 | 138537 | | 051116 | | | | 20
25 | 54. 2
53. 30 | 140531
140391 | | 051401
051415 | l | | 20 | 3. 26
3. 46 | 138537
138537 | | 051116
051116 | | | | 30 | 53. 39 | 140391 | | 051415 | 1 | | 25
30 | 3.48 | 138491 | | 051110 | | | | 35 | 53 . 0 | 140391 | | 051437 | 1 | | 35 | 3. 18 | 138491 | | 051046 | | | | 40 | 53. 0 | 140345 | | 051451 | | | 40 | 3. 18 | 138584 | | 051002 | 1 | | | 45 | 52 . 43 | 140345 | | 051458 | | | 45 | 3. 55 | 138769 | | 050973 | 1 | | | 50 | 52. 29 | 140345 | | 051458 | İ | 1 | 50 | 4. 2 | 138954 | | 050973 | | | | 55 | 52. 1 | 140345 | | 051437 | l | | 55 | 4. 7 | 138954 | | 050902 | | | | Oct. 20. 21. 0 | 22. 52. 1 | 0 · 140345 | 62 .0 | 0.051437 | 62 .0 | G H | Oct. 21. 1. 0 | 23. 4.14 | 0 ·138954 | 62 :0 | 0.050902 | 62 .0 | T | | 5 | 52.48 | 140332 | 02 0 | 051437 | 02 | | 5 | 4. 14 | 139095 | | 050947 | | | | 10 | 52. 36 | 140319 | | 051414 | | | 10 | 4.14 | 139177 | | 050949 | | | | 15 | 52. 6 | 140075 | | 051392 | | | 15 | 4. 17 | 139203 | | 050945 | | | | 20 | 52. 6 | 140191 | | 051355 | | | 20 | 4. 31 | 139274 | | 050991 | | | | 25 | 52. 8 | 140062 | | 051355 | | | 25 | 5. 39 | 139380 | | 050957
050989 | | | | 30
35 | 51. 59
51. 59 | 140050
1400 37 | | 051332 051332 | | | 30
35 | 5. 45
5. 46 | 139545
139571 | | 051036 | | | | 40 | 51. 59
51. 59 | 139794 | | 051332 | | | 40 | 5. 48 | 139584 | | 051038 | | | | 45 | 52. 38 | 139735 | | 051332 | | GН | 45 | 5. 50 | 139610 | | 051034 | | 1 |
| 50 | 52. 15 | 139619 | | 051295 | | G | 50 | 5. 42 | 139635 | | 051081 | 1 | | | 55 | 52.44 | 139375 | | 051273 | | | 55 | 5. 42 | 139648 | | 051068 | 1 | 1 | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 269°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 37°. 45′. Reading for Brass Bar in the same position, 358°. 6′. Time of Vibration of Horizontal Force Magnetometer, 20°.5. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°.97; in Vertical Plane, 23°.1. | | | | | Term-D | ay Obs | erva | tions of October | 21. | | | | | | |--|---|--|---|--|---------------------------------|------------|--|--|--|---|--|---|-----------| | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | ermomet
rtical Fo
gnetome | Observers. | Göttingen Mean
Time (Astronomic
Reckoning) of
Declination
Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | Thermometer of
Vertical Force
Magnetometer. | Ohservers | | d h m | 0 / " | | 0 | | 0 | | d h | 0 / // | | 0 | | 0 | | | Oct. 21. 2. 0 5 10 15 20 25 | 23. 5. 42
5. 44
5. 45
6. 0
5. 31
5. 11 | 0 ·139674
139674
139674
139674
139674 | 64 ·0 | 051078
051035
051007
050986
050964 | 64 .0 | тр | 1:
1:
2:
2: | 1. 10
0. 57
0. 37
0. 33
0. 26 | 0 ·140269
140487
140590
140577
140693
140773 | 65 .0 | 0.051099
051076
051052
051043
051043 | 65 .0 | Т | | 30
35
40
45
50
55 | 5. 2
4. 56
4. 38
4. 15
4. 39
4. 47 | 139674
139674
140138
140138
140138
139906 | | 050915
050915
050865
050865
050865
050830 | | Т D
G H | 3
3
4
4
5
5 | 0. 38
0. 38
0. 41
0. 41 | 140667
140514
140524
140640
140581
140660 | | 051010
051069
051006
051006
050969
050888 | | T
E | | Oct. 21. 3. 0 5 10 15 | 23. 4.49
4.33
4.33
4.15 | 0 ·139906
139687
139468
139481 | 64 ·0 | 0 ·050865
050959
050983
051006 | 64 •0 | GΗ | Oct. 21. 7. | 23. 0.46
0.46
0.45 | 0·140717
140774
140575
140678 | 64 •0 | 0 ·050830
050828
050784
050739 | 64 ·0 | E | | 20
25
30
35 | 4. 4
4. 11
4. 13
4. 13 | 139829
139726
139972
139985 | | 050971
051016
051053
051076 | | | 2:
2:
3:
3: | 0. 49
0. 56
0. 59
0. 49 | 140794
140897
140955
140756 | · | 050739
050715
050714
050691 | | | | 40
45
50
55 | 3. 46
3. 40
3. 4
2. 34 | 140044
140127
140127
140024 | | 051171
051123
051180
051147 | | | 4.
4.
5.
5. | 0.40
0.32 | 140743
140743
140846
140717 | - | 050632
050646
050623
050585 | | | | Oct. 21. 4. 0 5 10 15 20 | 23. 2. 9
1. 49
1. 45
2. 25
2. 19 | 0·139921
139908
139779
139534 | 65 •0 | 0 ·051170
051147
051123
051100 | 65 •0 | G Н | 10 | 0. 21
0. 12
0. 12 | 0 ·140936
140820
140936
140936 | 63 •0 | 0 ·050562
050562
050576
050539 | 63 .0 | E | | 25
30
35
40 | 2. 15
2. 22
2. 27
2. 24 | 139534
139521
139508
139494
139481 | | 051100
051076
051053
051101
051042 | | G Н
Т D | | 0. 3
23. 0. 3
5 22. 59. 48
23. 0. 1 | 140820
140704
140936
140936
140936 | | 050525
050525
050525
050525
050516 | | | | 45
50
55
Oct. 21. 5. 0 | 2. 46
2. 46
2. 2 | 139468
139468
139618 | 04.0 | 051054
051054
051030 | | | 5. | 22. 59. 43
59. 43 | 140936
140936
140936 | 49. • 0 | 050516
050516
050516 | 69.0 | E | | 5 10 15 20 25 | 23. 1. 21
1. 21
1. 34
1. 48
23. 1. 11
22. 59. 11 | 0 ·139674
139850
139932
139945
140038
140121 | 64 .0 | 0.050986
050959
050962
050985
050985
051030 | 64 •0 | T D | 10
1.
20 | 59. 30
59. 30
59. 21
59. 8 | 0 · 140982
140982
140959
140959
140982
140959 | 63 .0 | 0.050516
050516
050530
050516
050516
050516 | 62 8 | 1 | | 30
35
40
45
50 | 59. 11
22. 59. 11
23. 1. 15
1. 18
1. 27 | 140204
140379
140392
140474 | | 051053
051076
051079
051102 | | | 20
30
34
40
55 | 59. 7
59. 5
59. 8
59. 8 | 141099
141168
141168
141122 | | 050493
050529
050507
050507 | | | | 55 | 1. 18 | 140474
140418 | | 051080
051076 | | ļ | 5(
5) | | 141122
141145 | | 05050 7
050529 | · | 1. | Reading of Torsion-Circle of Meridianal Magnet for Brass Bar resting in Magnetic Meridian, 269°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 37°. 45′. Reading for Brass Bar in the same position, 358°.6′. Time of Vibration of Horizontal Force Magnetometer, 20°.5. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°.97; in Vertical Plane, 23°.1. | Göttingen Mean | | Horizontal
Force Read- | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read- | i of | , i | Göttingen Mean | | Horizontal
Force Read- | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read- | Thermometer of
Vertical Force
Magnetometer. | ۱ . | |------------------------------|------------------|---------------------------|---|------------------------------|--|-----------|---------------------------|----------------------|---------------------------|---|---------------------------|---|-----------| | Time (Astronomical | Western | ing in parts | al F
mete | ing in parts | Fore | Observers | Time (Astronomical | Western | ing in parts | nete
ral F | ing in parts | rote
For | Observers | | Reckoning) of
Declination | Declination. | of the whole | zont | of the whole | ical
ical | Ser | Reckoning) of Declination | Declination. | of the whole | Zon | of the whole | ical | 198 | | Observation. | Decimation. | Hor. Force cor.for Temp. | Ther
Hori
Magi | Vert. Force
cor.for Temp. | Thermometer o
Vertical Force
Magnetometer. | ರೆ | Observation. | Decimation: | Hor. Force cor.for Temp. | Ther
Hori
Magn | Vert. Force cor.for Temp. | Ther
Vert
Magn | Ĉ | | d h m | 0 / " | | 0 | | 0 | | d h m | 0 / " | | 0 | | 0 | | | Nov. 26, 10. 0 | 22. 51. 12 | 0 ·139148 | 54 .0 | 0 .051647 | 54 .2 | L | Nov. 26. 14. 0 | 22. 49. 5 | 0 ·138500 | 55 .0 | 0 .051452 | 55 ·0 | T | | 5 | 51. 3 | 138917 | | 051647 | | | 5 | 49. 54 | 138337 | | 051474 | | | | 10 | 50.44 | 138580 | | 051668 | | | 10 | 50. 28 | 138337 | | 051474 | | ì | | 15 | 49. 14 | 138696 | | 051703 | | | 15 | 50. 49 | 138314 | | 051488 | | | | 20 | 47. 55 | 138823 | | 051632 | | | 20 | 52. 31 | 138291 | | 051495 | | | | 25 | 46. 59 | 139286 | | 051641 | | | 25 | 53. 0 | 138105 | 1 | 051495 | | 1 | | 30 | 46. 10 | 139067 | | 051653 | | | 30 | 53.27 | 138198 | | 051523 | | | | 35 | 45.58 | 139067 | | 051653 | ļ | | 35
40 | 54. 6
54. 56 | 138198
138268 | | 051545
051545 | | | | 40 | 45. 32 | 138951 | | 051724
051724 | | | 40 | 55. 40 | 138268 | | 051545 | | | | 45
50 | 46. 12
46. 18 | 138777 | | 051724 | | | 50 | 56. 11 | 138291 | | 051566 | | | | 55 | 45. 54 | 138743 | | 051710 | Ì | | 55 | 57. 47 | 138291 | | 051566 | | | | N 00 11 0 | 00 40 04 | 0.190000 | F 4 . F | 0.051710 | 54.5 | | Nov. 26. 15. 0 | 00 57 50 | 0 ·138337 | 55 0 | 0 .051523 | 55 .0 | 1 | | Nov. 26.11. 0 | 22. 46. 24 | 0 ·138093
138093 | 54 '5 | 0 ·051710
051710 | 54 .5 | L | 100. 20. 10. 0 | 22. 57. 59
57. 27 | 138569 | 35 0 | 051525 | 00 0 | 1 | | 5
10 | 47. 10
47. 21 | 138093 | | 051710 | 1 | | 10 | 57. 57 | 138662 | | 051509 | 1 | | | 15 | 47. 21 | 137908 | | 051724 | | | 15 | 56. 58 | 139079 | | 051523 | l | | | 20 | 48. 4 | 137932 | | 051653 | | | 20 | 57. 28 | 139033 | | 051495 | | | | 25 | 47.55 | 137816 | | 051596 | | | 25 | 57. 24 | 139310 | | 051495 | 1 | | | 30 | 47. 8 | 137584 | | 051561 | | | 30 | 57. 22 | 139264 | l | 051495 | 1 | | | 35 | 46. 39 | 138047 | | 051561 | <u> </u> | | 35 | 57. 53 | 139264 | | 051452 | 1 | | | 40 | 46. 25 | 138047 | | 051561 | | | 40 | 57. 53 | 139264 | l | 051452 | 1 | | | 45 | 47. 32 | 137352 | | 051490 | | | 45 | 57. 53 | 139310 | | 051452 | | | | 50
55 | 48. 48
47. 49 | 137352
137352 | | 051409
051447 | | | 50
55 | 57. 38
57. 30 | 139218
139218 | ŀ | 051424
051424 | | | | _ | 41.49 | 10 (002 | | | | | | 07.00 | 1 | | | | | | Nov. 26. 12. 0 | 22. 45. 39 | 0 ·137932 | 54 ·5 | 0 .051326 | 54 2 | L | Nov. 26. 16. 0 | 22. 56. 41 | 0 · 139496 | 55 .0 | 1
| 55 .0 | T | | 5 | 45. 28 | 137816 | - | 051383 | | | 5 | 57. 7 | 139496 | | 051474 | 1 | | | 10 | 45. 9 | 138104 | | 051347 | | | 10 | 57. 27 | 139496
139496 | | 051488
051495 | 1 | | | 15 | 45.43 | 137827 | | 051418 | | | 15
20 | 57. 27
57. 12 | 139496 | | 051495 | Ì | | | 20
25 | 45. 57
45. 20 | 137561
136957 | | 051389
051389 | ĺ | | 20
25 | 56. 52 | 139728 | 1 | 051495 | 1 | | | 30 | 42. 0 | 137850 | | 051376 | | | 30 | 57. 4 | 139682 | j | 051495 | | | | 35 | 43. 21 | 138777 | | 051503 | | L | 35° | 57.38 | 139728 | | 051531 | l | Т | | 40 | 44. 36 | 139704 | | 051503 | | T D | 40 | 57. 45 | 139774 | | 051509 | | G | | 45 | 47. 3 | 139948 | | 051560 | 1 | | 45 | 58.11 | 139960 | | 051495 |] | | | 50 | 47. 23 | 139994 | | 051617 | | | 50 | 57. 59 | 140192 | | 051495 | l | | | 55 | 47. 52 | 139728 | | 051617 | | | 55 | 58. 1 | 140192 | | 051495 | | | | Nov. 26. 13. 0 | 22, 47, 33 | 0 ·139659 | 55 .0 | 0 .051624 | 55 .0 | тр | Nov. 26. 17. 0 | 22. 58. 1 | 0 · 140076 | 55 .0 | 0.051531 | 55 .0 | G | | 5 | 47. 16 | 139496 | | 051566 | | | 5 | 57. 16 | 140076 | ł | 051495 | 1 | | | 10 | 47. 16 | 139427 | | 051566 | 1 | | 10 | 57. 16 | 140261 | | 051495 | | 1 | | 15 | 47. 15 | 139264 | | 051545 | | | 15 | 57. 16 | 139914 | | 051566 | 1 | | | 20 | 47. 14 | 139264 | | 051531 | 1 | | 20 | 56. 59 | 139798 | 1 | 051460 | 1 | | | 25 | 47. 15 | 139195 | | 051495 | |]] | 25 | 56, 59 | 140076 | | 051495 |] | | | 30 | 47. 12 | 139033 | | 051467 | | | 30 | 56. 49 | 139960 | | 051566 | | | | 35 | 47. 10 | 139033 | | 051467 | | | 35 | 56. 21
56. 15 | 140192 | 1 | 051566
051552 | | | | 40 | 47. 10 | 138987 | | 051467 | | | 40 | 56. 15 | 140308
140308 | | 051532 | | | | 45
50 | 47. 9 | 138964
138755 | | 051460
051424 | | | 45
50 | 56. 19
56. 31 | 140655 | | 051552 | | | | 55 | 47. 28
48. 42 | 138569 | | 051424 | 1 : | 1 1 | 1 20 | 57. 5 | 140840 | i | 051531 | Į | | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 269°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 37°. 45′. Reading for Brass Bar in the same position, 358°. 6′. Time of Vibration of Horizontal Force Magnetometer, 20•.5. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24•.97; in Vertical Plane, 23•.1. 1 | | | | | | | | of November 26 an | | 1 | . 9 | | | ī | |------------------------------|-----------------------|----------------------------|---|-----------------------------|---|------------|-------------------------------------|-----------------------|------------------------------|---|-------------------------|---|-----------| | Göttingen Mean | | Horizontal
Force Read- | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read- | Thermometer of
Vertical Force
Magnetometer. | rs. | Göttingen Mean | Western | Horizontal
Force Read- | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read- | Thermometer of
Vertical Porce
Magnetometer. | Ohsprvers | | Time (Astronomical | Western | ing in parts | ital
ome | ing in parts | met
Fo | rve | Time (Astronomical
Reckoning) of | Western | ing in parts
of the whole | ton ta | ing in parts | to F | 10 | | Reckoning) of
Declination | Declination. | of the whole
Hor. Force | izo | of the whole
Vert. Force | tical | Observers. | Declination | Declination. | Hor. Force | erin
gne | Vert. Force | ertic | ا ح | | Observation. | | cor. for Temp. | The
Hor
Mag | cor. for Temp. | The
Ver
Mag | 0 | Observation. | | cor. for Temp. | E I Z | cor.forTemp. | FÞĒ | _ | | d b m | 0 / // | | 0 | | 0 | | d h m | 0 / 11 | | 0 | | 0 | | | Nov. 26. 18. 0 | 22.57. 5 | 0 ·140840 | 55 .0 | 0 .051531 | 55.0 | GН | Nov. 26. 22. 0 | 22. 57. 12 | 0 ·138893 | 55 .8 | 0.051459 | 55 .2 | 1 | | 5 | 57. 21 | 140423 | | 051566 | | | 5 | 57. 12 | 138673 | | 051481 | ļ | | | 10 | 57. 21 | 140423 | | 051566 | | 1 | 10 | 56. 57 | 138395 | | 051524 | | | | 15 | 57. 21 | 140423 | | 051566 | | | 15 | 57. 12 | 138685 | | 051545 | | | | 20 | 22.57.6 | 140840 | | 051580 | } | | 20 | 56. 46 | 138267 | | 051437 | | | | 25 | 23. 0. 0 | 140840 | | 051595 | | 1 1 | 25 | 56. 5 | 138928 | | 051444 | | | | 30 | 22. 56. 45 | 140192 | | 051566 | | | 30 | 59. 4 | 139172 | | 051630
051723 | 1 | 1 | | 35 | 57 . 10 | 140308 | | 051638 | | | 35 | 58.43 | 138708 | | 051723 | | | | 40 | 57 . 19 | 140192 | | 051638 | | | 40
45 | 58. 56
58. 47 | 138674
138720 | | 051696 | | T | | 45 | 57. 38 | 140192 | | 051638 | | | 50 | 58. 47 | 138732 | | 051717 | | | | 50 | 57. 21 | 140423 | | 051638
051638 | | | 55 | 59. 4 | 138732 | | 051760 | | | | 55 | 57. 6 | 140192 | | 091099 | | | 99 | 99. 4 | 100102 | | | | | | Nov. 26. 19. 0 | 22. 57. 26 | 0 ·140192 | 55 0 | 0 .051638 | 55 ·0 | GН | Nov. 26. 23. 0 | 22. 59. 11 | 0 138744 | 56 .5 | 0 .051782 | 57 0 | Т | | 5 | 57. 26 | 140203 | | 051660 | | | 5 | 59. 16 | 138744 | | 051782 | | | | 10 | 57. 26 | 140203 | | 051660 | | | 10 | 58.44 | 138697 | | 051768 | | | | 15 | 57. 26 | 140215 | | 051681 | | | 15 | 5 8. 56 | 138534 | | 051810 | | | | 20 | 57. 20 | 140446 | | 051595 | | | 20 | 22 . 59. 8 | 138546 | | 051832 | | | | 25 | 56 . 59 | 139994 | I | 051616 | | | 25 | 23. 0.15 | 138546 | | 051853 | | ı | | 30 | 57 . 40 | 140228 | [| 051723 | | | 30 | 0. 15 | 138651 | | 051796 | İ | | | 35 | 57.4 0 | 140228 | l | 051723 | | | 35 | 0.31 | 138651 | | 051711
051711 | | | | 40 | 57. 33 | 140018 | 1 | 051672 | | | 40 | 0.31 | 138558 | | 051711 | | 1 | | 45 | 58. 2 | 140481 | l | 051780 | | | 45 | 0. 22 | 138570
138570 | | 051711 | | | | 50 | 57. 6 | 140446 | İ | 051802 | | | 50
55 | 0. 14
0. 11 | 138572 | | 051711 | | | | 55 | 57. 32 | 140261 | 1 | 051694 | | | 33 | 0.11 | 100012 | | 7002.00 | | | | Nov. 26. 20. 0 | 22. 56. 59 | 0 ·139809 | 55 .7 | 0 .051787 | 55 .7 | GН | Nov. 27. 0. 0 | 23. 0.39 | 0 ·138804 | 57 · 0 | 0 .051782 | 57 .0 | Т | | 5 | 57. 40 | 140273 | | 051715 | | 1 | 5 | 1.42 | 138850 | | 051796 | | 1 | | 10 | 57 . 40 | 140273 | 1 | 051730 | | | 10 | 1. 25 | 138746 | | 051803 | | 1 | | 15 | 57.27 | 140029 | | 051766 | | | 15 | 1. 6 | 138583 | | 051689 | | | | 20 | 57. 16 | 139797 | 1 | 051694 | | | 20 | 1. 38 | 138629 | | 051732
051803 | | 1 | | 25 | 57. 8 | 140261 | 1 | 051744 | | | 25 | 2. 18 | 138629 | | 051754 | | | | 30 | 57. 17 | 140029 | - 1 | 051601 | | | 30 | 2. 18 | 138758
138827 | | 051754 | | 1 | | 35
40 | 57. 38 | 139797 | - { | 051672 | | | 35
40 | 2. 17
2. 15 | 138827 | | 051754 | | T | | 45 | 57. 5
57. 5 | 139565
139554 | | 051651 | | G H
L | 45 | 2. 19 | 138595 | | 051754 | | G | | 50 | 56. 59 | 139334 | | 051559
051651 | | L | 50 | 1.57 | 138607 | | 051776 | | | | 55 | 56.44 | 139207 | | 051559 | | | 55 | 2. 22 | 138607 | | 051704 | | | | _ | | | | | | | • | | | | 0.051540 | 57.0 | | | Nov. 26. 21. 0 | 22. 56. 24 | 0 ·139207 | 55 .5 | 0 .051559 | 55 .3 | L | Nov. 27. 1. 0 | 23. 2. 4 | 0 138375 | 57 '3 | 0.051740 | 57 .3 | G | | 5 | 56. 24 | 139786 | ŀ | 051502 | | | 5 | 2.45 | 138723 | | 051776
051776 | | | | 10 | 56. 24 | 139449 | | 051630 | | | 10 | 3. 27 | 138723 | | 051770 | | | | 15 | 56. 55 | 139102 | | 051545 | | | 15 | 3. 40
3. 16 | 138851
138619 | | 051798 | l | | | 20 | 57. 48 | 139102 | į | 051452 | | | 20
25 | 2. 46 | 138619 | | 051740 | | | | 25
30 | 57. 48
56. 41 | 139102
139114 | | 051438
051545 | | | 30 | 1. 10 | 138387 | | 051762 | | | | 35 | 56. 52 | 139114 | | 051545 | | | 35 | 1.47 | 138619 | | 051740 | 1 | | | 40 | 56. 52
57. 14 | 139345 | | 051474 | | | 40 | 2. 16 | 138851 | | 051740 | 1 | | | 45 | 57. 14
57. 20 | 139345 | | 051459 | | | 45 | 2. 25 | 139095 | | 051820 | l | 1 | | 50 | 56.58 | 139171 | | 051459 | | | 50 | 2.47 | 139211 | | 051820 | | 1 | | 55 | 57. 24 | 139079 | | 051495 | 1 | } | 55 | 2. 3 | 139327 | | 051784 | 1 | 1 | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 269°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 37°.45′. Reading for Brass Bar in the same position, 358°.6′. Time of Vibration of Horizontal Force Magnetometer, 20°.5. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°.97; in Vertical Plane, 23°.1. | | | | , | Term-Day C | bserva | tion | s of November 27. | | | | | | | |--|------------------------|---|-------------------------|--|---|------------|--|-------------------------|---|---|--|---|------------| | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | ermon
rizon
gneto | Vertical Force Read- ing in parts of the whole Vert. Force cor.for Temp. | Thermometer of
Vertical Force
Magnetometer, | Observers. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of
the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor. forTemp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | | d h m | 0 / " | | 0 | | | | d h m | 0 / " | | ٥ | | 0 | | | Nov. 27. 2. 0 | 23. 2.15 | 0 ·139327 | 57·5 | 0 051820 | 57:5 | с н | Nov. 27. 6. 0 | 22. 58. 28 | 0 ·141082 | 58 .6 | 0 .051825 | 58 .5 | L | | Nov. 21. 2. 0 | 1.41 | 139327 | 3, 3 | 051820 | 0, 0 | G 11 | 5 | 59. 28 | 141082 | | 051790 | <i>00.</i> 4 | - | | 10 | 1. 9 | 138851 | · | 051798 | | | 10 | 58.40 | 141313 | | 051790 | | 1 | | 15 | 0.55 | 138619 | | 051726 | | | 15 | 58. 40 | 141325 | | 051754 | | 1 | | 20 | 1.18 | 138839 | | 051740 | | l | 20 | 58. 27 | 141210 | | 051754 | | | | 25 | 1.24 | 138607 | | 051718 | | • | 25 | 58.44 | 141557 | | 051754 | | | | 30 | 2. 8 | 138781 | | 051754 | | | 30 | 58. 25 | 141418 | | 051754 | | | | 35 | 2. 39 | 138363 | | 051754 | | | 35 | 57. 52 | 141025 | | 051754
051754 | | | | 40 | 2. 24 | 138526 | } | 051754
051782 | | ļ | 40
45 | 58. 2
57. 52 | 140875
140598 | | 051754 | | 1 | | 45
50 | 2. 42
2. 25 | 138537
138537 | | 051762 | | | 50 | 57. 50 | 140412 | · | 051754 | | | | 55 | 2. 29 | 138433 | | 051796 | | G H | 11 | 57. 10 | 140412 | | 051754 | | | | | | | | | | | | | | | 0.051554 | | | | Nov. 27. 3. 0 | 23. 2. 7 | 0 138572 | 57.0 | 0.051832 | 57:0 | T D | M | 22.57. 5 | 0 · 140412 | | | 58 · 5 | L | | 5 | 1. 53 | 138769 | j | 051888 | | | 5 | 56. 37 | 140562 | 1 | 051754
051732 | | | | 10 | 1. 53 | 138827 | | 051896
051946 | | | 10
15 | 56. 28
56. 28 | 140747
140619 | 1 | 051732 | | | | 15
20 | 1. 53
1. 53 | 139002
139071 | | 051946 | | l | 20 | 55. 45 | 140723 | | 051710 | | | | 25
25 | 1. 33
1. 31 | 139176 | | 051940 | | | 25 | 54. 39 | 140723 |] | 051710 | | | | 30 | 1. 30 | 139188 | | 051941 | | | 30 | 53.34 | 140711 | | 051688 | | | | 35 | 1.32 | 139270 | 1 | 051962 | | | 35 | 49. 33 | 140859 | | 051688 | | L | | 40 | 1. 35 | 139292 | | 051984 | • | | 40 | 46.14 | 145780 | | 051617 | | G I | | 45 | 23. 1.35 | 139222 | | 051948 | | 1 | 45 | 45. 25 | 145552 | | 051666 | | | | 50 | 22. 58. 11 | 139234 | | 051970 | | | 50 | 46.41 | 146582 | | 051666
051715 | | | | 55 | 58. 1 | 139246 | | 052014 | | | 55 | 50. 16 | 146119 | | 031713 | | | | Nov. 27. 4. 0 | 22. 52. 47 | 0 .139248 | 58 .0 | 0 .052036 | 58:0 | T D | Nov. 27. 8. 0 | 22.56. 0 | 0 .144022 | 58 .0 | 0 .051573 | 58 .0 | G i | | 5 | 52. 16 | 139862 | | 052093 | | | 5 | 59. 13 | 142051 | | 051430 | | | | 10 | 52. 43 | 140662 | | 052165 | | | 10 | 55. 44 | 141252 | 1 | 051310 | | | | 15 | 53.31 | 140813 | } | 052208 | ł | 1 | 15 | 54. 0 | 141368 | 1 | 051096 | | | | 20 | 54. 28 | 141045 | } | 052315 | Ì | 1 | 20 | 53.40 | 141728
141264 | | 051189
051189 | ļ | | | 25
30 | 55. 22
55. 44 | 141220
140838 | | 052301 | • | | 25
30 | 55. 15
56. 23 | 140698 | 1 | 051140 | | | | 35 | 56. 15 | 140850 | | 052302
052274 | } | | 35
35 | 56. 47 | 140582 | | 051140 | | | | 40 | 56. 18 | 140862 | | 052214 | ł | | 40 | 54.59 | 140118 | | 051176 | | | | 45 | 56. 19 | 140862 | | 052239 | | | 45 | 53.45 | 140363 | | 051162 | | | | 50 | 56, 49 | 140736 | | 052226 | | | 50 | 52. 6 | 140595 | | 051198 | | | | 55 | 57. 6 | 140480 | | 052212 | | | 55 | 51. 59 | 140607 | | 051255 | | | | Nov. 27. 5. 0 | 00 58 18 | 0.140499 | 50.0 | 0.050070 | 50.0 | f
 | Nov. 27. 9. 0 | 22. 51. 36 | 0 · 140491 | 58 -5 | 0.051255 | 58 -5 | G I | | Nov. 27. 5. 0 | 22. 57. 17
57. 44 | 0 ·140482
140714 | 98.0 | 0 ·052270
052291 | 98.0 | TD | Nov. 27. 9. 0 | 52. 9 | 140004 | 33 0 | 051291 | " | ' | | 10 | 57. 44
57. 53 | 140714 | | 052291 | | | 10 | 52. 15 | 139877 | | 051313 | 1 | | | 15 | 57. 53 | 140897 | | 052127 | | T D | į. | 52. 10 | 139691 | 1 | 051349 | | | | 20 | 58. 6 | 140897 | | 052105 | | L | 20 | 52. 19 | 139703 | 1 | 051371 | | | | 25 | 5 8 . 28 | 141107 | | 052047 | | | 25 | 51.57 | 139472 | | 051371 | | | | 30 | 58. 36 | 141107 | | 052011 | | | 30 | 51. 35 | 139369 | | 051393 | | | | 35 | 58. 36 | 140991 | | 052011 | | | 35 | 51. 35 | 139369 | | 051393
051393 | 1 | | | 40 | 58. 55
58. 49 | 141325 | | 052011 | | 1 | 40 | 51.55
51.47 | 139485
139159 | | 051415 | 1 | | | 45
50 | 58. 43
58. 18 | 141789
141557 | | 051989 | | | 45
50 | 51.47 | 139507 | | 051415 | | | | 55 | 58. 18 | 141357 | | 051989
051882 | | | 55 | 48.23 | 139625 | | 051437 | 1 | G 1 | | 99 | | 171008 | | 001002 | 1 |) | 1 | 10, 20 | | 1 | 1 | 1 | ĺ | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 269°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 37°.45′. Reading for Brass Bar in the same position, 358°. 6′. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°.97; in Vertical Plane, 23°.1. November 27d. 7h. 40m to November 27d. 8h. 0m. The sudden increase of the reading, its stationary value, and its sudden decrease, appeared at first suspicious; but they are accurately confirmed by the record made by the Photographic Self-registering Apparatus. | 1 | | Horizant-1 | 1 - 8 | Vertical | •= | 1 | 1 | | Horizontal | ₩ £ . | Vertical | 8 | | |----------------------------------|----------------------|--|------------|--|--------|------------|-------------------------------------|---|------------------|---|------------------------------|---|-----------| | Göttingen Mean | ••• | Force Read- | For ter. | Force Read- | ree of | 78 | Göttingen Mean | Western | Force Read- | Thermometer of
Horizontal Force
Magnetometer. | Force Read- | Thermsmeter of Vertical Force Magnetometer. | Oheerware | | Time (Astronomical Reckoning) of | Western | ing in parts | itai
in | ing in parts | For it | rve | Time (Astronomical
Reckoning) of | Western | ing in parts | to m | ing in parts
of the whole | S T S | | | Declination | Declination. | of the whole | in in in | Vert Force | tica | Observers. | Declination | Declination. | Hor. Force | E in | Vert. Force | FFF | اخ | | Observation. | | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | The
Mag | Force Read-
ing in parts
of the whole
Vert. Force
cor. for Temp. | A Ver | 0 | Observation. | | cor. for Temp. | E E E | cor.forTemp. | E 4 E | | | d h m | 0 # # | | 0 | | 0 | | d h m | 0 / # | | 0 | | ٥ | | | Dec. 22. 10. 0 | 22. 54. 9 | 0 ·140182 | 46.0 | 0.053004 | 45 .5 | G | Dec. 22. 14. 0 | 22. 53. 45 | 0 .139961 | 47 .0 | | 47.0 | G | | 5 | 55. 8 | 139487 | } | 053004 | | } | 5 | 53. 38 | 140007 | | 052971 | 1 | | | 10 | 55. 3 | 139557 | l | 052933 | | | 10 | 54. 53 | 140471 | | 052971 | 1 | 1 | | 15 | 54.4 0 | 139441 | | 052875 | | | 15 | 56. 4 | 140471 | | 053006 | l | ı | | 20 | 53. 57 | 139441 | | 052919 | |] | 20 | 56. 42 | 140471 | | 052971 | | ı | | 25 | 53. 11 | 139395 | | 052919 | | | 25 | 54. 22 | 140309 | | 052971
052900 | 1 | 1 | | 30 | 52.44 | 139326 | | 052897 | | | 30 | 54. 10 | 140239 | | 052900 | | l | | 35 | 52. 32 | 139349 | | 052875 | | | 35 | 54. 34 | 140239
140239 | | 052900 |] | | | 40 | 52. 32 | 139487 | | 052911 | | | 40 | 55. 11 | 140239 | | 052900 | | 1 | | 45 | 52. 33 | 140020 | | 052969 | | | 45
50 | 55. 11
56. 18 | 140239 | | 052900 | | l | | 50
55 | 52. 50
52. 9 | 139904
139904 | | 053018
053004 | | | 55 | 56. 37 | 140239 | | 052900 | | | | | 52. <i>U</i> | 100001 | | 000001 | | | | • | 1 | | | 4 | | | Dec. 22.11. 0 | 22. 53. 11 | 0 · 140136 | 46 .0 | 0 .053004 | 45 .5 | G | Dec. 22. 15. 0 | 22. 56. 45 | 0 ·140239 | 47.0 | 0.052900 | 47 .0 | G | | 5 | 53. 18 | 140020 | | 053004 | | | 5 | 56. 9 | 140239 | į | 052792 | | | | 10 | 53 . 18 | 139904 | | 053004 | | | 10 | 54.48 | 140113 | | 052773 | | | | 15 | 53. 24 | 139511 | | 053004 | | | 15 | 55. 22 | 140229 | 1 | 052773 | | ١ | | 20 | 53. 23 | 139557 | ļ | 053004 | | | 20 | 56. 15 | 140218 | | 052733
052754 | | | | 25 | 52. 28 | 139673 | 1 | 053004 | | | 25 | 56. 15 | 140102 | | 052700 | | 1 | | 30 | 53. 5 | 139673 | - 1 | 053004 | | | 30 | 56. 1 5 | 140092
140208 | | 052700 | 1 | G | | 35 | 22. 53. 39 | 139673 | | 053004 | | | 35 | 55. 15
54. 52 | 140208 | | 052664 | | E | | 40
45 | 23. 1.20
2.18 | 139210
138537 | | 053004
052961 | | | 40
45 | 55. 6 | 140208 | | 052609 | | 1 | | 50 | 2. 42 | 138537 | | 052861 | | 1 1 | 50 | 55. 6 | 140081 | | 052587 | | | | 55 | 1.48 | 138328 | - 1 | 052861 | | | 55 | 55. 6 | 140187 | | 052590 | 1 | | | | | | | | | | | 00 55 05 | 0.140071 | 16.5 | 0 .052590 | 46 .5 | | | Dec. 22. 12. 0 | 23. 2. 59 | 0 ·138051 | 46 .0 | 0 .052505 | 45 .5 | G | Dec. 22. 16. 0 | 22. 55. 35 | 0.140071 | 40.9 | 052568 | 40 0 | F | | 5 | 1.53 | 137401 | 1 | 052455 | | | 5 | 55. 56 | 140048
140058 | | 052587 |] | Ì | | 10
15 | 23. 0.48 | 137008 | ì | 052375 | | | 10
15 | 56. 42
57. 26 | 139965 | | 052609 | l | 1 | | 20 | 22. 56. 27
54. 12 | 136683
136776 | | 052304
052187 | | | 20 | 57. 35 | 140208 | | 052593 |] | | | 25 | 51.36 | 138305 | | 052187 | | | 25 | 57. 42 | 140324 | | 052593 |] | | | 30 | 52. 23 | 139256 | | 052349 | | | 30 | 56. 2 | 140450 | | 052577 | | | | 35 | 53. 11 | 139673 | | 052491 | | G | 35 | 57. 53 | 140450 | | 052612 | | | | 40 | 52.38 | 140368 | | 052420 | | G H | 40 | 56. 31 | 140566 | | 052577 | | 1 | | 45 | 51.47 | 140715 | | 052510 | | | 45 | 55.49 | 140855 | | 052560 | | 1 | |
50 | 51.47 | 140252 | | 052510 | | | 50 | 55. 50 | 140692 | | 052539 | | 1 | | 55 | 50. 52 | 140368 | | 052529 | | | 55 | 56. 33 | 140934 | | 052544 | | | | Dec. 22.13. 0 | 22, 50, 25 | 0 ·140368 | 40.0 | 0 ·052600 | 46.0 | CH | Dec. 22. 17. 0 | 22. 57. 55 | 0 ·140702 | 47 .0 | 0 .052508 | 47 .0 | E | | 5 | 49. 57 | 140378 | 40 0 | 052619 | 40 0 | GR | 5 | 22. 59. 13 | 140471 | | 052544 | 1 | | | 10 | 49. 58 | 139925 | | 052711 | | | 10 | 23. 0. 8 | 140702 | | 052544 | | | | 15 | 50. 28 | 139820 | 1 | 052801 | | | 15 | 0. 8 | 140471 | | 052508 | | | | 20 | 50.39 | 140051 | | 052801 | | | 20 | 0.51 | 141166 | | 052436 | | 1 | | 25 | 51. 36 | 140177 | | 052891 | | | 25 | 0.51 | 141050 | | 052508 | | | | 30 | 52 . 14 | 140419 | | 052910 | | | 30 | 23. 0.32 | 141398 | | 052436 | | | | 35 | 53. 4 | 140197 | | 052929 | | | 35 | 22.59.13 | 141282 | | 052401 | | 1 | | 40 | 52. 53 | 140208 | | 052949 | | | 40 | 22. 58. 50 | 141630 | | 052365 | | 1 | | 45 | 54. 15 | 140324 | ì | 052949 | | | 45 | 23. 0. 9 | 142093 | | 052294
052294 | | | | 50 | 53. 54 | 140218 | | 052968 | | | 50 | 22. 59. 36 | 141861 | | 052294 | ţ | 1 | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 269°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 37°.45′. Reading for Brass Bar in the same position, 358°.6′. Time of Vibration of Horizontal Force Magnetometer, 20°.5. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°.97; in Vertical Plane, 23°.1. | Time (
Recl
De | ingen Mean Astronomical coning) of clination servation, | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
sor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor.forTemp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation | Western Declination. | Horizontal Force Reading in parts of the whole Hor. Force cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor. for Temp. | sermome
ortical Fo
gnetome | Observers. | |----------------------|---|----------------------|---|---|--|---|------------|---|----------------------|--|---|--|----------------------------------|------------| | | d h m | 0 0 / 1 | | × o :: | , as a | 5 O | | od h m | 0 01 11 | | 0 | vs -1 | b 0 | | | Dec. | 22, 18 0 | 22. 59. 25 | 0 ·141630 | 47 0 | 0 .052188 | 47:0 | ЕН | Dec. 22, 22, 0 | 22. 57. 25 | 0 140860 | 48.5 | 0 .052116 | 49 0 | G | | Dec. | 5 | 59. 18 | 141409 | -64 | 052208 | | | 4-01 5 2 | 58.18 | 140675 | 14 1 4 5 | 052116 | | | | | 10 | 59.57 | 141893 | | 052281 | 1 | | 83.10 | 59. 18 | 140639 | 50.6 | 052116 | | | | | 15 | 58. 52 | 141440 | -23 | 052301 | | | 15 | 59. 18 | 140755 | | 052116
052116 | 1 | | | | 20 | 58. 10 | 140754 | \$75
\$ 5 | 052249
052268 | 1 | | 91- 20 - | 57. 24
58. 3 | 140650
140650 | | 052116 | } | | | | 25
30 | 57. 2 56. 49 | 140997
140671 | | 052307 | l | | C 30 | 58.13 | 140660 | | 052116 | l | | | | 35 | 56. 49 | 140333 | 110
110 | 052348 | l | | े ं 35 ं | 58.48 | 140729 | | 052116 | 1 | | | | 40 | 57. 9 | 140344 | 1.0 | 052383 | İ | ЕН | (1 | 59. 27 | 140568 | 1/4 | 052116 | | | | | 45 | 56. 59 | 140517 | 2.0 | 052437 | 1 | L | 45 | 59. 27 | 140439 | 1.3 | 052116 | ĺ | | | | 50 | 56. 59 | 140607 | J834 | 052476 | | | 6. 50 | 59. 51 | 140485 | | 052116 | | | | | 55 | 57. 6 | 140734 | 46 | 052532 | | | ₹ 655 | 58. 41 | 139987 | 200 | 052152 | ł | G | | Dec | 22. 19. 0 | 22. 57. 6 | 0 ·140745 | 48 5 | 0 .052552 | 48 5 | L | Dec. 22, 23, 0 | 22. 58. 54 | 0 -140218 | 49 .0 | 0 .052188 | 49 0 | G I | | D | 5 | 57. 3 | 140745 | 1.15 | 052552 | | | 5 | 22, 58, 41 | 140195 | | 052188 | j | | | | 10 | 56. 57 | 140745 | 13.6 | 052552 | 1 | 1 | 10 | 23. 0. 1 | 139755 | | 052188 | 1 | | | | 15 | 56. 33 | 140745 | J. 120 | 052587 | 1 | | 5.15 | 22, 59, 10 | 139755 | | 052202 | ł | | | | 20 | 56. 37 | 140814 | 1.0 | 052587 | | | 20 | 23. 0.45 | 140450 | 1.9 | 052224 | l | | | | 25 | 56, 37 | 141324 | D1: | 052587 | l | 1.5 | 25 | 2. 19
2. 8 | 140450 | | 052330
052202 | | | | | 30 | 56. 37 | 141324 | A Act | 052623 | 1 | | 30 | 1. 20 | 140218
139524 |] | 052202 | | | | | 35 | 56. 30 | 141208 | 1 | 052623
052587 | j | | 35
40 | 2. 18 | 140172 | | 052188 | | | | | 40
45 | 56. 11
56. 11 | 141208
141324 | | 052587 | 1 | | 45 | 1.11 | 139755 | | 052188 | | } | | | 50 | 56. 22 | 141602 | | 052552 | Į. | | 50 | 1. 59 | 139987 | | 052152 | | | | | 55 | 56. 43 | 141788 | 4.0 | 052552 | | | 55 | 1.12 | 139987 | 1 | 052330 | | | | Dag | 22. 20. 0 | 22, 56, 56 | 0 -141904 | 48.5 | 0 .052502 | 48 5 | L | Dec. 23. 0. 0 | 23. 0.56 | 0 .139755 | 49 .0 | 0 .052366 | 49 .0 | G I | | 1766. | 5 | 58, 41 | 141788 | 100 | 052502 | -40 ·0 | | 5 | 22. 59. 19 | 139292 | | 052295 | | G : | | | 10 | 58.41 | 141566 | 333 | 052464 | ĺ | | 10 | 59. 20 | 139997 | | 052350 | | L | | | 15 | 58. 51 | 141566 | .54 | 052392 | 1 | | 15 | 59.46 | 139881 | | 052350 | 1 | | | | 20 | 58. 17 | 141218 | 1.5 | 052412 | 1 | | 20 | 59. 4 | 139348 | . 6 | 052350 | | 1 | | | 25 | 57. 28 | 141218 | 712 | 052412 | 1 | 1 | 25 | 59. 4 | 139765 | | 052386 | | 1 | | | 30 | 56, 29 | 141345 | | 052432 | 1 | 1 | 30 | 59.34 | 140819 | | 052405
052405 | | | | | 35 | 55. 47 | 141345 | A 15 | 052432 | 1 | | 35 | 58. 38
22. 59. 37 | 139545
140703 | | 052298 | | | | | 40
45 | 55, 13°
56, 13° | 141577
141633 | | 052432
052452 | 1 | | 40
45 | 23. 0. 3 | 140239 | | 052334 | | | | | 50 | 56, 13 | 141703 | 3.4 | 052452 | 1 | | 50 | 22. 58. 16 | 140481 | | 052283 | | | | | 55
55 | 56, 21 | 141703 | | 052429 | | | 55 | 59. 14 | 140249 | | 052425 | | | | D., | 00 01 0 | 00 50 45 | 0-141010 | 10.0 | 0 .052330 | 49 .0 | ng. | Dec. 23. 1. 0 | 22, 59. 4 | 0 ·140365 | 49.3 | 0 .052354 | 49 .3 | Í | | Dec. | 22. 21. 0
5 | 22. 56. 47
56. 13 | 0 · 141819 | 40 0 | 052330 | 49 10 | | Dec. 23. 1. 0 | 58. 52 | 140713 | | 052354 | | - | | | 10 | 56. 13 | 141461 | | 052330 | 1 | | 10 | 58. 3 | 140481 | | 052354 | | | | | 15 | 56. 13 | 141345 | | 052366 | | | 15 | 57. 41 | 140260 | | 052338 | | | | | 20 | 55. 27 | 141229 | | 052366 | | | 20. | 57. 12 | 139797 | 1 . | 052338 | | | | | 25 | 55. 7 | 141044 | | 052259 | |] : | 25 | 58.40 | 140724 | | 052338 | | | | | 30 | 54.28 | 140870 | | 052273 | | 1 | 30 | 58. 9 | 140492 | | 052445
052338 | | | | | 35 | 56. 13 | 141102 | | 052273 | | 1_ | 35 | 57. 56
57. 56 | 14049 2
140271 | <u> </u> | 052358 | |) | | | 40 | 56. 13 | 141010 | | 052330 | | L | 40 | 57.56 | 140271 | | 052358 | | 1 | | | 45 | 56. 41
56. 30 | 140906
140860 | | 052273
052116 | | G | 50 | 58.26 | 140508 | | 052358 | | | | | 50
55 | 57. 3 | 140860 | | 052116 | | 1 | 55 | 59. 37 | 149735 | | 052323 | 1 | L | Reading of Torsion-Circle of Meridianal Magnet for Brass Bar resting in Magnetic Meridian, 269°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 37°.45′. Reading for Brass Bar in the same position, 358°.6′. Time of Vibration of Horizontal Force Magnetometer, 20°.5. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°.97; in Vertical Plane, 23°.1. | | | | | | | | 1 | | | | <u> </u> | Vertical | 5 . | 1 | |--------------------------------------|-----------------------|---|------------------------|---|---|------------|------------|----------------------|----------------------|---|---|-----------------------------|--|------------| | Göttingen Mean
Time (Astronomical | Western | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | eter of
al Force | Vertical
Force Read-
ing in parts | Thermometer of
Vertical Force
Magnetometer. | Observers. | Time (Ast | en Mean
ronomical | Western | Horizontal
Force Read-
ing in parts | Thermometer of
Horizontal Force
Magnetometer. | Force Read-
ing in parts | Thermometer o
Vertical Force
Magnetometer. | Observers. | | Reckoning) of | · | of the whole | onta | of the whole | nom
cal F | serv | Reckon | ing) of | Dealination | of the whole | zont | of the whole | rmo
ica. | Se | | Declination
Observation. | Declination. | Hor. Force | Thern
Horiz
Magn | Vert. Force
cor. for Temp. | Therr
Vertion
Magn | Obs | | nation
vation. | Declination. | Hor. Force cor for Temp. | Ther
Hori
Magn | Vert. Force cor. for Temp. | The
Veri | 0 | | d h m | 0 / 11 | cor. for reasy. | 0 | | 0 | | | l h m | 0 ' " | | 0 | | 0 | | | Dec. 23. 2. 0 | 23. 0.15 | 0 ·140619 | 49 .5 | 0.052536 | 49 .5 | ЕН | Dec. 2 | 3. 6. 0 | 23. 0.47 | 0 · 140374 | 51.5 | 0.052547 | 51.5 | G | | 5 | 22. 58. 58 | 140271 | | 052465 | | 1 | | 5 | 23. 0. 7 | 140258 | | 052476 | | | | 10 | 23.
0.17 | 141082 | | 052394 | | | | 10 | 22. 58. 29 | 140142 | | 052547 | | | | 15 | 0. 17 | 141198 | | 052445 | | 1 | | 15 | 57. 20 | 140131 | | 052527 | | | | 20 | 23. 0. 1 | 140735 | | 052494 | | | | 20 | 56.48 | 140247 | } | 052527 | | 1 | | 25 | 22.59.22 | 140735 | | 052409 | | | | 25 | 55.51 | 140247 | | 052527
052527 | | | | 30 | 23. 0.43 | 140503 | | 052409 | ĺ | | | 30 | 55. 22 | 140131 | | 052527 | | G | | 35 | 0.18 | 140735 | | 052409 | | | | 35 | 54. 37 | 140015
140004 | l | 052527 | | E | | 40 | 1.31 | 141198 | | 052389 | | 1 | 1 | 40 | 54.20 | 140004 | | 052507 | | Γ | | 45 | 1. 21 | 140968 | | 052460 | | | 1 | 45 | 53. 30
53. 30 | 140230 | | 052543 | | | | 50 | 0.40 | 141082 | | 052425 | | E H
G | | 50
55 | 53. 30 | 140931 | | 052578 | | | | 55 | 0. 32 | 141314 | | 052403 | | G | | 99 | 33. 30 | 140,501 | | 1 | | | | Dec. 23. 3. 0 | 23. 0.34 | 0 .141430 | 49 .5 | 0 .052425 | 49 .3 | G | Dec. 2 | 3. 7. 0 | 22. 54. 55 | 0 · 141162 | 51 .3 | 0 .052578 | 51 .3 | 3 E | | 5 | 0. 43 | 141198 | | 052403 | 1 | | | 5 | 56. 30 | 141510 | | 052614 | | | | 10 | 23. 0.44 | 141012 | | 052425 | | | | 10 | 57. 23 | 141626 | | 052614 | | | | 15 | 22. 59. 53 | 140503 | | 052389 | | 1 |]] | 15 | 57. 23 | 141615 | | 052558 | | Ì | | 20 | 23. 0.14 | 140735 | | 052389 | | 1 | 1 | 20 | 57.44 | 141847 | ľ | 052487 | | 1 | | 25 | 0.21 | 140735 | | 052389 | | | | 25 | 58. 2 | 141847 | | 052501
052467 | 1 | | | 30 | 1. 1 | 141430 | | 052369 | | | | 30 | 58. 7 | 141604 | 1 | 052467 | 1 | | | 35 | 1.59 | 140966 | | 052369 | | | | 35 | 58. 13 | 141836 | | 052432 | | | | 40 | 1.47 | 140966 | | 052405 | | | | 40 | 58. 13 | 141720
141836 | Ì | 052361 | | ļ | | 45 | 23. 1.21 | 140294 | | 052405 | | | 1 | 45 | 58. 12
57. 37 | 141593 | | 052340 | | | | 50
55 | 22, 59, 35
59, 13 | 140040
139808 | | 052405
052369 | | | | 50
55 | 57.47 | 141361 | | 052375 | | | | | | | 40.5 | 0.050405 | 40 | | D 0 | | 00 50 40 | 0 ·141245 | 51.0 | 0 .052304 | 51 .0 |) 1 | | Dec. 23. 4. 0 | 22. 59. 2 | 0.139808 | 49 '5 | 0.052405 | 49 .2 | G | Dec. 2 | | 22. 57. 47
57. 42 | 141361 | 91 0 | 052304 | 01 | 1 | | 5 | 58. 23 | 139829 | | 052445 | | 1 | | 5
1 0 | 57. 41 | 141593 | | 052340 | | 1 | | 10 | 57. 53 | 139840
139862 | | 052485
052525 | | | ll. | 15 | 57. 32 | 141361 | | 052304 | | - | | 15
20 | 57. 29
57. 19 | 139872 | | 052525 | | | | 20 | 57. 39 | 141129 | | 052340 | 1 | | | 25
25 | 57. 11 | 140126 | | 052570 | | | | 25 | 58. 29 | 141361 | 1 | 052340 | | | | 30 | 57. 11 | 140716 | | 052610 | | | ii ii | 30 | 59. 28 | 141129 | Ì | 052318 | 1 | 1 | | 35 | 57. 11 | 141317 | | 052737 | | G | 1 | 35 | 58.57 | 141129 | | 052304 | İ | | | 40 | 58, 22 | 141560 | | 052742 | | G H | | 40 | 57. 25 | 141129 | | 052304 | | 1 | | 45 | 5 8. 37 | 141582 | | 052747 | | | | 45 | 56. 24 | 140829 | | 052304 | | | | 50 | 22. 59. 14 | 141593 | | 052752 | | | | 50 | 54. 33 | 140666 | 1 | 052269 | | 1 | | 55 | 23. 0. 9 | 141615 | | 052721 | | | | 55 | 52.38 | 140666 | | 052269 | | | | Dec. 23. 5. 0 | 22, 59, 41 | 0 ·141672 | 51 .3 | 0 .052761 | 51 ·5 | G H | Dec. 23 | 3. 9. 0 | 22. 50. 37 | 0 ·140434 | 51 .0 | 0 .052233 | 51 .0 |) | | 5 | 59.41 | 141580 | | 052761 | | l | | 5 | 47. 49 | 140434 | | 052318 | | 1 | | 10 | 59 . 41 | 141812 | | 052690 | | | [] | 10 | 46. 2 | 140597 | | 052375 | | 1 | | 15 | 22.59.48 | 141637 | | 052654 | İ | | | 15 | 45. 3 | 140782 | | 052375 | | | | 20 | 23. 0. 0 | 141637 | | 052654 | | | [] | 20 | 45. 30 | 141129 | | 052517 | 1 | | | 25 | 23. 0. 0 | 141637 | | 052518 | | 1 | | 25 | 51. 8 | 141361 | | 052589 | | | | 30 | 22, 59, 48 | 141058 | | 052618 | | 1 | | 30 | 54. 1 | 141779 | | 052589
052503 | | | | 35 | 23. 0. 6 | 140942 | | 052547 |) | 1 |]] | 35 | 57. 8 | 140203
139554 | | 052373 | | | | 40 | 0. 6 | 141694 | | 052583 | | Į. | 1 | 40 | 58. 52
57. 4 | 139276 | | 052373 | l | 1 | | 45 | 0.41 | 141416 | | 052583 | | 1 | | 45
50 | 55. 4 | 139601 | | 052304 | | | | 50 | 0.41 | 141416 | | 052547 | | | | 55 | 54. 17 | 139971 | | 052304 | | | | 55 | 1.23 | 140953 | i | 052547 | t | I | 11 | 90 | , 01, 1 | 1 | i | 1 | į. | - | Reading of Torsion-Circle of Meridional Magnet for Brass Bar resting in Magnetic Meridian, 269°. Reading of Torsion-Circle for Horizontal Force Magnetometer, 37°. 45′. Reading for Brass Bar in the same position, 358°. 6′. Time of Vibration of Horizontal Force Magnetometer, 20°. 5. Time of Vibration of Vertical Force Magnetometer in Horizontal Plane, 24°. 97; in Vertical Plane, 23°. 1. ROYAL OBSERVATORY, GREENWICH. ## EXTRAORDINARY OBSERVATIONS MAGNETOMETERS. 1847. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal Force Reading in parts of the whole Hor. Force cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.forTemp. | Thermometer of Vertical Force Magnetometer. | Observers. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | Thermometer of Vertical Force Magnetometer. | Oheerwore | |--|----------------------|---|---|---|---|------------|--|--|--|---|--|---|-----------| | ્d h m. ક | 0 .1 11 | | 0 | | ٥ | | d b m s | 0 / " | | ∘ 0 €' | 4 / A | ,; O | | | an. 29. 9. 57. 30 | 1,2 | | | | 130 23 | T D | | 22. 41. 47 | 0 024104 | | | - i. | T | | 10. 0. 0 | 22. 32. 46 | | | | | | 36. 0 | | 023882 | | الأو لمان الما | | | | 10. 2.30
11.54. 0 | 26. 38 | 0 :022183
021467 | 46 . 5 | | | | 38. 0
40. 0 | 42. 58
43. 4 | 023892 | | 1 . | | | | 56. 0 | 26. 38 | 021467 | | | | | 40. 0
42. 0 | 43. 8 | 023671 | | e file and | | | | 57. 30 | 20.00 | 021101 | 1 | | | | T | 42, 16 | 023681 | | | 10 s | | | 11.58. 0 | 26. 28 | 021467 | | | | | 46. 0 | 41. 13 | 023681 | 1.3 | e transfer of the | | | | 12. 0. 0 | 26. 21 | 021467 | | 1 | | | 48. 0 | 40. 0 | 022795 | | 77 at a 6 | | | | 2. 0 | 26. 27 | 021467 | | | | | 6 7 . 0 50.0 | 39. 53 | 023083 | | J 176.J4 | | | | 2. 30 | 00.00 | 021467 | 46 .0 | 7 . 3 | | | 52. 0 | 40.39 | 023248 | | Section 1984 | | | | 7. 0
14. 0 | 26. 27
27. 3 | 021467
021613 | | | | | 54. 0
56. 0 | 41. 39
42, 44 | 023248
023248 | | 1 (as
1 (a) | | | | 19. 0 | 28. 6 | 021679 | | 7 J. 189 | | | 6. 58. 0 | 43. 8 | 023248 | 1.5 | | | | | 22. 0 | 28. 24 | 021735 | | | | | 7. 0. 0 | 42. 33 | 023258 | | 5 3 | | | | 24. 0 | 29. 1 | 021735 | | 3 .55 | | | 8. 0. 0 | 46. 49 | | 1.05 | A NA | | | | 26. 0 | 29. 1 | 021735 | | | | 1 1 | 2. 30 | | 021807 | 45 0 | . 5. | | Т | | 29. 0 | 29. 32 | 021846 | 1.9 | 1 | | | | <u>; </u> | | | 1.2 | | - | | 34. 0 | 29.46 | 021890 | | | | | TI 4 0 57 00 | | | , š | 0.054176 | 52 ·5 | | | 39. 0 44. 0 | 29. 46
29. 46 | 021879 | | ŀ | | | Feb. 6. 9.57.30
10. 0. 0 | 99 35 50 | | | 0 .054176 | 02 0 | 6 | | 49. 0 | 29. 40 | 021879
021869 | 1 | ~ | , | 1 1 | 10. 0. 0 | 35. 50 | 0 .022263 | | 054247 | | | | 54. 0 | 29. 13 | 021869 | 1 | | | | 2. 30 | 35. 50 | 022241 | 51 .4 | 054227 | | | | 12. 59. ±0 | 29. 13 | 021869 | | | | ll | 3. 30 | 35. 35 | 022152 | | 054192 | | | | 13. 11. 0 | 29. 5 | 021637 | İ | 7 | | | 5. 30 | 35. 35 | 022263 | 1. | 054306 | | | | 14. 0 | 29. 25 | 021637 | 1 | | | | 7.30 | | 022030 | - 1 | 054227 | | | | 13. 57. 30
14. 0. 0 | 00.51 | 1 | | į | | | 9. 30 | 35. 25
35. 29 | 022362
022473 | | 054335
054299 | | | | 2. 30 | 30.51 | 021838 | 45 · 3 | | | | 11. 30
16. 30 | | 022584 | | 054238 | | | | 2.00 | | 021000 | 40. 0 | | | | 17. 30 | 36. 27 | 022473 | | 054278 | | | | an. 30. 3.57.30 | | 1 | } | | | ΤД | | 36, 49 | 022429 | 1 | 054314 | | 1 | | 4. 0. 0 | 22. 50. 38 | * * * | | A | | | 19. 30 | 36. 6 | 022252 | | 054349 | | | | 4. 2.30 | | 0 .024834 | 42 .0 | | | | 21. 30 | 37.14 | 022019 | 1 - | 054278 | | | | 5. 57. 30
6. 0. 0 | 40 5 | . 1 | | 1 | | | 23. 30
27. 30 | 37. 10 | 022019 | | 054328
054342 | | | | 2. 0 | 46. 5
45. 46 | 024764 | | | | | 27. 30
29. 30 | 1 | 022197
022241 | | 054342 | | | | 2. 30 | 10. 10 | | 43 .0 | | 66 | 1 | 32. 30 | | 022462 | | 054379 | | | | 4. 0 | 45. 23 | 024764 | 10 0 | .] | | | 34. 30 | 38. 35 | 022462 | | 054308 | | | | 6. 0 | 44. 21 | 024764 | | 1 | | 1 1 | 35. 30 | 38. 51 | 022573 | | 054344 | | | | 8. 0 | 43. 49 | 024773 | 1 | . [| | | 36. 30 | | 022673 | 1 | 054407 | | | | 10. 0 | 43. 6 | 024773 | | . [| | | 37. 30 | 39. 52 | 022673 | 4. | 054407 | | | | $\begin{bmatrix} 12. & 0 \\ 14. & 0 \end{bmatrix}$ | 42. 32
41. 55 | 024783
024783 | | | | | 38. 30
39. 30 | 43. 13
40. 35 | 023005
022495 | | 054308
054308 | | | | 16. 0 | 41. 4 | 024783 | | 1 | | | 40. 30 | 40.47 | 022850 | | 054415 | | | | 18. 0 | 40.51 | 024783 | | | | | 41.30 | 40. 57 | 022673 | | 054379 | | | | 20. 0 | 40. 40 | 024783 | | | | | 42.30 | 41. 33 | 022673 | | 054252 | | | | 22. 0 | 40. 20 | 024783 | | | | | 43. 30 | 41.59 | 022673 | | 054323 | | | | 24. 0 | 40. 8 | 024793 | | | | | 44. 30 | 42. 8 | 022717 | |
054323 | | | | 26. 0 | 40. 8 | 024638 | l | | | (| 46.30 | 42. 27 | 022673 | | 054301 | | | | 28. 0
30. 0 | 40. 44 | 024471 | | | | | 48. 30
52. 30 | 42. 39
43. 21 | 022451
022230 | | 054323
054216 | | | | au. U | 42. 11 | 024139 | | 1 | | i I | ıı 02.0 U | 10.4 | 1 042400 | | UD4ZIO | | 1 | Jan. 29^d. 11^h. 54^m. The change in the position of the Declination Magnet since 10^h was 6'. 8": extra observations were commenced. Jan. 30^d. The motion of the Declination Magnet seemed to be somewhat different from usual, and extra observations were begun. Feb. 6d. A change of 10'.59" having taken place in the position of the Declination Magnet between 8h and 10h, extra observations were commenced. | Time (A
Reci
De | ngen Mean Astronomical coning) of clination servation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | sermome
ertical Fo | Observers. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.forTemp. | Thermometer of Horizontal Force Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | O.P.O. | |-----------------------|--|----------------------|---|---|--|-----------------------|------------|--|-------------------------|---|---|---|---|--------| | | d h m s | 0 / // | | 0 | | 0 | | id h m s | 0 / // | | 0 | | . 0 | | | Feb. | 6, 10, 59, 30 | 22, 43, 51 | 0 .022219 | | 0 054267 | | | Feb. 22. 15. 7. 0 | 22. 34. 59 | 0 .022146 | | 0 .052734 | | T | | . 00. | 11.57.30 | | , | | 054165 | 51 .4 | | 10. 0 | 36. 53 | 022589 | | 052698 | | | | | 12. 0. 0 | 42.45 | | | 4 | | | 13. 0 | 38. 34 | 022601 | | 052770 | | | | | 2. 30 | | 023071 | 50.7 | | | G H | 16. 0 | 40. 9 | 022379 | 4 | 052933 | ·
! | | | | | | | | | | <u> </u> | 21. 0 | 40.42 | 022601 | | 052933 | | | | Feb. 2 | 2. 9. 57. 30 | | | | 0 •054526 | 53 .5 | T D | 26. 0 | 40.42 | 022822 | | 052862 | | | | | 10. 0. 0 | 22. 44. 16 | 004055 | *** | | | | 31. 0 | 39. 45 | 022601
022335 | | 052719
052471 | | | | | 10. 2.30 | | 0 .024655 | 53.0 | 054486 | 55 .0 | | 34. 0
37. 0 | 36. 46
35. 38 | 021715 | | 052292 | | | | | 11. 57. 30
12. 0. 0 | 35. 38 | 10.47 | 1 | 004400 | 00 0 | | 40. 0 | 34. 40 | 021582 | | 052079 | | | | | 2. 30 | 99.95 | 023773 | 54 ·0 | 73 | | | 43. 0 | 32. 16 | 021284 | | 051886 | | | | | 4. 0 | 37. 21 | 023773 | 0. | 054486 | | | 46. 0 | 30. 55 | 021284 | ļ | 051744 | | | | | 7. 0 | 37. 31 | 023773 | | 054364 | | | 49. 0 | 30. 43 | 021284 | | 051601 | | | | | 10. 0 | 38. 11 | 023773 | | 054308 | | | 52. 0 | 30. 34 | 021284 | } | 051601 | | | | | 13. 0 | 38.47 | 023662 | • | 054208 | | | 55. 0 | 30. 34 | 021284 | | 051601 | | | | | 16. 0 | 39. 17 | 023662 | | 054130 | | [| 15. 57. 30 | | † . | 1 | 051601 | 55 ·5 | | | | 21. 0 | 40.11 | 023440 | | 054058 | | | 16. 0. 0 | 33. 54 | | } | | | 1 | | | 26. 0 | 38.12 | 023374 | | 053966 | | | 2. 0 | 35. 21 | 021506 | | 051744 | | | | | 31. 0 | 37. 30 | 023374 | | 053774 | | | 2. 30 | 00 0 | 021506 | 54 .9 | 051000 | | 1 | | | 36. 0 | 36. 19 | 023219 | | 053774 | | | 5. 0 | 36. 8 | 021661 | } | 051886
052242 | | l | | | 41. 0 | 35. 36 | 023153 | | 053774 | | | 8. 0
11. 0 | 38. 25
42. 4 | 021727
021727 |] | 052442 | | | | | 46. 0 | 35. 12 | 023109 | İ | 05 36 67
05 363 1 | | | 11. 0 | 42. 4
45. 15 | 021727 | | 052548 | | l | | | 51. 0
12. 56. 0 | 35. 3
34. 35 | 023042
023042 | | 053560 | | | 17. 0 | 46. 55 | 022391 | | 052434 | | 1 | | | 12. 50. 0
13. 1. 0 | 33. 45 | 023042 | | 053503 | | | 22. 0 | 47. 39 | 022613 | | 052456 | | ١ | | | 6. 0 | 32. 59 | 023042 | | 053418 | | | 27. 0 | 47.51 | 022391 | | 052349 | | 1 | | | 11. 0 | 32.40 | 022998 | | 053289 | | | 32. 0 | 49. 13 | 022601 | | 052456 | } | ì | | | 16. 0 | 32. 20 | 022998 | | 053275 | | 1 | 16, 37, 0 | 49. 30 | 022601 | | 052456 | | | | | 21. 0 | 31.43 | 022954 | | 053254 | | | 17. 57. 30 | | | | 053025 | 55 .5 | | | | 26. 0 | 31. 18 | 023042 | · | 053254 | | | 18. 0. 0 | 42.30 | Ì | | | | | | | 31. 0 | 30. 10 | 023109 | | 053204 | | | 2. 30 | | 021814 | 54 .3 | ļ | | 7 | | | 36. 0 | 30. 9 | 023042 | | 053133 | | | E.I. 60 01 57 00 | | | | 0.055812 | 49.0 | | | | 46. 0 | 30.30 | 022998 | | 053169 | | | Feb. 23. 21. 57. 30 | 20 45 50 | ĺ | Ţ | 0 000012 | 45 0 | | | | 51. 0 | 29.51 | 022776 | | 053204 | | | 22. 0. 0
22. 2. 30 | 22. 45. 59 | 0 -025720 | 42 .0 | | | l | | | 54. 0
13. 57. 30 | 30. 11 | 022776 | | 053204
053169 | 55 .0 | | 23. 23. 57. 30 | | 0 023120 | 43 0 | 055709 | 43 .6 | | | | 14. 0. 0 | 29, 56 | | | 000100 | 99 0 | | 24. 0. 0. 0 | 54. 37 | | | | | | | | 2. 30 | 20.00 | 022776 | 54 ·0 | | | 1 1 | 2.30 | | 021832 | 43 .0 | | | 1 | | | 4. 0 | 29. 15 | 022555 | | 053218 | | | 5. 0 | 55.46 | 022174 | | 055799 | ļ | 1 | | | 7. 0 | 29.59 | 022344 | | 053155 | | | 6. 0 | 55.46 | 022293 | | 055818 | | | | | 12. 0 | 30.19 | 022035 | | 053112 | | | 8. 0 | 54.11 | 022082 | | 055801 | | | | | 17. 0 | 30.47 | 021902 | | 053012 | | | 10. 0 | 54. 39 | 022193 | | 055855 | | 1 | | | 22. 0 | 29. 59 | 021237 | | 052920 | | | 11. 0 | 54. 11 | 022193 | | 055855 | | | | | 27. 0 | 30. 24 | 021183 | | 052870 | | | 12. 0 | 53. 43 | 021972 | | 055783 | | | | | 32 . 0 | 28. 23 | 021138 | | 052891 | | | 14. 0 | 53. 50
53. 16 | 022082 | | 055860
055874 | | - | | | 37. 0 | 27. 28 | 021360 | | 052891 | | | 16. 0 | 53. 16
53. 16 | 022414 | | 055888 | | | | | 42. 0 | 26. 52 | 021249 | | 052891 | | | 20. 0
25. 0 | 53. 16
53. 49 | 023209 | | 055963 | | | | | 47. 0 | 27. 39 | 021149
021260 | | 052891
052962 | | | 30. 0 | 53. 49
53. 38 | 023203 | | 056036 | | | | | 52. 0
14. 57. 0 | 29. 29
30. 13 | 021280 | | 052902 | | | 0.50.0 | 54. 4 | 023931 | | 056023 | | | | | 14. 57. 0
15. 2. 0 | 30. 13
32. 57 | 021703 | 1 | 052512 | | . 1 | 1. 2. 0 | 55. 5 | 024581 | | 056061 | 1 | 1 | Feb. 22^d. A change of 8'. 38" having taken place in the position of the Declination Magnet between 10^h and 12^h, extra observations were commenced. Feb. 24d. 0h. Considerable changes having taken place in the positions of the Declination and Horizontal Force Magnets, extra observations were commenced. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | ermomet
rtical Fo
gnetome | Observers. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | Thermometer of
Vertical Force
Magnetometer. | | |--|----------------------|--|---|--|---------------------------------|------------|--|-------------------------|--|---|--|---|---| | d h m s | 0 / " | | 0 | | 0 | 1 | d h m s | 0 / // | | . 0 | | 0 | | | eb. 24. 1. 4. 0 | 22, 55, 21 | 0 .024847 | | 0 .056080 | | G H | Feb. 24. 8.14. 0 | 22. 21. 54 | 0 .025304 | | 0.055213 | | Н | | 5. 0 | 55. 34 | 024847 | | 056094 | | | 15. 0 | 21. 28 | 025194 | | 055206 | | | | 7. 0 | 55. 34 | 024857 | | 056132 | | | 16. 0 | 21.52 | 025592 | | 055206 | | | | 12. 0 | 54. 53 | 024857 | | 056101 | | | 17. 0 | 21.54 | 025637 | | 055256 | | | | 13. 0 | 55. 33 | 025088 | | 056101 | | | 18. 0 | 22. 11 | 026101 | | 055256 | | | | 31. 0 | 58.36 | 026004 | | 056122 | | | 19. 0 | 22. 22 | 026367 | | 055256 | , | 1 | | 33. 0 | 57. 24 | 025682 | | 056035 | | | 20. 0 | 22.49 | 026433 | | 055263 | | 1 | | 34. 0 | 56. 51 | 025581 | | 055999 | | | 21. 0 | 23. 20 | 026588 | | 055277 | | | | 36. 0 | 57. 35 | 025913 | | 056070 | | | 23. 0 | 24. 35 | 026854 | | 055362 | | | | 44. 0 | 55. 3 | 025038 | | 055986 | | | 24. 0 | 25. 4 | 026854 | • | 055362 | | | | 47. 30 | | | | 056114 | | | 26. 0 | 25. 50 | 026832 | | 055341 | | 1 | | 50. 0 | 56.24 | | | | | | 27. 0 | 25. 50 | 026832 | | 055348
055348 | | | | 52, 30 | i i | 025733 | | | | | 28. 0 | 26. 3 | 026832 | | | | ١ | | 1. 57. 30 | | | | 056079 | 46 .5 | | 31. 0 | 26. 42 | 026810 | | 055242
055256 | | 1 | | 2. 0. 0 | 57. 17 | 005888 | 45.5 | | | | 36. 0 | 28. 31 | 027296 | |
055220 | | 1 | | 2. 30 | | 025777 | 45 .5 | 0.55000 | | | 38. 0 | 29.38 | 027474 | | 055213 | | | | 7. 30 | 56 90 | | | 055900 | | | 39. 0 | 30. 0 | 027695 | | 055263 | | 1 | | 10. 0 | 56. 3 0 | 024515 | | | | | 40. 0 | 30. 42 | 027628 | | 055242 | | 1 | | 2. 12. 30
3. 57. 30 | | 024515 | | 055079 | 50.9 | G H | 41. 0
42. 0 | 31. 10
31. 37 | 027584
027628 | | 055206 | | 1 | | 4. 0. 0 | 53. 5 | l | İ | 055673 | 50 .3 | H B | 42. 0
44. 0 | 32. 26 | 027684 | | 055185 | | 1 | | 4. 0. 0
4. 2.30 | <i>0</i> 0. 0 | 024730 | 48 ·2 | | | | 44. 0
45. 0 | 33. 25 | 027684 | | 055206 | | | | 5. 57. 30 | | 024700 | 40 2 | 055319 | 50 .2 | | 46. 0 | 33. 58 | 027684 | | 055213 | | | | 6. 0. 0 | 46. 58 | İ | | 000010 | 90 2 | | 47. 0 | 34. 37 | 027639 | | 055185 | | | | 6. 2.30 | 20.00 | 025181 | 48 .7 | | | | 48. 0 | 35, 18 | 027661 | | 055185 | | 1 | | 7. 41. 0 | 37. 1 | 023942 | | 055311 | | | 49. 0 | 35. 55 | 027441 | | 055185 | | | | 43. 0 | 37. 21 | 024120 | | 055347 | | | 55. 0 | 38. 56 | 026090 | | 055063 | | 1 | | 44. 0 | 37. 32 | 024164 | | 055262 | * | | 56. 0 | 39. 9 | 025692 | | 055063 | | 1 | | 45 . 0 | 37. 16 | 024230 | | 055262 | | | 58. 0 | 39. 10 | 025692 | | 055063 | | 1 | | 47. 0 | 37. 4 | 024164 | | 055262 | | | 8.59. 0 | 39. 4 | 025404 | | 055042 | | 1 | | 48. 0 | 36. 30 | 023986 | | 055247 | | 1 1 | 9. 1. 0 | 38.41 | 024850 | | 055042 | | 1 | | 49. 0 | 35. 57 | 023787 | | 055206 | | | 2. 0 | 38. 23 | 024806 | | 055028 | | | | 50. 0 | 35,22 | 023964 | | 055185 | | | 4. 0 | 37. 29 | 024784 | | 054992 | | - | | 51. 0 | 34. 30 | 023544 | | 055199 | | | 7. 0 | 36, 50 | 025027 | | 055028 | | - | | 52. 0 | 33. 31 | 023389 | | 055185 | | | 9. 0 | 36. 10 | 025293 | | 054978 | | | | 54. 0 | 31.55 | 022946 | | 055149 | | | 12. 0 | 36.49 | 025803 | | 055035 | | | | 55 . 0 | 31. 21 | 022968 | | 055084 | | | 15. 0 | 38. 7 | 025957 | | 055063
055056 | | | | 56. 0 | 29. 58 | 022879 | | 055135 | 40 - * | | 17. 0 | 38.50 | 025847 | | 054999 | | - | | 57. 3 0
5 8. 0 | 27. 43 | 022835 | | 055063 | 49 • 5 | | 19. 0 | 39. 41
40. 7 | 025714
025470 | | 054993 | | 1 | | 7. 59. 0 | 27. 43
25. 26 | 022835 | | 055077
055063 | | | 21. 0
22. 0 | 40. 7 | 025249 | | 054992 | | | | 8. 0. 0 | 25. 20
25. 17 | 020105 | | งของบอ | | į l | 22. 0
24. 0 | 40. 16 | 025049 | | 054992 | | | | 2. 30 | 20. 1 j | 024385 | 48 .5 | | | | 27. 0 | | 025027 | | 054992 | | | | 4. 0 | 25. 49 | 024784 | -0 | 055256 | | | 30. 0 | | 024686 | | 054985 | | 1 | | 5. 0 | 25. 35 | 024629 | | 055256 | | | 32. 0 | | 024597 | | 054971 | | 1 | | 7. 0 | 25. 21 | 024607 | | 055220 | | | 35. 0 | | 024597 | | 054971 | | | | 8. 0 | 25. 1 | 024894 | | 055249 | | | 37. 0 | 38. 30 | 024597 | | 054971 | | | | 10. 0 | 23. 12 | 024385 | | 055206 | | | 40. 0 | 38. 30 | 024353 | | 054957 | | | | 11. 0 | 22. 56 | 024806 | | 055206 | | | 46. 0 | 37. 51 | 024154 | | 054971 | | | | 12. 0 | 22. 56 | 025038 | | 055206 | | | 51. 0 | 37. 51 | 024132 | | 055006 | | | | 13. 0 | 22. 6 | 025127 | 1 | 055242 | | | 9. 57. 30 | 1 | 1 | | 055028 | 49 .5 | , | | | 1 | I | . 0 | 37 | I 4 | 1 | | | 17 | . 9 | Warting | | Τ | |-----------------------------|-------------------|--|-----------------------|-------------------------|--|------------|-----------------------------------|-----------------------|---------------------------|---|---------------------------|---|---| | Göttingen Mean | | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | or of | Vertical
Force Read- | os
er. | , pi | Göttingen Mean | | Horizontal
Force Read- | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read- | Thermometer of
Vertical Force
Magnetometer. | | | Time (Astronomical | Western | ing in parts | net
net | ing in parts | For | l ë l | Time (Astronomical | Western | ing in parts | aete
al 1 | ing in parts | For | 1 | | Reckoning) of | Declination. | of the whole | ront
etor | of the whole | 6 8 B | l s | Reckoning) of
Declination | Declination. | of the whole | ron | of the whole | et et e | ļ | | Declination
Observation. | Decimation. | Hor. Force | heri
loriz
fagn | Vert. Force | Thermometer o
Vertical Force
Magnetometer. | Observers. | Observation. | Decimation. | Hor. Force cor.for Temp. | loriz
agn | Vert. Force cor.for Temp. | Perti | 1 | | | | cor.ior temp. | | cor.forTemp. | | | | | cor.ior temp. | | cor.ior remp. | | 1 | | d h m s | 0 / " | | . 0 | | ٥ | | d h m s | 0 / " | | 0 | 0.050000 | 0 | 1 | | | 22. 39. 12 | 0.004040 | 40 .43 | | 1 | H B | Mar. 1. 3.57.30 | 00 4 95 | | | 0 •056938 | 42 ·0 | 1 | | 2.30 | 1 | 0.024043 | 48 .2 | |) | | 4. 0. 0
2.30 | 23. 4.35 | 0 .027949 | 41 .7 | | | | | eb. 25. 2. 7. 30 | | | | 0 .055958 | 46 .8 | TD | 7. 0 | 1.48 | 027361 | 41 / | 056785 | | | | | 22. 53. 7 | 0 .025748 | | 0 000000 | 40 6 | 1 1 | 8. 0 | 2. 5 | 027317 | | 056771 | | | | 2, 12, 30 | 22. 00. | 0 020146 | 45 .0 | | 1 | | 10. 0 | 2. 32 | 027782 | | 056870 | | - | | 3. 57. 30 | | (| 40 0 | 055607 | 51 .0 | G H | 1 | 1. 27 | 027459 | | 056849 | | | | 4. 0. 0 | 44. 30 | 1 1 | | 000001 | 0. | J | 13. 0 | 1. 36 | 027602 | | 056875 | | | | 2. 30 | 11.00 | 024217 | 49 .0 | | Ì | | 16. 0 | 2. 48 | 028709 | ļ | 056983 | | | | 9. 0 | 43. 7 | 024891 | | 055636 | | | 17. 0 | 3. 19 | 028819 | | 057043 | | | | 11. 0 | 42, 45 | 025002 | | 055636 |] | | 18. 0 | 3. 47 | 028775 | } | 057029 | | | | 14. 0 | 43.31 | 025555 | | 055550 | | | 19. 0 | 3. 22 | 028863 | } | 057022 | | | | 21. 0 | 44. 37 | 026009 | | 055528 | 1 | | 23. 0 | 3. 22 | 028709 | 1 | 057022 | | | | 29. 0 | 45. 56 | 025798 | | 055484 |] | | 27. 0 | 5. 19 | 029616 | | 057143 | | | | 34. 0 | 47. 19 | 026284 | | 055484 | | | 28. 0 | 5.40 | 029462 | | 057183 | | | | 39. 0 | 48.49 | 026240 | | 055462 | | | 29. 0 | 5. 18 | 029152 | | 057183 | | | | 4.49.0 | 51. 13 | 025587 | | 055375 | | | 30. 0 | 5. 13 | 029095 | | 057183 | | | | 5. 3. 0 | 51. 27 | 024491 | | 055182 | | | 31. 0 | 4. 20 | 028807 | | 057162 | | | | 6. 0 | 51. 0 | 024723 | | 055203 | | | 32. 0 | 3.41 | 028719 | | 057194 | | | | 14. 0 | 50. 9 | 024723 | | 055131 | | 1 1 | 33. 0 | 3. 37 | 028851 | | 057035 | | | | 27. 0 | 49. 32 | 025630 | | 055065 | | | 34. 0 | 3. 8 | 028674 | | 057243 | | | | 5.57.3 0 | | 1 | | 055106 | 52 .0 | | 35. 0 | 2. 36 | 028705 | | 057236 | | | | 6. 0. 0 | 47. 35 | | | | | | 36. 0 | 3. 17 | 028794 | | 057300 | | | | 2. 30 | | 024545 | 50.0 | | | G H | 37. 0 | 3. 17 | 028661 | | 057372 | | | | | | | | | | | 38. 0 | 3. 7 | 028794 | | 057379 | | | | eb. 25. 21. 57. 30 | | | | 0 .055491 | 43 •5 | нв | 41. 0 | 1. 25 | 027997 | | 057436 | | | | 22. 0. 0 | 22. 48. 37 | | | | į | - | 42. 0 | 1. 17 | 028339 | | 057443 | | | | 2. 30 | 40.00 | | 42 .7 | 0.55.010 | | | 43. 0 | 0. 42 | 028649 | 1 | 057491 | | | | 19. 0 | 49. 33 | 022910 | | 055619 | | | 45. 0 | 0.59 | 029114 | 1 | 057533
057512 | | | | 25. 0 | 48. 48 | 023109 | ł | 055655 | | | | 23. 0.45 | 028472 | 1 | 057359 | | | | 22. 36. 0 | 49, 35 | 023231 | | 055711 | | | | 22. 58. 56 | 028858 | l | 057181 | İ | | | 23. 5. 0 | 52, 49
51, 52 | 023608 | | 055748 | | | 51. 0 | 55. 48 | 028858
028823 | | 057581 | | | | 14. 0
31. 0 | 51. 52
51. 37 | 023785 | | 055762 | | | 57. 0
4.59. 0 | 54. 41
54. 41 | 028823 | | 057626 | | | | 39. 0 | 54. 16 | 023940
023807 | | 055783
055783 | | | 4. 59. 0
5. 1. 0 | 54. 41
54. 31 | 029177 | Į | 057647 | | | | 23, 57, 30 | 0-7, 10 | 020007 | | 055833 | 19.5 | | 2. 0 | 55. 27 | 029731 | 1 | 057762 | | | | 26. 0. 0. 0 | 55, 22 | | | 000000 | 40.0 | | 4, 0 | 54. 17 | 028855 | | 057716 | ! | | | 2. 30 | | 023488 | 42 .5 | | | | 6. 0 | 53. 18 | 028368 | l | 057659 | | | | 14. 0 | 53 . 9 | 023498 | 0 | 055795 | | | 9. 0 | 50. 34 | 027859 | l | 057702 | | | | 0. 24. 0 | 52, 15 | 024172 | | 055802 | | | 11. 0 | 50.13 | 028257 | } | 057716 | | | | 1. 47. 30 | | | | 055929 | 43 .9 | | 12. 0 | 50. 29 | 028200 | 1 | 057699 | | | | 50. 0 | 52. 39 |] | | 333220 | 0 | | 13. 0 | 50. 25 | 028600 | J | 057613 | | | | 52, 30 | | 025644 | | |] | | 15. 0 | 52. 8 | 028777 | | 057713 | | | | 1. 57. 30 | | | | 055929 | | | 17. 0 | 53. 35 | 029397 | | 057784 | | | | 2. 0. 0 | 53, 48 | | | | l | | 18. 0 | 54. 18 | 029052 | | 057699 | | | | 2, 30 | | 025710 | 43 .5 | | 1 | | 19. 0 | 54 . 32 | 029052 | | 057699 | | | | 7. 30 | |] | | 055894 | 1 | | 21. 0 | 55. 24 | 028697 | l | 057639 | | | | 10. 0 | 52. 53 |] | | | ! | | 22, 0 | 56. 38 | 028719 | | 057739 | | | | 12. 30 | | 025644 | | | 1 | | 23. 0 | 57 . 13 | 027609 |] | 057682 | | | | | | | | | | | 25. 0 | 57. 49 | 028286 | | 057682 | | | | ar. 1. 2.10. 0 | 99 58 9 | 1 1 | | | ī | н в | 26. 0 | 57 . 8 | 027622 | t | 057753 | | | Feb. 25^d. A change of 8'.37" having taken place in the position of the Declination Magnet between 2^h. 10^m and 4^h, extra observations were commenced. March 1d. A change of 6'. 33" having taken place in the position of the Declination Magnet between 2h. 10m and 4h, extra observations were commenced. | Göttingen
Fime (Astro
Reckonin
Declina
Observa | onomical
ng) of
tion | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | g riz | Vertical Force Reading in parts of the whole Vert. Force cor.forTemp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. |
Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observence | |--|----------------------------|---------------------------|--|-------|---|---|------------|--|-------------------------|--|---|--|---|------------| | d | h m s | 0 / " | | 0 | | 0 | | d h m s | 0 , " | | 0 | | 0 | | | [ar. 1. | 5. 27. 0 | 22. 55. 23 | 0 .027467 | | 0.057611 | | нв | | 22. 52. 48 | 0 .026167 | | 0 .057867 | | H | | | 28. 0 | 54. 20 | 027291 | | 057594 | | | 8. 0 | 1 | 025746 | | 057743 | | | | | 29. 0 | 53. 25 | 027379 | | 057650 | | | 10. 0 | 1 | 025038 | | 057658 | | | | | 30. 0 | 52. 19 | 027622 | | 057700 | | | 13. 0
14. 0 | 1 | 024583
024716 | | 057600
057636 | | | | | 31. 0 | 51. 42 | 027733
026636 | | 057 7 00
057750 | • | | 14. 0
16. 0 | | 024710 | | 057650 | | | | | 33. 0
34. 0 | 53. 5
54.17 | 028938 | | 057785 | | | 19. 0 | 1 | 024296 | | 057621 | | | | | 35. 0 | 55. 26 | 028872 | | 057785 | | | 20. 0 | | 024362 | | 057677 | | | | | 36. 0 | 55, 47 | 028806 | | 057750 | | | 22. 0 | 51. 14 | 024372 | | 057762 | | | | | 39. 0 | 56. 31 | 028474 | | 057750 | | | 24. 0 | | 024239 | | 057769 | | | | | 40. 0 | 56.31 | 028761 | | 057757 | | | 26. 0 | 1 | 024284 | | 057812 | | | | | 42. 0 | 57 . 8 | 028960 | | 057764 | | | 27. 0
31. 0 | - | 024227
023253 | | 057851
057936 | | | | | 43. 0 | 58. 19
22. 59. 27 | 029369
029480 | | 057804
057804 | | | 32. 0 | | 023233 | | 057936 | | - | | | | 22. 59. 24
23. 0. 55 | 029480 | | 057790 | | | 33. 0 | 1 - | 023054 | | 057958 | | | | | 48. 0 | 1. 14 | 028506 | 1 | 057808 | | | 34. 0 | i . | 022876 | | 057936 | | | | | 49. 0 | 1. 2 | 028404 | | 057787 | | | 35. 0 | | 022876 | | 057943 | | | | | | 23. 1. 2 | 028315 | | 057773 | | | 36. 30 | 1 | 022886 | | 057922 | | l | | | | 22. 59 . 18 | 027097 | | 057631 | | | 38. 0 | l . | 022864 | | 057929 | | | | | 55. 30 | 58. 13 | 027053 | | 057609 | | | 44. 0 | 1 | 024082
024237 | | 058172
058240 | | | | | 56. 0
5 5 7 20 | 57. 29 | 027063 | | 057627
057613 | 43 .5 | | 45. 0
46. 0 | 1 | 023971 | | 058205 | | | | | 5. 57. 30
6. 0. 0 | 58. 9 | | | 094019 | 40.0 | | 47. 0 | 1 | 023750 | | 058183 | | | | , | 2. 30 | 3 3. 3 | 027683 | 43 .3 | | | | 48. 0 | 1 | 023572 | | 058155 | | | | | 5.30 | 59. 33 | 027450 | | 057639 | | | 49. 0 | 1 | 023716 | | 058169 | | | | | 7. 0 | 59. 33 | 027228 | | 057611 | | | 50. 0 | | 024092 | | 058219 | | | | | 8. 0 | 59. 4 | 026631 | | 057582 | | | 51. 0 | • | 024535 | | 058290 | | | | | 10. 0 | 50.40 | 027117 | | 057597 | | | 52. 0
53. 0 | 1 | 025796
026903 | | 058368
058490 | | | | | 12. 0
13. 0 | 56. 40
56. 54 | $027305 \\ 027526$ | | 057632
057657 | | | | 22. 56. 2 | 020903 | | 058525 | | | | | 15. 0 | 57. 0 | 027482 | | 057657 | | | | 23, 0.54 | 027590 | | 058511 | | | | | 17. 30 | 56. 3 0 | 027548 | | 057650 | | | 56. 0 | | 027223 | | 058426 | | | | | 21. 0 | 56. 14 | 027748 | | 057615 | | | 57. 0 | | 026361 | | 058408 | | | | | 24. 0 | 55. 57 | 027902 | | 057598 | | | 57. 3 0 | | | | 058509 | 44 .6 | | | | 25. 0 | 57 . 53 | 027579 | | 057598 | | | 58. 0 | 1 | 025718 | | 058387 | | 1 | | | 28. 0 | 57.41 | 027391 | | 057562 | | | 7. 59. 0
8. 0. 0 | | 025098
02611 | | 058437 | | 1 | | | 30. 0
34. 0 | 57. 48
57. 46 | $027501 \\ 027611$ | | 057547
057580 | | | 2.30 | | 023991 | 44 .7 | 058459 | | | | | 40. 0 | 56. 27 | 027931 | | 057830 | | | 5. 0 | | 023814 | • | 058741 | | | | | 44. 0 | 56. 27 | 028219 | | 057969 | | | ¥ | 23. 1.15 | 024257 | | 058783 | | | | | 48. 0 | 58. 32 | 027777 | | 058083 | | | 8. 0 | 22. 58. 57 | 025064 | | 058834 | | | | | 51. 0 | 55. 29 | 027056 | | 058083 | | | | 22. 58. 35 | 025816 | | 058834 | | ļ | | | 52. 0 | 55. 17 | 026968 | | 058083 | | | | 23. 0.42 | 026038 | | 058698
058604 | | | | | 53. 0 | 54.37 | 026834 | | 058124 | | | 13. 0
14. 0 | | 025883
025507 | | 058547 | | | | | 54. 0
55. 0 | 54, 26
53, 43 | 026834
026635 | | 05811 7
05811 7 | | | 14. 0
16. 30 | 4 | 025307 | | 058425 | | | | | 56. 0 | 53. 43
53. 14 | 026635 | | 058117 | | | 18. 0 | | 024665 | | 058322 | | | | | 57. 0 | 52. 8 | 026667 | | 058095 | | | 19. 0 | 1 | 023568 | | 058195 | | | | | 58. 0 | 51. 22 | 026756 | | 058046 | | | 20. 0 | 12. 43 | 022284 | | 058073 | | 1 | | | 6. 59. 0 | 51. 16 | 026844 | | 058010 | | | 20. 30 | | 021841 | | 058073 | | | | | 7. 3. 0 | 51.54 | 026136 | | 057903 | | | 21. 0 | 12. 23 | 021398 | | 058073 | | | | | | 1 | Horizontal | <u>ئے چ</u> | Vertical | 50 | 1 1 | 1 | | | 1 | Horizontal | jo g | Vertical | 5 . | Ī | |-----------------------|----------------|--------------------------|------------------------------|---|------------------------------|-------------|------------|------|-------|-----------------------|--------------|--------------------|---|------------------------------|--|-----------| | Göttinge
Time (Ast | n Mean | Western | Force Read- | Thermometer of
Horizontal Force
Magnetometer, | Force Read- | | Observers. | | | en Mean
ronomical | Western | Force Read- | Thermometer of
Horizontal Force
Magnetometer. | Force Read- | Thermometer o
Vertical Force
Magnetometer. | Ohsarvars | | Reckon | | W estern | ing in parts
of the whole | ome
ntal | ing in parts
of the whole | to E. D. | Srve | Re | ckon | ing) of | | ing in parts | tom to | ing in parts
of the whole | te F | | | Declir | ation | Declination. | Hor, Force | erm
rizo
gnel | Vert. Force | green grade | şa | | | ation | Declination, | Hor. Force | orizon
gne | Vert. Force | erric
Free | | | Observ | ation. | | cor. for Temp. | H H | cor.for Temp. | H V H | | O | bserv | vation. | | cor.forTemp. | E H | cor, for Temp. | E & E | _ | | d | h m s | 0 / " | | 0 | | 0 | | | d | h m | 0 1 11 | | 0 | | 0 | | | Mar. 1. | 8. 22. 0 | 23. 11. 50 | 0 .020690 | | 0 .058108 | | н в | Mar. | 1. | 9.31. | 22, 43, 26 | 0 .021870 | | 0 .057725 | | н | | | 22. 30 | • | 020425 | ! | 058173 | | 1 1 | 1 | | 32 . (| 42. 32 | 021892 | | 057689 | | | | | 23. 0 | 10. 39 | 020247 | | 058216 | | | | | 33. (| 41. 43 | 022004 | | 057708 | | | | | 23. 30 | 9. 36 | 019916 | | 058280 | | | | | 34. (| 41. 14 | 022136 | | 057694 | | | | | 24. 30 | 7. 24 | 019539 | | 058436 | | 1 1 | | | 35. (| | 022269 | | 057687 | | 1 | | | 25. 0 | 6.13 | 019473 | | 058515 | | | | | 36. (| 1 | 022402 | | 057637 | | | | | 25.3 0 | 4.51 | 019340 | | 058586 | | | | | 37. (| 1 | 022412 | | 057637 | | | | | 26. 3 0 | | 019406 | | 058764 | | | | | 38. 0 | - | 022522 | | 057637 | | | | | | 22. 58. 59 | 019627 | | 059034 | | 1 1 | | | 39. (| 1 | 022522 | | 057637 | | | | | 29. 0 | 56. 43 | 019982 | | 059213 | | | | | 41. (| | 022677 | 1 | 057637 | | | | | 30. 0 | 54.48 | 020247 | | 059358 | | | 1 | | 42. (| | 022855 | ł | 057637 | | | | | 31. 0 | 53. 0 | 020291 | | 059445 | | | | | 43. 30 | | 022987 | 1 | 057656 | } | | | | 32. 0 | 51. 2 | 020403 | | 059495 | | | | | 45. (| 1 | 023121 | l | 057656 | } | | | | 33. 0 | 48.53 | 020447 | | 059499 | | [] | | | 47. (| | 023143
023121 | | 057620 | | 1 | | | 34. 0 | 46.44 | 020801 | | 059514 | | | | | 48. 0 | | | | 057596 | | l | | | 35. 0 | 45. 22 | 021310 | | 059457 | | | | | 55.30 | | $022577 \\ 022555$ | | 057297
057281 | 46 .2 | 1 | | | 36. 0 | 44. 30 | 021841 | | 059372 | | 1 1 | | | 57. 30
9. 58. 30 | | 022333 | | 057253 | 40 2 | | | | 37. 0 | 44. 15
44. 26 | 022284
022838 | | 059343
059315 | 1 | 1 | | 1 | 9. 98. 90
10. 0. 0 | | 022409 | | 001200 | 1 | | | | 38. 0
39. 0 | 44. 26
45. 16 | 022838 | | 059313 | | | | , | 2. 30 | | 022467 | 45 .6 | | | 1 | | | 40. 0 | 45. 54 | 023170 | i | 059193 | | | | | 6. 0 | | 021869 | 20 0 | 057286 | | | | | 41. 0 | 47. 7 | 023524 | | 059108 | | | | | 7. 0 | ł | 021946 | | 057358 | | } | | | 42. 0 | 47. 58 | 023445 | | 059037 | | | | | 8. 0 | 1 | 021835 | | 057408 | | | | | 43. 0 | 48. 55 | 023335 | | 059020 | | | | | 9. 0 | | 021768 | | 057479 | | | | | 44. 0 | 49. 19 | 023190 | | 058999 | | | | | 10. (| 32. 17 | 021702 | | 057521 | | | | | 46. 0 | 49. 19 | 022814 | | 058999 | | 1 | | | 12. (| 27.50 | 022831 | | 057479 | | | | | 47.30 | 48.40 | 022747 | | 058999 | | 1 | | | 13.30 | 27.41 | 023164 | 1 | 057443 | | 1 | | | 49.30 | 47.10 | 022459 | | 059004 | | 1 1 | | | 15. (| | 023584 | | 057336 | | | | | 51. 0 | 45.43 | 022592 | | 058947 | | | | | 16. (| | 023717 | l | 057286 | | 1 | | | 52. () | 45. 0 | 022902 | | 058947 | | | | | 17. (| 1 | 024093 | | 057215 | | | | | 53 . 0 | 44. 19 | 023035 | | 058947 | | | | | 18. (| 1 | 024337 | 1 | 057180 | | | | | 54.30 | 44.16 | 023444 | | 058896 | | | | | 19. (| | 024536 | 1 | 057094 | ļ | 1 | | | 56. 0 | 44. 35 | 023577 | | 058825 | | | | | 20. (| 1 | 024913 | ļ | 057073 | | | | | 8. 59. 0 | 44. 58
| 023821 | | 058702 | | | | | 21. (| | 024801 | | 057073
057002 | 1 | | | | 9. 1.30 | 45. 29 | 023799
023865 | | 058610
058596 | | 1 | | | 22.30
24. (| 1 | 025167
024946 | | 057002 | | | | | 3. 0 | 46.51 | 023865 | | 058557 | | | | | 24. (
25. (| | 024946 | 1 | 056963 | İ | 1 | | | 5. 0 | 46. 5 5
45. 49 | 023498 | | 058557 | | | ľ | | 26. (| | 024324 | | 056956 | 1 | | | | 9. 0
11. 0 | 45. 49 | 023787 | | 058557 | | | | | 20. (
27. (| | 024348 | 1 | 056935 | 1 | 1 | | | 13. 0 | 45. 11 | 024096 | | 058541 | | | l | | 31. (| | 023661 | | 056892 | } | | | | 15. 0 | 46. 45 | 024385 | | 058505 | | | | | 33. (| | 023175 | | 056878 | | | | | 16. 0 | 47. 31 | 024318 | | 058455 | | | | | 34. 30 | | 023108 | ĺ | 056878 | | | | | 18. 0 | 48.54 | 024096 | | 058335 | | | | | 36. | | 022997 | | 056892 | | | | | 19. 0 | 49. 50 | 023986 | Í | 058297 | | | | | 37. | | 022608 | 1 | 056947 | | | | | 20. 0 | 50.39 | 023875 | | 058253 | | | | | 38. 0 | | 022321 | 1 | 056954 | | | | | 21. 0 | 51.11 | 023454 | | 058168 | | | | | 39. 0 | | 021723 | 1 | 056961 | | 1 | | | 22. 0 | 51. 6 | 022945 | | 058111 | | | | | 40. (| 49. 3 | 021170 | | 056961 | | | | | 24. 0 | 49. 56 | 022357 | | 058026 | | | | | 41. 0 | 47.54 | 020904 | | 056968 | | | | | 25. 0 | 48. 52 | 022158 | | 057933 | | | | | 42. 0 | 47. 10 | 020682 | | 057004 | | | | | 26. 0 | 47. 54 | 022114 | Ì | 057883 | | | | | 43. (| | 020406 | | 056982 | | | | | 30. 0 | 44. 13 | 021848 | - 1 | 057746 | | 1 1 | i . | | 44. 0 | 45. 7 | 020439 | | 056982 | | 1 | March 1^d. 10^h. 28^m. The sky along the N. horizon is nearly free from cloud; there is a strong diffused light, but whether it arises from the reflection of the Moon's light or from an aurora, it is impossible to say. | Fime
Red
D | ingen Mean (Astronomical koning) of eclination servation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.forTemp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.forTemp. | ermome
rtical Fo
gnetome | Observers. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western
Declination. | Horizontal Force Reading in parts of the whole Hor. Force cor. for Temp. | | Vertical Force Reading in parts of the whole Vert. Force cor. for Temp. | l | Observers. | |------------------|---|-------------------------|---|---|---|--------------------------------|------------|--|-------------------------|--|-------|---|---------------|------------| | | d h m s | 0 1 11 | | ٥ | | 0 | | .dhm 4 | 0 ' " | | 0 | | 0 | | | Iar. | 1.10.45. 0 | 22. 44. 44 | 0 .020394 | : | 0 .056982 | | н в | | | 0.028016 | 48.3 | 0.055000 | | H | | | 48. 30 | 43.40 | 020506 | | 056968 | 1 | | 1) | 22.40.17 | 027617 | İ | 0.055202 | | 1 | | | 50. 0 | 43. 30 | 020528 | | 056987 | | | 6. (| | 027728 | | 055222
055215 | | | | | 55. 0 | 42. 23 | 020948 | ĺ | 056930 | 1 | | 9. (
12. (| | 027562
027363 | | 055201 | | 1 | | | 10.59. 0 | 41. 39 | 021578 | | 056937 | | | 12. (
15. (| 1 | 027075 | | 055201 | | | | | 11. 2. 0 | 41.55 | 022176 | | 056930
056866 | l | | 19. (| Į. | 026876 | | 055180 | | 1 | | | 6. 0 | 43. 24 | 022961 | | 056815 | l | | 22. | | 026632 | | 055171 | | 1 | | | 9. 0
12. 0 | 43. 51
45. 13 | 023205
023514 | | 056794 | ļ | | 25. | | 026522 | | 055150 | | 1 | | | 14. 0 | 45. 59 | 023536 | | 056723 | | | 29. (| 1 | 026577 | | 055150 | | | | | 17. 0 | 46. 48 | 023514 | | 056658 | | | 8.34. (| 1 | 026577 | | 055115 | | 1 | | | 18. 0 | 46. 54 | 023293 | | 056616 | | | 9. 57. 30 | | | | 055107 | 49 .0 | l | | | 20. 0 | 47. 6 | 023205 | | 056580 | | | 10. 0. 0 | | | | | |] | | | 23. 0 | 46. 38 | 022961 | ' | 056478 | } | | 2.30 | 1 - | 025945 | 48.6 | | | HI | | | 26. 0 | 45. 30 | 022961 | | 056436 | l | | | - | | | 0.055000 | 40.0 | - | | | 29. 0 | 44. 37 | 022773 | | 056386 | | | Mar. 8. 5. 57. 30 | | | | 0 .055807 | 49 ·3 | GF | | | 31. 0 | 44. 1 | 022706 | | 056372 | | | | 22. 47. 35 | 0 .029088 | 49 .0 | | | 1 | | | 33 . 0 | 43. 27 | 022861 | | 056335 | | | 6. 2.30
7.57.30 | | 0 029088 | 49 0 | 055284 | 52 .0 | | | | 35. 0 | 42. 48 | 022883 | | 056307 | | | 8. 0. 0 | | | | 000201 | 02 0 | | | | 37. 0 | 42. 14 | 022883 | | 056269 | | | 2. 30 | | 028971 | 51 ·0 | | | 1 | | | 39. 30 | 41.43 | 022883 | | 056241
056082 | 47.0 | H B
L | 25. 0 | | 026005 | 01 0 | 055040 | | | | | 11. 57. 30
12. 0. 0 | 39, 43 | | | 030002 | 410 | " | 26. | 1 | 026116 | | 055040 | | 1 | | | 2, 30 | og. 40 | 023491 | 46 · 3 | | | L | 27. | | 026270 | | 055040 | | 1 | | | 2. 00 | | 020431 | | | | | 28. 0 | 33. 4 | 026669 | | 055040 | | l | | ar. | 4. 11. 57. 30 | | | | 0 .055044 | 48 .5 | нв | 30. 0 | 33. 26 | 027455 | | 055132 | | 1 | | | | 22, 31, 23 | | | | | | 32. (| | 028119 | | 055168 | | l | | | 2. 30 | | 0.026060 | 47 .8 | | | | 33. (| | 028340 | | 055203 | | 1 | | | 7. 0 | 33. 8 | 025706 | | 054987 | l | | 34, (| 1 | 028451 | | 055203 | | 1 | | | 9. 0 | 33. 38 | 025485 | | 054937 | | | 35. 0 | 1 | 028562 | | 055203
055203 | | } | | | 12. 0 | 34. 36 | 025462 | | 054937 | 1 | | 36. 0 | 1 | 028562 | | 055203 | |] | | | 14. 0 | 34. 54 | 025019 | | 054923 | | | 37. 0
39. 0 | , | 028451
028230 | | 055203 | | l | | | 17. 0 | 35.14 | 024688 | | 054901 | 1 | | 42. | | 028230 | | 055132 | | | | | 19. 0
21. 0 | 35. 14
35. 14 | $024422 \\ 024378$ | | 054886
054886 | | | 45. (| 1 | 027576 | | 055118 | | | | | 21. 0
23. 0 | 35. 14
35. 14 | 024378 | | 054886 | | | 47. 0 | | 027399 | | 055082 | | l | | | 39. 0 | 39. 34 | 024422 | | 054974 | 1 | | 48. (| | 027355 | | 055082 | | | | | 41. 0 | 40. 1 | 024489 | | 055009 | 1 | | 51. (| | 027576 | | 055082 | | 1 | | | 43. 0 | 40. 13 | 024533 | | 055009 | | | 54. (| | 028030 | | 055088 | | 1 | | | 47. 0 | 40. 53 | 024732 | | 055009 | | | 56. (| | 028362 | | 055067 | | İ | | | 50. 30 | 41. 6 | 024754 | | 055009 | | | 8.58. (| | 028694 | | 055067 | | į | | | 53. 0 | 41. 29 | 024732 | | 055009 | l | | 9. 0. 0 | | 028960 | | 055067 | | ţ | | | 12. 56. 0 | 41.47 | 024710 | | 055009 | l | | 1. (| | 029137 | | 0550 7 4
055066 | | 1 | | | 13. 5. 0 | 42. 25 | 024919 | | 055009 | 40.0 | | 3. (| | 029137 | | 055016 | | | | | 13. 57. 30 | | | | 054968 | 48 .3 | | 6. (| | 029148
028927 | | 054980 | | 1 | | | 14. 0. 0 | 39. 51 | 004400 | 45.0 | | 1 | | 9. (
13. (| | 028263 | | 054881 | | 1 | | | 2. 30 | | 024499 | 47.9 | | | | 15. | | 028152 | | 054838 | | 1 | | [ar | 5. 6. 0. 0 | 22 42 16 | | | | | 1 | 16. | | 028208 | | 054803 | | | | ECHT . | 7. 57. 30 | 1 0. 10 | | | 0 .055231 | 48 .3 | н в | 17. | | 028450 | | 054803 | | | | | 8. 0. 0 | 39. 0 | 7 | | | | - | 19. (| | 028827 | 1 | 054794 | | 1 | March 5^d. A change of 9'. 16" having taken place in the position of the Declination Magnet between 6^h and 8^h, extra observations were commenced. March 8^d. 8^h. 25^m. Considerable changes having taken place in the positions of the Declination and Horizontal Force Magnets, extra observations were commenced. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor, for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttinge
Time (Astr
Reckon
Declin
Observ | onomica
ing) of
ation | .1 | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor, for Temp. | Thermometer of Vertical Force Magnetometer. | Observers. | |--|------------------------|---|---|---|---|------------|--|-----------------------------|----|----------------------|---|---|---|---|------------| | d h m s | 0 / // | | 0 | | 0 | | d | h m | 8 | 0 1 " | | ٥ | | 0 | | | Mar. 8. 9.21. 0 | 22. 33. 24 | 0 .029048 | | 0 .054787 | | G H | Mar. 19. | 4. 11. | 0 | 22.42. 0 | 0 .031633 | | 0 .057891 | | G | | 23, 0 | 33, 38 | 029270 | | 054787 | | | l | 12. | 0 | 42. 33 | 031744 | | 057819 | | | | 27. 0 | 34. 38 | 029602 | ! | 054787 | | 1 1 | l. | 13. | 0 | 43. 42 | 031633 | | 057748 | | | | 29. 0 | 35. 25 | 029613 | | 054808 | | | | 14. | 0 | 46. 30 | 032740 | | 057677 | | - | | 31. 0 | 36. 18 | 029503 | | 054898 | | 1 1 | [| | 0 | 50. 41 | 032851 | | 057499 | | | | 34. 0 | 36. 50 | 029125 | | 054780 | | 1 1 | | | 0 | 50. 54 | 032961 | | 057392 | | | | 37. 0 | 37. 48 | 028683 | | 054723 | | | | - • - | 0 | 52. 39 | 033072 | |
057250 | , | | | 39. 0 | 38. 15 | 028285 | | 054679 | | | | | 0 | 54. 16 | 032961 | ļ | 057107 | | | | 44. 0 | 37. 14 | 026967 | | 054579 | | | 1 | | 0 | 56. 16 | 032851 | | 057072 | | | | 46. 0 | 36. 2 | 026746 | | 054557 | | 1 1 | l | | 0 | 57. 11 | 032187 | l | 056965
056751 | | l | | 49. 0 | 34. 44 | 026746 | | 054543 | | | | | 0 | 56. 37
57. 24 | 031633
031522 | | 056751 | | | | 56. 0 | 38. 8 | 027310 | | 054635
054635 | 53 .0 | 1 | | 22.
23. | 0 | 57. 24
58. 26 | 031322 | 1 | 056680 | | | | 9. 57. 30 | 90 50 | l | | 094099 | 99.0 | 1 | (| 23.
24. | 0 | 58. 46 | 030969 | | 056645 | | | | 10. 0. 0 | 38. 52 | 026425 | 52 .0 | | | | | 25. | 0 | 58. 54 | 030083 | 1 | 056510 | | | | 2. 30
7. 0 | 38. 9 | 025882 | 02 ·U | 054620 | | | | | 0 | 59. 3 | 029862 | 1 | 056431 | | | | 10. 0 | 37. 17 | 025639 | | 054584 | | | [| 27. | 0 | 59. 5 | 029640 | | 056395 | | | | 13. 0 | 36.53 | 026005 | | 054605 | | | } | 28. | 0 | 58. 16 | 029419 |] | 056395 | | 1 | | 15. 0 | 37.41 | 026337 | | 054641 | | | | 29. | 0 | 58.46 | 029432 | | 036372 | | | | 17. 0 | 38. 51 | 026613 | i | 054648 | | 1 1 | | 30. | 0 | 58. 51 | 028989 | l | 056301 | | 1 | | 19. 0 | 40. 21 | 026613 | | 054648 | | 1 | | 31. | 0 | 58. 21 | 028104 | | 056266 | | 1 | | 23. 0 | 41.48 | 026016 | | 054619 | | | 1 | 33. | 0 | 57. 19 | 027108 | | 056230 | | 1 | | 29. 0 | 41. 1 | 025695 | | 054626 | | 1 1 | | - | 0 | 55.44 | 026997 | | 056230 | | 1 | | 34. 0 | 40.35 | 025927 | | 054612 | | | 1 | 35. | 0 | 54. 32 | 026775 | | 056230 | | | | 39. 0 | 40. 9 | 025816 | • | 054569 | | | | 37. | 0 | 56. 20 | 027882 | | 056372 | | | | 46. 0 | 41.34 | 026116 | | 054590 | | | | 38. | 0 | 58.30 | 027705 | ļ | 056515 | | 1 | | 49. 0 | 41.34 | 026061 | | 054576 | | | | 47. | 0 | 54.30 | 026554 |] | 056764 | | | | 10. 59. 0 | 42. 3 | 025740 | | 054597 | | GH | | 49. | 0 | 52. 5
50. 13 | 026332
026332 |] | 056813
056813 | | | | 11. 57. 30 | 40.07 | | | 054474 | 54 .0 | TD | | 50. | 0 | 48.48 | 026332 | | 056813 | | | | 12. 0. 0 | 40.31 | 000054 | F9 . F | | 1 | | l | 51.
54. | 0 | 47. 23 | 026775 | l | 056848 | | 1 | | 2. 30 | | 028254 | 53 .5 | | | | | 55. | 0 | 46. 2 | 026610 | l | 056791 | | | | Mar. 18. 23. 57. 30 | | | | 0 .054046 | 54 .0 | TD | ļ | 57. | 0 | 44. 13 | 026743 | İ | 056691 | | 1 | | 19. 0. 0. 0 | 22 55 45 | | ! | 0 004040 | 04 0 | | | 4. 59. | 0 | 43. 54 | 027009 | | 056634 | | 1 | | 0. 2.30 | | 0 .022267 | 54 ·0 | | | | | 5. 2. | 0 | 45. 14 | 027274 | | 057563 | | 1 | | 1. 47. 30 | 4. | | | 054840 | | 1 | ļ | 3. | 0 | 45.58 | 026920 | 1 | 056462 | | 1 | | 50. 0 | 23. 5. 1 | | i | | | 1 1 | i | 9. | 0 | 46. 20 | 026831 | | 056457 | | 1 | | 52. 30 | | 022975 | | | | 1 1 | | 14. | | 49. 38 | 026522 | | 056433 | | | | 1. 57. 30 | | | | 054854 | 59 .0 | | | 19. | | 49. 6 | 025791 | | 056440 | | | | 2. 0. 0 | 4. 30 | | | | | 1 1 | } | 24. | | 44. 52 | 024573 | 1 | 056468 | | | | 2. 30 | | 023152 | 58.5 | | | 1 1 | 1 | 26. | | 43. 26 | 024795 | ł | 056454 | | | | 7. 30 | | | | 054854 | | 1 | ĺ | 29. | | 43. 54 | 025472 | • | 056454 | | 1 | | | 23. 5.13 | | | | | | İ | 32. | | 47. 46 | 025915 | | 056397 | | | | 2. 12. 30 | | 023086 | | 050018 | 04.0 | TD | | | 0 | 50. 21 | 025139
022827 | | 056575
055946 | | | | 3. 57. 30 | 00 50 45 | | | 056917 | 64 .0 | G H | | | 0 | 48.53 | 022827 | | 055946 | | | | | 22. 59. 47 | 000000 | 50 - | | | | | | 0 | 45. 20
44. 20 | 022827 | | 055911 | | | | 2. 30
7. 0 | 44 . 3 8 | 028079
028777 | 59 • 5 | 057891 | | | | 47.
49. | 0 | 44. 20
44. 23 | 023934 | | 055946 | | | | 7. 0
8. 0 | 44. 38
43. 38 | 029198 | | 057891 | | | 1 | | 0 | 50. 29 | 025041 | | 056018 | | 1 | | 9. 0 | 41. 32 | 029994 | | 057941 | | | | | 0 | 51.38 | 024864 | | 056018 | | 1 | | 10. 0 | 42. 19 | 030858 | | 057962 | | 1 | | 55. | | 51.40 | 024598 | | 055946 | | 1 | March 19^d. A change of 9'. 16" having taken place in the position of the Declination Magnet between 0^h and 1^h. 50^m, extra observations were commenced. | Göttinger
Fime (Astr
Reckoni
Declin
Observ | onomical
ng) of
ation | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | ermomet
rtical Fo
gnetomet | Observers. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | Thermometer of
Vertical Force
Magnetometer. | | |--|-----------------------------|---|--|---|--|----------------------------------|------------|--|-------------------------|--|---|--|---|---| | d | h m s | 0 / " | | 0 | | 0 | | d h m s | 0 / // | | .0 | | 0 | | | I ar, 19. | 5. 57. 30 | 22. 51. 47 | 0 .023713 | | 0 .055946 | 63 .2 | G H | Mar. 19. 9. 21. 0 | 22.58.19 | 0 .022175 | | 0 ·052682 | | G | | | 6. 0. 0 | 53 . 2 8 | 023713 | | 055875 | | | 22. 0 | 57. 1 | 020802 | | 052611 | | l | | | 2.30 | 54 . 2 8 | 023713 | 60 .0 | 055875 | | | 23. 0 | | 019783 | | 052576 | | | | | 5. 0 | 54. 33 | 022827 | | 055852 | | | 24. 0 | | 019075 | | 052611 | | 1 | | | 8. 0 | 52.14 | 022938 | | 055852 | | | 25. 0 | 1 | 019075 | | 052682 | | | | | 14. 0 | 54. 24 | 023725 | | 055877 | | | 26. 0 | | 019075 | | 052753
052825 | | 1 | | | 19. 0 | 55.46 | 023725 | | 055877 | | | 27. 0 | | 019850 | | 052967 | | | | | 24. 0 | 57. 2 | 023282 | | 055877 | | | 28. 0
29. 0 | | 020846
021997 | | 052967 | | 1 | | | 6. 29. 0
7. 57. 30 | 56. 55 | 023295 | | 055853
056171 | 62 .0 | | 30. 0 | 1 | 021997 | | 052953 | | 1 | | | 8. 0. 0 | 50. 59 | | | 090141 | 02 0 | | 31. 0 | | 023503 | | 052910 | | 1 | | | 2. 30 | 30.03 | 018904 | 60 .5 | | | | 32. 0 | 1 | 023503 | | 052896 | | ١ | | | 4. 0 | 50. 12 | 018882 | 00 0 | 056029 | | | 33. 0 | | 023016 | | 052753 | | 1 | | | 14. 0 | 50. 12 | 019069 | | 056171 | | | 34. 0 | 1 | 021953 | | 052668 | | 1 | | | 27. 0 | 48. 26 | 017785 | | 055744 | | | 35. 0 | | 020160 | | 052654 | | 1 | | | 28. 0 | 46. 56 | 017607 | | 055851 | | | 36. 0 | 1 | 019297 |) | 052682 | | 1 | | | 29. 0 | 44.56 | 018214 | | 055957 | | | 37 . 0 | | 018632 | | 052753 | | ١ | | | 30. 0 | 43, 15 | 018436 | | 056100 | | | 38. 0 | 49.56 | 018676 | | 052825 | | 1 | | | 31. 0 | 43. 7 | 018857 | | 056242 | | | 39. 0 | 48. 29 | 019053 | | 052825 | | | | | 33. 0 | 42. 5 | 018879 | | 056456 | | | 40. 0 | | 019075 | | 052753 | | | | | 34. 0 | 40.37 | 019322 | į | 056584 | | | 41. 0 | | 019474 | | 052753 | | | | | 35. 0 | 37.48 | 019322 | | 056598 | | | 42. 0 | | 019850 | | 052739 | | | | | 36. 0 | 32. 54 | 019233 | | 056456 | | | 43. 0 | | 020404 | | 052753 | | ı | | | 37. 0 | 30. 44 | 019211 | | 056171 | | | 44. 0 | | 020303 | | 052811
052753 | | | | | 38. 0 | 29.46 | 019587 | | 055815 | | | 45. 0 | | 020613 | | 052789 | | | | | 39. 0 | 29.11 | 018657 | | 055459 | | | 46. 0 | | 020392
019506 | | 052825 | | | | | 40. 0
41. 0 | $egin{array}{c c} 27.39 \ 22.22. \end{array}$ | $017772 \\ 016332$ | | 055245
055068 | | | 47. 0
48. 0 | 1 | 019816 | | 052718 | | | | | | 21. 52. 57 | 023959 | | 054177 | | | 49. 0 | 1 | 019462 | | 052611 | | | | | 56. 0 | 57. 19 | 025359 | | 054177 | | | 9. 57. 30 | 1 | 015402 | | 052825 | 62 .0 | , | | | | 21. 58. 49 | 025509 | | 054035 | | | 10. 0. 0 | | | | | | | | | | 22. 0.17 | 026394 | | 054035 | | | 2. 30 | | 018509 | 60 .0 | | | | | | 8.59. 0 | 2. 19 | 027170 | | 054035 | | | 4. 0 | | 019241 | | 053109 | | | | | 9. 0. 0 | 6. 42 | 027280 | | 054021 | | | 5. 0 | 42. 0 | 019462 | | 053181 | | Ì | | | 1. 0 | 8.42 | 027944 | | 053893 | | | 6. 0 | 50. 27 | 019494 | | 052967 | | ĺ | | | 2. 0 | 13. 40 | 028166 | | 053950 | | | 7 . 0 | 1 | 019715 | | 053015 | | | | | 3. 0 | 18.53 | 028166 | | 053893 | | | 8. 0 | | 019516 | | 053086 | | | | | 4. 0 | 22. 53 | 027900 | | 053950 | | | 9. 0 | | 019384 | | 052944 | | | | | 5. 0 | 4. 29 | 027059 | | 053679 | | | 10. 0 | | 019273 | | 052980 | | | | | 9. 0 | 43. 57 | 021922 | | 053893 | | | 11. 0 | 4 | 019051 | | 053015 | | | | | 10. 0 | 39. 16 | 021855 | | 053821 | | | 12. 0 | | 018830
018608 | | 053015
053015 | | | | | 11. 0
12. 0 | 35. 55
33. 40 | 022188
022830 | | 053893 | | | 13. 0
17. 0 | | 018830 | | 053015 | | | | | 13. 0 | 31. 33 | 022830 | | 053893
053929 | | | 19. 0 | 1 | 018740 | | 053063 | | | | | 14. 0 | 33. 54 | 025703 | | 053907 | | | 25. 0 | Į. | 018431 | | 053206 | | | | | 15. 0 | 36. 15 | 025828 | | 053929 | | | 27. 0 | E . | 018608 | | 053219 | | | | | 16. 0 | 40. 51 | 027378 | | 053907 | | | 30. 0 | | 018817 | | 053325 | | | | | 17. 0 | 45. 12 | 027090 | | 053893 | | | 35. 0 | 1 | 018817 | | 053325 | | | | | 18. 0 | 50. 8 | 026846 | | 053893 | | | 39. 0 | 1 | 019481 | | 053325 | | ١ | | | 19. 0 | 54. 3 | 025939 | | 053715 | | | 44. 0 | 1 | 019304 | | 053302 | | | | | 20. 0 | 58. 5 | 023725 | | 052896 | | l | 49. 0 | | 019304 | | 053302 | | 1 | |
Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor.for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor, forTemp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor. forTemp. | Thermometer of
Vertical Force
Magnetometer. | Observent | |--|----------------------|---|---|--|---|------------|--|----------------------|--|---|--|---|-----------| | d h m s | 0 / " | | 0 | | 0 | | d h m s | 0 / " | | 0 | | 0 | | | Mar. 19. 10. 54. 0 | 22, 38, 9 | 0 .019260 | | 0 .053231 | | GН | Mar. 19. 16. 50. 0 | 22, 40, 35 | 0 ·013569 | | 0 .048366 | | T | | 10. 59. 0 | 39. 24 | 018916 | | 053280 | | | 51. 0 | 42.37 | 013569 | | 048281 | | | | 11. 4. 0 | 39. 35 | 018472 | | 053316 | | | 52. 0 | 48. 49 | 013569 | | 048366 | | | | 14. 0 | 39. 12 | 018349 | | 053328 | | | 53. 0 | 49. 35 | 013370 | | 048174 | | | | 24. 0 | | | | | | G H | 54. 0 | | 007791 | | 048046 | | 1 | | 11. 57. 30 | | | | 052953 | 61 .0 | TD | 56. 0 | - | 009230 | | 048082 | | 1 | | 12. 0. 0 | 41.54 | | | , | | | 57. 0 | | 009562 | | 048188 | | - | | 12. 2 . 3 0 | | 019887 | 59 ·5 | | _ | | 58. 0 | | 009009 | | 047940 | | | | 13. 57. 30 | | | | 052746 | 59 .0 | | 16.59. 0 | 1 | 007569 | | 047619
047490 | | | | 14. 0. 0 | 36.38 | 222727 | | | | | 17. 0. 0 | 1 | 007348 | | 047490 | | 1 | | 14. 2.30 | | 020191 | 58 .0 | 040155 | 50.0 | | 1. 0
2. 0 | | 007348 | | 047192 | | 1 | | 15. 57. 30 | 50 A | | | 048155 | 58 .0 | | 2. 0
3. 0 | 1 | 007238 | | 046978 | } | | | 16. 0. 0 | 56. 4
56. 4 | 019186 | | 048155 | | | 4, 0 | | 006949 | ļ | 046921 | } | 1 | | 2. 0
2. 30 | 50. 4 | 019186 | 57.0 | 040100 | | | 5. 0 | | 006351 | | 046480 | | | | 4. 0 | 57.18 | 019186 | 37.0 | 048155 | | | 6. 0 | | 005798 | | 046444 | | | | 6. 0 | 54. 28 | 018963 | | 048133 | | | 7. o | 1 | 005122 | ļ | 046747 |] | ١ | | 8. 0 | 53. 26 | 018631 | | 048090 | | | 8. 0 | 1 | 004015 | | 046266 | | 1 | | 10. 0 | 53. 26 | 018476 | | 048041 | | 1 | 9. 0 | 54. 25 | 003793 | | 046337 | ľ | ١ | | 12. 0 | 53. 4 | 018476 | | 048041 | | | 10. 0 | 53. 26 | 004125 | } | 046672 |] | | | 14. 0 | 53. 15 | 018320 | | 047919 | | | 11. 0 | 52.38 | 004613 | | 046764 | 1 | | | 16. 0 | 53. 23 | 017922 | | 047919 | | | 12. 0 | | 005122 | | 046921 | į | 1 | | | 22. 56. 20 | 017357 | | 047897 | | | 13. 0 | | 005343 | <u> </u> | 047085 | ļ | ١ | | | 23. 0.20 | 016250 | | 047897 | | | 14. 0 | | 005941 | Ì | 047148 | | | | | 23. 3.20 | 018242 | | 048289 | | | 15. 0 | | 006893 | | 047277
047454 | | 1 | | | 22. 52. 52 | 018242 | | 048325 | | , | 16. 0 | | 007545 | } | 047454 | | ١ | | 25. 0 | 50. 3 | 018242 | | 048325 | | | 17. 0 | | 008209 | | 047682 | ŀ | ļ | | 26. 0 | 48.31 | 018242 | | 048232 | | | 18. 0 | | 009759
010645 | | 047874 | 1 | ľ | | 27. 0 | 45. 35 | 018242 | | 048182 | | | 19. 0 | 1 | 010045 | } | 047931 | | ١ | | 28. 0
29. 0 | 41. 43
41. 14 | 018131
018009 | | 048132
048110 | | | 20. 0
21. 0 | 1 | 010377 | | 047931 | | | | 29. 0
30. 0 | 40. 51 | 018009 | | 048110 | | | 21. 0
22. 0 | | 011000 | | 048059 | | . | | 31. 0 | 39. 23 | 018009 | | 048089 | | | 23. 0 | l | 012747 | | 048087 | | | | 32. 0 | 36. 42 | 017610 | | 047983 | | | 24. 0 | 1 | 012859 | 1 | 048144 | | į | | 33. 0 | 35. 5 | 017345 | | 047925 | | | 25. 0 | | 013080 | | 048144 | 1 | | | 34. 0 | 33. 32 | 016725 | | 047875 | | | 26 . 0 | l . | 013368 | | 048287 | | | | 35. 0 | 31.16 | 016681 | | 047854 | | | 27. 0 | | 013699 | | 048337 | | | | 36. 0 | 20. 12 | 016459 | | 047875 | | | 28. 0 | | 013966 | ĺ | 048386 | | | | 37. 0 | 21.31 | 016459 | | 047983 | | | 29. 0 | 43. 29 | 014064 |] | 048407 | | | | 38. 0 | 22. 4 | 016348 | | 048032 | | | 30. 0 | | 014397 | 1 | 048457 | | | | 39. 0 | 22.42 | 016238 | | 048089 | | | 31. 0 | | 014662 | 1 | 048586 | | | | 40. 0 | 24. 13 | 016016 | | 048089 | | } | 32. 0 | | 014950 | | 048692 | | | | 41. 0 | 24. 49 | 015241 | | 048089 | | | 33. 0 | | 015282 | | 048834
049013 | | ł | | 42. 0 | 27. 15 | 014511 | | 048139 | | | 34. 0 | | 015437 | | 049013 | | | | 43. 0 | 30.33 | 013945 | | 048152 | | | 35. 0 | | 015548 | | 049034 | | | | 44. 0 | 29. 38 | 013126 | | 048209 | | | 36. 0 | | 015725 | | 049190 | | | | 45. 0 | 36. 39 | 013126
013280 | | 048209
048259 | | | 37. 0
39. 0 | | 016266 | | 049404 | | | | 46. 0 | 36. 50
37. 24 | 013280 | | 048289 | | | 39. 0
41. 0 | | 016775 | | 049582 | | | | 47. 0
48. 0 | 37. 24
37. 12 | 013458 | | 048251 | | | 41. 0 | | 016930 | | 049703 | | | | 49. 0 | 39. 26 | 013569 | | 048366 | İ | 1 | 45. 0 | | 017041 | | 049902 | Ì | , | | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal Force Read- ing in parts of the whole Hor. Force cor.forTemp. | ermome
rizontal
gnetome | Vertical Force Reading in parts of the whole Vert. Force cor.forTemp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen Mea
Time (Astronomic
Reckoning) of
Declination
Observation. | al | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.forTemp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor, for Temp. | Thermometer of
Vertical Force
Magnetomèter. | Ohearren | |--|----------------------|--|-------------------------------|---|---|------------|---|-----|-------------------------|---|---|---|---|----------| | d h m s | 0 / " | | 0 | | 0 | | d h m | | 0 ' " | | 0 | | 0 | | | Mar. 19. 17. 47. 0 | 22. 45. 7 | 0 .017196 | | 0 .050116 | | тр | Mar. 20. 12. 36. | 0 | 22, 34, 4 | 0 .022204 | ٠. | 0.052585 | | | | 49. 0 | 45. 35 | 017373 | 1 | 050401 | | | 37. | | 38.55 | 022469 | | 052620 | | | | 51. 0 | 44. 35 | 017373 | | 050935 | |] | 38. | | 39. 6 | 022647 | | 052691 | | ١ | | 53. 0 | 45.44 | 017373 | | 051091 | | | 39. | 0 | 38.57 | 022868 | | 052705 | | l | | 55. 0 | 45. 47 | 017472 | } | 051212 | | | 40. | 0 | 38. 57 | 022868 | | 052727 | | | | 56. 0 | 45. 52 | 017472 | | 051283 | | | 41. | . 0 | 38. 46 | 022691 | | 052748 | | | | 17. 57. 30 | | | 1 | 051355 | 57.0 | | 42. | | 37.49 | 022636 | - | 052740 | | | | 18. 0. 0 | 45. 29 | | | | | | 43. | . 0 | 37. 19 | 022592 | | 052740 | | | | 2.30 | 100 | 017473 | 56 •5 | | | | 44. | . 0 | 36. 58 | 022525 | | 052740 | | l | | 4. 0 | 45. 49 | 017582 | | 051391 | | | 45. | . 0 | 36. 29 | 022580 | | 052719 | | ١ | | 6. 0 | 45. 47 | 017693 | | 051426 | | | 46. | . 0 | 36. 12 | 022513 | | 052762 | | | | 18.11. 0 | 45.40 | 017694 | | 051426 | | | 47. | . 0 | 36. 6 | | | 1 | | İ | | 19. 57. 30 | | | | 052045 | 57.0 | | 49. | . 0 | 35.54 | 022945 | | 052841 | | 1 | | 20. 0. 0 | 43. 25 | | | | | | 51. | 0 | 36. 19 | 023144 | | 052912 | | | | 2. 30 | | 019355 | 56.0 | | | | 52. | 0 | 36. 35 | 023277 | | 052948 | | | | | | | | | | _ | 53. | . 0 | 36. 58 | 023498 | : | 052997 | | 1 | | Mar. 20. 9.57.30 | | | | 0 .053651 | 58 .0 | ΤД | 54. | 0 | 37. 13 | 023542 | | 053054 | | l | | 10. 0. 0 | 22. 45. 41 | | | | | | 55. | . 0 | 37.41 | 023764 | | 053054 | | | | 10. 2.30 | | 0 ·023791 | 57 ·0 | | | TD | 56. | 0 | 38. 5 | 023853 | | 053075 | | l | | 11.57.30 | | | | 052593 | 56 ·8 | L | 57. | 0 | 38. 20 | 023929 | | 053105 | | | | 12. 0. 0 | 34. 50 | | | | | | 58. | 0 | 39. 0 | 023929 | | 053105 | | ı | | 2. 30 | | 026373 | 56 ·0 | | | | 12. 59. | . 0 | 39. 21 | 023929 | | 053133 | | | | 4. 0 | 36. 42 | 026416 | | 052693 | | | 13. 0. | 0 | 39.42 | 023929 | | 053148 | | | | 7. 0 | 3 8. 8 | 026294 | | 052671 | | | 1. | . 0 | 39.55 | 023917 | | 053155 | | ı | | 9. 0 | 39. 36 | 026073 | | 052742 | | | 2. | 0 | 39, 8 | 023984 | | 053155 | ! | 1 | | 10. 0 | 39. 44 | 026073 | | 052742 | | | 3. | 0. | 40. 5 | 023984 | | 053155 | | | | 11. 0 | 40. 21 | 026171 | | 052720 | | | 4. | 0 | 40. 12 | 023984 | | 053155 | | | | 12. 0 | 40.45 | 026006 | | 052698 | | | 5. | . 0 | 40. 23 | 023917 | | 053155 | | ļ | | 13. 0 | 41. 20 | 025828 | | 052698 | | | 6. | . 0 | 41. 10 | 023917 | | 053155 | | ļ | | 14. 0 | 41.35 | 025984 | | 052712 | | | 7. | . 0 | 41. 31 | 023917 | | 053169 | | | | 15. 0 |
42. 4 | 025939 | | 052698 | | | 8. | 0 | 41.38 | 023807 | | 053226 | | | | 16. 0 | 42.40 | 025695 | | 052712 | | | 9. | . 0 | 41.38 | 023796 | | 053147 | | ١ | | 17. 0 | 42.47 | 025541 | | 052691 | | | 10. | | 41.45 | 023796 | | 053169 | | 1 | | 18. 0 | 42. 57 | 025253 | | 052691 | | | 11. | | 41.48 | 023862 | | 053204 | | | | 19. 0 | 42. 51 | 025142 | | 052691 | | | 13. | . 0 | 41.48 | 023840 | ٠. | 053204 | | | | 20. 0 | 42. 57 | 025032 | | 052698 | | | | | | | | | | i | | 21. 0 | 42.57 | 024853 | | 052676 | | | Apr. 3. 3.57. | | | | | 0 .056139 | 47 .0 | G | | 22. 0 | 42. 50 | 024586 | | 052676 | | | | | 22. 52. 42 | | 100 | | | | | 23. 0 | 42.39 | 024421 | | 052655 | | | 4. 2. | | (a) | 0.028877 | 47.0 | | | | | 24. 0 | 42. 23 | 024022 | | 052634 | | | 5. 57. | | | | | 056441 | 48 .0 | | | 25. 0 | 42. 7 | 023712 | | 052634 | | | 6 . 0. | | 44. 17 | | | a Se | | | | 26. 0 | 41.49 | 023358 | | 052634 | | | | 30 | 1 1 | 024996 | 48.:0 | 0.000 | | | | 27. 0 | 41. 19 | 023036 | | 052613 | | | | . 0 | 39.57 | 025449 | * | 056638 | | | | 28. 0 | 41. 1 | 023125 | | 052613 | | | | . 0 | 38. 49 | 025460 | | 056709 | | 1 | | 29. 0 | 40. 51 | 023014 | | 052613 | | | 15. | | 37. 11 | 026346 | | 056780 | | | | 30. 0 | 40.51 | 022903 | | 052613 | | | 17. | | 35. 3 | 026312 | 4, 1 | 056765 | | | | 31. 0 | 40. 28 | 022715 | | 052592 | | | 20. | | 32. 12 | 026688 | | 056729 | | Į | | 32. 0 | 40. 33 | 022570 | | 052584 | | | 23. | | 31.55 | 027042 | | 056729 | | - | | 33. 0 | 40. 8 | 022536 | | 052563 | | | 25. | | 32. 13 | 027175 | | 056729 | | | | 34. 0 | 39. 50 | 022469 | | 052585 | | | | . 0 | 33. 38 | 027252 | | 056729 | | | | 35. 0 | 39.35 | 022204 | l | 052570 | | 1 | ij 3 0. | . 0 | 34. 50 | 027562 | 1.5 | 056765 | | 1 | April 3d. A change of 8'. 25" having taken place in the position of the Declination Magnet between 4h and 6h, extra observations were commenced. | Time
Re
I | tingen Mean (Astronomical ckoning) of eclination bservation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor.for Temp. | erti
18 | Observers. | Decli | n Mean
ronomical
ing) of
nation
vation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. forTemp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor. forTemp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | |-----------------|--|-------------------------|---|---|---|------------|------------|-----------|---|----------------------|--|---|--|---|------------| | | d h m s | 0 , " | | 0 | | 0 | - | đ | h m s | 0 1 11 | | 0 | | 0 | | | ۱ | | 22. 36. 5 | 0 .027518 | Ů | 0 .056765 | | G H | Apr. 3. | | 22, 28, 29 | 0 .025895 | | 0 .055291 | | G i | | lpr. | 34. 0 | 37. 29 | 027452 | 1 | 056765 | | اسما | 11 pr. o. | 42. 0 | | 025783 | | 055254 | | - | | | 37. 0 | 38. 46 | 027086 | | 056743 | | | | 44. 0 | 1 | 025407 | | 055183 | | | | | 40. 0 | 39. 22 | 026643 | | 056734 | | | | 45. 0 | | 025296 | | 055169 | | | | | 44. 0 | 39. 9 | 026609 | | 056697 | | | | 47. 0 | | 025972 | | 055183 | | | | | 46. 0 | 38. 12 | 026232 | | 056661 | | | | 48. 0 | | 025750 | | 055112 | | | | | 48. 0 | 37. 15 | 025713 | | 056590 | | | | 49. 0 | | 025972 | | 055119 | | 1 | | | 50. 0 | 36. 6 | 025181 | | 056554 | | | | 50. 0 | 28.18 | 026193 | | 055112 | | | | | 51. 0 | 35. 5 | 025070 | | 056560 | | | | 51. 0 | | 026436 | | , 055112 | | | | | 53. 0 | 34. 11 | 024893 | | 056546 | | | | 52. 0 | 1 | 027256 | | 055132 | | | | | 54. 0 | 33. 59 | 024960 | | 056539 | | | | 53. 0 | | 027699 | | 055132
055132 | | 1 | | | 56. 0 | 33.57 | 024970 | | 056560 | | | | 54. 0 | | 028518 | | 055132 | | | | | 57. 0 | 34. 27 | 025014 | | 056574
056574 | | | | 55. 0
9. 57. 30 | | 028982
029326 | | 055081 | 51.0 | | | | 6. 59. 0
7. 4. 0 | 35. 46
37. 29 | 024903
025091 | | 056588 | | | | 9. 57. 50
10. 0. 0 | | 029320 | | 054938 | 91 0 | | | | 9. 0 | 37. 29
38. 12 | 025313 | | 056593 | | | | 2. 30 | 1 | 029524 | 51 .0 | 054796 | | | | | 14. 0 | 39. 6 | 023313 | | 056565 | | | | 4. 0 | | 029115 | 01 0 | 054741 | | | | | 19. 0 | 39, 13 | 024323 | | 056585 | | | | 9. 0 | | 028617 | | 054719 | | | | | 29. 0 | 37. 46 | 024946 | | 056562 | | | | 11. 0 | | 027510 | | 054562 | | | | | 34. 0 | 36. 55 | 025323 | | 056491 | | |): | 14. 0 | | 024422 | | 054257 | | | | | 44. 0 | 35 .39 | 025057 | | 056141 | | | | 15. 0 | | 024067 | | 054186 | | | | | 54. 0 | 34. 59 | 024923 | | 056262 | | | | 16. 0 | | 023315 | | 054123 | | | | | 7. 57. 30 | 35. 5 | 024934 | | 056238 | 49 .0 | | ĺ | 17. 0 | | 022740 | | 054095 | | | | | 8. 0. 0 | 35. 37 | 024978 | | 056211 | | | | 18. 0 | | 027145 | | 054095 | | | | | 2. 30 | 35.43 | 024491 | 49 .5 | 056161 | | | | 19. 0 | 1 | 023071 | | 054095 | } | } | | | 5. 0 | 35. 55 | 024381 | | 056195 | | | } | 20. 0 | | 023714 | | 054095 | | | | | 10. 0 | 36. 9 | 024425 | | 056143 | | | | 21. 0 | 1 | 023957 | | 054166 | | | | | 19. 0 | 36.48 | 024501 | | 056091 | | | | 22. 0 | | 025285 | . | 054237
054309 | į | 1 | | | 24. 0 | 38. 6 | 024701 | | 056111 | | | | 23. 0 | L | 026226 |] | 054380 | | | | | 29. 0 | 37. 40 | 024756 | | 056060 | | | | 24. 0 | | 027046 | | 054380 | | | | | 31. 0
38. 0 | 37. 31 | 024867
024435 | | 055989 | | | | 25. 0
26. 0 | 1 | 027710
028485 | | 054416 | 1 | | | | 38. 0
49. 0 | 36. 34
37. 27 | 024435 | | 055958
055907 | | | | 20. 0
27. 0 | i | 029038 | 1 | 054431 | ļ | | | | 8. 54. 0 | 38. 42 | 023902 | | 055920 | | | | 28. 0 | 1 | 029304 | 1 | 054431 | Ì | | | | 9. 2. 0 | 41. 33 | 023957 | | 055889 | | | | 29. 0 | (| 029691 | 1 | 054502 | | 1 | | | 9. 0 | 42. 6 | 023747 | | 055845 | | | | 30. 0 | 1 | 030134 | | 054502 | | 1 | | | 25. 0 | 39. 30 | 023725 | | 055458 | | | | 31. 0 | 35. 51 | 030466 | 1 | 054502 | | 1 | | | 26. 0 | 38. 4 | 023681 | | 055458 | | ĺ | | 32. 0 | | 030345 | | 054481 | | | | | 27. 0 | 37. 3 | 023725 | | 055458 | | 1 | | 33. 0 | | 030167 | l | 054481 | | 1 | | | 28. 0 | 35. 26 | 023769 | | 055423 | | | | 34. 0 | | 030123 | | 054481 | | | | | 29. 0 | 34. 35 | 023891 | 4.5 | 055421 | | 1 | | 35. 0 | | 029858 | | 054481 | | | | | 30. 0 | 33. 3 | 023847 | | 055407 | | | | 36, 0 | 1 | 029282 | | 054424 | | | | | 31. 0 | 32. 6 | 024001 | | 055407 | | 1 | | 37. 0 | | 028806 | | 054375
054339 | | | | | 32. 0 | 30. 18 | 024001 | | 055393 | | | | 38. 0 | | 028120 | 1 | 054268 | 1 | | | | 33. 0 | 28.58 | 024200 | | 055357 | | 1 | | 39. 0 | | 027345 | | 054208 | | | | | 34. 0 | 27.45 | 024422 | | 055357 | | | | 40. 0 | l l | 026348 | 1 | 054135 | | | | | 35. 0 | 27. 28 | 024665 | | 055357 | | | | 41. 0 | 1 | 025463
024788 | | 054034 | l | 1 | | | 36. 0
37. 0 | 27. 0 | 0251 7 5
025 27 4 | | 055357
055377 | | | | 42. 0
43. 0 | 1 | 024478 | | 054034 | | | | | 37. 0
38. 0 | 26. 47
26. 58 | 025274 | , | 055363 | | 1 | | 44. 0 | 1 | 024123 | | 054034 | 1 | | | | 39. 0 | 26. 58
27. 38 | 025850 | | 055312 | 1 | | | 45. 0 | | 023946 | 1 | 054048 | 1 | | April 3d. 9b. 55m. There is a bright light towards the N. W. horizon. | Cant | ngen Mean | 1 | Horizontal | 5 2 . | Vertical | ۳. | Π. | Göttingen Mean | 1 | Horizontal | orce
r. | Vertical | 903 | | |--------|-------------------------------|------------------------------|-----------------------------|---|----------------------------------|---|------------|------------------------------|------------------|-----------------------------|---|---------------------------------------|--|---| | | Astronomical | Western | Force Read-
ing in parts | neter
neter | Force Read-
ing in parts | ore
nete | Observers. | Time (Astronomical | Western | Force Read-
ing in parts | nete
nete | Force Read-
ing in parts | Force Beter | 1 | | | kening) of
clination | Declination. | of the whole | contro | of the whole | Call lettor | Ser | Reckoning) of
Declination | Declination. | of the whole | Zont | of the whole | ical | | | | ervation. | Decimation. | Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vert. Force cor.for Temp. | Thermometer of Vertical Force Magnetometer. | ဝီ | Observation. | | Hor. Force cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vert. Force cor.for Temp. | Thermometer o
Vertical Force
Magnetometer, | 5 | | | d h m s | 0 , " | | 0 | | 0 | | d b m s | 0 / " | | 0 | | 0 | Γ | | Apr. | 3. 10. 46. 0 | 22. 43. 35 | 0 .023902 | | 0.054077 | | G H | Apr. 7. 8. 2.30 | | 0 .028382 | 58 .0 | | 1 | G | | • | 47 . 0 | 42. 16 | 023858 | | 054071 | | | | 22. 41. 35 | | | | | | | | 48. 0 | 40. 52 | 023902 | | 054085 | | 1 1 | 7. 0 | | 028129 | | 0 .054583 | | | | | 49. 0 | 39.47 | 023902 | | 054057 | | | 9. 0 | 1 | 027686 | | 054469
054426 | | | | | 50. 0 51. 0 | 38. 59
38. 35 | 023725
023792 | |
054021
054014 | | | 12. 0
14. 0 | 42. 52
43. 5 | 026912
027022 | | 054441 | | | | | 52. 0 | 38. 2 | 023714 | | 054014 | | | 15. 0 | | 027022 | | 054476 | | l | | | 53. 0 | 37. 56 | 023714 | | 054014 | | | 20. 0 | ı | 026646 | | 054405 | | | | | 54. 0 | 37. 42 | 023670 | | 054014 | | | 31. 0 | | 025374 | | 054405 | | | | | 55. 0 | 37. 30 | 023670 | | 054014 | | 1 1 | 35. 0 | | 025041 | | 054441 | | | | | 56. 0 | 37. 19 | 023660 | | 053994 | | | 38. 0 | | 024333 | | 054476 | | | | | 57. 0 | 37. 6 | 023616 | | 053980 | | | 40. 0 | | 024200 | | 054476
054533 | | | | | 58. 0 10. 59. 0 | 36. 59
36. 38 | 023660
023549 | | 053980 | | | 45. 0
52. 0 | 45. 31
43. 10 | 024134
023260 | | 054583 | | | | | 11. 0. 0 | 36. 24 | 023438 | | 05 3937
05 3923 | | | 54. 0 | | 023526 | | 054619 | | | | | 1. 0 | 36. 24 | 023438 | | 053930 | | | 8. 56. 0 | 41.46 | 024057 | | 054626 | | | | | 2. 0 | 36. 24 | 023438 | | 053903 | | | 9. 5. 0 | 43. 6 | 026271 | | 054641 | | | | | 4. 0 | 36. 7 | 023449 | | 053903 | | | 7. 0 | 1 | 026382 | | 054641 | | | | | 6. 0 | 35. 28 | 023527 | | 053910 | | | 13. 0 | 44. 16 | 027480 | | 054569 | | | | | 8. 0 | 35. 22 | 023749 | | 053953 | | | 22. 0 | 45. 13 | 027170 | | 054463 | | | | | 14. 0 | 37. 12 | 023627 | | 053939 | | | 29. 0 | 1 | 028387 | | 054392
054285 | | | | | 19. 0
24. 0 | 38. 42
38. 42 | 023073
022509 | | 053896 | | | 38. 0
39. 0 | | 029295
029042 | · | 054213 | 1 | | | | 29. 0 | 36. 42
36. 17 | 021945 | | 0538 7 6
053856 | | GН | 39. 0 40. 0 | 48. 32
49. 3 | 028554 | | 054142 | ! | | | | 11. 57. 30 | 00.1. | 02.010 | | 0 53 853 | 49 .5 | | 42. 0 | 49. 9 | 027514 | | 054071 | | 1 | | | 12. 0. 0 | 39. 15 | | | 00000 | | | 45. 0 | | 025743 | | 054143 | | | | | 2.30 | | 021117 | 49 .0 | | | ТЪ | 47. 0 | | 024636 | | 053786 | | | | ٠ | 2 20 22 00 | | | | | | | 48. 0 | | 024636 | | 053965 | ł | | | ipr. 6 | 6. 13. 57. 30 | 00 50 40 | | | 0 •054108 | 55 .9 | G H | 49. 0 | | 024237 | | 053965 | 59 .0 | | | | 14. 0. 0
14. 2.30 | 22. 50. 49 | 0 .025770 | 55 ·0 | | | | 9. 57. 30 | | | | 054107 | 39 0 | 1 | | | 15. 57. 30 | | 0 023770 | 00 0 | 054016 | 55 .8 | | 10. 0. 0
10. 2. 30 | | 024747 | 58 • 5 | | | G | | | 16. 0. 0 | 41.48 | | | 004010 | 00 0 | | 10. 2. 30
11. 57. 30 | | 024141 | | 052693 | 58 .5 | | | | 2. 30 | 220 20 | 025746 | 55 ·0 | | | | 12. 0. 0 | | | - | · · · · · · · · · · · · · · · · · · · | | | | | 9. 0 | 41. 21 | 025593 | | 054030 | | | 12. 2.50 | | 023204 | 58 .2 | 1 | | | | | 17. 0 | 41.56 | 025382 | | 054065 | | | 13. 57. 30 | | | | 052430 | 57 .3 | | | | 24. 0 | 42. 4 | 025316 | | 054044 | | | 14. 0. 0 | | | | | } | | | | 32. 0 39. 0 | 41. 52 | 025326 | | 054101 | | | 2. 30 | | 020758 | 57.0 | 052345 | | | | | 49. 0 | 42. 2
42. 6 | 025481
025293 | | 054093
054093 | | 1 1 | 8. 0 | | 020579
020070 | | 052545 | | | | | 16.59. 0 | 42. 0
42. 11 | 025293 | | 054122 | | | 9. 0
10. 0 | | 020137 | 44. | 052203 | | | | | 17. 9. 0 | 42.43 | 025404 | | 054122 | | | 11. 0 | | 020247 | | 052239 | · | | | | 17. 57. 30 | | _ | | 054201 | 55 · 0 | | 12. 0 | | 020247 | | 052239 | | | | | 18. 0. 0 | 43. 25 | | | | | | 13. 0 | 34. 45 | 020247 | | 052181 | | | | | 2. 30 | | 025668 | 54 ·5 | | | G H | 14. 0 | 34. 45 | 020247 | | 052181 | | | | n= ^ | 5 E# 00 | | ;; | | 0.05.407.1 | F.C. C | | 15. 0 | 34. 26 | 020247 | | 052146 | | | | .pr. 7 | 1. 5.57.30 | 22. 51. 30 | - | | 0 .054074 | 56 .8 | G | 16. 0 | | 020137 | | 052096
052038 | | | | | 6. 2. 30 | 22. 01. 30 | 0.027823 | 57 · 1 | | | G | 17. 0
18. 0 | | 020247
019915 | | 051967 | | | | | 7. 57. 30 | 9 | 0. 02 1020 | 41 1 | 054655 | 58 •9 | | 19. 0 | | 019515 | s.i. | 051825 | | | | | 8. 0. 0 | 39. 30 | 1 | | 00.2000 | | - ** | 20. 0 | | 019405 | | 051754 | ŀ | | April 6d. A change of 9'. 1" having taken place in the position of the Declination Magnet between 14h and 16h, extra observations were commenced. April 7^d. A change of 12' having taken place in the position of the Declination Magnet between 6^h and 8^h, extra observations were commenced. | | | | | | | ry Obs | | | | | | | | | | |------------|--|------------------------|---|---|---|---|------------|-----------------------|---|----------------------|---|---|---|---|-----------| | Time
Re | tingen Mean (Astronomical ckoning) of eclination bservation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Time (.
Recl
De | ingen Mean
Astronomical
koning) of
clination
servation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers | | | d h m s | 0 / " | | 0 | | 0 | | | d h m s | 0 / 11 | | 0 | | 0 | | | Apr. | | 22, 31, 54 | 0 .018875 | | 0 .051611 | . 63 | L | Apr. | 7. 18. 16. 0 | 22.51. 9 | 0:019619 | | 0 .051360 | | L | | Thi. | 38. 0 | 22.01.02 | 021696 | | 051326 | | . ~ | P | 17. 0 | 1 | 019553 | \$ 4.5 | 051466 | | | | | 39. 0 | | 021232 | 1 | 051113 | | | | 18. 0 | 54. 9 | 019376 | | 051466 | İ | 1 | | | 40. 0 | | 021342 | | 051113 | | | | 18. 30 | | 019220 | | 051466 | | | | | 41. 0 | i i est. | 021563 | | 051042 | | | } | 19. 0 | | 019220 | | 051538 | | 1 | | | 42. 0 | 1 | 021452 | | 050970 | | | | 20. 0 | 55.48 | 019442 | 9.5 | 051609 | | | | | 43. 0 | P., | 021741 | | 050970 | | | | 21. 0 | 55. 51 | 019176 | 17.9 | 051609 | | | | | 44. 0 | J 45.5 | 022117 | 1 | 050948 | | | 1 | 22. 0 | 55.43 | 019442 | - | 051566 | | 1 | | | 45. 0 | , and | 022006 | | 050877 | | | | 23. 0 | 55. 32° | 019553 | - Q#
 | 051538 | | | | - | 56. 0 | | 022836 | | 051020 | | | 1 | 24. 0 | | 019486 | 1.432 | 051538 | | | | | 14.59. 0 | | 022260 | | 051020 | | | | 25. 0 | | 019442 | | 051566 | | 1 | | | 15. 0. 0 | | 021994 | | 050948 | | | | 26. 0 | | 019220 | | 051538 | | | | | 1. 0 | | 021994 | | 050962 | | | | 27. 0 | | 019220 | | 051538 | | 1 | | | 2. 0 | | 022260 | | 050948 | ' | | | 28. 0 |) | 019220 | | 051538 | { | | | | 3. 0 | 1 . | 022393 | | 050948 | | | | 18.29. 0 | | 019209 | | 051516 | ĺ | | | | 4. 0 | | 022548 | | 050962 | | | | 19. 26. 0 | | 020981 | | 051423 | | | | | 5. 0 | | 022702 | | 051020 | | | | 19, 57, 30 | | | | 052491 | 56 .0 | 1 | | | 6. 0 | 42.54 | 023367 | | 051020 | | | | 20. 0. 0 | | | | | 1 | | | | 7. 0 | 42.44 | 023765 | 1 | 050948 | | | 1 : | 2.30 | | 017106 | 55 .7 | | ļ | 1 | | | 8. 0 | 42.44 | 023721 | | 050948 | | | 1 | 14. 0 | | 017881 | | 053082 | | | | | 9. 0 | 42.44 | 023632 | | 050863 | | | ; | 24. 0 | 4 | 018102 | | 053246 | | | | | 10. 0 | 42. 26 | 023876 | | 050749 | | | | 32. 0 | | 017991 | | 053246 | | ١. | | | 11. 0 | 42. 26 | 023765 | 1 | 050700 | | | | 20.52. 0 | | 017614 | | 053339 | F C . 74 | . [_] | | | 12. 0 | 42. 8 | 023765 | | 050664 | | | | 21. 57. 30 | | l e | | 054066 | 56 .7 | T | | | 13. 0 | 42. 8 | 023943 | | 050592 | | | | 22. 0. 0 | | 000004 | 50.0 | | | | | | 14. 0 | 42. 27 | 023975 | | 050592 | | | | 2. 30 | 4 . | 020794 | 56 .0 | | | | | | 15. 0 | 43. 35 | 023975 | | 050592 | | | | | | | | 0 053493 | 57·5 | 70 | | | 16. 0 | 44. 14 | 023931 | 1 | 050592 | | | Apr. | 8. 13. 57. 30 | 00 40 04 | | | 0 000480 | 010 | 1 | | | 17. 0 | 45. 9 | 023797 | 1.5 | 050592 | | 1 | | | 22. 48. 34 | 0 .024234 | 57.0 | 1 3 4 4 | V . | | | | 18. 0 | 45.37 | 023532 | ļ | 050521 | | , | 1 | 14. 2.30 | | 0 024201 | 0,0 | 053161 | 55 .8 | . | | | 19. 0 | 45. 54 | 022978 | | 050450 | | 1 | į | 15. 57. 30 | | | 1 | 000101 | 000 | | | | 20. 0 | 45. 11 | 022248 | | 050344 | | | | 16. 0. 0
2. 30 | | 026690 | 55 .3 | tra + veril | | | | | 21. 0 | 44. 14 | 022315 | | 050344 | | | 1 | 2. 30
3. 0 | | 026690 | 100 | 053161 |) | | | | 22. 0
23. 0 | 43. 43
43. 19 | 022381
022425 | 1 | 050379
050379 | | | | 5 . 0 | 1 | 026125 | Ì | 053225 | l | | | | 33. 0 | 38. 58 | 020322 | | 050109 | | | 1 | 7. 0 | k | 026015 | 1 | 053282 | | 1 | | | 15. 57 . 30 | <i>9</i> 0. <i>0</i> 0 | 020322 | 1 | 049646 | 57·0 | | l | 9. 0 | | 026015 | | 053261 | İ | 1 | | | 16. 0. 0 | 35. 8 | | | 0.490.40 | 0, 0 | | | 11. 0 | | 026015 | | 053261 | 1 | 1 | | | 2,30 | 00. 0 | 017200 | 56 .5 | | | | | 13. 0 | | 026667 | 1 | 053261 | i | 1 | | | 9. 0 | 36. 47 | 016868 | 000 | 049624 | | | | 15. 0 | | 026822 | | 053261 | 1 | | | | 10. 0 | 36. 58 | 018316 | | 049695 | | | | 17. 0 | | 026999 | 1 | 053239 | 1 | | | | 11. 0 | 37. 17 | 018627 | | 049695 | | | | 19. 0 | | 027110 | | 053289 | 1 | | | | 12. 0 | 37.26 | 018738 | | 049695 | | | | 21. 0 | | 027221 | | 053324 | | | | | 16. 47. 0 | 39.51 | 025491 | | 050435 | | | | 23. 0 | | 027542 | ĺ | 053396 | | | | | 17, 57, 30 | - 30.44 | | | 051004 | 56 .2 | | | 25.
0 | 1 | 027586 | } | 053396 | 17.00 | | | | 18. 0. 0 | 58.55 | | | | | • | 1 | 27. 0 | 1 | 027697 | ł | 053481 | | 1 | | | 2. 30 | | 021434 | 55 .8 | | | | | 29. 0 | 1 40 1- | 027807 | | 053481 | 28 | | | | 9. 0 | 49.12 | 020438 | | 051039 | | | | 31. 0 | 1 | 027751 | | 053553 | | | | | 13. 0 | 48. 39 | 019663 | | 051110 | | | | 33. 0 | | 027751 | | 053567 | | | | | 14. 0 | 49. 8 | 019553 | | 051182 | | | | 35. 0 | | 027574 | | 053567 | | | | | 15. 0 | 49. 59 | 019663 | [' | 051253 | | | <u> </u> | 37. 0 | 41. 20 | 027308 | | 053567 | | | | | | 1 | | 1 | | | | l | | | 1 | | | | 1 | DECLINATION MAGNET. April 7^d. After 14^h. 21^m the observer shifted the point of suspension, and for some time afterwards he was unable to observe this magnet. April 8d. 16h. Considerable changes having taken place in the positions of the Declination and Horizontal Force Magnets, extra observations were commenced. | | 3.5 | | Horizontal | Thermometer of
Horizontal Force
Magnetometer. | Vertical | 15 | Ī | 1) | | | _ |] | Horizontal | - 8 | Vertical | 1 % | 1 | |--------|------------------------------|------------------|------------------|---|------------------|----------|------------|-----------|-------|-------------|-----------------|-------------------------|----------------------------|---|--|----------|-----------| | | tingen Mean
(Astronomical | Western | Force Read- | For | Force Read- | # 5 # | rs | G mi | öttin | gen M | fean
mical | Western | Force Read- | For Fer. | Force Read- | 2 5 3 | É | | Re | ckoning) of | | ing in parts | om
tom | ing in parts | E E | rve | I III | Recko | ning) | of | western | ing in parts | ome | ing in parts | E Se | E | | | eclination
bservation. | Declination. | Hor. Force | rize | Vert. Force | artice m | Observers. | 11 | Decl | linatio | o n | Declination. | of the whole
Hor, Force | rizo | Vert. Force | rice and | Observers | | | user varion. | _ | cor. for Temp. | FEE | cor. for Temp | M C I | | <u> </u> | Obse | rvatio | n. | | cor.for Temp | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor, for Temp. | K C T | 0 | | | d h m | 1 | | 0 . | | 0 | | | ď | h, | m s | | | 0.5 | 4 4 | 0 | | | Apr. | | 22. 40. 45 | 0.027230 | | 0 .053546 | | ТЪ | Apr | . 16. | | | 22. 38. 2 | 0 .024422 | | 0.053672 | | HI | | | 41. 0 | | 027186 | | 053546 | 1 | l | | | | 19. 0 | 38. 2 | 024522 | | 053739 | | ľ | | | 43. 0
45. 0 | | 027031 | 1 | 053525 | j | 1 | | | | 31. 0 | 38. 2 | 024392 | 1 | 053787 | <u> </u> | 1 | | | 47. 0 | | 026853
026809 | | 053561 | 1 | | | | | 53. 0 | 39. 28 | 025059 | | 053993 | [| 1 | | | 49. 0 | | 026687 | | 053596
053639 | | 1 | | | | 58. 0 | 39. 28 | 025303 | | 054024 | | 1 | | | 51. 0 | 1 | 026555 | Ï | 053653 | | | 1 | | | 16. 0 | 38. 49 | 025383 | | 054110 | 46 .3 | | | | 53. 0 | | 026388 | | 053631 | | | | | | 57. 30
0. 0 | 43. 44 | | | 054403 | 46 3 | | | | 16. 57. 0 | | 026388 | | 053631 | 1 | | | | 10. | 2.30 | 40.44 | 025246 | 45 .5 | | - | н | | | 17. 0. 0 | | 026277 | | 053610 | } | | | | | | | 020240 | 40 0 | | | 111 | | | 3. 0 | 39. 12 | 026100 | | 053610 | | | Apr. | 19. | 19. | 57. 3 0 | | | | 0.054284 | 48 .8 | TI | | | 5. 0 | | 025934 | | 053639 | | | - * | | | | 22. 50. 56 | | | | -0 0 | • | | | 7. 0 | | 025712 | | 053660 | | |]] | | | 2. 30 | | 0 .025661 | 48 .0 | | | TI | | | 9. 0 | | 025712 | | 053675 | | | | | 21. 5 | 57. 30 | | | | 054395 | 49 .0 | | | | 11. 0 | 1 | 025712 | | 053639 | .] | | | | 22 . | 0. 0 | 57. 13 | | | (A. A.) | | l | | | 13. 0 | 1 | 025712 | | 053568 | | | | | | 2.30 | | 019072 | 48 5 | | | 1 | | | 16. 0
19. 0 | | 025700 | | 053632 | | | | | | 14. 0 | 58.49 | 019446 | 27.4 | 054667 | | 1 | | | 21. 0 | | 025700 | | 053711 | | | | | | 31. 0 | 58. 8 | 019200 | . 3.3 | 054785 | | 1 | | | 23. 0 | 38. 49 | 025700
025700 | | 053740 | | | | | | 50. 0 | 55.49 | 018667 | 1.55 | 054916 | | | | | 25. 0 | 39. 3 | 025700 | | 053668
053668 | | | | | | 0. 0 | 56. 55 | 019199 | | 054971 | 51.0 | 1 | | | 27. 0 | 39. 33 | 025700 | | 053668 | [] | | | 90 | | 57. 30
0. 0 | 57 EQ | 1.00 | | 054908 | 51 .2 | 1 | | | 29. 0 | 40. 3 | 025844 | | 053668 | | | | 20. | | 2.30 | 57. 52 | 019319 | 51 .2 | 14 # . 1
1564 | | L . | | | 31. 0 | 40. 23 | 025954 | | 053625 | | | | | | 2. 30 | | 019319 | 01 2 | 1 124 / 1 A | | G I | | | 33. 0 | 40. 26 | 026131 | | 053611 | | | Apr. | 20. | 5. 5 | 57. 30 | 1 | | | 0 -056893 | 60 .0 | 7. 1 | | | 36. 0 | 40.49 | 026287 | | 053611 | | | | | | | 22. 55. 24 | | 46. T | | "" | - | | | 40. 0 | 41. 8 | 026131 | | 053626 | | | | | | 2. 30 | | 0 :025885 | 59 .3 | (M.C. 4) | | TI | | | 43. 0 | 41. 19 | 026020 | | 053683 | | | | | 7. 5 | 57.30 | | | | 055977 | 60 .2 | | | | 46. 0 | 41.57 | 025843 | | 053961 | | | | | 8. | 0. 0 | 41.45 | | .37 3 | | | Į | | | 49. 0
54. 0 | 42. 18
42. 18 | 025665 | | 054025 | | | | | | 2.30 | FEMAL (0.5) | 022433 | 59 .5 | 130.4 | | 1 | | | 55. 0 | 43. 12 | 025444
025367 | | 053776 | | | | | | 5. 0 | 42. 0 | 022366 | | 055912 | | 1 | | | 56. 0 | 43. 47 | 025256 | | 053776 | | | | | | 10. 0 | 45. 38 | 022344 | 1.6 | 055926 | | 1 | | | 17. 57. 30 | 10.11 | 020200 | | 053712
053491 | 54 .0 | | | | | 15, 0
20, 0 | 44. 52 | 022477 | | 055912
055841 | | 1 | | | 18. 0. 0 | 44. 10 | | | 000431 | 04 0 | | | | | 30. 0 | 45. 39
45. 44 | 022721
022101 | 615.
1613 | 055763 | ł | 1 | | | 2.30 | | 025256 | 54 ·0 | | | | | | | 35. 0 | 45. 20 | 021658 | | 055699 | - | 1 | | | 5. 0 | 44. 35 | 025256 | | 053491 | | | | | | 10. 0 | 43. 42 | 021901 | | 055699 | | | | | 9. 0 | | 025245 | | 053470 | 1 | | | | | 45. 0 | 42. 42 | 021835 | 1.34. | 055657 | | 1 | | | 12. 0 | | 025245 | | 053449 | | | | | | 19. 0 | 40.20 | 021548 | .24 | 055542 | | | | | 17. 0 | 45. 2 | 025245 | . | 053449 | | | | | | 50. 0 | 39. 56 | 021658 | , Service | 055442 | | | | | 18. 22. 0 | 45. 5 | 025233 | | 053428 | | 1, | | | | 51. 0 | 39. 41 | 021768 | 9.5 | 055542 | } | 1 | | | 19. 57. 30
20. 0. 0 | 49 10 | | | 053994 | 53 .0 | | | | | 5 2. 0 | 39. 23 | 021879 | 3.5 | 055542 | | | | | 20. 0. 0
2. 30 | 43. 10 | 023105 | 53 · 0 | | | | | | | 58. 0 | 39. 20 | 022079 | (A) | 055499 | | İ | | | 2.00 | | 020100 | 00.0 | | | T D | | | | 54. 0 | 39. 15 | 022211 | utjaru
V | 055485 | | | | Apr. 1 | 6.13.57.30 | | | | 0 .053989 | 50 .7 | LI D | | | | 55. 0
55. 30 | 39. 5 | 022278 | | 055471 | | 1 | | • | | 22, 45, 44 | | | . 00000 | " " | D | | | 1 | 56. 0 | 39. 14
39. 27 | 022438 | | 055464
055443 | | 1 | | | 14. 2.30 | | 0 025586 | 50 .0 | | | | | | | 56. 3 0 | 39. 39 | 022787 | parati ' | 055428 | | 1 | | | 15. 57. 30 | | 1 | | 053634 | 48.5 | | 3 | | | 57. 0 | 39. 46 | 023097 | ist
Sur | 055421 | | 1 | | | 16. 0. 0 | 37.41 | | | | | | | | | 58. O | 40. 11 | 023142 | 143 | 055400 | | 1 | | | 2. 30 | 1 1 | 024736 | 48 .0 | | 1 | | | | | 59. 0 | 40. 30 | 023075 | | 055379 | | 1 | April 16^d. A change of 8'. 3" having taken place in the position of the Declination Magnet between 14^h and 16^h, extra observations were commenced. April 19d. 22h. Considerable changes having taken place in the positions of the Declination and Horizontal Force Magnets, extra observations were commenced. April 20d. Considerable changes having taken place between 6h and 8h in the positions of the magnets, extra observations were commenced. | Apr. 20. 9. 0. 0 22. 40. 43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Time (As
Recko
Decl | gen Mean
stronomical
ning) of
ination
vation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | ermome
rizontal
gnetome | Vertical Force Reading in parts of the whole Vert. Force cor.forTemp. | ermomet
rtical Fo
gnetome | Observers. | Time (Ast
Reckor
Decli | en Mean cronomical ning) of nation vation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.forTemp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.forTemp. | Thermometer of
Vertical Force
Magnetometer. | Ohservers |
--|---------------------------|---|----------------------|--|-------------------------------|---|---------------------------------|------------|------------------------------|--|----------------------|---|---|---|---|-----------| | 1. 0 40. 54 022929 055329 | d | h m 8 | 0 / " | | 1 | | 0 | | d | h m s | 0 1 11 | | | | . 0 | | | 1. 0 40. 54 0222920 0553292 0553295 33. 0 47.23 025610 055911 12. 0 38. 55 0222322 055265 37. 0 47.43 026385 055861 15. 0 38. 10 0222322 055265 41. 0 47. 43 026385 055861 17. 0 38. 18 0222477 055265 44. 0 47. 42 026385 055861 17. 0 38. 18 0222477 055265 44. 0 47. 12 026319 055712 17. 0 38. 18 0222477 055265 45. 0 47. 40 46. 67 026460 055619 17. 0 38. 18 0222477 055265 45. 0 47. 40 46. 67 026460 055619 17. 0 38. 18 0222479 055245 45. 0 47. 4 0 46. 67 026593 055608 18. 0 47. 18 023429 055044 19. 0 46. 67 026593 055608 18. 0 47. 10 024. 0 0233429 055044 19. 0 46. 67 022386 055241 19. 0 10. 0 0 42. 35 023308 054987 19. 0 054945 19. 0 023449 055919 055271 19. 0 0 42. 35 023308 054996 19. 0 0 47. 30 023429 054909 19. 0 0 47. 30 023429 054909 054909 0 0549 | A nr. `20. | 9. 0. 0 | 22, 40, 43 | 0 .022986 | - | 0 .055343 | | G | Apr. 21. | 6.33. 0 | 22. 48. 4 | 0 .025057 | , · · · · · } | 0.055940 | | T | | 192. 0 39. 55 023322 055285 | -p | | 40.54 | 022920 | | | 1 | | • | | | 025610 | | | | | | 15. 0 | | 4, 0 | 41. 0 | 022544 | | | | | | | | 025942 | | | | 1 | | 16. 0 38, 31 0 022522 055285 | | | 1 | | * - | 055265 | | | | | | | 1.4 | | | | | 17. 0 38. 18 022477 | | | | | | | | | 1 | | | | 1, 2 | | | | | 20. 0 37. 47 022500 055251 47. 0 46. 2 026527 025627 055627 225 0 37.56 022996 055243 50. 0 57. 6 022996 055243 50. 0 57. 0 24. 5 02393 055669 055342 40. 0 42. 0 223955 054987 56. 0 44. 5 02383 055694 55. 0 42. 5 023930 054987 56. 0 44. 5 02383 056271 56. 0 42. 5 02383 056271 56. 0 42. 5 02383 056271 56. 0 42. 5 02383 056271 56. 0 42. 5 02383 056271 56. 0 42. 5 02383 056271 56. 0 42. 5 02383 056271 56. 0 43. 4 023316 055248 56. 0 43. 4 023316 055248 56. 0 43. 4 023316 055248 56. 0 44. 5 02383 056271 56. 0 42. 5 02383 056271 56. 0 43. 4 023316 055248 56. 0 43. 4 023316 055248 56. 0 43. 4 023316 055248 56. 0 44. 5 02383 056271 56. 0 44. 5 02383 056271 56. 0 44. 5 02383 056271 56. 0 44. 5 02383 056248 56. 0 44. 5 02383 056248 56. 0 44. 5 02383 056248 56. 0 44. 5 02383 056248 56. 0 44. 5 02383 056248 56. 0 44. 5 02383 056248 56. 0 44. 5 02383 056248 56. 0 44. 5 02383 056248 56. 0 44. 5 02383 056248 56. 0 44. 5 02383 056248 56. 0 44. 5 02383 056248 56. 0 44. 5 02383 056248 56. 0 56400 56. 0 56400 56400 56400 56. 0 5 | | | 1 | | | 1 | | | | | | | 2 1 -
2 2 2 2 | | | | | 25. 0 37. 56 02998 | | | | | 1 | | | | | | | | - 1 | | | | | 30. 0 | | | | | | | | | | | 1 . | | - 1 | | | ĺ | | 35. 0 40. 18 023429 | | | | | | | | | | | | | | | | | | 40. 0 | | | | | | 1 | | | | | | | | | | | | 45. 0 | | | 42 0 | | | | | | | | | | | | | | | 50. 0 42. 35 02300S | | | | | | I . | 1 | | | | | | | | | | | 55. 0 41. 57 023186 054909 0 60 2 | | | | | l | 1 | | | | | | | £7 | | | | | 9. 57, 30 | | | | | | | 1 | | | | | 023272 | *** | 055276 | | | | 2. 30 | | | | 023208 | i | | 60 .2 | | | 58. 0 | | 1 | | B : | | | | 5. 0 41.58 023540 054909 054909 054909 054909 054000 59 9 G H 4. 0 31.33 022608 055248 055248 11.57.30 12. 0 0 45.28 2.30 023407 59 5 G H 4. 0 31.33 022608 055248 055248 12. 0 0 45.28 2.30 023407 59 5 G H 4. 0 31.33 022608 055248 055248 12. 0 0 45.28 2.30 023407 59 5 G H 4. 0 31.33 022608 055248 055248 12. 0 0 0 45.28 2.30 0.00000000000000000000000000000000 | | 10. 0. 0 | 41.30 | 023429 | | 054909 | l | | | | | | | | | | | 10. 10. 0 42. 15 023429 | | | | | 59 5 | | | | | | | | | | | | | 11, 57, 30 12, 0, 0 45, 28 12, 0, 0 45, 28 12, 0, 0 45, 28 2, 30 23407 10, 0 0 23, 8, 2 4, 0, 0 0 23, 8, 2 4, 2, 30 6, 0 0 32, 8, 2 4, 2, 30 6, 0 0 32, 8, 2 4, 2, 30 6, 0 0 32, 8, 2 4, 2, 30 6, 0 0 32, 8, 2 4, 2, 30 6, 0 0 22, 55, 26 2, 30 6, 0 0 22, 55, 26 2, 30 6, 0 0 22, 55, 26 2, 30 6, 0 0 22, 55, 26 2, 30 6, 0 0 22, 55, 26 2, 30 6, 0 0 32, 31, 70 24405 6, 0 0 53, 17, 024405 6, 0 0 53, 17, 024405 6, 0 0 53, 17, 024405 6, 0 0 53, 17, 024405 6, 0 0 53, 17, 024405 6, 0 0 53, 17, 024405 6, 0 0 53, 17, 024405 6, 0 0 53, 17, 024405 6, 0 0 53, 17, 024405 6, 0 0 53, 17, 024405 6, 0 0 53, 17, 024405 6, 0 0 53, 17, 024405 6, 0 0 53, 17, 024405 6, 0 0 53, 17, 024405 6, 0 0 53, 17, 024405 6, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | j | | | | | | | 1 | | | | 12. 0. 0 45. 28 2. 30 023407 59 ·5 6 | | | 42. 15 | 023429 | 1 | | | | | - | | | 4.5 | | | | | 2.30 | | | | | } | 054400 | 59.9 | G H | | | | | | | | | | Apr. 21. 3. 57. 30 | | | 45. 28 | 00040 | 50.5 | | | | | | 1 | | | | | | | Apr. 21. 3. 57. 30 4. 0. 0 23. 8. 2 4. 2. 30 5. 57. 30 6. 0. 0 22. 55. 26 2. 30 4. 0 53. 17 0 24405 8. 0 52. 35 0 24851 10. 0 55. 35 10. 0 51. 11 0 24835 10. 0 56. 22 0 50. 24 10. 0 53. 17 0 51. 11 0 24835 10. 0 51. 11 0 24835 10. 0 56. 22 0 50. 24 10. 0 52. 25 10. 0 51. 11 0 24835 10. 0 56. 22 10. 0 51. 11 0 24836 10. 0 52. 35 10. 0 51. 11 0 24836 10. 0 52. 35 10. 0 52. 35 10. 0 51. 11 0 24836 10. 0 52. 35 10. 0 52. 35 10. 0 51. 11 0 24836 10. 0 52. 35 10. 0 52. 35 10.
0 51. 11 0 24836 10. 0 42. 20 10. 0 42. 40 10. 0 56. 22 10. 0 38. 11 0 261151 0 558376 16. 0 43. 17 0 26107 0 558319 17. 0 44. 0 025929 0 558319 18. 0 44. 50 0 225985 0 55248 0 552248 18. 0 44. 50 0 225985 0 55225 10. 0 51. 11 0 24836 0 56077 21. 0 49. 5 0 22404 0 55225 11. 0 24912 0 50. 51. 11 0 24912 0 50. 51. 11 0 56077 25. 0 52. 0 0 23494 0 55096 16. 0 48. 48 0 25388 0 56077 29. 0 46. 22 0 201501 0 54869 17. 0 48. 21 0 26164 0 56127 31. 0 45. 8 0 201489 0 54869 17. 0 48. 21 0 26496 0 56006 35. 0 42. 39 0 22264 0 54940 20. 0 49. 57 0 26496 0 56006 37. 0 42. 29 0 22375 0 54940 24. 0 51. 32 0 25433 0 56006 42. 0 42. 31 0 22375 0 54940 25. 0 51. 39 0 25498 0 56006 47. 0 48. 28 0 22375 0 54940 0 54904 0 54904 0 54904 | | 2. 30 | | 023407 | 99.9 | | | GH | | | | | | | | | | 4. 0. 0 23, 8. 2 0 0 0 25100 62 0 10. 0 56. 22 0 25708 0 55396 4. 2. 30 5, 67, 30 6. 0. 0 22, 55, 26 2, 30 6. 0. 0 22, 55, 26 0 23993 62 0 0 55758 62 0 14. 0 40, 35 026195 0 55333 6. 0. 0 22, 55, 26 2, 30 6. 0 0 23993 62 0 0 0 55317 0 55317 16. 0 43, 17 026107 0 55319 4. 0 53, 17 024405 6. 0 55317 0 55317 18. 0 44, 50 025985 0 55285 0 55248 8. 0 52, 35 024583 056077 0 56077 21. 0 49, 6 025420 0 55275 10. 0 51, 36 024851 056169 056077 22. 0 50, 24 025044 055225 0 502544 055225 13. 0 50, 33 025101 056077 056077 056077 25. 0 52, 0 023494 055096 0 55153 14. 0 49, 53 025101 056077 056077 056077 056077 056077 056077 056077 26. 0 51, 40 022874 055011 0 564669 16. 0 48, 48 025388 056077 056077 056060 056067 056066 | nr 91 | 9 57 90 | | | | 0 .058171 | 62 .0 | TD | | | 1 | | | | | | | 4. 2. 30 0 0025100 62 0 055758 62 0 12. 0 38. 11 026151 055876 055833 055833 055833 055833 055833 055833 055833 0558319 055818 0558248 0558248 0558248 0558248 0558248 0558248 0558248 0558248 0558248 0558258 0558248 0 | .pr. 21. | | 99 Q 9 | 1 11 | | 0.000171 | 02 0 | ٠ ٦ | | | 1 | | .,. | | | 1 | | 5. 57. 30 6. 0. 0 022.55. 26 055758 62 · 0 14. 0 40. 35 026195 055333 6. 0. 0 022.55. 26 023993 62 · 0 17. 0 44. 0 025929 055319 4. 0 53. 17 024405 055317 18. 0 44. 50 025985 055248 6. 0 53. 17 024405 055355 20. 0 47. 46 025708 055296 8. 0 52. 35 024583 056077 21. 0 49. 5 025420 055275 10. 0 51. 35 024851 056169 22. 0 50. 24 025044 055255 12. 0 51. 11 024836 056077 23. 0 51. 1 024712 055153 13. 0 50. 33 025101 056077 25. 0 52. 0 023494 055096 14. 0 49. 53 025101 056077 26. 0 51. 40 022874 055011 15. 0 49. 19 025386 056077 29. 0 | | | 20. 0. 2 | 0.025100 | 62 .0 | | 1 | | | | | | 1.1 | | | | | 6. 0. 0 22. 55. 26 2. 30 | | | | 0.020100 | 0- | 055758 | 62 .0 | | | | 1 . | II. | | | | | | 2, 30 023993 62·0 17. 0 44. 0 025929 055819 4. 0 53. 17 024405 055355 22. 0 047. 46 025708 055248 8. 0 52. 35 024583 056077 21. 0 49. 5 025420 055275 10. 0 51. 35 024851 056169 22. 0 50. 24 025044 055226 12. 0 51. 11 024835 056077 23. 0 51. 1 024712 055153 13. 0 50. 33 025101 056077 25. 0 52. 0 023494 055096 14. 0 49. 53 025101 056077 26. 0 51. 40 022874 055011 15. 0 49. 19 025366 056077 29. 0 46. 22 021501 054869 16. 0 48. 48 025388 056077 30. 0 46. 46 021489 054869 17. 0 48. 21 025464 056127 31. 0 45. 8 021489 054869 18. 0 48. 49 026496 056006 34. 0 42. 50< | | | 22, 55, 26 | (1) | 1.15 | | 1 | | | | | 026107 | | 055319 | | | | 6. 0 53. 17 024405 055355 20. 0 47. 46 025708 055296 8. 0 52. 35 024851 056077 21. 0 49. 5 025420 055275 10. 0 51. 35 024851 056169 22. 0 50. 24 025044 055225 12. 0 51. 11 024835 056077 25. 0 52. 0 024712 055153 13. 0 50. 33 025101 056077 25. 0 52. 0 023494 055096 14. 0 49. 53 025101 056077 26. 0 51. 40 022874 055011 15. 0 49. 19 025366 056077 29. 0 46. 22 021501 054869 16. 0 48. 48 025942 056127 30. 0 46. 46 021489 054869 17. 0 48. 21 026194 056027 32. 0 44. 5 021932 054869 18. 0 48. 49 026496 056006 35. 0 42. 39 022264 | * | | 4.3. | 023993 | 62 .0 | 48. § |) | | | | | 025929 | 1 . 5 | 1 | | | | 8, 0 52, 35 024583 056077 21. 0 49. 5 025420 055275 10. 0 51, 35 024851 056169 22. 0 50. 24 025044 055225 12. 0 51, 11 024835 056077 23. 0 51, 1 024712 055153 13. 0 50, 33 025101 056077 25. 0 52. 0 023494 055096 14. 0 49, 53 025101 056077 26. 0 51, 40 022874 055011 15. 0 49, 19 025366 056077 29. 0 46. 22 021501 054869 16. 0 48, 48 025388 056077 30. 0 46. 46 021489 054869 17. 0 48, 21 026164 056127 31. 0 45. 8 021489 054869 18. 0 48, 49 026496 056066 35. 0 42. 39 022264 054940 20. 0 49, 57 026496 056066 35. 0 42. 39 022264 054940 21. 0 50. 58 026385 056066 38. | | 4. 0 | 53. 17 | 024405 | Ţ. | 055317 | | 9 | | | | | | | | | | 10. 0 51.35 024851 056169 22. 0 50.24 025044 055225 12. 0 51.11 024835 056077 23. 0 51. 1 024712 055153 13. 0 50.33 025101 056077 25. 0 52. 0 023494 055096 14. 0 49.53 025101 056077 26. 0 51. 40 022874 055011 15. 0 49.19 025386 056077 29. 0 46. 22 021501 054869 16. 0 48.48 025388 056077 30. 0 46. 46 021489 054869 17. 0 48. 21 025942 056127 31. 0 45. 8 021489 054869 18. 0 48. 21 026164 056127 31. 0 45. 8 021489 054869 19. 0 48. 49 026496 056006 34. 0 42. 50 022264 054940 20. 0 50. 5 026496 056006 35. 0 42. 39 022264 054940 21. 0 50. 5 026496 056006 37. 0 | • | 6. 0 | 53. 17 | | | | | | | | | | 1 | | | | | 12. 0 51. 11 024835 056077 23. 0 51. 1 024712 055153 13. 0 50. 33 025101 056077 25. 0 52. 0 023494 055096 14. 0 49. 53 025101 056077 26. 0 51. 40 022874 055011 15. 0 49. 19 025366 056077 29. 0 46. 22 021501 054869 16. 0 48. 48 025388 056077 30. 0 46. 46 021489 054869 17. 0 48. 21 025942 056127 31. 0 45. 8 021489 054869 18. 0 48. 21 026164 056127 32. 0 44. 5 021932 054954 19. 0 48. 49 026496 056006 34. 0 42. 50 022264 054940 20. 0 49. 57 026496 056006 37. 0 42. 29 022375 054940 23. 0 51. 28 02608 05606 38. 0 42. 22 022375 054940 24. 0 51. 32 025765 05606 42. 0 | | 1 | | | | | | | | | | | | | | | | 13. 0 50. 33 025101 056077 25. 0 52. 0 023494 055096 14. 0 49. 53 025101 056077 26. 0 51. 40 022874 055011 15. 0 49. 19 025386 056077 29. 0 46. 22 021501 054869 16. 0 48. 48 025388 056077 30. 0 46. 46 021489 054869 17. 0 48. 21 025942 056127 31. 0 45. 8 021489 054869 18. 0 48. 21 026164 056127 32. 0 44. 5 021932 054969 19. 0 48. 49 026496 056006 34. 0 42. 50 022264 054940 20. 0 49. 57 026496 056006 35. 0 42. 39 022264 054940 21. 0 50. 5 026496 056066 37. 0 42. 29 022375 054940 22. 0 50. 58 026385 056066 38. 0 42. 22 022375 054940 24. 0 51. 32 025765 056066 42 | | | | | 1 | | | | | | | | | | | 1 | | 14. 0 49. 53 025101 056077 26. 0 51. 40 022874 055011 15. 0 49. 19 025366 056077 29. 0 46. 22 021501 054869 16. 0 48. 48 025388 056077 30. 0 46. 46 021489 054869 17. 0 48. 21 025942 056127 31. 0 45. 8 021489 054869 18. 0 48. 21 026164 056127 32. 0 44. 5 021932 054954 19. 0 48. 49 026496 056006 34. 0 42. 50 022264 054940 20. 0 49. 57 026496 056006 35. 0 42. 39 022264 054940 21. 0 50. 5 026496 056006 37. 0 42. 29 022375 054940 22. 0 50. 58 026385 056056 38. 0 42. 22 022375 054940 24. 0 51. 32 025765 056006 42. 0 42. 31 022375 054940 25. 0 51. 32 025499 056006 4 | | | | | 10 | | 1 | | | | | | | | | | | 15. 0 49. 19 025366 056077 29. 0 46. 22 021501 054869 16. 0 48. 48 025388 056077 30. 0 46. 46 021489 054869 17. 0 48. 21 025942 056127 31. 0 45. 8 021489 054869 18. 0 48. 21 026164 056127 32. 0 44. 5 021932 054954 19. 0 48. 49 026496 056006 34. 0 42. 50 022264 054940 20. 0 49. 57 026496 056006 35. 0 42. 39 022264 054940 21. 0 50. 5 026496 056006 37. 0 42. 29 022375 054940 22. 0 50. 58 026385 056056 38. 0 42. 22 022375 054940 23. 0 51. 28 026208 056006 42. 0 42. 31 022375 054940 24. 0 51. 32 025765 056006 47. 0 43. 28 022375 054904 25. 0 51. 23 025438 056006 4 | | | | | | | l | | | | | 023494 | 1 | | İ | 1 | | 16. 0 48. 48 025388 056077 30. 0 46. 46 021489 054869 17. 0 48. 21 025942 056127 31. 0 45. 8 021489 054869 18. 0 48. 21 026164 056127 32. 0 44. 5 021932 054954 19. 0 48. 49 026496 056006 34. 0 42. 50 022264 054940 20. 0 49. 57 026496 056006 35. 0 42. 39 022264 054940 21. 0 50. 5 026496 056006 37. 0 42. 29 022375 054940 22. 0 50. 58 026385 056056 38. 0 42. 22 022375 054940 23. 0 51. 28 026208 056006 40. 0 42. 22 022375 054940 24. 0 51. 32 025765 056006 42. 0 42. 31 022375 054940 25. 0 51. 32 025499 056006 47. 0 43. 28 022375 054904 27. 0 51. 23 025438 056006 4 | | | | | 1.5 | | 1 | | | | | | | | | | | 17. 0 48. 21 025942 056127 31. 0 45. 8 021489 054869 18. 0 48. 21 026164 056127 32. 0 44. 5 021932 054954 19. 0 48. 49 026496 056006 34. 0 42. 50 022264 054940 20. 0 49. 57 026496 056006 35. 0 42. 39 022264 054940 21. 0 50. 5 026496 056006 37. 0 42. 29 022375 054940 22. 0 50. 58 026385 056056 38. 0 42. 22 022375 054940 23. 0 51. 28 026208 056006 40. 0 42. 22 022375 054940 24. 0 51. 32 025765 056006 42. 0 42. 31 022375 054940 25. 0 51. 32 025499 056006 47. 0 43. 28 022375 054904 27. 0 51. 23 025438 056006 49. 0 44. 21 022596 054904 | | | | | | | 1 | | | | | | | | | | | 18. 0 48. 21 026164 056127 32. 0 44. 5 021932 054954 19. 0 48. 49 026496 056006 34. 0 42. 50 022264 054949 20. 0 49. 57 026496 056006 35. 0 42. 39 022264 054940 21. 0 50. 5 026496 056006 37. 0 42. 29 022375 054940 22. 0 50. 58 026208 056056 38. 0 42. 22 022375
054940 23. 0 51. 28 026208 056006 42. 0 42. 31 022375 054940 24. 0 51. 32 025765 056006 47. 0 43. 28 022375 054904 25. 0 51. 32 025499 056006 47. 0 43. 28 022375 054904 27. 0 51. 23 025438 056006 49. 0 44. 21 022596 054904 | | | | | | | | | | | | | 1 | | | | | 19. 0 48, 49 026496 056006 34. 0 42, 50 022264 054940 20. 0 49, 57 026496 056006 35. 0 42, 39 022264 054940 21. 0 50. 5 026496 056006 37. 0 42, 29 022375 054940 22. 0 50. 58 026208 056056 38. 0 42, 22 022375 054940 23. 0 51, 28 026208 056006 40. 0 42, 22 022375 054940 24. 0 51, 32 025765 056006 42. 0 42, 31 022375 054940 25. 0 51, 32 025499 056006 47. 0 43, 28 022375 054904 27. 0 51, 23 025438 056006 49. 0 44, 21 022596 054904 | | 18. 0 | | | | | | | | | | | 12.81 | 054954 | | | | 20. 0 49. 57 026496 056006 35. 0 42. 39 022264 054940 21. 0 50. 5 026496 056006 37. 0 42. 29 022375 054940 22. 0 50. 58 026385 056056 38. 0 42. 22 022375 054940 23. 0 51. 28 026208 056006 42. 0 42. 22 022375 054940 24. 0 51. 32 025765 056006 42. 0 42. 31 022375 054940 25. 0 51. 32 025499 056006 47. 0 43. 28 022375 054904 27. 0 51. 23 025438 056006 49. 0 44. 21 022596 054904 | | | | | | | | | | | | | 1 | 054940 | | | | 21. 0 50. 5 026496 056006 37. 0 42. 29 022375 054940 22. 0 50. 58 026385 056056 38. 0 42. 22 022375 054940 23. 0 51. 28 026208 056006 40. 0 42. 22 022375 054940 24. 0 51. 32 025765 056006 42. 0 42. 31 022375 054940 25. 0 51. 32 025499 056006 47. 0 43. 28 022375 054904 27. 0 51. 23 025438 056006 49. 0 44. 21 022596 054904 | | | | | 100 | | | | | | | | | | | | | 22. 0 50. 58 026385 056056 38. 0 42. 22 022375 054940 23. 0 51. 28 026208 056066 49. 0 42. 22 022375 054940 24. 0 51. 32 025765 056006 42. 0 42. 31 022375 054940 25. 0 51. 32 025499 056006 47. 0 43. 28 022375 054904 27. 0 51. 23 025438 056006 49. 0 44. 21 022596 054904 | | | | 026496 | | | | | | | 1 | 022375 | | | İ | | | 23. 0 51. 28 026208 056006 49. 0 42. 22 022375 02375 054940 24. 0 51. 32 025765 056006 42. 0 42. 31 022375 054940 25. 0 51. 32 025499 056006 47. 0 43. 28 022375 054904 27. 0 51. 23 025438 056006 49. 0 44. 21 022596 054904 | | 22. 0 | | | 10 | | | | | 38. | | | and engages, on | | | | | 24. 0 51. 32 025765 056006 42. 0 42. 31 022375 054940 25. 0 51. 32 025499 056006 47. 0 48. 28 022375 054904 27. 0 51. 23 025438 056006 49. 0 44. 21 022596 054904 | | | | | 12 | 1 | 1 | | 1 | | | | | | .4: V | | | 27. 0 51. 23 025438 056006 49. 0 44. 21 022596 054904 | | 24. 0 | | | anis j | | 1 | | 4 | | | | 454 T. 17 | | | 1 | | 1 | | | | į. | | | 1 | | | | | | | | | | | | · . | | | | | t . | 1 | | | | | | | | | | | | 1 | 29. 0 | 50. 59 | 025278 | Alb. | 055983 | 1 | | | 51. 0 | | 022818 | 1. N. 1. | | | T | A charge of the Paring Leading to the mount of the Leading W. gare a forth the EC, and the charge and the common of the care and the charge of entres were communically the second control of the control of the control of the engineer energy correspondent and the control of the energy control of contro | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | ermome
orizontal
gnetome | Vertical Force Read- ing in parts of the whole Vert. Force cor.forTemp. | nermome
artical Fo | Observers. | Time (
Rec
D | ingen M
Astrono
koning)
eclinationservation | mical
of
on | Western Declination. | Horizontal Force Read- ing in parts of the whole Hor. Force cor, for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | |--|----------------------|---|--------------------------------|---|-----------------------|------------|--------------------|--|-------------------------|----------------------|--|---|---|---|------------| | d h m s | 0 / # | | 0 | | 0 | | | d h | m 8 | 0 1 " | | 10 m | | .0 | 1 | | Apr. 21. 7.53. 0 | 22, 46, 5 | 0 .022862 | | 0 .054868 | | L | May | 7. 16. 3 | 88. 0 | 22. 48. 33 | 0 .026593 | | 0 .052542 | | T : | | 55. 0 | 46. 38 | 022929 | | 054847 | | | | | 10. 0 | 48. 10 | 026416 | | 052578 | | | | 56. 0 | | 022929 | | 054847 | | l | 1 | | 12. 0 | 47. 26 | 026372 | | 052634 | | | | 7. 57. 30 | | | | 054878 | 61 .2 | 1 | 1 | | 14. 0 | 47. 8 | 026306 | 2.5 | 052661 | | | | 8. 0. 0 | | 000500 | 07.5 | | | | | | 17. 0 | 46. 26
45. 43 | 026250
026250 | | 052697 | | | | 2. 30 | 1 | | 61 .7 | 1 | | ĺ | 11 | | 50. 0
54. 0 | 44. 55 | 026250 | | 052804 | | | | 6. 0
8. 8. 0 | 46. 36
46. 48 | 022362
022362 | | 054754
054717 | | L | | | 59. 0 | 43. 50 | 026126 | 1 | 052782 | | | | 9. 0. 0 | 45. 13 | 022549 | | 054717 | | G | | 17. | | 42.58 | 026114 | | 052818 | | | | 15. 0 | 45. 52 | 022682 | | 054596 | | Ŭ | | | 9. 0 | 42. 19 | 026114 | | 052809 | | | | 30. 0 | 45. 32 | 022172 | | 054539 | | | | | 4. 0 | 42. 5 | 026114 | | 052830 | | | | 9. 57. 30 | | | | 054362 | 60 .9 | | | 1 | 9. 0 | 36.47 | 026034 | | 052807 | | | | 10. 0. 0 | 45.22 | | - | | | | | | 29. 0 | 41. 33 | 026022 | | 052784 | | . | | 2. 30 | | 022203 | 60 .5 | | | G | | | 7. 30 | | f 74 | 100 | 052454 | 61 .0 | 1 | | | | | | | | | | 18. | | 22. 46. 16 | | | | | | | Apr. 29. 9. 57. 30 | 00 44 00 | | | 0 .053477 | 61.8 | G H | ì | | 2.30 | ٠. | 026449 | 61 .0 | 051690 | gn •n | . | | 10. 0. 0 | 22. 44. 32 | 0.007000 | 01.0 | · | | | i | 19. 5 | 67. 30
0. 0 | 09 9 44 | | | 051638 | 60.0 | ' | | 10. 2.30
11.57.30 | { | 0 ·027269 | 61 .0 | 053057 | 60 •2 | G H | | | 2. 30 | 23. 3.44 | 020699 | 59 .8 | | | | | 12. 0. 0 | 34. 47 | | | 000007 | 00 2 | - | | | 3. 0 | 3, 45 | 020699 | 00 0 | 051638 | | | | 2. 30 | 01, 1, | 025415 | 59 ·8 | | | | | | 5. 0 | 3. 43 | 020809 | | 051588 | | | | 3. 30 | 34. 44 | 025491 | | 053092 | | | | | 7. 0 | 3.43 | 020920 | | 051538 | | | | 8. 30 | 35. 29 | 025589 | | 053084 | | | | | 9. 0 | 3. 19 | 021097 | ĺ | 051538 | | | | 11. 30 | 35. 29 | 025589 | | 053084 | | | | | 2. 0 | 3. 39 | 021085 | | -051517 | * | | | 14.30 | 35. 29 | 025466 | | 053062 | | | | | 4. 0 | 1. 52 | 020664 | | 051517 | | 1. | | 18. 30 | 35. 10 | 025466 | | 053004 | | | | | | 23. 1. 0 | 020133 | 4. | 051517 | | - | | 12. 22. 30 | 35. 4 | 025521 | | 052988 | • • • | | | | | 22. 59. 59 | 020000 | | 051517
051474 | | | | 13. 57. 30 | 97 90 | | | 052044 | 58 ·2 | 1 | | | 20. 0
22. 0 | 59. 40
59. 6 | 019912
019779 | | 051474 | | | | 14. 0. 0
2. 30 | 37. 20 | 023232 | 57 .8 | | | | | | 24. 0 | 57. 9 | 019778 | | 051446 | | ' | | 2. 00 | | 020202 | 010 | | | L | | | 26. 0 | 56. 41 | 019248 | | 051446 | | | | May 7. 13. 57. 30 | | | | 0 .052576 | 62 .0 | тр | | | 8. 0 | 55, 30 | 018982 | | 051425 | | | | 14. 0. 0 | 22.38. 3 | | | | | | | | 30. 0 | 54.44 | 018362 | - | 051375 | l | | | 14. 2.30 | | 0 .025581 | 62 .2 | | | | | 3 | 32. 0 | 55. 9 | 018295 | | 051375 | į | | | 15. 57. 3 0 | | | | 052753 | 62 .0 | | | _ | 34. 0 | 55. 9 | 018295 | | 051375 | | | | 16 . 0 . 0 | 55. 54 | | | | | | | | 36. 0 | 54. 55 | 019362 | | 051375 | | L | | 2.30 | 57 00 | | 62 ·2 | 050850 | | | | | 9. 0 | | 018362 | | 051375
052314 | | T | | 3. 0
5. 0 | 57. 28
58. 37 | 025980
025967 | | 052753
052753 | | | | | 54. 0
57. 30 | 22. 57. 38 | 016366 | | | 60 .0 | G | | 7. 0 | 59. 31 | 025967 | | 052730 | | | | | | 23. 2.12 | | | ,002014 | 00 0 | | | 9. 0 | 56. 23 | 025967 | 1 | 052709 | | | | | 2. 30 | | 017230 | 59 - 5 | | | | | 12. 0 | 55. 54 | 025955 | | 052695 | | | | | 7. 30 | | and I a | | 053736 | 61 .0 | | | 15. 0 | 55. 17 | 026110 | | 052659 | | | May | 8, 0. | 0. 0 | 22. 54. 21 | 1 | . 3/3 | | | | | 18. 0 | 54. 40 | 026177 | | 052565 | | | | | 2. 30 | | 018239 | 60 .2 | | | | | 22. 0 | 54. 10 | 026177 | | 052544 | | | | | 6. 0 | 53. 6 | Ø18588 | 1. 1 | 053604 | | | | 26. 0 | 53, 25 | 026319 | | 052544 | | | | | 8. 0 | 53. 1 | 018583 | N | 053675 | | | | 28. 0 | 52. 22 | 026319 | | 052494 | | | | | 0. 0 | 52. 16 | 018649 | 3.5 | 053661 | | | | 30. 0 | 51. 36 | 026429 | | 052471 | | | | | 21. 0 | 53, 4 0 | 019162 | e vy | 053912 | | | | 32. 0 | 49.35 | 026606 | | 052471 | | | | | 31. 0
43. 0 | 54. 14
55. 54 | 018909
019376 | | 054063
054618 | | 1 | | 34. 0
36. 0 | 49. 19
49. 0 | 026593
026593 | | 052507
052542 | | | 1 | | 13. 0
17. 3 0 | 00.04 | A199 10 | 1.0 | 056245 | | | | 00. 0 | -10. U | 040000 | | | | 1 | 1 | 7 | ., | 1. | | 1 to 15 | | l | I | April 29^d. A change of 9'. 45" having taken place in the position of the Declination Magnet between 10^h and 12^h, extra observations were commenced. May 7^d. A change of 17'.51" having taken place in the position of the Declination Magnet between 14^h and 16^h, extra observations were commenced. | Göttinge
Time (Astr
Reckoni
Declin
Observe | onomical
ng) of
ation | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor. for Temp. | ig Te | Observers. | Time (As
Recko
Decl | en Mean
tronomical
ning) of
ination
vation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.
for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor, for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | |--|-----------------------------|-------------------------|---|---|--|--------|------------|---------------------------|---|-------------------------|---|---|--|---|------------| | | h m s | 0 1 " | | 0 | | 0 | | | h m s | 0 / // | | 0 : | 9 | : O | | | May 8. | 1. 50. 0 | 22. 53. 4 | | | 100 | 35 T . | G H | June 24. | | 22.59.53 | | | | . • | G I | | | 52.30 | | 0 .021749 | | | | | | | | [| | | | | | | 1. 57. 30 | | Fig. | | 0 .055281 | 62 .0 |] | ļ | 30. 0 | 2. 13 | | | | | (| | | 2. 0. 0 | 52.26 | | | | | | | 31. 0 | 5. 21 | | | | | | | , | 2. 30 | | 022413 | 62 .0 | 055045 | | | | 33. 0 | 8. 8
10. 21 | | | | | | | | 7.30 | | | | 055245 | | | | 35. 0
- 36. 0 | 11.37 | | | | | | | | 10. 0 | 51, 21 | 0003.48 | | | l | | | 38. 0 | 13. 4 | | | | | | | | 12. 3 0 | 1 | 022147 | | | | G H | | 40. 0 | 1: | 1 | | | | 1 | | I 10 | 0 50 00 | | | | 0 .053309 | 61 .0 | T D | | 41. 0 | 14. 49 | | | | | 1 | | June 10. | 9. 97. 30 | 22. 46. 11 | | | 0 000000 | 01 0 | 1 5 | 1 | 43. 0 | 17. 17 | | | | | 1 | | | 0. 0. 0
0. 2.3 0 | 22. 40. 11 | 0.005105 | 61 0 | } | İ | тр | | 45. 0 | 19. 11 | | ĺ | | | Ì | | | 1. 57. 30 | | 0 -025165 | OI U | 053170 | 60 .7 | | | 46. 0 | 19.43 | | l | | | 1 | | | 2. 0. 0 | 37. 6 | | | 000170 | 00 , | | | 47. 0 | 1 | | <u> </u> | | | | | 4 | 2. 30 | 01. 0 | 027778 | 61 .0 | | 1 | : | | 48. 0 | 20. 45 | 1 | |) | - | 1 | | | 9. 30 | 43. 56 | 030245 | 0. | 053242 | 1 | | | 50. 0 | 21. 6 |] | |] | | | | | 10. 30 | 44. 53 | 030245 | | 053206 | | | | 6, 51, 0 | 21.17 | 1 | | | | | | | 11. 30 | 45. 54 | 030245 | | 053184 | } | | | 7. 20. 0 | 19. 39 | 1. | } | | | G I | | | 12. 30 | 46. 46 | 030245 | | 053192 | 1 | | 1 1 2 11 | 7. 57. 30 | . " | 1 | 1 | 0 .052416 | 69 .0 | L | | | 13. 30 | 47. 37 | 030200 | | 053164 | [| | Į. | | 23. 8.33 | | ł | | | - | | | 14.30 | 48. 22 | 030024 | | 053121 | | 1 | | 2. 30 | | 0 027126 | 69 .5 | | | L | | | 16. 30 | 49. 38 | 029669 | | 053050 | 1 | | | | | <u> </u> | | | | - | | | 19.30 | 50. 32 | 028873 | | 052979 | } | | June 29. | 3. 57. 3 0 | | | | 0:052446 | 74 .7 | T | | | 21.30 | 50.23 | 028253 | | 052908 | 1 | 1 | | | 22, 47, 28 | | | | | 1 | | | 24.3 0 | 49. 34 | 027743 | | 052836 | ĺ | 1 | | 4. 2.30 | | 0 .025606 | 74 .4 | 0.50000 | | | | | 26. 3 0 | 49.55 | 027212 | | 052765 | [| | | 5. 57. 30 | | | 1 | 052336 | 76 .0 | | | | 29.30 | 49. 13 | 026911 | | 052730 | } | | | | 22, 53, 25 | 005004 | 70.0 | | | 1 | | | 34. 3 0 | 48. 2 | 026247 | | 052694 | j | | 5.4 | 6. 2. 3 0 | | 025664 | 76.0 | 051771 | | } | | | 39, 30 | 47.26 | 026247 | | 052694 | Į | | | 7. 14. 0 | 1 | 025650 | ļ | 051771
051771 | | } | | - F | 44, 30 | 47.14 | 025583 | | 052717 | | | | 16. 0 | | 025560
025636 | | 051746 | | | | | 49.30 | 46. 27 | 025349 | | 052660 | | | | 19. 0 | | 029030 | } | 001740 | | | | | 2. 54. 30 | 45.36 | 025172 | | 052703 | 01.0 | | | 24. 0 | | 025593 | | 051669 | | | | | 3. 57. 30 | 40.07 | | | 052989 | 61 .0 | 1 | | 29. 0
34. 0 | 1 | 020000 | 1 | 001000 | | | | | 4. 0. 0 | 42. 31 | 004400 | e0 .5 | | 1 | G H | | 46. 0 | | | 1 | | Ì | | | | 2. 30 | | 024439 | 60 .5 | | | G II | | 7.57.30 | | | | 051491 | 73 .0 | | | nne 24 | 3 57 30 | 22. 40. 16 | | | 0 .052644 | 67 .6 | TD | | 8. 0. 0 | | | 1 | | 1 | | | | 4. 0. 0 | | 0 .026743 | 66 ·U | 0 002011 | 0.0 | | | 2.30 | | 025493 | 73 .0 | | 1 | T 1 | | | 4. 2.30 | | 0 020170 | 05 0 | 18 16 3 | 1 | T D | | | ļ | | | | <u> </u> | -} | | | 5. 57. 30 | | 1 | | 052558 | | | | 1. 47. 30 | li. | . | | 0.052065 | | G 1 | | | 6. 0. 0 | 40. 32 | | | 197 | " | | | 50. 0 | 22, 46, 27 | lan i | | 12 (1) | | 1 | | | 2. 30 | | 026948 | 69 .5 | | 1 | | | 52 , 30 | | 0 025731 |] | 1.0 | | 1 | | | 5. 0 | 40. 13 | | | : . | | | | 1.57.30 | | le estados | No. 1 | 052044 | 68 .2 | ! | | , | 10. 0 | 43. 53 | | | \$ 18° | | | | 2. 0. 0 | | Takke of the co | | , | | 1 | | | 15. 0 | 45. 9 | | | | l | | | 2. 30 | | 026174 | 70 .3 | 22222 | | 1 | | | 18. 0 | 50. 18 | | ŀ | 12 4 | l | | | 7. 30 | | * ÷ | 1 | 052008 | | | | * * | 20. 0 | 51. 15 | | . % | . Sec. 1 | i | | | | 22, 45, 59 | | 1 | . 4 4 7 77 | | | | | 21. 0 | 52.24 : | | | | 1 | | | 2. 12. 30 | 100 | 026262 | | 050000 | m a - = | G I | | i | 2 3. 0 | 54. 6 | | | | | | | 3. 57. 30 | | | - | 052306 | 72 .0 | L | | | 24. 0 | 58. 52 | · . | . + | 100 | | | | 4. 2.30 | | 026414 | 72 .0 | 05000- | | 1 | | | 25. 0 | 58.23 | | 1 | le a le | į. | 1 | 1 | 4.0 | 1 | 026414 | { | 052331 | 1 | 1 | June 10^d. A change of 9'.5" having taken place in the position of the Declination Magnet between 10^h and 12^h, extra observations were commenced. June 24^d. A considerable change having taken place in the position of the Declination Magnet between 6^h and 6^h. 18^m, extra observations were commenced. June 29^d. A considerable change having taken place in the position of the Declination Magnet between 4^h and 6^h, extra observations were commenced, June 30^d. Observations were made of the Declination Magnet in the usual way between June 30^d. 4^h and July 1^d. 0^h; but before July 1^d. 0^h it was found that the mirror for the photographic apparatus, carried by the Declination Magnet, touched a part of the fixed stand: the observations between June 30^d. 4^h and July 1^d. 0^h are therefore rejected. | | | | | ctraordinary | | | ns of June 30 and Ju | ly 9. | | | | | | |--------------------------------------|--------------|---------------------------|---|------------------------------|-------------------------|------------|--------------------------------------|------------------|---------------------------|---|---------------------------|---|-----------| | Göttingen Mean
Time (Astronomical | Western | Horizontal
Force Read- | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read- | ter of
orce
eter. | rs. | Göttingen Mean
Time (Astronomical | Western | Horizontal
Force Read- | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read- | ter of
orce
eter. | 2 | | Reckoning) of | 17 CDUCIA | ing in parts | ntal | ing in parts | M Z M | ry | Reckoning) of | Western | ing in parts | o train | ing in parts of the whole | ome
ti F | 1 | | Declination
Observation. | Declination. | Hor. Force cor.for Temp. | Therm
Horizo
Magnet | Vert. Force
cor.for Temp. | 1 E E E | Observers. | Declination
Observation. | Declination. | Hor. Force cor.for Temp. | Therm
Horizo
Magnet | Vert. Force cor.for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers | | d h m ● | 0 / " | | 0 | | 0 | | d h m s | 0 / // | | | | 0 | | | June. 30. 4. 7. 0 |) | 0.026348 | 1 | 0 .052403 | | L | July 9. 14. 22. 30 | 22, 39, 5 | 0 .007273 | | 0 .045126 | 4 1 | L | | 9. 0 | | 026539 | | 052360 | l | - ' | 24, 30 | 39. 51 | 007450 | | 045668 | 5 | | | 11. 0 | | 026649 | 1 | 052403 | 1 | | 26. 30 | 40.34 | 008380 | ļ | 045668 | | | | 14. 0 | | 026870 | | 052345 | | | 29. 30 | 41. 13 | 008921 | , | 045466 | | | | 16. 0 | | 026759 | | 052331 | | | 31. 30 | 41.45 | 009031 | | 045302 | 175 | | | 18. 0 | İ | 026649 | 1 | 052345 | 1 | | 34. 30 | 39. 58 | 009474 | 1 | 045288 | | | | 20. 0 | | 026729 | | 052331 | | | 35, 30 | 39. 11 | 009917 | | 045501 | | | | 23. 0 | | 026773 | } | 052296 | | | 36. 3 0 | 38. 24 | 010847 | 1 | 045644 | ' | 1 | | 27. 0 | | 026884 | | 052331 | | | 37. 30 | 37. 44 | 014123 | ł | 045843 | | 1 | | 29. 0 | | 026707 | | 052331 | | | 39. 30 | 37. 0 | 012352 | | 046142 | | 1 | | 32. 0 | | 026619 | | 052288 | | | 40. 30 | 36, 43 | 013018 | | 046427 | | | | 4.34. 0 | | 026486 | | 052322 | | | 41. 30 | 36. 43 | 015009 | l | 046783 | | | | 5. 34. 0 | | 025656 | | 052159 | | | 42.30 | 36. 25 | 015230 | | 046142 | | | | 45. 0
48. 0 | | 025169
025184 | | 052123 | | | 43.30 | 36. 25 | 015673 | · · | 046925 | | | | 53. 0 | | 025184 | | 052123 | | | 44.30 | 34. 41 | 015784 | } | 046901 | | | | 56. 0 | | 025140 | | 052148 | | | 45. 30
47. 30 | 34. 2 | 016292 | 1 | 046901
047008 | | | | 5. 57. 0 | | 020196 | | 052148
052148 | 70.5 | | 47. 30
48. 30 | 32. 43
31. 40 | 016559 | 1 | 047008 | | | | 6. 2. 30 | | 025198 | 72.8 | 002148 | 72 ·5 | L | 49, 30 | 31. 40 | 017444
018095 | 1 | 047400 | | | | | | 020100 | | | | | 50, 30 | 30. 30 | 018537 | | 047364 | | | | June 30. 13. 57. 30 | | | | 0 .051581 | 68 • 5 | G H | 50. 30
51. 30 | 30. 48 | 018869 | 1 | 047613 | | | | 14. 2.30 | ļ | 0 .024665 | 67 .2 | 0 001001 | 00 0 | ٠. ا | 52. 30 | 31. 7 | 019245 | | 047756 | | | | 15. 57. 30 | | | | 051431 | 6 7 ·0 | | 53. 30 | 31. 34 | 020420 | 1 | 047863 | | | | 16. 2.30 | | 025367 | 66 .0 | | 0. 0 | | 54. 30 | 31.42 | 019776 | l | 048040 | | | | 5. 0 | | 025532 | | 051467 | | } | 55. 30 | 32. 0 | 020707 | 1 | 048197 | | | | 9. 0 | | 025576 | | 051479 | | | 56. 30 | 32, 52 |
021084 | | 048396 | | | | 14. 0 | | 025674 | | 051443 | | | 57.30 | 33, 24 | 021194 | | 048432 | | | | 19. 0 | | 025784 | | 051441 | | | 58.30 | 34. 3 | 021527 | | 048539 | | 1 | | 24. 0 | | 025585 | | 051426 | | | 14. 59. 30 | 34. 24 | 021637 | | 048553 | | | | 29. 0 | | 025770 | | 051417 | | | 15. 0.30 | 34. 38 | 021748 | | 048610 |] | | | 34. 0 | | 025814 | | 051409 | | 1 | 1.30 | 34. 19 | 021858 | | 048695 | | | | 39. 0 | | 025991 | | 051395 | | | 2. 30 | 34. 19 | 021858 | } | 048752 | • | 1 | | 44. 0 | | 025978 | | 051378 | | | 3. 30 | 34. 19 | 021748 | | 048738 | İ | | | 52. 0 | | 025978 | | 051371 | | | 4.30 | 34. 19 | 021637 | | 048738 | | | | 16. 59. 0 | | 025965 | | 051371 | | | 5. 30 | 33. 59 | 021637 | | 048717 | | | | 17. 5. 0 | | 025921 | | 051371 | | | 6. 30 | 33. 26 | 021527 | { | 048681 | | | | 9. 0
24. 0 | | 025952 | | 051338 | | | 7. 30 | 33, 40 | 021624 | | 048681 | · ′ | 1 | | 17. 57. 30 | | 026174 | | 051372 | 00.0 | | 8.30 | 32. 38 | 021624 | | 048695 | | | | 18. 2.30 | | 024350 | 85 .0 | 051407 | | | 9.30 | 32. 21 | 021491 | | 048681 | | + | | 10. 2.00 | | 024550 | 00 0 | | | G H | 10.30 | 31. 50 | 021359 | | 049681 | | | | uly 9. 11. 57. 30 | | | | 0 .051109 | 70 .0 | L | 11. 30
12. 30 | 31. 19
30. 23 | 021181 | | 048610
048681 | | 1 | | 12. 0. 0 | 22, 30, 14 | | | 0 001109 | 40.0 | L | 12. 30
13. 30 | í | 021181 | l | 048681 | | | | 12. 2.30 | | 0 .022279 | 70 .0 | | | | 13. 30
14. 30 | 29. 14
28. 32 | 021403 | | 048752 | | | | 13. 57. 30 | l | - 52210 | 0 | 045763 | 68 .0 | | 14, 30
15, 30 | 28. 32
28. 6 | 021514
021735 | | 048752 | | | | 14. 0. 0 | 32. 44 | | | 0.0100 | 000 | | 16. 30 | 28. 25 | 021733 | | 048732 | | | | 2. 30 | 1 | 005516 | 68 .2 | | | ľ | 17. 30 | 29. 23 | 021956 | 1 | 048824 | | 1 | | 14. 9.30 | 33. 36 | 006166 | | 045682 | | | 18.30 | 30. 0 | 021403 | 1 | 048824 | | 1 | | 11. 30 | 34. 1 | 006276 | | 045561 | | | 19. 30 | 30. 0 | 021071 | | 048800 | | 1 | | 14.00 | 34. 8 | 004395 | | 045312 | | | 20. 30 | 29. 39 | 020960 | | 048800 | | 1 | | 14. 30 | 0 0 , | | | | | | #U. 11U. | | | | U-20000 | | | July 9d. A considerable change having taken place in the position of the Horizontal Force Magnet between 12h and 14h, extra observations were commenced. | July 9. 15. 57. 30 16. 0. 0 2. 30 22. 38. 9 0 0 019161 67 6 0 0 049630 67 5 L Aug. 4. 19. 29. 30 22. 33. 34. 30 33. 33. 34. 30 34. 30 35. 34. 30 36. 30 37. 20 14. 0. 0 22. 46. 54 14. 2. 30 15. 57. 30 16. 0. 0 37. 23 2. 30 2. 3 | 11 020636
46 020733
36 020911
33 020955
35 021243
3 021132
16 021119
55 021230
15 020854
39 021575
43 020512
9 020246
14 020259
14 020481 | 64 · 0 | 050651
050901
050865 | 64 .0 | | |--|--|--------|--|-------|-----| | July 9. 15. 57. 30 | 11 020636
46 020733
36 020911
33 020955
35 021243
3 021132
16 021119
55 021230
15 020854
39 021575
43 020512
9 020246
14 020259
14 020481 | 64 · 0 | 050176
050461
050461
050488
050651
050708
050722
050736
050651
050901
050865 | 64 •0 | | | July 11. 13. 57. 30 14. 0. 0 22. 46. 54 0 ·050723 75 · 0 G H 42. 30 35. 44. 30 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. | 33 | 64 -0 | 050488
050651
050708
050722
050736
050651
050901
050865 | 64 ·0 | | | 14. 2. 30 15. 57. 30 16. 0. 0 37. 23 0.23456 73. 0 0.51120 73. 5 51. 30 39. 0 37. 24 0.23442 0.51186 0.51186 0.51243 0.51246 0.51243 0.51246 0.51243 0.51262 0.51278 0.51278 0.51262 0.51278 0.51262 0.51278 0.51262 0.51263 0.51262 0.51263 0.51264 0.23605 0.51264 0.51262 0.51264 0.23605 0.51264 0.51262 0.51264 0.23688 0.51227 0.51366 0.51266 | 16 021119 55 021230 15 020854 39 021575 43 020512 9 020246 14 020259 14 020481 | 64 .0 | 050722
050736
050651
050901
050865 | 64 •0 | | | 2. 30 | 15 021230
15 020854
39 021575
43 020512
9 020246
14 020259
14 020481 | | 050651
050901
050865 | | | | 24. 0 36. 45 023841 051246 051243 29. 0 37. 38 023885 023885 023885 023827 051278 32. 0 36. 46 023605 34. 0 36. 25 023724 051262 39. 0 37. 10 023688 051227 051167 051326 71. 57. 30 18. 0. 0 36. 47 2. 30 71. 5 73. 30 18. 0. 0 30. 31 2. 30 17. 57. 30 18. 0. 0 30. 31 2. 30 17. 57. 30 18. 0. 0 30. 31 2. 30 18. 0. 0 30. 32. 15 018333 0. 32. 15 018333 0. 32. 15 018388 049367 9. 30 32. 8 018222 049401 11. 30 32. 45 018509 049415 16. 30 30. 52 018111 049415 16. 30 30. 52 018111 049415 18. 30 30. 40 018333 03. 40 018333 03. 40 018333 03. 40 018333 03. 40 018333 03. 40 018333 03. 40 018333
03. 40 018333 03. 40 018333 03. 40 018333 03. 40 018333 03. 40 018333 03. 40 018333 03. 40 018333 03. 40 018333 03. 40 018333 03. 40 018333 03. 40 018333 03. 40 018333 03. 40 018333 03. 40 018333 03. 40 018333 03. 40 018333 04. 40 018330 04. 40 018330 04. 40 018330 04. 40 018330 04. 40 018330 04. 40 018330 04. 40 018330 04. 40 018330 04. 40 018330 04. 40 018330 04. 40 018330 04. 40 018330 04. 40 018330 04. 40 018330 04. 40 018330 04. 40 018320 04. | 43 020512
9 020246
14 020259
14 020481 | | 050865 | | Т | | 32. 0 | 14 020259
14 020481 | | 050865 | | | | 16. 44. 0 36. 20 023342 | | | 050972
050936
050936 | | | | Aug. 4. 15. 57. 30 16. 0. 0 17. 57. 30 18. 0. 0 30. 31 2. 30 30. 32. 15 30. 3 | 020078 | | 051150 | 64 .0 |) | | 16. 0. 0 16. 0. 0 16. 0. 0 17. 57. 30 18. 0. 0 30 · 31 2. 30 16. 0. 0 30 · 31 2. 30 16. 0. 0 30 · 31 2. 30 16. 0 32. 15 018333 049367 0. 30. 32. 15 018288 049367 0. 30. 32. 15 018288 049367 0. 30. 32. 8 018222 049401 11. 30 32. 45 018509 049415 14. 30 31. 10 018155 049415 16. 30 30. 52 018111 049415 18. 30 30. 40 018333 049487 20. 30 31. 24 018377 049558 24. 30 31. 24 018320 049558 21. 0 53. | | | 0 .052160 | 64 .0 | -¦- | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0 ·142173 | 64 .5 | 052289 | 64 ·0 | , | | 6. 30 32. 15 018288 049367 9. 17. 0 50. 30 32. 8 018222 049401 18. 0 51. 30 32. 45 018509 049415 18. 30 31. 10 018155 049415 19. 0 51. 30 30. 52 018111 049415 19. 30 52. 30 31. 24 018377 049558 20. 30 31. 24 018320 049558 21. 0 53. | 30 142521
143983 | 3 | 051755
051755 | | | | 14. 30 31. 10 018155 049415 19. 0 51. 10 16. 30 30. 52 018111 049415 19. 30 52. 19. 30 18. 30 30. 40 018333 049487 20. 0 52. 20. 30 20. 30 31. 24 018377 049558 20. 30 53. 20. 30 24. 30 31. 24 018320 049558 21. 0 53. 20. 30 | 10 144110
14 144272 | | 051755
051740
051733 | | | | 20. 30 31. 24 018377 049558 20. 30 53. 24. 30 31. 24 018320 049558 21. 0 53. | 45 144388
36 144434 | 1 | 051719
051719
051705 | | | | 29 30 31 46 018430 049571 21.30 54 | 16 144620
53 144666 | 3 | 051719
051719 | | | | 34 30 32.12 018364 049585 22. 0 55.
39.30 32.23 018373 049642 22.30 55. | 11 144666
56 144620 | 5 | 051691
051691
051691 | | | | 44. 30 32. 23 018749 049748 23. 0 56. 49. 30 32. 15 018749 049724 23. 30 56. 54. 30 31. 46 019444 049667 24. 0 57. | 10 144620
59 144736
36 144736 | 5 | 051691
051648
051648 | | | | 18, 59, 30 31, 46 019178 049710 24, 30 57, 19, 7, 30 32, 23 019621 049867 25, 0 58. | 48 144736
23 144620
0 144272 | | 051648
051648
051634 | | | | | 33 144156 | | 051613
051591
051577 | | | July 11^d. A change of 9'.31" having taken place in the position of the Declination Magnet between 14^h and 16^h, extra observations were commenced. August 4^d. A considerable change having taken place in the positions of the Declination and Horizontal Force Magnets between 16^h and 18^h, extra observations were commenced. September 13^d. A change of 10'. 55" having taken place in the position of the Declination Magnet between 8^h and 8^h. 16^w, extra observations were commenced. | Göttingen I
Fime (Astron
Reckoning
Declinat
Observati | nomical
g) of
ion | Western
Declination. | Horizontal Force Reading in parts of the whole Hor. Force cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.forTemp. | Parit Pa | Observers. | Göttingen Mean Time (Astronomica Reckoning) of Declination Observation. | Western Declination | Horizontal Force Reading in parts of the whole Hor. Force cor, forTemp. | ermometer
rizontal Fo
gnetometer | Vertical Force Reading in parts of the whole Vert. Force cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | 100 | |---|----------------------------|-------------------------|--|---|---|----------|------------|---|---------------------|---|--|---|---|-----| | d h | 1 m s | 0 / # | | 0 | | 0 | | d h m | s O / // | | 0 | | 0 | | | Sep. 13. 9 | . 28. 0 | 23. 0.39 | 0 ·143963 | | 0 .051577 | | G | Sep. 24. 1.16.1 | 5 22. 52. 48 | 0 .138723 | | 0 .054028 | | G | | 1 | 28. 30 | 1. 2 | 143670 | | 051577 | | | 16.4 | | 138028 | | 054042 | | 1 | | | 2 9. 0 | 1. 4 | 143345 | | 051577 | | | 17.4 | | 137008 | | 053893 | | | | | 29. 30 | 1.23 | 143170 | | 051542 | | | 18. 1 | | 137531 | | 053437 | | | | | 30 . 0 | 1. 5 | 143170 | | 051542 | | | 19. 1 | | 137554 | | 053636 | | | | | 30. 30 | 1. 42 | 143100 | | 051506 | | | 20. 4 | I | 135839 | | 053580 | | 1 | | | 31. 0 | 1. 12 | 142798 | | 051448 | | | 21. 4 | | 136071 | | 053849 | | | | | 31. 30 | 1. 19 | 142637 | | 051434 | | | 22. 4 | | 136906 | | 054086 | | | | | 32. 0 | 1. 8 | 142475 | | 051420 | | | 23. 1 | | 100410 | | 054449 | | 1 | | | 32. 30 33. 0 | 0.41 | 142382 | | 051420 | | | 23. 4
24. 1 | 1 | 136419
138342 | | 054478
054549 | | | | | 33 . 30 | $0.31 \\ 0.28$ | 142289
142173 | | 051420
051399 | | | 24. J
26. 4 | | 142236 | | 055631 | | 1 | | | 34. 0 | 0. 28 | 142173 | | 051399 | | | 20.4
27.4 |) | 145689 | | 056059 | | | | | | 23. 0. 2 | 142103 | | 051377 | | | 28.4 | | 146268 | | 055739 | | | | | | 22. 59. 54 | 142057 | | 051363 | | | 29. 4 | | 147208 | | 055703 | | 1 | | | 35. 30 | 59.42 | 142057 | | 051363 | | | 30. 1 | 1 | 148483 | | 055930 | | 1 | | | 36 . 0 | 59. 35 | 142057 | | 051363 | | | 31. 1 | | 151657 | | 056436 | | | | | 36 . 30 | 59. 26 | 142057 | | 051363 | | | 32. 1 | | 150593 | | 056507 | | 1 | | | 37. 0 | 59. 20 | 142057 | | 051363 | | | 33. 1 | | 150337 | | 056635 | | 1 | | | 37. 30 | 59. 16 | 142057 | | 051363 | | 1 1 | 34. 1 | | 142712 | | 056557 | | 1 | | | 38. 0 | 59. 6 | 142173 | | 051363 | | | 34. 2 | | | | | | ١ | | | 39. 0 | 5 8. 5 5 | 142289 | | 051363 | | | 34. 3 | | | | 055954 | | | | | 40. 0 | 58. 10 | 142289 | | 051377 | | | 35. 1 | | 147532 | | 055407 | | | | | 41. 0 | 57.57 | 142405 | | 051363 | | | 36. 1 | | 10000 | | 054587 | | 1 | | | 44. 0 50. 0 | 58. 29 | 142752 | | 051328 | | | 37. 1 | | 136757
145702 | | 055228 | | 1 | | | | 58. 58
22. 59. 40 | 142752 | | 051363 | | | 38. 1
39. 1 | 1 | 145702 | | 055691 | | | | 9 | . 57. 30 | 22. 09. 40 | 142915 | | 051363 | 64 • 0 | | 39. 4 | | 145702 | | 055442
055708 | | | | | | 23. 0.26 | | | 051363 | 04.0 | | 40.4 | 1 | 146166 | |
055822 | | Ì | | 10. | 2. 30 | 20. 0.20 | 142984 | 64 .5 | | | G | 41. 1 | | 146304 | | 056028 | |] | | | | | | | | | | 42. 1 | | 146976 | | 056797 | | 1 | | ep. 23. 21. | . 57. 30 | | | | 0 .050616 | 64 .0 | L | 42. 4 | lt . | 150916 | | 057559 | | 1 | | | | 23. 4. 29 | | | 000000 | | | 43. 3 | | 153432 | | 057694 | | | | | . 2.30 | | 0 ·140369 | 64 .0 | | | | 44. 1 | | 152228 | | 057388 | } | | | | . 57. 30 | | | | 050912 | 64 .2 | | 44. 4 | 5 47. 19 | 150790 | | 057025 | | | | 24. 0 | | 23. 7. 33 | | | | | | 45. 1 | | 151392 | | 057096 | | | | _ | 2. 30 | | 139906 | 64 .0 | | | L | | 5 22. 58. 17 | 152320 | | 057552 | | | | | | 22. 56. 42 | 137945 | | 051645 | | G | | 5 23. 9.34 | 156838 | | 058100 | | 1 | | 1. | 5. 15 | 59. 38 | 137217 | | 052274 | | | | 5 23. 7. 10 | 160385 | | 057838 | 1 | 1 | | | 6. 15 | 53. 57
22. 50. 33 | 137448 | | 052203 | | | 47. 3 | | 155050 | | 058123 | | 1 | | | | 22, 50, 55
23, 0, 12 | 1362 7 1
135131 | | 052380 | | | 48. 5 | 5 22. 59. 43 | 157070
152459 | | 056770 | | | | | | 22. 53. 42 | 137217 | | 052950
052808 | | | 49. 3 | | 148311 | | 056379 | | 1 | | | 9. 45 | 51. 23 | 136058 | | 052505 | | | 50. | | 140011 | | 055774 | | 1 | | | 10. 15 | 49. 1 | 137101 | | 053484 | | | 50. 1 | | 146340 | | 055596 | | | | | 11. 15 | 45. 18 | 136800 | | 053128 | | | 51. | | 147824 | | 055631 | | - | | | 12. 15 | 44. 50 | 138723 | | 053266 | | | 51. 4 | | 149168 | | 055510 | | | | | 12. 45 | 51. 7 | 138839 | | 053437 | | G | 52. 1 | | 146410 | | 055454 | | | | | 13. 45 | 49. 38 | 137634 | | 053508 | | G&D | 52. 3 | | 149181 | | 000101 | | 1 | | | 14. 15 | 55. 17 | 138909 | | 053814 | | 30 | 53. 1 | | 147175 | | 055596 | | | | | 15. 15 | 51. 0 | 138723 | | 053893 | | | 54. | 0 58. 32 | 147999 | | 056450 | | | September 24^d. Considerable changes having taken place in the positions of the three magnets between 0^h and 0^h. 50^m, extra observations were commenced. | Göttingen Mean
Time (Astronomica
Reckoning) of
Declination
Observation. | Western Declination | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor.forTemp. | nermome
artical Fo | Observers. | Göttinger
Time (Astr
Reckoni
Declina
Observa | onomical
ng) of
ation | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of Horizontal Force Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | Thermometer of
Vertical Force
Magnetometer. | Ohsarvara | |---|---------------------|--|---|---|-----------------------|---------------|--|-----------------------------|-------------------------|--|---|--|---|-----------| | d h m | s 0 / // | | 0 | | 0 | | a i | h m s | 0 / " | | 0 | | 0 | | | Sep. 24. 1.54. | 35 22, 56, 55 | 0 · 148856 | | 0.056443 | | G, L,
& D. | Sep. 24. | 2. 35. 15 | 23. 5. 5 | 0 ·172084 | | 0 .057364 | | G, | | 55. | 49.44 | 151174 | | 057020 | | | - | | 22. 55. 44 | 167287 | | 056901 | | 1 | | 5 6. | | 149228 | | 056756 | İ | | | | 22. 57. 50 | 167333 | l | 056438 | | | | 57. | | 149783 | | 056628 | 25.5 | | | | 23. 8.46 | 170693 | | 056937 | | | | 57. | | 150000 | j | 056671 | 65 .2 | | | 38. 15
39. 15 | 7. 1
4.48 | 170856
171621 | | 057150
057032 | | 1 | | 57. | | 150896
152796 | | 056806
057091 | | | | | 23. 4.40 | 170114 | | 057566 | | | | 58. 59. 4 | | 153607 | | 057031 | } | | | | 22. 57. 50 | 170879 | | 058121 | | 1 | | 2. 0. | 1 | 10000. | | 00,101 | | | | 41.30 | 47. 12 | 170416 | } | 058349 | | | | 0. | | 153955 | | 057184 | | | | 42.45 | 22. 53. 45 | 171690 | | 057566 | | G. 8 | | 1. | | 151869 | (| 056272 | ĺ | | | | 23. 6.49 | 164334 | (| 055736 | | L
& | | 2. | 57. 34 | 150942 | | 056308 | | | | 48. 45 | 6. 31 | 164334 | | 055893 | | | | 2.3 | | 151869 | 65 .2 | 0.0000 | | | | 50.45 | 6. 42 | 162364 | | 057174 | | | | 3, | | 150595 | | 056023 | | | | 51. 15
50 7# | 23. 2.22
22.56.59 | 159815
158772 | | 056576
059417 | 1 | | | 3. 3 | | 150492
151025 | | 056082
056082 | | | | 52. 15
53. 15 | 50. 22 | 157497 | | 056839 | | 1 | | 4. ·
5. · | | 149982 | | 054110 | | | | 54. 15 | 52. 31 | 158772 | | 056628 | ļ | | | 6. | | 150469 | | 056403 | | | | 55. 15 | 22. 54. 46 | 157881 | | 056058 | | | | 6. | | 149565 | | 056546 | | | | 56. 15 | 23. 0. 2 | 157046 | | 055759 | | | | 7. | | 150724 | | 056673 | | | | 57. 15 | 6. 32 | 155656 | | 055367 | | | | 8.3 | | 150492 | } | 056388 | | | | 58. 15 | 8.53 | 152875 | | 055197 | | | | 9. | | 151372 | | 056794 | | | 1 | 2. 59. 15 | 13. 8 | 151369 | | 055211 | | 1 | | 10. | | 152740 | | 056759 | l | | | 3. 0.15
1.15 | 13. 21
10. 7 | 149862
147892 | | 055275
055311 | l | | | 10. | | 154547
154640 | | 056958
057008 |] | | j | 1. 15
2. 15 | 7.54 | 147035 |] | 055438 | į | 1 | | 11. 3
12. 3 | | 154663 | | 056958 | 1 | | | 3. 15 | 6. 13 | 146155 | | 055509 | 1 | | | 13. | | 155604 | | 056034 | 1 | | | 4. 15 | 5. 3 | 145459 | | 055620 | İ | | | 14. | | 155489 | | 057408 | | | | 5. 15 | 4.52 | 144602 | | 055691 | | | | 14. | 15 47. 0 | 155558 | | 056696 | <u> </u> | | | 6. 15 | 5.41 | 144022 | | 055691 | | 1 | | 15. 1 | | 157319 | | 057102 | [| | { | 7. 15 | 6.21 | 143141 | 1 | 056260 | 1 | 1 | | 16. | | 158153 | | 057123 | Ì | | | 8.15 | 4.54 | 141650 | | 055833 | | l | | 16. | | 160587 |] | 057337 | } | | } | 10. 15 | 23. 2.25 | 140259 | ļ | 056545
055833 | | | | 17. | | 162441
165685 | | 05 737 3
05 742 3 | | | 1 | 11. 45
13. 15 | 22. 59. 3
57. 59 | 139100
138868 | 1 | 055807 | | 1 | | 18. 3 | 5 22. 58. 49 | 166937 | 1 | 057423 | | 1 | (| 14. 15 | 1 | 142993 | | 055579 | l | 1 | | | 15 23. 0. 26 | 170783 | | 056960 | | | 1 | 15. 45 | | 137432 | | 055288 | 1 | | | 21. | | 172592 | | 057123 | | | | 17.15 | | 136783 | | 054789 | | | | 22, | 5 9. 5 | 171479 | | 056996 | | | | 19. 15 | | 137491 | | 054941 | | | | 23. | 1 | 170449 | | 056920 | l | | | 20. 15 | 54. 47 | 137722 | | 054956 | | | | 23. | | 169245 | | 057126 | | | | 21.15 | | 137606 | . | 054884
054770 | | | | 25. | | 165003 | | 057034 | | | | | 22. 57. 5
23. 0. 1 | 137676
137445 | | 054692 | | | | 26. 1
26. 4 | | 163960
164424 | | 057197
057482 | [| | | | 23. 0. 13 | 135753 | | 054550 | | | | 20. 4
27. 4 | | 163033 | | 057859 | 1 | | | | 22. 59. 12 | 134014 | 1 | 053930 | l | | | 28. | | 164262 | | 058194 | | | | 29. 15 | 57. 54 | 131478 | | 054339 | | | | 29. | | 164887 | | 058465 | | | | 31.15 | 58. 19 | 131200 | | 054232 | | | | 30. | 2. 21 | 165119 | | 058536 | | | | | 22. 58. 45 | 131779 | 1 | 054331 | | | | | 15 23. 0.44 | 168248 | | 058729 | | | | | 23. 1. 8 | 132637 | } | 054525 | } | | | | 15 22. 55. 54 | 171098 | | 059272 | | | | 36. 15 | 4.23 | 132869 | | 054560 | i | | | | 15 22, 56, 14 | 173475 | | 058645 | | | | 38. 15 | 5, 32 | 133100 | 1 | 054632
054468 | 1 | | | 4. | 15 23. 2.25 | 172988 | | 057577 | | 1 1 | | 40. 15 | 7. 20 | 134143 | i | 004405 | l | 1 | | Time
Re
I | ckonin
Jeclina | nomical
g) of
tion | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force | Thermometer of
Vertical Force
Magnetometer. | Observers. | Time (Ast
Reckor
Declin | en Mean
ronomical
ling) of
nation | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | bermometer of
ertical Force
agnetometer. | Observers. | |-----------------|-------------------|--------------------------|-------------------------|---|---|--|---|----------------|-------------------------------|--|--------------------------|---|---|--|--|------------| | | bservat | tion. | | cor.for Temp. | | cor.for Temp. | T A R | | Obser | vation. | | cor.for Temp. | | cor.for Temp. | | _ | | | đ | | 0 / " | | 0 | | 0 | | d | h m s | 0 / " | | Ó | | 0 | 1. | | Sep. | 24. | | 23. 8.49 | 0 ·134331 | | 0 .054895 | | L &
E H | Sep. 24. | | 23. 15. 47 | 0 ·171419 | | 0.056534 | | LE | | | | 44. 15 | 10. 24 | 134574 | | 054967 | | | | 59. 15 | 8. 14 | 174085 | | 057161
056021 | | 1 | | | | 46, 15
48, 15 | 11.12
9.46 | 134504
134496 | | 054895
054988 | | 1 1 | | 4. 59. 45
5. 3. 15 | 2.59
20.8 | 179994
183934 | | 055893 | | L E | | | | 48, 15
50, 15 | | 133461 | | 054824 | | | | 5. 45 | 13. 11 | 186831 | | 055039 | | 68 | | | | 52. 15 | | 132650 | | 054955 | | L, D,
& E H | | 7. 15 | 12. 6 | 188569 | |
054561 | | | | | | 54. 15 | 6. 8 | 132664 | | 054635 | | L | | 7. 45 | 9. 6 | 189032 | | 053899 | | | | | | 56 . 15 | 4.23 | 133243 | | 054599 | | | | 8.45 | 12. 39 | 189278 | | 053814 | | | | | | 57.3 0 | [| | | 054599 | 66 .7 | | | 9.45 | 15. 36 | 190321 | | 053152 | | | | • | | 58. 15 | 4. 14 | 134240 | | 054599 | | | } | 10.45 | 19. 55 | 191596 | | 052262 | | | | | | 3. 59. 15 | 1 | 135561 | | 054599 | | | | 11.45 | 29. 43 | 191480 | | 053152
053864 | | | | | 4 | 4. 0. 0 | 6. 44 | 140106 | | 054919 | | | | 12. 45 | 38. 24
35. 44 | 185686
1841 7 9 | | 054469 | | | | | | 2. 15
2. 30 | 10.40 | 140196
140196 | 66 ·2 | 004919 | | | | 13. 45
14. 15 | 35. 53 | 183716 | | 054149 | | l | | | | 4. 15 | 13.46 | 142119 | 00 2 | 054919 | | | | 15. 15 | 42. 24 | 182557 | | 054220 | | | | | | 6. 15 | 21.27 | 144020 | | 055404 | | | ĺ | 16. 15 | 44. 39 | 181978 | | 054861 | | | | | | 8.15 | 27. 4 | 145642 | | 055404 | | Τр | | 17. 15 | 46. 17 | 181746 | | 055893 | | | | | | 10. 15 | 31.11 | 147462 | | 055703 | | L&
EH | | 18. 15 | 40. 1 | 182339 | | 055075 | | | | | | 12. 15 | 33. 16 | 151333 | ĺ | 056166 | | | | | 23. 48. 54 | 182223 | | 053722 | | | | | | 14. 15 | 37. 8 | 152097 | | 056403 | | | · | | 24. 1.39 | 179441 | | 054434
055146 | | | | | | 17. 15 | 44. 46
55. 42 | 156431
160603 | | 057079
05 7 400 | | | | 21. 15
22. 15 | 23. 50. 59
28. 44 | 179441
181991 | | 053140 | | 1 | | | | 19. 15
20. 15 | 53. 18 | 161761 | | 057791 | | | ļ | | 23. 43. 9 | 181527 | | 053686 | | | | | | 21. 15 | 53. 2 | 161529 | | 057863 | | 1 | | | 24. 9. 6 | 182223 | | 052939 | | | | | | 22. 15 | 50. 25 | 161831 | | 057934 | | | į | 25.15 | 20. 30 | 175965 | | 053280 | • | | | | | 23. 15 | 48. 13 | 162123 | | 058255 | | | | 26. 15 | 11.36 | 174343 | | 053130 | { | 1 | | | | 24. 15 | 46. 32 | 162888 | | 058397 | |]] | } | 27. 15 | 14. 46 | 173416 | | 053010 | | 1 | | | | 25 . 15 | 45. 0 | 163050 | | 058753 | | | | 28.45 | 16. 29 | 171330 | | 053543 | | | | | | 26. 15 | 44. 41
42. 26 | 164209 | | 059180 | | | | | 24. 15. 1 | 169593 | | 053567
053232 | Ì | | | | | 27. 15
28. 15 | 42. 26
42. 0 | 164673
166063 | | 059536
060283 | | | | | 23. 58. 46
23. 57. 13 | 166347
165189 | | 053090 | | 1 | | | | 29. 15 | 41. 59 | 168265 | | 060732 | | | | | 24. 0.47 | 164378 | | 052656 | 1 | | | | | 31.45 | 56.55 | 171625 | | 060782 | | | | 34. 15 | 3. 41 | 164378 | | 052784 | | | | | | 33. 15 | 57.44 | 172088 | | 060711 | | 1 1 | | 35. 25 | 4.44 | 166231 | | 053232 | | 1 | | | | 35. 15 | 42. 24 | 177432 | | 063131 | | | į | 36, 25 | 24. 0.50 | 168086 | | 053909 | | | | | | 36. 15 | 13. 36 | 178359 | | 063651 | | | | | 23, 50, 34 | 169963 | | 054315 | 1 | 1 | | | | 38. 15 | 10.42 | 178591 | | 062833 | | | | 38.25 | | 170070 | | 054635 | | | | | | 39. 15 | 7. 0 | 178359 | | 062063 | | | | 40. 15 | 15. 59 | 168679 | | 054315
054244 | | | | | | 40. 15
41. 15 | 7. 39
8. 14 | 178127
1 7 9749 | | 061779
061103 | | | | 41. 15
42. 15 | 15. 59
16. 46 | 169722
169722 | | 054244 | | 1 | | | | 42. 15 | 15. 29 | 179633 | | 060960 | | | | 43. 15 | 15. 15 | 168100 | | 054265 | | 1 | | | | 43. 15 | 22. 50 | 179981 | | 059489 | | | | 44. 15 | 17. 31 | 167984 | | 054337 | | | | | | 44. 45 | 48. 33 | 180096 | | 058904 | | | 1 | 45. 15 | 19. 30 | 167868 | | 054635 | | | | | | 46. 15 | 46.50 | 180560 | | 058991 | | | | 46. 15 | 20. 20 | 168100 | | 054479 | | G | | | | 47. 15 | 36.47 | 181255 | | 059418 | | | | 47. 15 | 23. 37 | 167520 | | 054743 | | | | | | 48. 15 | 36. 48 | 182067 | | 059268 | | 1 1 | 1 | 47. 45 | 22. 29 | 165782 | | 055099 | | | | | | 49. 15 | 41.47 | 182299 | | 058243 | | | | 48. 15 | 20. 31 | 165319 | | 055419 | | | | | | | 23. 50. 18
24. 3. 24 | 180676
174882 | | 057567
056855 | | | | 49. 15
50. 15 | 18. 56
18. 6 | 164972
164740 | | 055462
055775 | 1 | | | | | | 24. 3. 24
24. 0. 8 | 175011 | | 056783 | | | | 51. 15 | 14. 50 | 165782 | | 055582 | | | | | | | 23. 21. 14 | 174201 | | 056641 | | | 1 | 52. 15 | 12. 19 | 166709 | | 056024 | } | | | Göttingen
Time (Astro
Reckonin
Declina
Observa | onomical
ng) of
ition | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. forTemp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor.forTemp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor, forTemp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor, for Temp. | Thermometer of Vertical Force | Observers. | |--|-----------------------------|----------------------------|--|---|---|---|------------|--|-------------------------|--|---|---|-------------------------------|------------| | d | h m s | 0 ' " | | 0 | | 0 | | d h m s | 0 / " | | 0 | | 0 | | | ept. 24. | 5, 53, 15 | 23. 10. 5 | 0 · 167173 | | 0 .055938 | , | G | Sep. 24. 7. 13. 15 | 22, 52, 19 | 0 ·133118 | | 0 .053496 | .* | G | | -F | 54. 15 | 7. 50 | 167186 | | 055703 | | | | 22.51.19 | 134509 | | 053781 | | | | | 55. 15 | 9. 14 | 170314 | | 054991 | | | | 23. 1.23 | 137290 | | 053567 | | 1 | | | 56. 15 | 13.47 | 172632 | | 054529 | | | 28. 15 | | 136827 | | 053710 | | | | | 57. 15 | 12. 37 | 171937 | | 054173 | a= 0 | | 33. 15 | | 134741 | | 053496
053639 | | 1 | | | 57. 30 | | 750000 | | 054016 | 67 .0 | | 38. 15 | | 137059 | ! | 053567 | | | | | 58. 15 | 12. 24 | 173096 | | 053852 | | ı | 40. 15 | | 134277
134972 | : | 053639 | | 1 | | | 58. 25 | 13. 4 | 174718 | | 053639
0536 7 5 | | 1 | 42. 15
44. 15 | | 134972 | | 053710 | | | | | 59. 15
5, 59. 45 | 10. 57
7. 17 | 176108
174949 | | 052998 | | | 46. 15 | 1 | 134277 | | 053923 | | G | | | 6. 0. 0 | 9. 12 | 1/4949 | | 00200 | | | 48. 15 | 1 | 133582 | | 053852 | | E | | • | 2. 30 | 5, 12 | 171937 | 67.0 | | | | | 23, 1. 6 | 135436 | | 054564 | | E | | | | 23. 1, 14 | 171937 | 0, 0 | 051787 | | G | | 22.57.41 | 135204 | | 054493 | | G | | | | 22. 57. 30 | 174486 | | 051645 | | G&
GH | 57. 30 | | | | 054493 | 67 .0 | | | | | 22. 59. 39 | 176456 | | 051574 | | " | 7. 59. 15 | | 135436 | | 054351 | | 1 | | | | 23. 0.31 | 177035 | | 051645 | | 1 1 | 8. 0. 0 | 58. 15 | | | | | | | | | 22. 54. 49 | 176340 | | 051431 | | | 1.45 | 56. 22 | 134741 | | 054173 | | | | | | 23. 1, 27 | 173327 | | 052001 | | | 2, 30 | | 134741 | 67.0 | | | | | | 11.15 | 22. 58, 33 | 172052 | | 052713 | |]] | | 22, 57, 47 | 134728 | | 053971 | | | | | | 22 . 5 8. 18 | 171357 | | 053354 | | | | 23. 0.36 | 134728 | | 053828 | | | | | | 23. 0.20 | 170893 | | 053675 | | | 7. 30 | | 135423 | | 053828 | | | | | | 22. 58. 15 | 164869 | | 053710 | | | 12. 30 | | 136118 | | 053686
053163 | | | | | 16. 15 | 57. 28 | 159422 | | 054137 | | | 17. 30 | | 134250 | | 053021 | | | | | 17. 15 | 54. 10 | 156873 | | 054600 | | | 20. 30 | | 134134
133786 | | 052950 | | 1 | | | 18. 15 | 55. 26 | 155830 | | 055419 | | | 23, 30
31, 30 | | 132268 | | 052997 | | | | | 20. 15 | 49. 39
42. 31 | 152702 | | 055988
056059 | | | 46. 30 | | 133759 | | 053471 | | İ | | | 22. 15
23. 15 | 38, 11 | 148298
145401 | | 056095 | | 1 | 8. 58. 30 | 1 | 134223 | | 053021 | | 1 | | | 25. 15
25. 15 | 31, 41 | 141462 | | 056380 | | | 9. 4. 30 | 1 | 133270 | | 052712 | | | | | 28. 15 | 25, 25 | 137522 | | 055241 | | | 9. 30 | 1 | 133270 | 1 | 052712 | 1 | | | | 29. 15 | 36. 42 | 10,322 | | 007211 | | | 14. 30 | 1 | 132923 | | 052641 | | | | | 30.45 | 44. 6 | 135900 | | 054778 | | | 23. 30 | | 133024 | | 052404 | } | | | | 32, 15 | 43. 30 | 135552 | | 054885 | | | 28.30 | 23. 2.12 | 132780 | | 052237 | ł | 6 | | | 34. 15 | 40. 8 | 134625 | | 054814 | | | 39. 30 | 22. 43. 11 | 133011 | ł | 052451 | ļ | | | | 36. 15 | 41.55 | 134509 | | 054778 | | | 46. 30 | | 134620 | | 050077 | | | | | 39. 15 | 46. 21 | 134741 | | 054529 | | | 47. 30 | | 140877 | 1 | 050433 | 1 | 1 | | | 41. 15 | 50. 11 | 134741 | | 054458 | | G&
GH | 48. 30 | 1 | 139602 | | 049864 | | | | | 43. 15 | 55. 27 | 134741 | | 054493 | | G H | | | 142486 | | 049485
049129 | } | | | | 46. 15 | 54. 17 | 134045 | | 054493 | | | 51.30 | | 141560 | | 049129 | | | | | 48. 15 | 55. 51 | 134509 | | 054279 | | | 52. 0 | | 142486 | 1 | 049698 | | | | | | 22. 59. 18 | 133999 | | 053781 | | | 52 . 30 | 1 | 140864
139010 | } | 049769 | | - | | | | 23. 1.21 | 133234 | | 053675
053532 | | | 53, 3 0 54. 0 | | 139705 | 1 | 049734 | | | | | 54.15 | 0. 25 | 133350 | | 053496 | | 1 1 | 54. 30 | | 142023 | | 050197 | | 1 | | | 56. 15
6 . 59. 15 | 2. 42
3. 41 | 133929
136247 | | 05496 | | | 55. 30 | | 142023 | | 050125 | | | | | 7. 1. 15 | 5. 41
6. 20 | 136827 | | 053959 | | | 56. 3 0 | I | 144920 | | 049698 | | | | • | 3. 15 | 8. 5 8 | 135436 | | 053710 | | | 57. 30 | | 145963 | | 049698 | 66 .0 |) | | | 5. 15 | 8. 48 | 132887 | | 053247 | | | 58.30 | | 148048 | | 049769 | | | | | 7. 15 | 6. 0 | 131728 | | 053105 | | | 9. 59. 30 | | | | | | 1 | | |
 23. 1.16 | 130569 | | 053034 | | | | 22. 57. 28 | | | | | - | | | | 22. 56. 12 | 131612 | | 053247 | l | | | 23. 13. 5 | 141096 | | 049057 | 1 | 1 | September 24^d. 9^h. 47^m. Streamers of an Aurora suddenly appeared; the three magnets moved simultaneously; the cross of the declination-magnet apparently to the left (or so as to shew a diminution of Westerly Declination) and out of the field: at 9^h. 52^m red streamers were observed due West. | | 1 | Horizontal | 4 8 | Vertical | J. | | | | Horizontal | 5 8 | Vertical | ₩. | ī | |--------------------------------------|----------------------|------------------------------|---|------------------------------|---|----------------|--------------------------------------|---------------------|------------------------------|---|------------------------------------|--|-----------| | Göttingen Mean
Time (Astronomical | Western | Force Read- | Thermometer of
Horizontal Force
Magnetometer. | Force Read- | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen Mean
Time (Astronomical | Western | Force Read- | Thermometer of
Horizontal Force
Magnetometer. | Force Read- | Thermometer o
Vertical Force
Magnetometer. | P. S. | | Reckoning) of | | ing in parts
of the whole | ome
ontal | ing in parts
of the whole | al Form | erve | Reckoning) of | | ing in parts
of the whole | onta
tom | ing in parts
of the whole | sal F | A | | Declination
Observation. | Declination. | Hor. Force | orize
agne | Vert. Force | nerm
ertic | Sqo | Declination Observation. | Declination. | Hor. Force | hern
oriz | Vert. Force | hern
ertic
agne | Observers | | Observation. | | cor, for Temp. | | cor, for Temp. | | | | | cor.forTemp. | | cor. forTemp. | | _ | | d h m s | 0 / " | | 0 | | 0 | | d h m s | 0 1 11 | 0.104000 | ٥ | 0.050044 | 0 | G | | Sep. 24. 10. 1. 30
2. 30 | 23. 16 . 22 | 0 · 137619 | 66 •0 | | | G | Sep. 24. 11. 12. 30
16. 30 | 22. 55. 3
59. 56 | 0 ·134693
135621 | | 0 ·050244
049960 | | 16 | | | 22, 57, 15 | 132753 | 00 0 | 0 .048488 | | | 20. 30 | 55.47 | 135021 | | 049853 | | | | 4. 30 | 45. 50 | 134825 | | 049033 | | G | | 22. 59. 25 | 136290 | | 049794 | | | | 6. 30 | 33. 9 | 141547 | | 049888 | | GН | 35. 30 | | 137088 | | 049984 | | | | 8.30 | 37.21 | 143632 | | 049745 | | | 37.30 | 6.45 | 136913 | | 049961 | | 1 | | 9. 30 | 42.54 | 143400 | | 050030 | | | 40. 30 | 8.44 | 136728 | | 049890 | | | | 10.30 | 48.28 | 142936 | | 048891 | | G H | 42.30 | 10.27 | 136482 | | 049961 | | | | 11. 30 | 51. 23 | 131547 | | 048891
049081 | | G &
G H | 44. 30 | 13. 57
16. 27 | 135972
133442 | | 049890
049415 | 64 • 5 | G | | 12. 30
13. 30 | 49. 31
51. 48 | 141083
141534 | | 048511 | | | 11. 57. 30
12. 0. 0 | 16. 5 | 133165 | - | 049344 | 01 0 | | | | 22. 59. 26 | 140838 | | 047799 | | G&
GH | 2. 30 | 15.57 | 132979 | 64 .2 | 049344 | | | | | 23. 7. 53 | 138520 | | 048803 | | GH | 11 | 14. 19 | 132863 | | 049321 | | | | 16. 30 | 23. 25 | | | 047205 | | | 6. 0 | 12.13 | 132979 | | 049250 | | ١ | | 17. 30 | 25. 20 | 133871 | | 047561 | | | 10. 0 | 10. 28 | 133545 | | 049392 | | l | | 18.30 | 18.43 | 131786 | | 048430 | | | 14. 0 | 12. 8 | 134171 | | 049378 | | | | | 23. 2.15 | 131554 | | 049341 | | | 19. 0 | 12. 8 | 135503 | | 049440 | | İ | | | 22. 50. 30 | 132250 | | 039626 | | | 24. 0 | 11.58 | 135503 | | 049 7 24
049 7 24 | | 1 | | 21. 30
22. 30 | 42. 0
39. 45 | 132713 | | 050125
050118 | | GH
G&
GH | 26. 0
29. 0 | 10. 44
8. 33 | 135619
135721 | | 049724 | | | | 23. 30 | 39. 45
39. 26 | 132700
131773 | | 049840 | | G H | 34. 0 | 3. 20 | 135953 | ľ | 049701 | | 1 | | 24, 30 | 39. 29 | 131773 | | 049840 | | | 1 | 23. 0.41 | 135304 | 1 | 049687 | | 1 | | 25 . 3 0 | 38. 31 | 131773 | | 049769 | | | | 22. 59. 29 | 135304 | i | 049701 | | | | 26 . 3 0 | 38. 14 | 132237 | | 049626 | | | 44. 0 | 59. 35 | 135245 | | 049677 | | | | 27 . 30 | 39. 56 | 132931 | | 049697 | | | | 22. 35. 37 | 134768 | | 049726 | | 1 | | 28. 30 | 40.11 | 132918 | | 049674 | | | | 23. 0. 4 | 133841 | | 049726 | | | | 29. 30
30. 30 | 40. 3 | 134077 | | 049746 | | | 11. 0
16. 0 | 5. 0 | 133133
132206 | | 049 7 88
049845 | | | | 31. 30 | 42. 21
46. 0 | 134077
134541 | | 0496 7 4
049461 | | | 16. 0
19. 0 | 7. 24
10. 49 | 131279 | | 049730 | | Ì | | 33. 3 0 | 50.48 | 131760 | | 049650 | | | 24. 0 | 14.11 | 130108 | İ | 049537 | | ١ | | | 22. 53. 29 | 131992 | | 048732 | | | 27. 0 | 15.17 | 131731 | | 049537 | | ı | | 35 . 3 0 | 23. 3. 8 | 129720 | | 048369 | | | 37. 0 | 12. 58 | 133108 | | 049457 | | | | 36. 3 0 | 6.58 | 129442 | | 048440 | | | 48. 0 | 11.17 | 134962 | | 049348 | | ١ | | 37. 3 0 | 8. 5 | 128734 | i | 048938 | | [] | 13. 57. 30 | 6.48 | 136340 | | 049325 | 63 .2 | - | | 38. 30
39. 30 | 6.11 | 129429
128850 | | 049081
049223 | | | 14. 0. 0
2. 30 | 7.14 | 136386
135876 | 63 ·3 | 049290
049339 | | | | 41. 3 0 | 7. 8
7. 57 | 128850 | | 049223
049058 | | | 2.30
4. 0 | 7. 13
6. 55 | 136572 | 6.00 | 049359 | | | | 43. 30 | 2. 29 | 128559 | | 049414 | | | 9. 0 | 7. 36 | 136989 | | 049681 | | ١ | | 44. 30 | 2. 24 | 128837 | | 049485 | | | 11. 0 | 8. 34 | 136919 | | 049923 | ļ | | | | 23. 0.39 | 128026 | | 049556 | | | 14. 0 | 9. 4 | 136803 | | 050250 | | | | | 22. 56. 9 | 128938 | | 049532 | | | 19. 0 | | 136688 | | 050037 | | 1 | | 49. 30 | 56. 34 | 129170 | | 049888 | | | | 23. 5. 0 | 136688 | | 050606 | | 1 | | 50. 30 | 54. 58 | 131256 | | 050458 | | | | 22. 59. 39 | 136271 | | 050678
050962 | | 1 | | 53. 3 0 54. 3 0 | 47.48 | 132763
134024 | | 050743
050671 | |) } | 14.52. 0
15. 9. 0 | | 135876
135992 | | 050962 | | | | 10. 55, 30 | 48. 11
22. 50. 49 | 134719 | | 050647 | | | 13. 9. 0 | 2.41
2.8 | 136108 | | 050302 | | 1 | | 11. 4.30 | 1 | 136561 | | 050268 | | | 24. 0 | 1.33 | 135992 | | 051105 | | 1 | | 6. 30 | 4. 32 | 135634 | | 050055 | | G&
GH | 39. 0 | 2. 9 | 136108 | | 051461 | | 1 | | 8.30 | 5.26 | 134346 | | 050126 | | G H | 54. 0 | 2. 9 | 136108 | | 051674 | | 1 | | | 23. 0. 1 | 134184 | | 050126 | | | 15. 57. 30 | | \ | | 05166 0 | 63 .5 | - | | 11.30 | 22. 58. 4 | 134184 | | 050126 | | 1 | 16. 0. 0 | 0.40 | 1 | | l i | l | 1 | September 24^d. 9^h. 59^m. 30^s. Streamers were observed shortly after 10^h; a fine white streamer was observed whose direction was from the W. N. W., South of the zenith towards the Moon. | | | I | 1. 6 | 1 | <u> </u> | | | | | | | | - | |--|----------------------|--|---|--|---|------------|---|--|---|---|--|-------------------|--------------| | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | rmometer of
rizontal Fore
gnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen Mean Time (Astronomical Reckoning) of Declination | Western Declination. | Horizontal Force Read- ing in parts of the whole Hor. Force | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force | B Se | | | Observation. | | cor.for Temp. | THE S | cor.forTemp. | T V S | 0 | Observation. | | cor.for Temp. | The
Hor
Mag | cor.for Temp. | The
Ver
Mag | | | d h m s | 0 , " | | 0 | | 0 | | d h m s | 0 / " | | 0 | | ٥ | | | Sep. 24. 16. 2. 30 | | 0 · 136224 | 63 .3 | | | L | Sep. 26. 18. 9. 0 | 22. 48. 54 | 0 ·138209 | | 0 •050769 | | ľ | | | 23. 0.16 | 136340 | | 0 .051888 | 0. 5 | | 11. 0 | 48. 54 | 138093 | | 050769 | | Ì | | 17. 57. 30 | 22 50 50 | | | 051856 | 61.5 | | 14. 0 | 49. 33 | 138093 | | 050812 | | | | | 22, 59, 53 | 100150 | 61.0 | | | _ | 17. 0 | 49. 33 | 138244 | | 050884 | | | | 2. 30 | | 136156 | 01.9 | | <u> </u> | L | 19. 0
24. 0 | 50. 21
51. 39 | 138429
138429 | | 050884
050970 | | | | Sep. 26. 11. 57. 30 | | | | | | L | 24. 0
29. 0 | 53. 53 | 138302 | | 050970 | | 1 | | 12. 0. 0 | | | | | | _ | 34. 0 | 54. 42 | 138302 | | 051055 | | ١ | | 12. 2.30 | | | | | | L | 39. 0 | 55. 18 | 138302 | | 051112 | | 1 | | 13. 57. 30 | | | | 0 .048972 | 57 .5 | тр | 44. 0 | 56. 41 | 138290 | | 051176 | | | | | 22, 44, 26 | | | | | | 18.49. 0 | 56.41 | 138290 | | 051176 | | ĺ | | 2. 30 | | 0 ·140949 | 57.5 | | | | 19. 57. 30 | | | | 051171 | 53 .8 | 1 | | 3. 0 | 44. 28 | 141412 | | 049612 | | | 20. 0. 0 | 57. 10 | | | | | ĺ | | 5. 0 | 44. 15 | 141515 | | 049505 | | | 20. 2.30 | | 137989 | 54 ·0 | 051054 | 74.0 | | | 7. 0
8. 0 | 44. 15 | 141400 | | 049505 | | | 21. 57. 30 | 22 50 00 | | | 051854 | 54 .0 | ' | | 8. 0
9. 0 | 46. 59
48. 11 | 141053
139083 | | 049306
049377 | | | 22. 0. 0
2. 30 | 22, 56, 39 | 139380 | 54 .0 | | | ١ | | 10. 0 | 46.41 | 138735 | | 049377 | - | | 5 | 23. 7.44 | 138116 | 04 0 | 051789 | 1 | 1 | | 11. 0 | 45. 16 | 139037 | | 049476 | | | 22.
34. 0 | 8. 24 | 136227 | | 051767 | | 1 | | 13. 0 | 45. 28 | 139431 | | 049576 | | | 23. 13. 0 | 2. 14 | 134235 | | 052321 | | | | 15. 0 | 46. 35 | 140242 | | 049234 | | | 29. 0 | 5. 48 | 134502 | | 052812 | | 1 | | 16. 0 | 45. 51 | 139083 | | 049035 | | | | 23 . 8.23 | 135197 | | 052954 | | 1 | | 17. 0 | 43. 56 | 138712 | | 048892 | | | | 22.58.33 | 127919 | | 052905 | | 1 | | 18. 0 | 42. 26 | 138607 | | 048928 | | | | 23. 2.57 | 128499 | | 052712 | | | | 19. 0 | 42. 10 | 138306 | | 049212 | | | 43. 0 | 3. 37 | 129438 | | 052976 | | 1 | | 20. 0
21. 0 | 43. 22
43. 5 | 138793
138839 | | 049391
049140 | | | 44. 0
45. 0 | 1. 52
23. 1. 17 | 1296 7 0
128974 | | 052734
052877 | | 1 | | 23. 0 | 44. 59 | 138955 | | 049140 | | | | 23. 1. 17
22. 57. 21 | 131061 | | 052734 | | | | 26. 0 | 45. 22 | 138839 | | 049013 | | | 49. 0 | 58. 24 | 130145 | | 052734 | | 1 | | 29. 0 | 46. 3 | 138700 | | 048991 | | | 23, 57, 30 | 00.22 | | | 052634 | 56 .0 | ١ | | 34. 0 | 46, 52 | 138595 | | 048991 | | | 27. 0, 0, 0 | 22. 59. 52 | | | | | 1 | | 39. 0 | 47. 5 | 138595 | | 048991 | | | 2. 30 | | 128269 | 56 .5 | | | | | 51. 0 | 47.48 | 138444 | | 049012 | | | | 23. 9.43 | 131851 | | 053596 | | ı | | 14. 56. 0 | 48. 23 | 138340 | | 049076 | | | 15. 0 | 8. 1 | 131504 | | 053761 | | 1 | | 15. 1. 0 | 49. 4 | 138340 | | 049183 | | | 17. 0 | 2.57 | 131862
133579 | | 053497
054355 | | | | 5. 0
11. 0 | 49. 51
52. 22 | 138269
138338 | | 049161
049197 | | | 39. 0
48. 0 | 6. 48
9. 36 | 135007 | | 054612 | | | | 19. 0 | 53. 27 | 138604 | | 049297 | | | 0.57. 0 | 14, 29 | 138508 | | 054919 | | | | 27. 0 | 53. 27 | 138744 | | 049318 | | | 1. 16. 0 | 21. 5 | 141490 | | 056158 | | 1 | | 35. 0 | 55. 10 | 138871 | | 049367 | | | 31. 0 | 10. 32 | 141204 | | 056812 | | 1 | | 45. 0 | 56. 36 | 139230 | | 049403 | | | 47. 30 | | | | 057118 | | | | 55. 0 | 57. 9 | 139671 | | 049467 | | | 50. 0 | 10. 22 | | | | | ۱ | | 15.57.3 0 | | | | 049467 | 56 .2 | | 52. 30 | | 141663 | | | | I | | 16. 0. 0 | 59. 35 | 4 | | | | | 1. 57. 30 | | | | 056584 | 61 .0 | 1 | | 2.30 | 50.50 | 139671 | 56 ·5 | 040510 | | | 2. 0. 0 | 8. 33 | 140464 | Q0 .E | | | | | 16. 14. 0 | 59. 59 | 139659 | | 049516
050641 | 55 .0 | 1 | 2.30 | 10.0 | 142474
138547 | 60 .2 | 054542 | | | | 17. 57. 30
18. 0. 0 | 50. 18 | | | 000041 | 00 0 | | 6. 0
7. 30 | 10. 8 | 100047 | | 056299 | | | | 2. 30 | 00.10 | 138291 | 55 .0 | | | | 10. 0 | 9.35 | | | 000000 | | - | | 4. 0 | 50. 16 | 138291 | J.J. J | 050691 | | | 12.30 | 0.00 | 142706 | | | | 1 | | 7. 0 | 49. 13 | 138209 | | 050741 | 1 | 1 | 21. 0 | 15, 24 | 138803 | 1 | 054458 | | 1 | September 26^d. 14^h. The Declination Magnet being out of its usual position, extra observations were commenced. There was no appearance of an aurora. | | | | | | ordinary Ol | servat | ions | of September 27, 28 | | | | | | | |--------------------------|---|-----------------------|--|---|--|---|------------|--|----------------------|---|---|--|---|---| | Time (A
Recko
Decl | gen Mean
stronomical
ning) of
lination
rvation. | Western Declination. | Horizontal Force Read- ing in parts of the whole Hor. Force cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.forTemp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | | | d | h nı s | 0 , " | | 0 | | 0 | | d h m s | 0 ' " | | 0 | | 0 | | | Sep. 27 | . 2.36. 0 | 23.14. 5 | 0.138133 | | 0 .054409 | | ЕН | Sep. 27. 10. 2. 30 | | 0 ·139476 | 63 .0 | | | T | | - | 2.51. 0 | 10. 4 | 135377 | | 053898 | | | | | | | | 20.5 | - | | | 3. 14. 0 | 6.21 | 135673 | | 054014 | | | Sep. 28. 7. 57. 30 | | | | 0.052091 | 62 .5 | 1 | | | 39. 0 | 3. 53 | 135105 | | 053656 | | | 1 | 23. 0.48 | 0 ·140345 | 62 .0 | | | 1 | | | 54. 0
3. 57. 30 | 6. 27 | 135697 | | 053181
053964 | 62 .0 | EH | 8. 2. 30
9. 57. 30 | | 0 140545 | 02 0 | 052041 | 62 .0 | 1 | | | 4. 0. 0 | 7. 39 | | | 055904 | 02 0 | ТЪ | | 22. 42. 40 | | | 002041 | 02 0 | | | | 2. 30 | 1. 55 | 136174 | 62 ·0 | , | | | 2. 30 | | 143589 | 62 .0 | | | 1 | | | 4, 59, 0 | 5. 28 | 135601 | 52 | 053423 | | | 5. 0 | | 143576 | | 051947 | | 1 | | | 5. 4. 0 | 5. 28 | 134707 | | 053400 | | | 10. 0 | 43. 17 | 143345 | | 051876 | | 1 | | | 9. 0 | 5 . 2 8 | 134707 | | 053328 | | | 13. 0 | 1 | 142520 | | 051747 | | 1 | | | 19. 0 | 4. 54 | 134626 | | 053220 | | | 15. 0 | 1 | 142289 | | 051782 | | ١ | | | 24. 0 | 5.41 | 134695 | | 053092 | | | 19. 0 | 41. 9 | 141941 | | 051747 | | l | | | 34. 0 | 5. 17 | 134682 | | 052962 | ! | | 25. 0 | 42.28 | 141813 | | 051724
051701 | | l | | | 39. 0
44. 0 | 5. 17
5. 22 | 134868
134902 | | 052855
052741 | | | 30. 0
35. 0 | 44. 41
47. 44 | 141407
141094 | | 051701 | | ١ | | | 49. 0 | 5. 22
5. 35 | 134995 | | 052620 | | | 40. 0 | 52.32 | 140862 | | 051714 | | ١ | | | 51. 0 | 5. 47 | 135065 | | 052335 | | | 45. 0 | 56. 5 | 140269 | | 051714 | | 1 | | | 53. 0 | 5. 51 | 135134 | - 1 | 052221 | | | 49. 0 | 56. 59 | 139910 | | 051691 | | 1 | | | 55. 0 | 5. 57 | 135121 | 1 | 052027 | | | 10. 54. 0 | 57. 32 | 139794 | | 051620 | | l | | | 5. 57. 30 | | ĺ | | 051956 | 61.0 | | 11. 0. 0 | 56. 15 | 139503 | | 051490 | | ł | | | 6. O. O | 5.56 | ļ | ļ | | | | 5. 0 | 54. 17 | 139305 | | 051360 | | 1 | | | 2. 30 | 22 | | 61 .0 | | | | 10. 0 | 53. 3 | 139769 | | 051360 | | ١ | | | | 23. 4.58 | 135344 | ļ | 051953 | | | 15. 0 | 54. 55 | 140451 | | 051338
051338 | | ١ | | | 49. 0
6. 59. 0 | 22. 54. 49
53. 1 | 135105
135247 | l | 051924
051970 | | | 20. 0
35. 0 | 57. 44
55. 13 | 140451
139035 | | 051151 | | | | | 7. 9. 0 | 49. 43 | 135272 | | 052015 | | | 40. 0 | 53. 57 | 139255 | | 051151 | | 1 | | | 11. 0 | 44. 16 | 136199 | | 052158 | | | 45. 0 | 52. 57 | 139023 | | 051092 | | I | | | 13. 0 | 43. 50 | 136860 | | 052181 | |] | 11. 57. 30 | 32.0. | | | 050892 | 60 .7 | 1 | | | 15 . 0 | 42. 58 | 138064 | | 052266 | | | 12. 0. 0 | 54. 30 | | | | | ١ | | | 17. 0 | 43. 34 | 138760 | | 052266 | | | 2. 30 | 1 | 139230 | 60 .2 | | | | | | 19. 0 | 45. 12 | 138528 | | 052266 | | | ~ | | | | 0.050000 | 22.0 | ١ | | | 21. 0 | 46. 40 | 138528 | | 052266 | | | Sep. 29. 7. 57. 30 | 00 54 00 | | | 0 .052062 | 66 .0 | 1 | | | 26. 0
31. 0 | 47. 33
49. 25 | 139329
139759 | | 052289
052204 | | | 8. 0. 0
8. 2.30 | 22, 54, 33 | 0 ·136667 | 65 .8 | | | | | | 36. 0 | 52. 2 | 139493 | - | 052204 | | | 9. 57. 30 | | 0 150007 | 00 0 | 051455 | 65 .0 | ١ | | | 41. 0 | 54. 24 | 139622 | j | 052144 | | | 10. 0. 0 | 43, 45 | | | | | | | | 46. 0 | 55. 32 | 139055 | | 052132 | | | 2.30 | | 134565 | 64.8 | | | | | | 51. 0 | 22. 56. 11 | 139287 | | 052082 | | | 3. 30 | 43. 45 | 134495 | | 051455 | | 1 | | | 7. 57. 30 | | ļ | | 052128 | 63 .0 | - | 14. 30 | | 134367 | | 051384 | | 1 | | | 8. 0. 0 | 23. 0.49 | 1 | - 1 | | | | 19. 30 | 47. 13 | 133740 | | 051241 | | l | | | 2.30 | 22 70 0 | | 63 .0 | 000 | | | 22. 30 | | 133508 | | 051184
051241 | | I | | | | 22. 59. 9
23. 1. 4 | 138618 | 1 | 051986 | | | 24. 30
29. 30 | 47. 13
47. 2 | 133393
133508 | | 051241 | | | | | 19. 0
29. 0 | 23. 1. 4
3.31 | 139313
139127 | | 052071
051972 | | | 29. 30
32. 30 | 46. 35 | 133323 | | 051241 | | | | | 39. 0 | 2. 41 | 138664 | | 051972 | | | 34. 30 | 46. 35 | 133277 | | 051312 | | I | | | 8. 49. 0 | 2.41 | 139313 | | 051914 | | | 36. 30 | 46, 26 | 133161 | | 051312 | | | | | 9. 9. 0 | 3. 43 | 139499 | 1 | 051914 | | | 10. 40. 30 | 46. 26 | 133323 | | 051384 | | 1 | | | 39. 0 | 3. 6 | 138942 | 1 | 051843 | | | 11, 45, 30 | | 133959 | | 049284 | | | | | 9. 57. 30 | | | | 051914 | 63 ·0 | | | 23. 4.37 | 134294 | | 049426 | GE - | 1 | | | 10. 0. 0 | 3. 15 | | | | | i I | 57. 30 | 1 | 1 | | 049426 | 65 .0 | 1 | September 28^d. 10^h. A change of 18'. 8" having taken place in the position of the Declination Magnet between 8^h and 10^h, extra observations were commenced. September 29^d. A change of 10'. 48" having taken place in the position of the Declination Magnet between 8^h and 10^h, extra observations were commenced. | | | | | | | - | | ober 12 and | | ا وي | Wantin-1 | 5 . | ī | |-------------------------------------|--------------|------------------------------|---|------------------------------|---|---------------|--------------------|--------------|---------------------------|---|-------------------------|---|-----| | 3.5 | | Horizontal | orce | Vertical | ie of | ا و | Göttingen Mean | 1. |
Horizontal
Force Read- | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read- | Thermometer of Vertical Force Magnetometer. | ١, | | Göttingen Mean | Western | Force Read- | Feer efer | Force Read- | or or | ers | Time (Astronomical | Western | ing in parts | net net | ing in parts | net Set | | | Time (Astronomical
Reckoning) of | W Caterin | ing in parts
of the whole | one | ing in parts
of the whole | 5 2 3 | L C | Reckoning) of | | of the whole | eton | of the whole | carl
eto | 1 | | Declination | Declination. | Hor. Force | rizo | Vert. Force | Frie Fr | Observers. | Declination | Declination. | Hor. Force | Periz de | Vert. Force | erti | 1 3 | | Observation. | | cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | cor.for Temp. | Thermometer of
Vertical Force
Magnetometer. | 0 | Observation. | | cor.forTemp. | FIZ | cor, for Temp. | FPZ | . _ | | d h m s | 0 / " | | 0 | | 0 | | d h m s | 0 / # | | 0 | | 0 | | | | 23. 0.55 | | | , | | G | Oct. 12. 8. 34. 0 | 22, 44, 55 | 0 ·144631 | l | 0 ·050614 | | G | | ep. 29. 12. 0. 0
2. 30 | | 0 ·132579 | 64 '5 | | | | 39. 0 | 45. 56 | 144213 | | 050614 | | 1 | | 2. 30 | 22. 54. 32 | 134410 | 01 0 | 0 .049782 | | | 44. 0 | 48.17 | 144037 | | 050589 | | 1 | | | 52. 9 | 134641 | | 050024 | | | 49. 0 | 49. 14 | 143444 | | 050564 | | | | 20. 30 | 1 | 136032 | | 050258 | | | 54. 0 | 49. 19 | 142633 | | 050493 | | ١ | | 28. 30 | | 136728 | | 050095 | | | 8. 59. 0 | 1 | 142271 | | 050397 | | 1 | | 33. 30 | | | | 050244 | | | 9. 7. 0 | Į. | 141793 | | 050372 | | 1 | | 40.30 | | 136959 | | 050024 | | | 14. 0 | | 141315 | | 050347 | | I | | 46. 30 | | 136496 | | 049689 | | | 24. 0 | | 141391 | | 050393 | | 1 | | 12. 59. 30 | | 132787 | | | | | 29. | 1 | 141056 | | 050368 | | ١ | | 13, 12, 30 | | 132787 | | 050045 | | | 9. 57. 30 | | | | 050365 | 70 .5 | 1 | | 24. 30 | L. | 134641 | | 050258 | | | 10. 0. 0 | | 1 | , | | | | | 37. 30 | | 134410 | | 048834 | | | 2. 30 | 1 | 140550 | 70 .5 | | | 1 | | 51. 3 0 | | 136032 | | 049105 | 65 .0 | | 2. 30 | <u> </u> | 140000 | | | | - - | | 13 . 57. 3 0 | | | - ' | 049532 | טי טט | | Oct. 15. 9. 57. 30 | | 1 | | 0.051202 | 63 .0 | ١ | | 14. 0. 0 | | | | ł | | | 10 0 | 22. 56. 42 | | | 0 001-1- | | ١ | | 2. 30 | | 137422 | 64 .2 | | | | | | 0 · 139893 | 63 .0 | | | ļ | | 4. 30 | | 138581 | | 049746 | | | 10. 2. 30 | | 0 100000 | 00 0 | 050730 | 64 .0 | | | 9. 30 | 48. 9 | 138813 | | 049810 | | | 11. 57. 30 | 00 0 05 | | | 000100 | 0. | | | 19.30 | 53. 2 | 138581 | | 050116 | | | 12. 0. 0 | | 140369 | 64 .0 | | 1 | - | | 27. 30 | 49. 16 | 137538 | | 050352 | | | 2. 30 | 1 | | 04.0 | 050509 | | 1 | | 40. 30 | | 136264 | | 050543 | | | 4. (| | 140369 | | 050438 | l | ١ | | 49. 30 | 49. 5 | 136728 | | 050757 | | | 9. (| | 140138 | ļ | 1 | 1 | ١ | | 14. 59. 30 | | 136728 | | 050814 | | | | 23. 0.29 | 140138 | Ì | 050438 | l | 1 | | 15, 29, 30 | 1 | 137654 | | 049604 | 1 | 1 | | 22, 58, 47 | 139860 | 1 | 050366 | } | 1 | | 15. 57. 30 | L . | | | 050757 | 65 .0 | | 24. (| t . | 139952 | ĺ | 050594 | (| ١ | | 16. 0. 0 | | · | | |] | | 29. (| | 140207 | | 050722 | İ | 1 | | 2. 30 | 1 | 138465 | 64 . 5 | | ļ |] | 34. (| | 140369 | | 050651 | 1 | ١ | | 16. 34. 30 | 46. 3 | 137307 | | 050708 | 1 | | 39. (| | 140254 | | 050438 | | ı | | 17, 49, 30 | | 137654 | | 051455 | } | | 44. (| 54. 13 | 140138 | | 050331 | İ | 1 | | 17. 57. 30 | | 10.001 | | 051455 | 65 .0 | | 49. (| 52.52 | 140555 | l | 050224 | 1 | ١ | | 18. 0. 0 | | | | | | | 54. (| 51.31 | 141065 | | 050110 | i | ı | | 2.30 | 00. 5 | 137376 | 64 .5 | ļ | | | 12.59. (| 50. 15 | 141528 | | 050203 | 1 | 1 | | 18. 39. 30 | 59. 6 | 136829 | 01.0 | 051470 | | | 13. 4. (| 49. 36 | 141760 | l | 050366 | l | 1 | | 19. 57. 30 | | 100020 | | 051251 | 61 .0 | | 9. (| 1 | 141760 | 1 | 050523 | | | | 20. 0. 0 | | (| | | | | 14. (| 46.47 | 141714 | 1 | 050580 | 1 | Ì | | | 1 | 136756 | 61 .0 | | | G | 15. (| 1 | 141714 | ļ | 050580 | | . | | 2.30 | | 100100 | J. 0 | | | | 16. (| | 141760 | ł | 050637 | l | 1 | | ct. 12. 5.57.30 | | | | Ø·050954 | 72 .0 | тD | 17. (| | 141760 | 1 | 050651 | | 1 | | | 22. 58. 21 | | | 3 300001 | " | | 22. (| | 141111 |] | 050687 | | 1 | | 6. 0. 0
6. 2.30 | | 0 ·141850 | 71 ·5 | | | ΤЪ | 27. (| | 140601 | i | 050722 | | 1 | | | | 0 141000 | ,, 0 | 050811 | 72 .0 | | 1 | 1 | 140369 | ĺ | 050438 | Ì | ı | | 7. 57. 30 | | | | 000011 | " | ** | 33. (| 1 | 140138 | 1 | 050068 | 1 | 1 | | 8. 0. 0 | 50. 5 | 141921 | 72 .0 | | | | 34. (| 1 | 140138 | } | 050010 | | ١ | | 2.30 | | 141921 | 12 0 | 050786 | | | 35. | 1 | 140138 | } | 050082 | | 1 | | 5. 0 | | | | 050786 | | | 36. (| | 140138 | 1 | 050366 | | 1 | | 9. 0 | | 141907 | | | | | 39. | | 139720 | | 050509 | | ļ | | 12. 0 | | 142602 | | 050715 | | | 42. | 1 | 139906 | | 050637 | | ĺ | | 16. 0 | | 142936 | | 050690 | l | | 42. (| 1 | 140230 | | 050865 | | ļ | | 18. 0 | | 143268 | | 050665 | | | l & | | 139674 | | 050865 | } | ١ | | 20. 0 | | 143454 | | 050701 | | | 50. (| 1 | 139906 | | 050915 | | ١ | | 24. 0 | 41.59 | 144079 | | 050701 | | | 55. (| 1 | 100000 | 1 | 050936 | 64 .0 | ١ | | 29. 0 | | 144761 | | 050782 | | | 13. 57. 30 | . 1 | * |) |) ผลบหลก | U7 " | | October 12^d. A change of 8'. 16" having taken place in the position of the Declination Magnet between 6^h and 8^h, extra observations were commenced. October 15d. 12h. A considerable change having taken place in the position of the Declination Magnet since 10h, extra observations were commenced, | Göttingen Mean
Fime (Astronomical
Reckoning) of
Declination
Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.forTemp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | 7 | |--|----------------------|---|---|--|---|------------|--|-------------------------|---|---|---|---|---| | d h m s | 0 , " | | 0 | | 0 | | d h m s | 0 / " | | 0 | | 0 | | | Oct. 15, 14, 0, 0 | 22. 55. 13 | | l | | | ТЪ | Oct. 22. 22. 27. 0 | 23. 1.42 | 0 .136894 | | 0.050568 | | G | | 2. 30 | | 0 .140184 | 64 .0 | | | ТД | 28. 0 | 2.35 | 137473 | | 050533 | | | | | | | | | | - | 31. 0 | 6. 59 | 137137 | - | 050556 | | 1 | | Oct. 22, 17, 57, 30 | | ĺ | | 0 .050973 | 62 .0 | G | 32. 0 | 7.48 | 137137 | | 050662 | | | | | 22. 54. 52 | 0 -141005 | co o | | | | 34. 0 | 5. 6 | 136906 | | 050556
050449 | | | | 18. 2.30
19.57.30 | | 0 ·141967 | 62. 0 | 050658 | 59 .5 | G
E H | 36. 0
39. 0 | 6. 7
11. 15 | 135979
136211 | | 050520 | | 1 | | 20. 0. 0 | | | | 000000 | 08 0 | EH | 40. 0 | 11. 15 | 133082 | | 050627 | | | | 20. 2.30 | | 138411 | 59.5 | | | G H | 41. 0 | 4. 12 | 131576 | | 050058 | | - | | 21.40. 0 | | 128024 | | | | | 43. 0 | 5. 54 | 128691 | | 050022 | | | | 41. 0 | 56, 50 | 126402 | | 050335 | l | | 45 . 0 | 0. 22 | 126606 | | 049630 | | | | 42. 0 | | 128372 | ļ | 050798 | | | 47. 0 | 4. 7 | 129039 | | 049773 | | | | 43. 0 | | 126982 | | 051012 | | | 49. 0 | 2. 56 | 130314 | | 050152 | | 1 | | 44. 0 | | 127573 | | 050656 | - | | 50. 0 | 3. 22 | 132168 | | 050187 | | 1 | | 45 . 0 | 1 | 127573 | | 050762 | | | 51. 0 | 1. 59 | 131009 | | 050081
050116 | | ١ | | 46. 0 | 57. 41
22. 58. 17 | 127573
12745 7 | | 050904
050571 | | | 52. 0
54. 0 | 2. 46
1. 33 | 131589
132992 | 1 | 049902 | | 1 | | 48. 0 | | 128499 | li | 050607 | | | 55. 0 | 4. 52 | 134382 | | 050365 | | | | | 23. 3.57 | 127470 | | 051035 | | | 57. 0 | 2. 37 | 133571 | | 050187 | | | | | 23. 3. 4 | 127933 | | 050500 | | | 58. 0 | 1. 39 | 136469 | | 050045 | | 1 | | 52. 0 | 22. 58. 42 | 127586 | | 050167 | , | | 22, 59, 0 | 23. 0.35 | 136353 | | 050116 | | | | | 22. 58. 54 | 127586 | | 050381 | | | 23. 1. 0 | 22. 58. 22 | 135310 | | 050116 | | | | | 23. 2.23 | 130032 | | 050594 | | | 3. 0 | | 136469 | | 050187 | | l | | 55. 0 | 5. 59 | 129800 | | 050594 | | | 4. 0 | | 135773 | | 050081 | | l | | 57. 3 0 | 4. 0 | 129916 | | 050689 | 62 .0 | 1 1 | 6. 0 | 55. 58 | 136353 | | 050294
050472 | | 1 | | 21.58. 0
22. 0. 0 | 7. 9
4. 32 | 130380
130380 | | 050902
050689 | | | 10. 0
13. 0 | 1 - | 136133
137639 | | 050258 | | | | 1. 0 | 5. 26 | 128757 | | 05053 | | | 14. 0 | 53. 9 | 137523 | | 050329 | | 1 | | 2. 30 | 5. 39 | 128757 | 62 .0 | 050475 | | | 18. 0 | 1 | 138347 | İ | 050614 | | 1 | | 3 . 0 | 6. 12 | 125513 | 02 0 | 050261 | | | | 22. 58. 39 | 139622 | i | 050744 | | 1 | | | 23. 2.45 | 126440 | | 050404 | | | | 23. 1.57 | 140317 | | 051064 | | | | | 22. 52. 4 | | | | | | 28. 0 | | 139042 | | 050922 | | ١ | | 5. 0 | 54. 23 | 124006 | | 049977 | | | 39. 0 | 1 | 138708 | | 050708 | |
١ | | 6. 0 | 52.41 | 123427 | | 049977 | | | 47. 0 | | 142429 | | 050589 | • | 1 | | 7. 0
8. 0 | 51 49 | 120878 | | 049821 | | | 49. 0 | • | 140227 | | 050660
050247 | 62 .5 | | | 9. 0 | 1 | $\frac{123787}{122165}$ | | 049821 | | | 23. 57. 30
23. 0. 0. 0 | 23 3 37 | ľ | | 000241 | 02 0 | 1 | | 10. 0 | | 120774 | | 049714 | | | 25. 0. 0. 0 | n. 0.0 | 138549 | 63 .0 | | | | | | 22. 50. 35 | 126916 | | 050070 | | 1 | | 22. 58. 15 | 138154 | | 050589 | | ŀ | | | 23. 0. 52 | 129233 | | 050426 | | | | 23, 3, 27 | 138386 | | 051087 | | ١ | | 13. 0 | 5.46 | 130624 | | 050995 | | | 26. 0 | | 135953 | | 050981 | | 1 | | 15. 0 | | 131899 | | 050995 | | | 28. 0 | | 139847 | | 051159 | | 1 | | 16. 0 | 4. 52 | 132941 | | 050853 | - | | 30. 0 | | 137737 | | 051287 | | l | | 17. 0 | 8. 19 | 135838 | | 051209 | | | 32. 0 | 1.24 | 137112 | | 051372 | | 1 | | 18. 0
19. 0 | 9, 42
5, 16 | 136534
135503 | | 051138
050995 | | | 34. 0
36. 0 | | 136301
136347 | | 05123Q
051266 | | | | 20. 0 | 4. 0 | 135503 | | 050995 | | | 39. 0 | 23. 0.59 | 135605 | | 051200 | | 1 | | | 23. 0. 0 | 135040 | | 050639 | | | 40. 0 | 22. 58. 54 | 135628 | | 051195 | | | | | 22. 58. 6 | 135040 | | 050497 | | 1 | | 23. 1.40 | 135559 | | 050888 | | 1 | | 24. 0 | 22. 59. 1 | 136199 | | 050426 | | | | 22. 58. 16 | 133264 | | 051301 | | | | | 23. 1.48 | 137589 | | 050711 | | 1 1 | 0.57. 0 | | 133264 | | 051479 | | 1 | October 22^d. 20^h. Considerable changes having taken place in the positions of the Declination and Horizontal Force Magnets since 18^h, extra observations were commenced. | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor.for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor. forTemp. | Thermometer of
Vertical Force
Magnetometer. | O.P. Control | |--|----------------------|---|---|--|---|------------|--|----------------------|---|---|--|---|--------------| | d h m s | 0 / " | | 0 | | 0 | | d h m s | 0 / " | | 0 | | 0 | | | oct. 23. 1. 0. 0 | 22. 59. 57 | 0 ·134678 | | 0 .051586 | | T D | | 23. 30. 40 | 0 ·146331 | | 0 .056244 | | G | | 5. 0 | 57. 12 | 134215 | | 051586 | | | 7. 0 | | 147038 | | 050505 | | | | | 22. 57. 7 | 132824 | | 051586 | | | 8. 0 | 33. 41 | 147965
148660 | | 056707
057063 | | ŀ | | | 23. 4. 9 | 136533 | | 051693
051907 | | | 9. 0
11. 0 | 34. 49
35. 58 | 149889 | | 057739 | | | | | 23. 4.45
22.57.54 | 134794
134910 | | 052234 | | | 12. 0 | 38. 10 | 154222 | | 058487 | | | | | 23. 0.31 | 136162 | | 052220 | | | 14. 0 | 37.50 | 155150 | | 058415 | | | | 34. 0 | 6. 31 | 137089 | | 052511 | | | 15. 0 | | 155729 | | 058558 | | | | 39. 0 | 9.54 | 138479 | | 052867 | | | 16. 0 | 32. 57 | 157351 | | 059293 | | l | | 44. 0 | 8.49 | 137992 | | 053166 | | | 17. 0 | 27. 18 | 155844 | | 058937 | | ١ | | 47. 30 | | | | 053544 | | | 18. 0 | | 155381 | | 058604
058390 | | 1 | | | 23. 15. 45 | 105005 | | · | | T D | 20. 0
21. 0 | | 157943
160145 | | 058319 | | | | 52.30
57.30 | | 135605 | | 053971 | 62 .5 | 1 | | | 158870 | | 057928 | | 1 | | | 22, 44, 33 | 127031 | | 054363 | 02 0 | , | 24. 0 | I . | 159566 | | 057785 | | ١ | | 2. 0. 0 | 44. 45 | 127263 | | 054932 | | | 25. 0 | 4 | 165359 | | | | l | | 1. 0 | 46. 15 | 127147 | | 055146 | | | 26. 0 | 1 | 166866 | | 057963 | | | | 2. 0 | 46. 15 | 125640 | · | 055182 | | | 27. 0 | 34. 9 | 168140 | · | 058248 | | 1 | | 2. 30 | | 125640 | 63 .0 | | | | 28. 0 | | 166170 | | 058141
058984 | | | | 4. 0 | 51. 4 | 125408 | | 055146 | | | 30. 0 | 30. 4
26. 49 | 165604
165604 | | 060550 | | I | | 5. 0
6. 0 | 53. 43
55. 25 | 1280 73
128421 | | 055525
055418 | | | 32. 0
33. 0 | | 163750 | | 060550 | | 1 | | 7. 30 | 55. 23 | 130507 | | 055311 | , | | 34. 0 | 1. | 160274 | | 058913 | | | | | _ | 130404 | | 055026 | | | 36. 0 | 43. 30 | 159927 | | 057773 | | k | | | 23. 0.30 | 131330 | | 054884 | | | 38. 0 | | 157609 | | 057311 | | 1 | | 12. 30 | 1. 53 | 132374 | | 054778 | | | 39. 0 | 1 | 156751 | | 057369 | | | | 14. 0 | 1.47 | 132953 | | 054742 | | | 40. 0 | | 156635 | | 057982
057796 | | | | 17. 0 | 0.44 | 133069 | | 054765
054788 | | | 42. 0
43. 0 | | 155430
155536 | | 057369 | | - | | 19. 0
20. 0 | 0. 44
2. 21 | 133777
133847 | | 054788 | | | 45. 0 | 1 | 152639 | | 056645 | | | | 20. 0
22. 0 | 3. 47 | 134241 | | 055108 | | | 46. 0 | 1 - | 151017 | | 056645 | | 1 | | 23. 0 | 0.14 | 135979 | | 055678 | | | 48. 0 | 1 | 151017 | | 057264 | | | | 25. 0 | 1. 27 | 138992 | | 055713 | | | 50. 0 | | 150090 | ! | 057107 | | 1 | | 30. 0 | 11.20 | 140279 | | 055238 | | | | 23. 8.45 | 148699 | | 058959 | | ı | | 32. 0 | 11.57 | 140511 | | 055060 | | | | 22. 57. 36 | 147540
145919 | | 058674
057748 | | | | 35. 0 | 21. 4 | 141207
142133 | | 054953
054905 | | | 53. 0
54. 30 | | 145919 | | 056623 | | | | 38. 0
39. 0 | 24. 0
25.13 | 142133 | | 054834 | | | 55.30 | | 144587 | | 056646 | | 1 | | 40. 0 | 25. 16
25. 26 | 142378 | | 054834 | | GН | | 22, 58, 33 | 144077 | | 056418 | | 1 | | 41. 0 | 25. 55 | 142309 | | 054976 | | T D | 56. 30 | 23. 0.37 | 143845 | | 056170 | | 1 | | 42. 0 | 25. 28 | 141891 | | 054976 | | | 57. 0 | 3. 45 | 143845 | | 055849 | | | | 44. 0 | 23. 2 | 142146 | | 055056 | | | 57. 30 | | 143150 | | 055720 | 64 .0 | | | 46. 0 | 21. 13 | 141799 | | 054885 | | | 58. 0 | | 143392 | | 05 59 56
0 55 849 | | | | 49. 0 | 20, 53 | 139597 | | 054667 | • | | 58.30 | 5. 52
1. 29 | 143845
143034 | | 056062 | | | | . 50. 0
51. 0 | 20.45 | 141001
139378 | | 054667
. 054845 | | | 3. 59. 30
4. 0. 0 | | 143034 | | 055991 | | l | | 51. 0 54. 0 | 21.52 25.25 | 141927 | · | 054759 | | | 0.30 | | 142455 | | 055991 | | 1 | | 57. 0 | 32, 31 | 144245 | | 054904 | | | 1. 0 | | 143150 | | 055991 | | | | 2. 59. 0 | 35. 41 | 143318 | | 054726 | | | 1.30 | I . | 141991 | | 056205 | | - | | 3. 0. 0 | 35. 32 | 142738 | | 054940 | | | 2. 0 | 7. 43 | 142686 | | 056134 | | Ì | | 4. 0 | 31. 27 | 142970 | | 055496 | | T D | | | 142686 | 64.0 | 056027 | | 1 | | Time | (Ast | n Mean
ronomical
ing) of | Western | Horizontal
Force Read-
ing in parts
of the whole | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole | Thermometer of
Vertical Force
Magnetometer. | Observers. | Time (As | en Mean
tronomical
ning) of | Western | Horizontal
Force Read-
ing in parts
of the whole | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Read- ing in parts of the whole | Thermometer of
Vertical Force
Magnetometer. | | |------|--------|--------------------------------|--------------|---|---|---|---|------------|----------|-----------------------------------|--------------|---|---|--|---|---| | 1 | Declin | ation
ation. | Declination. | Hor. Force cor.for Temp. | Therm
Horizo
Magnet | Vert. Force cor.for Temp. | Therm
Vertice
Magnet | Obse | Decli | nation
vation. | Declination. | Hor. Force
cor.for Temp. | Therm
Horize
Magne | Vert. Force cor.for Temp. | Therm
Vertic | | | | a | h m | 0 / " | | 0 | | 0 | | d | h m | 0 / // | | 0 | | 0 | Ī | | Oct. | 23. | 4. 7. (| 23. 16. 17 | 0 .141482 | | 0 .056703 | | G | Oct. 23. | 5. 47. | 22. 54. 39 | 0 .148480 | | 0 .056882 | | | | | | 8. (| | 139952 | | 057130 | | | | 51. (| 52. 42 | 147090 | | 056490 | | ١ | | | | 8. 3 0 | | 139674 | | 057130 | | | | 54 . (| - | 147321 | | 056219 | | 1 | | | | 10. (| 1 | 141760 | | 057130 | | | | 56. (| | 147321 | } | 056027 | | ١ | | | | 12. (| 1 | 141528 | | 057130 | | | | 57. (| | 146441 | Ì | 055885 | | I | | | | 13. (| | 142686 | | 056917 | | 1 | | 5. 57. 30 | | | | 056027 | 64 .0 | | | | | 14. (
16. (| | 141991
141528 | | 056717
056005 | | | | 6. 0. 0 | | 145460 | 64 .0 |] | Ì | | | | | 17. | • | 141328 | | 055849 | | | | 2. 30
5. (| 22, 59. 15 | 145468
145468 | 04 0 | 056027 | | | | | | 19. | | 141991 | | 055564 | | | | | 23. 0.30 | 145481 | l | 055943 | | | | | | 21. | 1 | 140369 | | 055934 | | | | 14. (| | 143395 | 1 | 056228 | İ | | | | | 25. | | 140369 | | 055991 | | | | | 23. 0.42 | 145262 | | 056465 | | | | | | 26. (| | 140184
 | 055706 | | | | | 22. 58. 43 | 147070 | | 056679 | | | | | | 27. (| 2. 44 | 140833 | | 055600 | | | | 26. (| | 147811 | 1 | 056750 | | | | | | 28. (| 1 | 140369 | | 055458 | | | | 29. (| 56.58 | 151542 | | 056964 | | | | | | 31. (| | 140787 | | 055279 | | | | | 22. 56. 17 | 154290 | | 056453 | | | | | | 34. (| 1 | 140369 | | 055151 | | | | | 23. 9.18 | 154870 | | 055029 | | | | | | 38. 0 | | 141760 | | 054994 | | | l l | 35. (| | 146318 | | 055136 | | | | | | 44. (| | 141528 | | 054567 | | | | 37. (| | 144232 | | 054017 | | | | | | 45. (| | 140601 | | 054425 | | 1 | ll. | 39. (| | 143305 | | 053748 | | | | | | 46. (
47. (| | 139210
138515 | | 054282
054211 | | | | 41. (| | 143653 | l | 053676
054092 | | | | | | 50. | | 139674 | | 054711 | | | | 43. (
45. (| | 141336
140190 | į | 054519 | | | | | | 51. 30 | | 139674 | | 055222 | | | | 47. (| | 139262 | ĺ | 054270 | | | | | | 52. (| | 140601 | | 055350 | | | | 49. (| 4 | 139262 | ĺ | 054519 | | | | | | 55. | 1 | 141991 | | 055422 | | | | | 23. 0.50 | 139031 | | 054697 | | | | | | 4. 59. (| 1 | 144123 | | 055279 | | | | | 22. 58. 33 | 138985 | l | 055219 | | | | | | 5. 0. 0 | | 144309 | | 055279 | | | | 55. (| 58. 20 | 139147 | 1 | 055325 | | | | | | 5 . (| | 144541 | | 055137 | | | | 57. (| | 141131 | l | 055788 | | | | | | 7. | | 144077 | | 055137 | | | | 6. 59. (| | 142868 | l | 055539 | | | | | | 10. (| | 146163 | | 055706 | | | | 7. 1. (| | 144375 | | 055859 | | | | | | 11. (| | 145932 | | 055863 | | | | 4. (| | 143448 | ļ | 055859 | | | | | | 16. (| 1 | 145120 | | 056425 | | | | 7. (| 1 | 140899 | 1 | 055624 | Ì | | | | | 17. (
18. (| 1 | 145120 | | 055948
056027 | | | | 10. (
13. (| | 140680 | İ | 055775
056025 | | | | | | | 22. 58. 50 | 146372 | | 057202 | | | | 16. (| | 140148
140448 | | 056274 | | | | | | | 22.57. 1 | 147367 | | 057493 | | 1 1 | | | 23. 5.44 | 140230 | | 056383 | | | | | | | 23. 0.21 | 146372 | | 056988 | | 1 | | | 22, 58, 58 | 139627 | } | 056511 | | | | | | | 22. 58. 6 | 146974 | | 057195 | | | | 30. | | 138620 | 1 | 056605 | | | | | | | 22. 58. 49 | 147090 | | 057095 | | | | 35 . (| | 137461 | | 055395 | | | | | | | 23. 1.23 | 146395 | | 057401 | | | | 40. (| | 136767 | | 055253 | | | | | | | 22. 54. 53 | 146904 | | 057558 | | | | 43. (| 4 | 136998 | į | 055395 | | | | | | 36. 0 | | 147321 | | 057486 | | | | 45. (| | 136780 | | 055547 | | | | | | 37. 0 | | 147785 | | 057309 | | | 1 | 47. (| | 136594 | | 055490 | | | | | | 38. 0 | | 148249 | | 057144 | | | | 49. (| | 136548 | | 055419 | | | | | | 39. 0 39. 30 | | 148573 | | 057059 | | | · · | 50. (| | 135552 | | 055277 | | | | | | 40. 0 | | 148249 | | 056846 | | | | 51, (
53. (| | 135621
137243 | 1 | 054849
054209 | 1 | | | | | 43. 0 | | 147785 | | 056774 | | | | 55. (| | 136548 | | 054137 | | | | | | 44. 0 | | 148249 | | 056846 | | | | 57. (| | 136213 | | 054068 | } | | | | | 45. 0 | | 148712 | | 056917 | | | Į | 57. 30 | | | l | 054039 | 65 .0 | | | Oct. 23. 7, 59. 0 22. 37. 25 0 · 136097 8. 0. 0 · 0. 43. 11 134796 1. 0 · 0. 43. 11 134796 2. 3. 0 · 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | Time (Ar
Recke
Decl | gen Mean
stronomical
oning) of
ination | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force | riz
gn | Vertical Force Reading in parts of the whole Vert. Force | ermo | Observers. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | nermometer of
orizontal Force
agnetometer. | Vertical Force Read- ing in parts of the whole Vert. Force cor.for Temp. | hermometer of
ertical Force
agnetometer. | 0100 | |--|---------------------------|---|----------------------|---|-----------|--|------|------------|--|----------------------|--|--|--|--|----------| | 0ct. 23, 7, 25, 0 02, 37, 25 0 136087 0 0 0 0 0 0 0 0 0 | | | | cor.for Temp. | | cor.for Temp. | | | | | cor.tor Temp. | | cor.for Temp. | | <u> </u> | | 8. 0. 0 43. 11 134706 053997 053997 053997 0 44. 11 13694 053987 0 30. 0 2. 23 136709 0 052214 0 0 0 0 0 0 0 0 0 | | | 1 | 0.196007 | ٥ | 0.054010 | | T D | 1 | _ | 0 .135397 | | 0.051959 | Ū | ١. | | 1. 0 43.11 135694 | Jet. 23. | | | | | 1 | | 1 1 | | | | | | | Ι. | | 2. 30 3. 0 45. 1 137256 65 0 3. 0 45. 1 137256 053733 5. 0 30. 43 5. 0 30. 43 1. 14. 0 52. 26 1. 10. 0 42. 1 138981 1. 10. 0 42. 1 1389881 1. 10. 0 42. 1 138981 1. 10. 0 42. 1 138981 1. 10. 0 42. 1 138981 1. 10. 0 42. 1 138981 1. 10. 0 42. 1 138981 1. 10. 0 42. 1 138981 1. 10. 0 42. 1 138981 1. 10. 0 42. 1 138981 1. 10. 0 42. 1 138981 1. 10. 0 42. 1 138981 1. 10. 0 42. 1 138981 1. 10. 0 42. 1 138981 1. 10. 0 42. 1 138981 1. 10. 0 42. 1 138981 1. 10. 0 42. 1 138981 1. 10. 0 42. 1 138981 1. 10. 0 42. 1 138981 1. 10. 0 138981 1. 10. | | | | 1 | | | 1 | | | | | | | | | | 3. 0 45. 1 137266 6.53730 6.53730 18. 18. 13. 38113 6.53760 18. 0 5.7 140101 0521733 052425 9. 0 43. 34 139166 053425 19. 0 4. 47 137087 052042 052042 052042 11. 0 42. 1 138081 053425 22. 0 7. 36 11. 10 42. 1 138081 053212 28. 0 2. 31 137310 052042 052042 052042 14. 40 44. 47 138087 052042 052042 052042 052042 052042 052042 052042 052042 052042 052042
052042 052044 052044 052044 052 | | | 10.11 | | 65 .0 | 000010 | Ì | | | | | | | | | | 7. 0 38. 29 138368 0.53425 19. 0 4. 47 137087 0.52042 11. 0 42. 1 138981 0.53317 28. 0 2. 31 137319 0.52035 0.53117 28. 0 2. 31 137319 0.52035 0.53117 28. 0 2. 31 137319 0.52035 0.53117 28. 0 2. 38. 20 140922 0.51849 0.51636 0.52042 0.51636 0.52042 0.51636 0.52042 0.51636 0.52051 | | | 45. 1 | | | 053733 |] | | | 11. 37 | | | | | | | 9. 0 43, 34 139166 053333 130 053333 28, 0 28, 0 2, 31 137319 052035 130 047, 47 138517 138517 16. 0 49, 51 1380634 053045 053045 18. 0 52, 46 138693 052951 29, 0 53, 53 137809 052980 25, 0 53, 59 137925 053163 1.53, 0 22, 56, 59 137925 053163 1.53, 0 23, 1 137319 052035 137809 052980 46, 0 56, 25 137690 051637 28, 0 22, 57, 31 137319 052035 29, 0 54, 36 137647 053070 2, 5, 5, 0 136881 053066 16, 50 2, 32 139334 052055 41, 0 55, 22 131900 052933 40, 50 6, 12 148529 053022 41, 0 55, 22 131531 052868 47, 0 52, 26 135131 052868 47, 0 52, 26 135131 052868 47, 0 52, 26 135131 052868 47, 0 52, 26 13630 135105 57, 58 135308 052444 54, 0 25, 4, 45 135131 052365 24, 50 23, 1, 24 139974 056293 24, 50 23, 1, 24 139974 056293 24, 50 24, 50 23, 1, 24 131939 054886 10, 60, 0 22, 47, 27 138313 052356 055051 14, 0 48, 26 137909 049900 049890 | | 5. 0 | 39. 43 | | | 053760 | | | | 5. 37 | | | | | ١ | | 11. 0 | | - | 38. 29 | 138368 | | 053425 | | | | | 1 ' 1 | | | | | | 13. 0 43. 2 139213 | | | | | | | | | | | | | | | | | 14. 0 47. 47 138517 053117 28. 20 22. 57. 31 135708 051636 18. 0 49. 51 138054 052951 053056 22. 0 53. 59 137809 052890 052890 22. 0 54. 36 137809 052890 053070 2. 5. 50 137809 051657 20. 0 54. 36 137047 053070 2. 5. 50 0. 55. 31 13900 052833 40. 0 57. 0 136581 053056 40. 0 55. 2 131900 052833 40. 0 55. 2 131900 052833 40. 0 55. 2 131900 052833 40. 0 55. 2 131900 052833 40. 0 55. 2 131900 052833 40. 0 55. 2 131900 052833 40. 50 6. 1 2 143529 053022 41. 0 55. 0 132132 052702 48. 50 4. 36 142845 052055 48. 50 4. 36 142845 052055 48. 50 0 22. 55. 57 134204 052145 051532 052145 051532 052145 051532 051532 051532 051532 051532 051532 052051 11. 4. 0 45. 47 132142 046910 0548907 40. 50 22. 47. 27 133313 048907 40. 50 22. 50. 50 31. 13. 140913 054896 11. 4. 0 48. 26 137909 048311 11. 4. 0 45. 47 132142 046910 14. 0 22. 5. 2. 31 14005 04850 04851 11. 57. 30 11. 57. 30 12. 0. 0 22. 50. 38 134783 62 0 04850 048233 12. 0. 0 22. 50. 38 134783 62 0 04850 048233 12. 0. 0 22. 50. 38 134783 62 0 04850 048233 12. 0. 0 22. 50. 38 137364 051645 051645 18. 10. 0 48. 26 137644 051645 051645 22. 30 0 53. 19 136253 051645 22. 30 0 53. 19 136253 051645 22. 30 0 53. 19 136253 051645 22. 30 0 53. 19 136253 051645 22. 30 0 53. 19 136253 051645 22. 30 0 53. 19 136253 051645 051645 22. 30 0 53. 19 136253 051645 051645 22. 30 0 53. 19 136253 051645 051645 22. 30 0 53. 19 136253 051645 051645 22. 30 0 53. 19 136253 051645 051645 22. 30 0 53. 19 136253 051645 051645 22. 30 0 53. 19 136253 051645 051645 22. 30 0 53. 19 136253 051645 051645 22. 30 0 53. 19 136253 051644 051645 051645 44. 30 03. 55. 20 147008 057915 05701 051645 0516 | | | | 1 | | | | | 1 | | | | | | | | 16. 0 | | | | | | | | 1 1 | ; | | 140922 | | 051849 | | 1 | | 18. 0 52.46 138633 052850 053051 053051 053051 053051 053052 053165 053052 053052 053053 053052 053053 053052 053053 | | | | | | | | T D | | | 125709 | | 051696 | | | | 20. 0 | | | | | | | | 1 1 | | | | | | | l | | 23. 0 58. 2 136998 053022 053165 1.53. 0 22. 58. 25 136762 052796 2.50. 0 53. 59 137925 053165 2.50. 0 0.53 140945 052674 34. 0 57. 0 136581 053070 053070 1.53. 0 1.53. 0 2.5. 5. 50 0.53 140945 052674 34. 0 57. 0 136581 053056 16. 60 2. 2. 22 138934 052055 41. 0 55. 9 132132 052762 42. 60 6. 12 143529 053022 43. 60 6. 12 143529 053022 44. 60 6. 12 143529 053032 45. 60 6. 12 143529 053032 45. 60 6. 12 143529 053032 45. 60 6. 12 143529 053032 45. 60 6. 12 143529 053032 45. 60 6. 12 143529 053032 45. 60 6. 12 143529 053032 45. 60 6. 12 143529 053251 45. 60 6. 12 1435 | | | | | | | | " | (| | | | | | | | 25. 0 | | | | | | | | | 1 | | | | 1 | | | | 29. 0 | | | | | | | | | | | | | 332.33 | | 1 | | 34. 0 57. 0 136581 | | | | | | | | | | | 140945 | | 052674 | | | | 40. 0 55. 22 131900 | | | | | | | | | 16. 50 | 2.32 | 139334 | | 052055 | | | | 41. 0 55. 9 132132 052688 48. 50 4. 36 142845 052830 47. 0 52. 26 135131 052688 51. 30 57. 58 135386 54. 0 54. 46 135131 052359 52. 55. 57 134204 052359 51. 30 57. 58 135386 10. 0. 0 0 23. 15. 41 1. 30 22. 55. 53 133508 135105 64. 5 2. 30 7. 0 22. 56. 28 134191 051839 26. 0 0 22. 56. 28 134191 051839 26. 0 0 22. 56. 28 134191 051839 26. 0 0 22. 47. 27 133313 048997 11. 4. 0 48. 26 137909 048311 11. 4. 0 48. 26 137909 048311 12. 0 . 0 22. 50. 38 134783 62. 0 0 048233 12. 0 . 0 0 22. 50. 38 134783 62. 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 40. 0 | | | | | | | | | | | 053022 | | | | 51. 80 | | | 55. 9 | 132132 | | | | | | | | | 1 1 | | | | 54. 0 54. 45 135131 052359 052145 22. 55. 57 134204 052145 052145 22. 55. 57 134204 052145 052145 22. 45. 0 23. 1. 24 139974 054651 054651 054651 054661 054661 054661 054661 054661 054661 054661 054661 054661 054667 054661 054667 054661 054667 055067 055067 055067 055067 055067 055067 055067 055067 055067 055069 055069 055069 055069 055069 055069 056069 056069 056069 056069 056069 056069 056069 | | | | | | 052668 | | | | | 1 | | | | 0 | | 8. 57. 0 22. 55. 57 | | | | | | | | | | | ł I | | | | | | 9. 57. 30 10. 0. 0 23. 15. 41 1. 30 22. 55. 53 133508 2. 30 7. 0 55. 31 133323 26. 0 52098 26. 0 22. 56. 28 134191 54. 0 23. 3. 24 131692 049590 10. 59. 0 22. 47. 27 133313 14. 0 48. 26 137909 138. 39. 50 138. 39. 50 138. 39. 50 138. 39. 50 138. 39. 50 138. 39. 50 138. 39. 50 14. 59. 50 18. 10. 144413 10. 55180 10. 50. 0 22. 47. 27 133313 14. 0 48. 26 137909 14886 15736 11. 40. 0 45. 47 132142 140665 137604 11. 57. 30 12. 0. 0 22. 52. 41 140665 140. 22. 52. 41 140665 140. 22. 52. 41 140665 140. 22. 52. 41 140665 140. 22. 52. 41 140665 140. 22. 52. 41 140665 140. 22. 52. 41 140. 0 48. 26 137909 140. 50 140. | | | | | | | | | | | | | | | | | 10. 0. 0 23. 15. 41 | | | 22 . 55. 57 | 134204 | | | 03.5 | | | | | | | | | | 1. 30 22. 55. 53 133508 135105 64 · 5 052051 2. 30 135105 64 · 5 052098 26. 0 22. 56. 28 134191 051839 26. 0 22. 56. 28 134191 051839 26. 50 22. 47. 27 133313 048997 11. 4. 0 45. 47 132142 046910 11. 4. 0 48. 26 137909 048311 24. 0 22. 52. 41 140665 049142 39. 0 23. 18. 33 127404 11. 57. 30 22. 50. 38 134783 62 · 0 0 22. 50. 38 22. 50. 38 22. 50. 38 22. 30 22. 50. 38 22. 30 22. 50. 38 22. 30 22. 50. 38 22. 30 22. 50. 38 22. 30 22. 50. 38 23. 0 23. 0 23. 0 24. 0 24. 0 25. 0 24. 0 25. 0 | | | 00 15 41 | | | 051532 | 63.5 | | | | 1 : | | | | | | 2. 30 7. 0 55. 31 133323 26. 0 22. 56. 28 134191 54. 0 23. 3. 24 131692 10. 59. 0 22. 47. 27 133313 11. 4. 0 45. 47 132142 11. 4. 0 48. 26 137909 24. 0 22. 52. 41 140665 39. 0 23. 18. 33 127404 11. 57. 30 11. 57. 30 12. 0. 0 22. 50. 38 134783 12. 30 134783 12. 30 135105 135105 1352098 051839 051839 051839 051839 051839 051839 051839 051839 055349 055549 055736 055949 045997 046910 048997 19. 0 0 56. 5 137644 051645 049142 048233 051849 055180 055349 055549 0555736 055949 045997 046910 048997 046910 048911 049. 50 049. 50 049. 50 048233 048233 048233 051839 046. 50 052. 55. 50 057915 0 | | | | 199509 | | 059051 | | | | | | | | | | | 7. 0 55. 31 13323 | | | 22. 00. 00 | | 64 .5 | 052051 | | | (| | 1 | | | | | | 26. 0 22. 56. 28 134191 051839 049590 10. 59. 0 22. 47. 27 133313 048997 11. 4. 0 45. 47 132142 046910 048261 14. 0 48. 26 137909 048811 24. 0 22. 52. 41 140665 39. 0 23. 18. 33 127404 04910 048233 12. 57. 30 22. 50. 38 134783 62 0 62. 0 64. 23. 21. 57. 30 22. 50. 38 22. 51. 38 145815 055736 055828 056191 057843 058843 | | | 55, 31 | | 04 0 | 052098 | | | | | 1 | | 4 | | ١ | | 54. 0 23. 3. 24 | | | | | 1 | | } | | | | , - | { | , , | | | | 10. 59. 0 22. 47. 27 133313 | | | | | | | | | | | 145827 |] | 055828 | | 1 | | 14. 0 | | 10. 59. 0 | 22. 47. 27 | 133313 | | i | | | | | 145596 | | 056191 | | 1 | | 24. 0 22. 52. 41 140665 39. 0 23. 18. 33 127404 047530 048233 11. 57. 30 12. 0. 0 22. 50. 38 134783 62 · 0 8 H 62. 0 137352 24. 0 · 137352 54 · 5 18. 10 43. 35 139962 28. 10 54. 16 137644 051645 28. 10 55. 50 10 55. 44 135558 28. 10 55. 50 10 55. 50 10 55. 50 10 56. 5 137644 05131 19. 0 56. 5 137644 051716 19. 0 56. 5 137644 051716 19. 0 56. 5 137644 051716 19. 0 56. 5 137644 051716 19. 0 56. 5 137644 051716 19. 0 57269 19. 0 56. 5 137644 051716 19. 0 56. 5 137644 051716 19. 0 56. 5 137644 051716 19. 0 56. 5 137644 051716 19. 0 56. 5 137644 051716 19. 0 56. 5 137644 051716 19. 0 56. 5 137644 051716 19. 0 57269 19. 0 56. 5 137644 19. 0 51716 19. 0 56. 5 137644 051716 19. 0 56. 5 137644 051716 19. 0 56. 5 137644 051716 19. 0 56. 5 137644 051716 19. 0 56. 5 137644 051716 19. 0 56. 5 137644 051716 19. 0 56. 5 137644 051716 19. 0 56. 5 137644 051716 19. 0 56. 5 137644 051716 19. 0 56. 5 137644 051716 19. 0 56. 5 137644 051716 19. 0 56. 5 137644 051716 19. 0 56. 5 137645 051716 19. 0 56. 5 137645 0517269 | | 11. 4. 0 | 45. 47 | | | 046910 | | | | 1 | | l | | | | | 39. 0 23. 18. 33 | | | | | | | | | 1 | | l . | } | 1 | | 1 | | 11. 57. 30
12. 0. 0
2. 30
134783
62 · 0
134783
62 0
134783
63
0
1347961
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
134783
13483
134783
13483
134783
13483
134783
13483
13483
134783
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483
13483 | | 24. 0 | 22. 52. 41 | | | | | | | | | | | | ١ | | 12. 0. 0 22. 50. 38 134783 62 · 0 E H 5. 59. 10 23. 2. 27 149094 057915 057581 0 | | | 23. 18, 33 | 127404 | | | 60.0 | | | | | 1 | | | 1 | | 2. 30 134783 62 · 0 E H 5. 59. 10 23. 2. 27 149094 1057915 057581 057915 057581 ct. 23. 21. 57. 30 0 · 051427 0 · 051645 0 · 051427 0 · 051427 0 · 051427 0 · 051427 0 · 051427 0 · 051427 0 · 051427 0 · 051645 0 · 051427 0 · 051645 0 · 051645 0 · 051645 0 · 051645 0 · 051645 0 · 051645 0 · 051645 0 · 051645 0 · 051645 | | 11. 57. 50 | 00 50 90 | | ě | 048233 | 62.0 | ЕН | | | | | • | | | | 0ct. 23. 21. 57. 30 0ct. 23. 21. 57. 30 22. 0. 0 0ct. 23. 21. 57. 30 22. 0. 0 0ct. 23. 21. 57. 30 22. 0. 0 0ct. 23. 21. 57. 30 22. 0. 0 0ct. 23. 21. 57. 30 22. 30 0ct. 23. 21. 57. 30 23. 10 49. 47 24. 40. 49. 33 149002 25. 40. 49. 33 149002 25. 40. 49. 33 149002 25. 40. 49. 33 149002 25. 40. 49. 33 149002 25. 40. 49. 33 149002 25. 40. 49. 33 149002 25. 40. 49. 33 149002 25. 40. 49. 33 149002 25. 40. 49. 33 149002 25. 40. 49. 33 149002 25. 40. 49. 33 149002 25. 40. 49. 33 149002 25. 40. 49. 33 149002 25. 40. 49. 33 149002 25. 40. 49. 33 149002 25. 40. 49. 33 149002 25. 40. 49. 33 149002 25. 40. 49. 47. 146788 058315 38. 40. 46. 34 145873 41. 40. 40. 5 147496 43. 10. 37. 15 147264 44. 30. 36. 55 148425 49. 10. 48. 23 147961 49. 10. 48. 23 <t< td=""><td></td><td>9 30</td><td>0</td><td>19/709</td><td></td><td></td><td></td><td>E 77</td><td></td><td></td><td></td><td>•</td><td></td><td></td><td>١</td></t<> | | 9 30 | 0 | 19/709 | | | | E 77 | | | | • | | | ١ | | ct. 23. 21. 57. 30 22. 0. 0 22. 51. 11 0 · 137352 54 · 5 0 · 051427 G 23. 10 49. 47 146788 0 · 057937 0 · 057959 0 · 057959 0 · 057959 0 · 057959 0 · 058315 0 · 058315 0 · 058315 0 · 058315 0 · 058528 0 · 058528 0 · 058528 0 · 058528 0 · 058386 0 · 05 | | 2.00 | | 104700 | 02 0 | | | E B | | | 1 |) | | | ١ | | 22. 0. 0 22. 51 28. 40 49. 33 149002 057959 2. 30 33. 30 54. 40 147496 058315 18. 10 43. 35 139962 051645 38. 40 46. 34 145873 058528 28. 10 54. 16 137644 051645 41. 40 40. 5 147496 058386 22. 53. 0 53. 19 136253 051218 43. 10 37. 15 147264 058030 23. 8. 0 55. 44 135558 051502 44. 30 36. 55 148425 057909 14. 7 55. 7 134863 051431 49. 10 48. 23 147961 057269 19. 0 56. 5 137644 051716 6. 52. 0 53. 20 147845 057269 | ct. 23. | 21, 57, 30 | 2 | | | 0.051427 | | G | | | | l | | | I | | 2. 30 0 · 137352 54 · 5 33. 30 54. 40 147496 058315 18. 10 43. 35 139962 051645 38. 40 46. 34 145873 058528 28. 10 54. 16 137644 051645 41. 40 40. 5 147496 058386 22. 58. 0 53. 19 136253 051218 43. 10 37. 15 147264 058030 23. 8. 0 55. 44 135558 051502 44. 30 36. 55 148425 057909 14. 7 55. 7 134863 051431 49. 10 48. 23 147961 057269 19. 0 56. 5 137644 051716 6. 52. 0 53. 20 147845 057269 | | 22. 0. 0 | 22. 51. F | | | 002121 | | | 3 | | | | | | 1 | | 28. 10 54. 16 137644 051645 41. 40 40. 5 147496 058386 22. 53. 0 53. 19 136253 051218 43. 10 37. 15 147264 058030 23. 8. 0 55. 44 135558 051502 44. 30 36. 55 148425 057909 14. 7 55. 7 134863 051431 49. 10 48. 23 147961 057269 19. 0 56. 5 137644 051716 6. 52. 0 53. 20 147845 057269 | | | - | 0 · 137352 | 54 .5 | | | | 33, 30 | | | | 058315 | | I | | 22. 53. 0 53. 19 136253 051218 43. 10 37. 15 147264 058030 23. 8. 0 55. 44 135558 051502 44. 30 36. 55 148425 057909 14. 7 55. 7 134863 051431 49. 10 48. 23 147961 057269 19. 0 56. 5 137644 051716 6. 52. 0 53. 20 147845 057269 | | | 43. 35 | 139962 | | 051645 | } | | 38. 40 | 46. 34 | 145873 | | | | | | 23. 8. 0 55. 44 135558 051502 44. 30 36. 55 148425 057909 14. 7 55, 7 134863 051431 49. 10 48. 23 147961 057269 19. 0 56. 5 137644 051716 6. 52. 0 53. 20 147845 057269 | | | 54. 16 | | | | | | | 1 | | | | | 1 | | 14. 7 55, 7 134863 051431 49. 10 48. 23 147961 057269 19. 0 56. 5 137644 051716 6. 52. 0 53. 20 147845 057269 | | | | | | | | | | | | | | | 1 | | 19. 0 56. 5 137644 051716 6. 52. 0 53. 20 147845 057269 | £ - | | | | | | 1 | | | | | | | | 1 | | | | | | | | | l | | | | | | | | | | 33. 01 58 14 137458 1 051652 | | | | | | | | | l . | | 1 | | | | 1 | | 39. 0 57. 35 136067 051716 8. 40 45. 23 143326 056343 | | 33 , 0 | 58. 14 | 137458 | | 051652 | | | 7. 1.40 | 43. 29 | 143558 | | | | 1 | October 23^d. 22^h. Remarkable changes having taken place in the positions of the Declination and Horizontal Force Magnets, extra observations were commenced. | | | | 1 0 | | 1 . | 1 1 | 1 | | | 1 77 1 | - 9 | W | • | $\overline{}$ | |--|----------------------------|-------------------------|------------------|---|---|------------|----------------------------------|---------------------------------|----------------------|---|---|---|---|---------------| | Göttingen Me
Time (Astronom
Reckoning) | ical Weste | I mg m Pan | meter
ital Fo | Vertical
Force Read-
ing in parts | Thermometer of
Vertical
Force
Magnetometer. | Observers. | Göttinge
Time (Astr
Reckon | en Mean
ronomical
ing) of | Western | Horizontal
Force Read-
ing in parts
of the whole | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole | Thermometer of
Vertical Force
Magnetometer. | Ohearvers | | Declination
Observation | Declinat | of the who
Hor. Forc | Therm
Horizo | of the whole
Vert. Force
cor.forTemp. | Therm
Vertice
Magnet | Obse | Declir
Observ | nation
vation. | Declination. | Hor. Force
cor.for Temp. | Therm
Horizo
Magne | Vert. Force
cor, for Temp. | Therm
Vertic
Magne | ď | | d h | n 8 0 / | " | 0 | | 0 | | , d , | h m s | 0 ' " | | 0 | | 0 | | | Oct. 24. 7. 1 | l. 40 22 46. | 51 0 .14355 | 3 | 0.056201 | | G H | Oct. 24. | 8. 33. 40 | 22. 39. 25 | 0 ·140288 | | 0 052361 | | 1 | | | 2.40 39. | 35 14402 | 2 | 055916 | l | | | 36. 20 | 42. 20 | 140520 | | 051720 | | 1 | | | 36. | 13 14124 | | 054916 | Ì | | | 39. 10 | 48.59 | 140520 | | 051364 | | l | | | 4. 40 35. | | | 056699 | | | | 40. 40 | 49. 13 | 140288 | | 051222
051129 | | ı | | | 37. | | ı | 057269 | | | | 42. 50 45. 10 | | 140056
139802 | | 050951 | | | | | 7. 10 26.
8. 10 34. | | 1 | 057411 057981 |] | | | 51. 40 | 52. 27 | 138180 | | 050630 | | 1 | | | 5. 10 34.
5. 10 36. | | | 058052 | ļ | | | 8. 58. 10 | | 135155 | | 049968 | ļ | | | | 1. 10 39. | | | 059761 | 1 | | | 9. 5. 10 | 54. 6 | 135155 | | 049043 | | 1 | | | 2. 10 31. | | | 059903 | | | | | 22. 59. 38 | 133057 | | 049234 | l | | | | 3. 40 21. | | 3 | 059405 | | 1 | | 11. 10 | 23, 0.55 | 133752 | | 049384 | | ١ | | | 4. 10 22. 19. | | 1 | 059333 | | | 1 | 15. 10 | 5. 0 | 133752 | | 049590 | İ | ١ | | | 5. 10 23. 14. | | 1 | 058479 |) | | | 18. 10 | | 135131 | | 050494 | | 1 | | | 3. 10 22. 12. | | 1 | 057269 | 1 | | | | 23. 3. 4 | 134436 | | 050708
051491 | | 1 | | | 0. 10 24. | | | 055845
055061 | | | | 26. 10
28. 10 | 22, 59, 53
59, 53 | 139766
138340 | | 051070 | | ١ | | | 2. 10 20.
3. 10 38. | 1 | | 054848 | | | | 32. 10 | | 137645 | | 051070 | l | ١ | | | 4. 10 36. | | | 054563 | | | | | 22. 59. 14 | 135558 | | 050870 | | ١ | | | 5. 10 33. | | | 054421 | | | | | 23. 0. 9 | 135326 | | 050407 | | ١ | | | 7. 10 34. | | | 054349 | | | | 44. 10 | 0.11 | 136484 | | 050051 | | ١ | | |). 10 | 144949 | • | 053709 | | | 1 | 47. 10 | 1. 55 | 134862 | | 050563 | | ı | | | 0.10 46. | 1 | 1 | 053780 | | | | | 23. 0.22 | 134155 | | 050528 | | ١ | | | 1. 10 43. | | | 053922 | | | 1. | | 22, 58, 47 | 131837 | | 050386
049816 | l | ı | | | 3. 10 50. | | 1 | 054065 | | | 1 | 10. 0.30 | | 130795
131131 | | 050079 | | 1 | | | 1. 10 53.
3. 10 54. | 4 | 1 | 053780
053780 | | | | 7. 30
16. 10 | 55.53
49. 9 | 191191 | | 000075 | | | | | 3. 10 54.
3. 10 57. | | | 053424 | | | | 17.40 | 50.48 | 130655 | | 050628 | | ١ | | | 9. 10 56. | | | 053495 | | | | 18. 10 | 47.11 | 133436 | | 050913 | | ı | | | 0. 10 54. | | | 053353 | | | | 18.40 | 48.10 | 135290 | | 051126 | | ١ | | 5 | 2. 10 58. | | ιÌ | 053281 | | | 1 | 19. 10 | 47. 3 | 136426 | | 051603 | | 1 | | | 3. 10 5 7 . | | | 053068 | | | | 19. 40 | 47. 3 | 137353 | | 051674 | | 1 | | | 1. 10 56. | | | 052925 | | | | 20. 10 | 47. 3 | 137585 | | 052101 | | ١ | | | 57. | | | 053139 | | | | 21.40 | 47. 2 | 136195 | | 051531
051460 | | 1 | | | 3. 10 45.
3. 10 48. | 1 | | 052997
052712 | | 1 | | 22. 40
23. 10 | 46. 4 | 138049
139903 | | 051430 | | ١ | | | 0. 10 48.
1. 10 45. | | | 052712 | | | | 23. 10
23. 40 | 1 | 139903 | | 051745 | | | | | 2. 10 45. | | | 052712 | | | | | 22. 47. 15 | 140367 | 1 | 051674 | | 1 | | | 7. 10 46. | | | 052285 | | | | | 23 . 11. 6 | 137109 | | 050655 | | | | | 7.40 52. | | | 052285 | | | | 34.30 | | 136414 | | 049801 | ļ | 1 | | | 3. 0 51. | | | 052213 | | | | 37. 0 | | 120192 | | 047309 | } | ł | | |). 10 55. | | | 052427 | | G H | | 37. 10 | 1 | 117874 | | | | ١ | | | 1. 10 54. | | | 052783 | | G | | 44. 10 | E7 E1 | 058164 | | 047287 | | | | | 3. 10 47. | | | 053353
053424 | | | l | 44. 40
45. 10 | 57. 51
14. 0 | 093529
101176 | | 049494 | į | l | | | 46. 10 46. 41. | | | 053424 | 1 | | | 45. 10 | 17.42 | 094456 | 1 | 0 20 30 3 | | | | | 30. 10 30. | | | 052525 | | | | 45. 5 0 | -11-12 | 092370 | | 049636 | | | | | 0. 40 35. | 1 | 1 | 052027 | | | | 46. 20 | 19. 29 | 093529 | | 049707 | | | | | . 10 43. | | | 051956 | | | | 46. 3 0 | 24. 30 | 091443 | | 049779 | | | | | 51. | | | 052098 | | | | 47. 40 | 25. 48 | 090516 | 1 | 049992 | 1 | 1 | | 2 | 50. | 7 137500 | 3 | 052147 | | | | 48. 10 | | 092370 | | | | | | 3 | 45. | 137738 | 3 | 052503 | | 1 | 1 | 48, 30 | 32, 43 | 093297 | ١. | 050847 | 1 | ١ | October 24^d.7^h.13^m. An aurora was observed; there were deep rose-coloured streamers reaching from the N.W. and N.N.W. horizon half way to the zenith: 7^h.20^m, the rose-coloured streamers have become more brilliant and numerous, they reach from the N.W. round to the N.; they have the appearance in some places of sheets of flame: 7^h.30^m, the auroral streamers still continue flashing with the same brilliancy and to the same extent as they did ten minutes since. October 24^d. 7^h. 36^m. The red auroral streamers are less brilliant; they are in the N. N.W., N., and N.W.: 7^h. 45^m, the red streamers are gradually becoming less brilliant: 7^h. 50^m, they have nearly faded away, but still appear to spread along the N.W. horizon towards the N. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.forTemp. | ermomet
rtical For
gnetome | Observers. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western
Declination. | Horizontal Force Reading in parts of the whole Hor. Force cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.forTemp. | rmomet
tical For
rnetomet | | |--|----------------------|--|---|---|----------------------------------|------------|--|-------------------------|---|---|---|---------------------------------|---| | d h m s | 0 ' " | | • | | 0 | | d b m s | 0 1 " | | ٥ | | ٥ | | | oct. 24. 10. 49. 10 | | 0 .092834 | | 0 .050704 | | G | Oct. 24. 13. 33. 30 | | 0 ·128337 | | 0 .049011 | | E | | 49.40 | 23. 30. 2 | 097469 | | 050055 | | | | 22. 20. 14 | 131118 | | 049047 | 1 | | | 50. 50 | 23. 30. 2
27. 33 | 093993
097005 | | 050277 | | | 43. 30
48. 30 | 23. 11. 5
14. 56 | 128093
127398 | | 050272
049916 | | | | 53. 10 | 22, 21 | 096993 | | 049117 | | 1 1 | 53, 25 | 11. 2 | 127398 | | 049910 | 1 | 1 | | 54. 10 | 20. 13 | 098847 | | 048974 | | | 13. 57. 30 | | 128082 | | 049894 | 54.5 | | | 55. 10 | 17. 3 | 108580 | | 048832 | | | 14. 0. 0 | 5. 35 | 4 | | 000404 | 04.0 | ' | | 55. 40 | 15. 37 | 104177 | | 048547 | | | 2.30 | 0.00 | 130980 | 54.5 | | | | | 56. 10 | 21.18 | 106031 | | 048690 | * | 1 1 | 8.30 | 6.49 | 131083 | ** | 050692 | | 1 | | 57. 0 | 21.47 | 107422 | | 048903 | | | 13.30 | 1. 49 | 132010 | | 050723 | | | | 5 8. 1 0 | 29. 21 | 108349 | | 048761 | | 1 1 | 28.30 | 3. 33 | 135243 | | 051490 | | | | 5 8. 4 0 | 31. 22 | 109044 | | 049117 | | 1 | 43 . 3 0 | 28. 56 | 135475 | | 051062 | | | | 10. 59. 10 | 31. 5 | 110666 | | 049772 | | | 48. 30 | 10. 8 | 134536 | | 051540 | | | | 11. 2.50 | 28. 53 | 112057 | | 051182 | | 1 | 14. 58. 30 | 7. 27 | 132218 | ŀ | 050864 | 1 | | | 3. 10 | 29. 32 | 113679 | | 051538 | | | 15. 13. 30 | 2. 31 | 135220 | | 052160 | | | | | 27. 2 | 114374 | | 051466 | | | 28. 30 | 4. 14 | 135336 | | 052088 | 1 | | | 8.40 | 22. 50 | 113203 | | 051729 | | | 43.30 | 4. 2 | 135904 | | 052851 | ļ | | | 11. 30 | 13. 5 | 116669 | | 051851 | | 1 | 15. 57. 30 | | | | 051035 | 54 · 0 | 1 | | | 23. 6.47 | 110001 | | | | | 16. 0. 0 | 2. 35 | 10000 | -4.0 | - | | | | 12. 30 | | 118754 | | | | _ | 2.30 | | 136367 | 54 0 | 050400 | 1 | | | 13.30 | 22. 51. 24 | 118870
123157 | • | | | G | 14. 30 | 2. 4
1. 45 | 134387 | | 052438 | | | | 15. 30
17. 30 | 50, 18 | 125157 | | | | ЕН | 28. 30
43. 30 | | 136207
132845 | | 052716
052482 | | | | | 22. 55. 0 | 126159 | | 049734 | | | | 22. 59. 2 | 135615 | | 052482 | | 1 | | 28. 30
28. 30 | <i>22.00.</i> 0 | 129403 | | 049947 | - | | 10. 55. 50
17. 13. 30 | | 138396 | | 052390 | | | | | 23. 2.27 | 129855 | | 050385 | - | | 18, 30 | 58. 24 | 131420 | | 050568 | | | | | 22. 59. 10 | 128696 | | 050100 | | | 23. 30 | | 134897 | 1 | 051992 | | | | | 23. 1. 4 | 129496 | | 049935 | | | | 22, 56, 40 | 133727 | | 050974 | | | | 48. 30 | 9. 2 | 126268 | | 047657 | | | | 23. 3.21 | 136032 | l | 052662 | l | | | 53. 30 | 8. 2 | 125197 | | 048775 | | | 17. 57. 30 | | | l | 052286 | 53 .0 | , | | 56. 30 | 4. 2 8 | 125660 | | 048704 | | | 18. 0. 0 | 22. 57. 31 | l | İ | | | | | 11. 58. 30 | 4. 28 | 117317 | | 046782 | | | 2.30 | | 137180 | 53 0 | | | | | 12. 0.30 | | 117780 | | 047921 | | | 13.30 | 23. 4.27 | 136716 | | 052001 | ŀ | 1 | | | 22.55.2 | 118906 | | 047949 | | | 28.30 | |
137180 | [| 051218. | l | | | 4. 30 | 51.45 | 119601 | | 048234 | | | 43. 30 | | 132545 | | 052037 | | | | 6. 30 | 48. 10 | 117979 | | 046810 | | | 18. 58. 30 | | 131386 | ĺ | 052072 | l | E | | 8. 30 | | 121688 | | 047665 | | | 19. 8.30 | | 131386 | 1 | 052001 | | Т | | 12. 30 | 29. 52 | 119368 | | * 047857 | | 1 1 | 47. 30 | | 122116 | 1 | 050933 | 1 | | | 17. 30 | 51 04 | 119136 | | 046931 | ŀ | | 48. 30 | | 124666 | 1. | 051075 | l | | | 33. 30 | 51. 24 | 114490 | | 043137 | | li | 49. 30 | | 124434 | 1 | 051075 | | | | 38. 30 | 38. 51 | 125151 | | 048761 | | | 51. 30 | | 126173 | l | 051360 | 1 | | | 43. 30
48. 30 | 32.40
32.44 | 119576 | | 047459 | Ì. | | 52. 30
53. 30 | | 125593
126057 | | 051360
051218 | | | | 53. 30 | 29.38 | 115162 | | 04/459 | | | 55, 30 | | | } | 050862 | | 1 | | 12. 58. 30 | 40.33 | 126287 | | 044518 | | | 57. 30 | | 125129
125871 | | 050862 | 53 .0 | | | 13. 3.30 | 38. 6 | 130226 | | 045372 | | | 19. 5 9. 30 | | 124898 | | 050648 | 00 0 | | | 8. 30 | 5 0. 0 | 131604 | | 044497 | | | 20. 0. 0 | 31. 39 | 124000 | | 050040 | | | | 13. 30 | 43. 1 | 130446 | | 049481 | | | 0. 30 | | 125315 | , | 050684 | | | | 18. 30 | 23. 2 | 133910 | | 048748 | | | 1.30 | 34. 14 | 125871 | | 050648 | ł | | | 23, 30 | 41.11 | 132867 | | 047324 | | | 2. 30 | 34. 40 | 126011 | 53.0 | 050648 | | | | 28. 30 | 27.58 | 132972 | | 050578 | | | 3.30 | 32. 6 | 123739 | J J | 050577 | | | October 24^d. Between 11^h, 3^m, 10^s and 11^h, 8^m, 40^s observations of the three magnets were taken, but the time was not recorded. For other particulars with respect to the aurora, see the section of Extraordinary Meteorological Observations. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal Force Read- ing in parts of the whole Hor. Force cor.forTemp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.forTemp. | termome
rtical Fo
gnetome | Observers. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor, forTemp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor. for Temp. | | 10 | |--|--------------------------|--|---|---|---------------------------------|------------|--|-------------------------|--|---|---|-------|----| | d h m s | 0 1 11 | | 0 | | 0 | | d h m s | 0 ' " | | 0 | | 0 | | | Oct. 24, 20, 5, 30 | 23, 31, 12 | 0 ·123855 | | 0 .050363 | | T D | | 23. 7.56 | 0:136101 | | 0.051636 | | G | | 8. 30 | 20. 26 | 122742 | | 050434 | | | 22. 54. 50 | | 133761 | 1 | 052746
051699 | | | | 9. 30 | 26. 0 | 123739 | | 050506 | | | 23. 8. 20 | 5. 15 | 138871
134933 | | 052930 | | G | | 10. 30 | 26. 0 | 125361 | | 050613 | <u> </u> | | 23. 20
33. 20 | 6. 45
3. 30 | 135418 | | 053022 | | 1 | | 11.30 | 20. 6 | 124898 | | 050506
050434 | | | 23. 57. 30 | 0.00 | 100110 | | 053135 | 54 ·0 | 1 | | 12. 30
13. 30 | 20.48
23.28 | 125315
125941 | | 050506 | | | 25. 0. 0. 0 | 2. 5 | | | | | | | 14. 30 | 23. 47 | 126288 | | 050648 | | | 2.30 | | 138685 | 54 .0 | | | 1 | | 16. 30 | 23. 43 | 126057 | | 050648 | | | 0. 29. 20 | 1. 52 | 138047 | ļ i | 053027 | | | | 18. 30 | 26. 49 | 126983 | | 050755 | | } | 1. 1.20 | 5. 12 | 138801 | | 053062 | | C | | 20, 30 | 31. 12 | 129397 | | 050790 | | | 47. 30 | 0.20 | 1 -: | | 054379 | | | | 21.30 | 29. 57 | 128374 | | 050933 | | | 50. 0
52. 30 | 9. 39 | 140655 | | | | 1 | | 22. 30 | 30.23 | 130111 | | 051025 | | | 1. 57. 30 | | 14000 | | 054549 | 56 .0 | 1 | | 24. 30
26. 30 | 30.50
32.39 | 129602
129394 | | 051096
050933 | , | | 2. 0. 0 | 5.56 | | | | | ı | | 28. 30 | 26. 3 | 128374 | | 050434 | | | 2. 30 | | 139844 | 56 .0 | | | ı | | 30. 30 | 20. 59
22. 59 | 128142 | | 050506 | | | 7. 30 | į | ļ | | 054648 | | ı | | 32. 30 | 20. 50 | 128142 | | 050627 | | | 10. 0 | 1. 20 | | | | | 1. | | 35.30 | 19. 11 | 127910 | | 050719 | • | | 12. 30 | | 138221 | | 054777 | | 9 | | 37. 30 | 22. 37 | 128605 | | 050577 | | | 39. 0 | 11.35 | 139577
138290 | | 055055 | | 1 | | 38. 30 | 18. 19 | 129927 | | 050484 | | | 49. 0
2. 59. 0 | 8. 39
4. 39 | 138163 | | 054592 | | ١ | | 40.30 | 14. 4 | 132035 | 1 | 050506
050542 | | | 3. 9. 0 | 9. 34 | 139625 | | 054692 | | ı | | | 23. 10. 54
22. 55. 58 | 130923
129533 | - 1 | 050221 | | | 19. 0 | 5.38 | 141152 | | 054692 | | | | | 23. 1.42 | 130228 | 1 | 050078 | | | 29. 0 | 1. 19 | 141373 | | 054956 | | 12 | | 44. 30 | 2. 1 | 130923 | | 050221 | | | | 23. 1.39 | 142068 | | 056736 | ŀ | 1 | | 45. 30 | 23. 0. 4 | 132081 | 1 | 050463 | | 1 | | 22. 51. 12 | 143215 | | 055320 | 55 .0 | | | | 22. 59. 22 | 131850 | | 050292 | | | 3. 57. 30 | 00 7 50 | | | 055198 | 00 0 | 1 | | | 23. 1.56 | 132313 | 1 | 050648 | | | 4. 0. 0
2. 30 | 23. 7.52 | 143668 | 55 .0 | | | 1 | | | 22. 59. 58 | 132777 | | 050862
051075 | | 1 1 | 9. 0 | | 143215 | 00 0 | 055220 | | | | 56. 30
20. 58. 30 | 55. 50
58. 4 | 1305 7 6
132522 | | 051075 | | 1 | 19. 0 | | 139623 | | 054579 | 1 | 1 | | 21. 0.30 | 54.38 | 134052 | - 1 | 051254 | | | 29. 0 | 9.13 | 140215 | | 054671 | | ١ | | | 22. 56. 21 | 134515 | | 051488 | | | 39. 0 | 23. 1. 1 | 139519 | | 055027 | | 1 | | | 23. 0.18 | 133588 | İ | 051360 | | | | 22. 56. 45 | 138128 | | 054386 | | | | | 22. 59. 27 | 134399 | } | 051431 | | | 4.59. 0 | | 138603
137676 | | 054122
053766 | | 1 | | | 23. 0.51 | 135141 | - | 051360 | | | 5. 9. 0 | | 138605 | | 053716 | 1 | 1 | | 13.30 | 2.34 | 134168 | ł | 051459 | | | 19. 0
29. 0 | | 137330 | | 053360 | | 1 | | | 23. 2.44
22.59.27 | 133204
131386 | 1 | 051 787 (
051 4 31 | | | 39. 0 | | 137562 | | 053218 | | 1 | | | 22. 56. 45 | 128374 | | 051645 | | | 49. 0 | | 137932 | | 053025 | | 1 | | | 23. 1.30 | 119799 | 1 | 051431 | | | 5, 57, 30 | | | | 052883 | 55 .5 | 1 | | | 22. 59. 2 | 122116 | 1 | 051645 | | ΤЪ | 6. 0. 0 | 58.45 | | | | | 1 | | | 23. 13. 16 | 125129 | - 1 | 052143 | 53.0 | GН | 2. 30 | | 137594 | 99 '5 | 052663 | 1 | ١ | | 21. 59. 30 | 13. 57 | 128837 | | 052001 | | | 24. 0 | | 138012
137990 | | 052776 | 1 | | | 22. 0. 0 | 6. 13 | 127215 | F C | 052428 | | | 6. 39. 0
7. 28. 0 | | 142718 | | 052856 | l | 1 | | 2.30 | 1.47 | 126057 | 53 .0 | 051930 | | | 30. 0 | 1 | 141559 | | 052714 | - | 1 | | 3.30
4.10 | 5. 14
15. 54 | 129080
129775 | | 051807
052590 | | | 34. 0 | i . | 140169 | | 052429 | 1 | 1 | | 19. 20 | 10.40 | 130715 | | 051828 | | | 39. 0 | 53.45 | 138558 | | 052166 | | | | 26. 20 | 9. 29 | 133032 | | 051757 | | | 48. 0 | 46. 12 | 139266 | | 052045 | ļ | 1 | | | 1 | 1 | 10 | 1 | I = | 1 | 1 | 1. | | | | | - | |------------------------------|------------------|--|-----------------------|--|---------------|------------|------------------------------|-------------------|---------------------------|--|---------------------------|---|-----| | Göttingen Mean | | Horizontal | or of | Vertical | o se er. | gi. | Göttingen Mean | | Horizontal
Force Read- | r of
force
er. | Vertical
Force Read- | r of | | | Time (Astronomical | Western | ing in parts | net lie | ing in parts | For B | Ver | Time (Astronomical | Western | ing in parts | meter o
ital For
meter. | ing in parts | For met | | | Reckoning) of
Declination | Declination. | of the whole | E con | of the whole | e e | Observers. | Reckoning) of
Declination | Declination. | of the whole | non
Econt | of the whole | es.l
etol | | | Observation. | Decimation. | Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | l'her
Hori
Magr | Force Reading in parts of the whole Vert. Force cor.forTemp. | l'her
Vert | õ | Observation. | Decimation. | Hor. Force cor.for Temp. | Thermomete
Horizontal
Magnetomet | Vert. Force cor.for Temp. | Thermometer of
Vertical Force
Magnetometer. | 1 | | d b m s | 0 , " | comor romp. | 0 | Cottor remp. | 0 | - | d b m s | 0 / " | | 0 | - Tourist xouries | 0 | ╁ | | oct. 25. 7.53. 0 | | 0 · 139961 | | 0 .051902 | | GН | 1 | | | | 0 .051827 | 45 • 3 | | | 7. 57. 30 | 47. 32 | 138804 | | 051782 | 57 .0 | 6 11 | | 23. 2.40 | | | 0 001027 | 70 U | 1 | | 8. 0. 0 | 49. 39 | 138804 | | 051782 | | | 10. 0. 0 | 20. 2.40 | 0 ·144140 | 45 • 5 | , | | 1 | | 2. 30 | 48. 51 | 138109 | 57.0 | 051782 | | | 11. 57. 30 | | 0 111110 | 10 0 | 052864 | 44 •0 | 1 | | 9. 0 | 46. 28 | 137413 | 0.0 | 051924 | | | 12. 0. 0 | 22. 49. 39 | | | 002001 | 110 | 1 | | 31. 0 | 40.56 | 136718 | | 052138 | | GН | l e | | 139285 | 44 .0 | | | | | 8. 46. 0 | 45.44 | 136718 | | 052280 | | EH | 1 | 51.14 | 139702 | | 052900 | | 1 | | 9. 1. 0 | 51.46 | 136371 | | 052601 | | | 9. 0 | 51.45 | 134929 | | 052935 | | | | 16. 0 | 55.17 | 136486 | | 052672 | | | 14. 0 | 52. 15 | 139239 | | 053007 | | 1 | | | 22. 58. 27 | 137645 | | 052750 | | | 19. 0 | 52. 36 | 139239 | | 053007 | | 1 | | | 23. 0.25 | 138109 | | 052957 | l l | | 24. 0 | 52. 43 | 139239 | | 053007 | | | | 9. 57. 30 | | | | 052081 | 57.0 | | 29. 0 | 55. 50 |
139471 | | 053057 | | 1 | | 10. 0. 0 | 22. 53. 43 | | | | | | 34. 0 | 57. 6 | 139471 | | 053092 | | 1 | | 2. 30 | · | 138209 | 57.0 | | | ЕН | 39. 0 | 56.52 | 139656 | | 053092 | | | | | | | | | | - | 44. 0 | 53. 56 | 139170 | | 053007 | | 1 | | ov. 1. 9.57.30 | | | | 0 .050606 | 60 .0 | ЕН | 49. 0 | 52. 48 | 139239 | | 053007 | | 1 | | 10. 0. 0 | 22. 53. 54 | | | | | | 12.59. 0 | 51. 37 | 140351 | | 053007 | | | | 10. 2.30 | | 0 ·140791 | 60 .0 | | | ЕН | 13. 57. 30 | İ | | | 052843 | 44 .0 | 1 | | 11. 57. 30 | | Ì | | 050161 | 60 .3 | ТД | 14. 0. 0 | 53. 19 | | | | | | | 12. 0. 0 | 43. 49 | | | | | | 2. 30 | | 140097 | 44 .0 | | | 7 | | 2. 30 | · · | 140505 | 60 .2 | | | | | | | | | | - - | | 3. 0 | 44.30 | 140644 | | 050090 | | | Nov. 22. 3. 57. 30 | Λ., | | | 0 .052109 | 54 ·2 | G | | 6. 0 | 44. 49 | 140459 | | 050090 | | | | 22. 56, 14 | | | | | | | 11. 0 | 43. 16 | 140145 | | 049926 | | | 4. 2.30 | | 0 · 141998 | 54 ·6 | | | | | 16. 0 | 43. 23 | 139728 | | 049853 | | | 5, 57, 30 | | | | 051780 | 55 .0 | 1 | | 21. 0 | 42. 11 | 139218 | | 049903 | | | | 23. 5. 3 8 | | | | | | | 26. 0 | 41.17 | 139218 | | 049953 | | | 2.30 | | 146101 | 55 ·0 | 071004 | | 1 | | 31. 0 | 40.32 | 139530 | 1 | 049996 | | | 3. 0 | 6. 56 | 145521 | | 051994 | | 1 | | 36. 0 | 41.11 | 139785 | | 049953 | | | 4. 0 | 2. 43 | 144363 | | 052065 | | 1 | | 41. 0 | 40. 25 | 139831 | | 049889 | | | 5. 0 | 4.41 | 145058 | | 051851 | l . | 1 | | 46. 0 | 39. 54 | 140016 | | 049830 | | | 6. 0 | 2. 45 | 144131 | | 051851 | | 1 | | 12. 56. 0 | 39. 57 | 140074 | | 049688 | | | 8. 0 | 3.37 | 144595 | • | 052136
051944 | | ١ | | 13. 6. 0
16. 0 | 38. 13
36. 38 | 139193
139054 | | 049474
049261 | | | 10. 0
12. 0 | 3. 10
1. 29 | 144131
143910 | | 052087 | | 1 | | 21. 0 | 36. 29 | 139644 | | 049261 | | | 12. 0
15. 0 | 2. 0 | 143563 | | 052158 | | 1 | | 26. 0 | 38. 0 | 138994 | | 049261 | | | 18. 0 | 2. 56 | 143447 | | 052229 | | 1 | | 50. 0 | 33. 21 | 136862 | l | 049452 | | | 20. 0 | 4. 55 | 143922 | | 052250 | | 1 | | 55. 0 | 34. 11 | 136804 | ļ | 049524 | | | 25. 0 | 4. 35 | 144154 | | 052464 | | 1 | | 13. 57. 30 | 04.11 | 100001 | | 049452 | 60.0 | | 27. 0 | 6. 56 | 144386 | | 052393 | | 1 | | 14. 0. 0 | 34. 13 | | 1 | 0.10.10.2 | 30 0 | | 30. 0 | 7.41 | 144165 | | 052556 | | 1 | | 2.30 | | 136550 | 60.0 | | | | 33. 0 | 10. 18 | 144049 | | 052556 | | | | 5. 0 | 37. 30 | 135970 | | 049524 | | | 35. 0 | 5. 45 | 143702 | | 052627 | | | | 10. 0 | 38. 49 | 136156 | 1 | 049702 | | | 40. 0 | 1. 51 | 144861 | | 052770 | | 1 | | 15. 0 | 42. 21 | 136573 | . | 049808 | | | 43. 0 | 1. 45 | 145789 | | 052898 | | 1 | | 20. 0 | 47. 8 | 136202 | 1 | 049666 | | | 6. 45. 0 | 1. 59 | 146252 | | 052862 | | ļ | | 25. 0 | 49. 25 | 135924 | ł | 049524 | | | 7. 30. 0 | | 145150 | | 054799 | | 1 | | 30. 0 | 51.45 | 135692 | . | 049452 | | | 31. 0 | | 143760 | | 054870 | | | | 14.40. 0 | 52. 47 | 135506 | 1 | 049452 | | | | 23. 4.35 | 142369 | | 055226 | | | | 15. 57. 30 | - * | | - 1 | 049310 | 60 .0 | | | 22. 59. 47 | 142485 | | 055653 | | 1 | | | 51. 15 | i | 1 | " | | ı i | | 1 | 142832 | | 055867 | | 1 | | 16. 0. 0 | 91. 19 | 1 | | | | 1 1 | 35. 0 | 55. 44 | 144004 | | 000001 | | 1 | November 1d. A change of 10'. 5" having taken place in the position of the Declination Magnet between 10h and 12h, extra observations were commenced. A faint aurora is now visible. November 19^d. A considerable change having taken place in the positions of the Declination and Horizontal Force Magnets between 10^h and 12^h, extra observations were commenced. November 22^d. A considerable change having taken place in the positions of the Declination and Horizontal Force Magnets between 4^h and 6^h, extra observations were commenced. | Gottinge
Time (Ast
Reckon
Declin
Observ | ronomical
ing) of
nation | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers, | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | 1 5 T E | Vertical Force Reading in parts of the whole Vert. Force cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers | |---|--------------------------------|----------------------|---|---|--|---|------------|--|-------------------------|---|--------------|---|---|-----------| | d | h nı s | 0 , , | | 0 | | 0 | _ | d h m s | 0 / // | , | . 0 | | 0 | | | Nov. 22. | | 22. 51. 24 | 0 ·144409 | | 0.055582 | | о н | | } | 0 ·135328 | | 0 .052992 | | G | | .,0,, | 38. 0 | | 143644 | Ì | 055511 | | | 32. 0 | 1 | 136139 | | 053206 | | 1 | | | 39. 0 | 50. 21 | 144223 | | 055333 | | | 35. 0 | 51.47 | 136950 | | 053206 | | | | , | 40. 0 | 49. 56 | 144037 | | 055226 | | | 40. 0 | 47. 37 | 136834 | | 052884 | | 1 | | | 42. 0 | 47. 39 | 144177 | | 055191 | | | 45. 0 | 47. 53 | 136950 | | 052565 | | | | | 45 . 0 | 52. 9 | 144235 | | 054856 | | | 52. 0 | 50. 53 | 135328 | | 052850 | | | | | 49. 0 | 46. 14 | 144467 | | 054464 | | | 10, 55. 0 | 50. 4 | 135560 | - | 052351 | | | | | 51. 0 | 53. 14 | 144699 | | 054037 | | | 11. 0. 0 | 48. 26 | 135328 | | 052672 | | | | | 53. 0 55. 0 | 55, 33
22, 59, 35 | 144931
144467 | | 054073
053717 | | | 6. 0
15. 0 | 50. 18
51. 41 | 135560
135560 | | 052779
052921 | | | | | | 23. 2. 6 | 143552 | | 053631 | 56 ·0 | | 30. 0 | 54. 27 | 136950 | | 053063 | | | | | 8. 0. 0 | 1. 22 | 142856 | | 053488 | 00 0 | | 35. 0 | 54. 52 | 136602 | | 052992 | | | | | 2, 30 | 0. 55 | 142161 | 56 .0 | 053488 | | | 40. 0 | 55. 3 | 136602 | | 052992 | | G | | | 5. 0 | 3. 24 | 142856 | | 053417 | | | 11. 57. 30 | | | | 052921 | 57 .0 |) : | | | 8. 0 | 0. 54 | 142636 | | 053367 | | | 12. 0. 0 | 58. 29 | | | | | 1 | | | 10, 0 | 1.18 | 141593 | | 053367 | | | 2. 30 | | 137413 | 57 ·0 | | | 1. | | | 15. 0 | 2.25 | 142983 | | 053438 | | | | 22. 58. 48 | 137875 | | 052886 | | | | | 26. 0 | 5. 25 | 142879 | į | 053318 | | | 12. 27. 30 | 23. 0.12 | 137064 | | 052650 | EE .E | | | | 35, 0
43. 0 | 2. 19
6. 16 | 142080 | | 053446 | | | 13. 57. 30 | 00 50 11 | 2 | | 051780 | 55 •5 | 1 | | | 8. 55. 0 | 10. 45 | 144178
142220 | | 053788
054344 | | | 14. 0. 0
14. 2.30 | 22. 59. 11 | 138418 | 56 ·6 | | | | | | 9. 4. 0 | 5. 40 | 141942 | | 055234 | | | 15. 5 7. 3 0 | | 100410 | 00 0 | 047757 | 56 .0 | | | | 5. 0 | 4.41 | 142220 | | 055590 | | | 16. 0. 0 | 51.30 | | | | | | | | 10. 0 | 2, 26 | 142474 | | 055897 | | | 2. 30 | | 133309 | 56 ·0 | | | | | | 26. 0 | 3. 27 | 143645 | | 057057 | | | 9. 30 | 54. 49 | 130817 | | 046959 | | | | | 30 . 0 | 1. 32 | 144700 | | 057577 | | | | 22. 59. 0 | 129774 | | 046710 | | | | | 32 . 0 | 6. 12 | 144816 | 1 | 057577 | | | | 23. 3.53 | 130006 | | 046603 | | | | | | 23. 5.44
22.58.57 | 140529 | | 057221 | İ | | 19. 30 | 16. 13 | 133146 | | 047159
047515 | | | | | 40. 0 | 55. 39 | 140193
140425 | (| 057385
057278 | | | 22. 30
24. 30 | 18. 53
16. 55 | 135858
136159 | | 047313 | | | | | 41. 0 | 52. 32 | 139845 | | 057136 | | | 1 | 23. 0.56 | 131292 | | 045949 | | | | | 42. 0 | 49.44 | 139497 | | 056922 | | | | 22. 57. 56 | 130829 | | 044987 | | | | | 43. 0 | 49. 20 | 139729 | | 056744 | | | 29. 30 | 55. 39 | 128986 | | 045058 | | | | | 44. 0 | 50. 36 | 139729 | | 056459 | | | 30. 30 | 49. 17 | 130030 | | 045058 | | | | | 45 . 0 | 52. 2 | 139266 | | 056103 | | | 32. 30 | 44. 35 | 132347 | | 045272 | | | | | 46. 0
48. 0 | 51.58 | 138918 | | 055947 | | | 34.30 | 42. 22 | 132694 | | 045201 | | | | | 50. 0 | 50. 24
52. 47 | 140425 | | 056032 | | | 36. 30
39. 30 | 35. 30
34. 8 | 130679
131767 | | 044916
045079 | | 1 | | | 53. 0 | 51. 8 | 139961
139497 | j | 055961
055961 | | | 43. 30 | 40. 31 | 131652 | 1.7 | 045791 | | 1 | | | 55. 0 | 48. 35 | 139268 | | 055876 | | | 45. 30 | 44. 15 | 131085 | | 045791 | | 1 | | | 9. 57. 30 | 42. 32 | 137529 | | | 57 ·0 | | 47. 30 | 43. 39 | 131316 | | 045948 | | | | 1 | 0. 0. 0 | 40. 23 | 137367 | | 055342 | | | 50.3 0 | 41. 42 | 132474 | | 046112 | | | | | 1. 0 | 38. 24 | 137645 | . | 054986 | | | 53. 3 0 | 39. 51 | 133402 | | 046575 | | | | | 2.30 | 39. 3 | | 57.0 | 054986 | | | 55. 30 | 36. 34 | 133877 | | 046859 | | | | | 7. 0
12. 0 | 41. 20 | 139036 | | 054701 | | | 57. 30 | 35. 11 | 133645 | | 046788 | | | | | 16. 0 | 41. 51
43. 17 | 138804
140195 | | 054416
053954 | | | 16. 59. 30
17. 15. 30 | 34. 11
36. 50 | 133530
134131 | | 046881
048933 | ! | | | | 18. 0 | 45. 46 | 140195 | | 053633 | | | 31.30 | 40. 29 | 133460 | | 049467 | | | | | 20. 0 | 49. 22 | 140427 | | 053348 | | | 17. 57. 30 | 10.20 | 20200 | | 050827 | 56 · 7 | 1 | | | 22 . 0 | 53. 28 | 139963 | | 053206 | | | 18. 0. 0 | 48. 28 | | | | | | | | 25. 0 | 56. 27 | 139545 | | 053028 | | | 2.30 | j | 136486 | 57.0 | | | 1 | | | | Extraor | dinary | Observation | s of N | loven |
nber 24 and 25, and | of Decembe | r 17. | | | | | |--|----------------------|---|---|---|------------|------------|--|-------------------------|---|---|---|---|-----| | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor.for Temp. | ertical Fo | Observers. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | | | d h m s | 0 , " | | • | | 0 | ╁ | d h m s | 0 / 11 | | | | .0 | - - | | Nov. 24. 15. 57. 30 | | | , | 0 .051139 | 1 | O TT | | 22. 46. 36 | 0 ·136418 | | 0 ·053035 | .0 | G | | | 23. 1.19 | | | 0 031139 | 00 0 | GH | 30. 0 | 49. 26 | 136314 | | 052915 | * | 16 | | 16. 2. 30 | 20. 1.10 | 0 ·138453 | 56 .0 | 1 | 1 | | 9. 57. 30 | 40. 20 | 100012 | | 052888 | 57 · 5 | | | 17. 57. 30 | | | | 051210 | 56 .0 | | 10. 0. 0 | 47. 31 | | | | ••• | | | | 22. 50. 28 | | | | j | | 2.30 | | 137518 | 57 ·8 | | | | | 2.30 | | 137248 | 56 .0 | | | | 6. 0 | 41. 8 | 138667 | | 052816 | | 1 | | 4. 0 | 49. 14 | 137642 | | 051281 | | | 9. 0 | 44. 24 | 140534 | | 052980 | | | | 8. 0 | 50. 0 | 138278 | | 051373 | 1 | | 11. 0 | 49. 13 | 140997 | | 052695 | | | | 14. 0
20. 0 | 49. 14 | 138580 | | 051373 | | | 14. 0 | 55. 27 | 139722 | | 052553 | | | | 29. 0 | 50. 47
53. 14 | 138812
138708 | | 051444
051494 | ĺ | 1 | 16. 0
21. 0 | 56. 17
51. 5 | 1386 7 9
137752 | | 052339
052197 | | 1 | | 39. 0 | 53.14 | 138604 | | 051609 | | | 24. 0 | 49. 43 | 137984 | | 051983 | | | | 18. 44. 0 | 55.24 | 138906 | * | 051609 | 1 | | 29. 0 | 54. 0 | 138216 | | 051863 | | | | 19. 9. 0 | 56.43 | 139671 | | 051630 | l | 1 | 34. 0 | 57. 58 | 137057 | | 051614 | | | | 19. 57. 3 0 | 1 | | | 051567 | 56 .5 | | 35. 0 | 58. 20 | 136709 | | 051578 | - | | | 20. 0. 0 | 56. 14 | | | | l | | 39. 0 | 53. 26 | 135203 | | 051649 | | | | 2. 30 | | 140632 | 56 .7 | | 1 | G H | 11 | 50. 32 | 135667 | | 051649 | | | | ov 05 9 57 90 | | | - | 0.050150 | 50.5 | 1 | 50. 0 | 50. 16 | 135911 | | 051529 | | | | ov. 25. 3.57.30 4. 0. 0 | 23. 7. 28 | | | 0 .052172 | 56 '5 | G H | | 49. 19 | 136258 | | 051671 | | | | 4. 2.30 | 20. 1.20 | 0 ·141061 | 56 .5 | | } | | 10. 59. 0
11. 57. 30 | 49. 29 | 136142 | | 051671
050291 | 58 .0 | ٠ | | 5. 57. 3 0 | | 0 141001 | 00 0 | 052315 | 56 .5 | | 12. 0. 0 | 46. 46 | | | 000231 | 00 0 | | | | 23. 1.59 | | 3 | 002010 | ١ | ' | 2. 30 | 10. 10 | 134312 | 58 .2 | | | - | | 6. 2. 3 0 | | 140598 | 56 .5 | | | | | | | | | | إ- | | | | 136890 | | 052742 | | | Dec. 17. 1.57.30 | | 0 .142881 | | 0 .050747 | 55 · 5 | , | | 50. 0 | 33. 3 | 137539 | | 052671 | ĺ | 1 | 2. 0. 0 | 0.43 | 142881 | | | | | | 52. 0 | 32.30 | 138049 | | 052671 | | | 2, 30 | 5, 30 | l . | 56 .0 | | | | | 7. 57. 30 | 33. 45 | 139439 | | 052528 | 56 .5 | 1 | 15. 0 | 1. 0 | 144069 | 1 | | | | | 8. 0. 0
2.30 | 38. 26
40. 24 | 140135
139439 | 56 5 | 052457
052386 | | | | 23. 0. 0 | 144957 | | | | | | 4. 0 | 40. 24 | 138418 | 90 9 | 052315 |] | 1 | | 22. 59. 0
23. 0. 0 | 147346
149034 | · . | | | | | 6. 0 | 37.47 | 137723 | | 052208 | 1 | ł | 3. 10. 0 | 1. 0 | 144801 | 1 | | | | | 8. 0 | 33. 28 | 137723 | | 052123 | | | 27. 0 | 9. 0 | 148099 | | | | | | 9. 0 | 32. 5 | 137839 | | 052052 | | | 41. 0 | 1. 0 | 141288 | | | | | | 10. 0 | 31. 19 | 138071 | | 051874 | } | 1 | 3. 57. 30 | 7. 0 | 144276 | ļ | 051353 | 55 .0 |) | | 11. 0 | 31.30 | 137839 | | 051767 | | | 4. 0. 0 | 8. 7 | 144265 | | | | | | 12. 0 | 31. 15 | 137607 | | 051696 | ļ | | 2. 30 | 9. 0 | 144363 | 55 ·0 | | | | | 14. 0
19. 0 | 32. 9 | 136924 | | 051482 | | ł | 35. 0 | 26. 0 | 144065 | | | | | | 20. 0 | 31. 56
31. 20 | 136229
136113 | | 051482
051482 | Ì | | 50. 0
53. 0 | 10.30 | 144665 | | | | | | 21. 0 | 31. 20 | 135766 | | 051432 | | | 55. 0 | 19. 0
13. 30 | 145065
144665 | | | | | | 24. 0 | 35. 0 | 135546 | | 051574 | 1 | ĺ | 4. 57. 0 | 18. 0 | 143665 | | | | | | 29. 0 | 39. 58 | 136369 | | 051952 | Ī | | 5. 0. 0 | 14. 0 | 143065 | | | | | | 34. 0 | 44. 57 | 135906 | 1. | 052273 | | | 5. 0 | 5. 0 | 144265 | | | | | | 39. 0 | 43. 26 | 135674 | | 052380 | | | 12. 0 | 15. 0 | 145265 | | , | | | | 44. 0 | 40. 12 | 135444 | | 052487 | ٠. | | 15. 0 | 8. 0 | 144665 | | | | | | 49. 0 | 41.14 | 136023 | , ; | 052543 | | 1 | 23. 0 | 23. 15. 0 | 143465 | | | | | | 54. 0
8. 59. 0 | 40. 6 | 136220 | | 052707 | | | | 22. 54. 0 | 143065 | | | | | | 9. 6. 0 | 43. 23
45. 44 | 136232
135131 | | 052707
052707 | | | | 23. 0. 0
23. 2. 0 | 140865
143065 | | | | | | 14. 0 | 45. 44 | 135375 | | 052850 | | | | 23. 2. 0
22. 54. 0 | 143465 | | | | | | | | | | , June 1 | 1 | | | | | | 1 | 1 | | November 24. A change of 10'. 51" having taken place in the position of the Declination Magnet between 15h and 18h, extra observations were commenced. November 25. A considerable change having taken place in the position of the Declination Magnet between 4^h and 6^h, extra observations were commenced. December 17d. 1h. 57m. 30s. From this time to the end of the year the whole of the results in this section for the Western Declination and the Horizontal Force have been deduced from the registers of the photographic self-registering apparatus. Every point of extreme motion of each magnet is recorded in the numbers above. The times are nearly accurate, but perhaps not perfectly so. | 2. 30 23. 3. 0 144065 | 22. 58. 25 23. 0. 0 22. 58. 0 22. 55. 0 23. 0. 0 2. 0 8. 0 10. 0 12. 0 23. 9. 0 22. 59. 0 23. 1. 0 2. 1. 30 1. 0 2. 0 7. 0 9. 0 11. 0 4. 0 3. 0 | 0 ·141065
141065
141813
142065
142965
141065
141065
140265
140065
139665
139465
137465
137465
137365
137365
137865
137865
137865
137865
137865
137865
137865
137865
138865
139465
139465
139465
139465 | 55 0 | 0 ·055824
056622
056479
056550
056693
056895
055198
055340
055696
055767
054913
055126
054984
055482
055910
055590 | 55 · 0 | 13 | |--|--|---|--------------|--|--------
--| | 6, 0, 0 22, 53, 57 144265 23 30 3, 0 144665 30 057547 30 0 1, 0 144065 30 058046 30 057441 30 05 | 22. 58. 25 23. 0. 0 22. 58. 0 22. 55. 0 23. 0. 0 2. 0 8. 0 10. 0 12. 0 23. 9. 0 22. 59. 0 23. 1. 0 1. 30 1. 0 2. 0 9. 0 11. 0 4. 0 3. 0 7. 0 23. 0. 0 | 141065
141813
142065
142965
141065
141065
140265
140065
139665
139465
137465
137465
137365
137365
137365
137365
137865
137865
137865
138865
139465
139465 | 55 0 | 056622
056479
056550
056693
056693
056479
056835
055198
055340
055696
055767
054913
055126
054984
055482
055910
055590 | 55.0 | 13 | | 6. 0. 0 22. 53. 57 144265 2. 30 23. 3. 0 144065 55 · 0 057547 6. 0 10. 0 1. 0 144065 058046 8. 0 057441 6. 0 057476 6. 0 057476 057476 057476 057476 057476 057476 057476 057476 057476 057476 057476 057476 057476 057476 057476 057476 0 | 23. 0. 0 22. 58. 0 22. 55. 0 23. 0. 0 8. 0 10. 0 12. 0 23. 9. 0 22. 59. 0 23. 1. 0 1. 30 1. 0 2. 0 7. 0 9. 0 11. 0 4. 0 3. 0 7. 0 23. 0. 0 | 141813
142065
142965
141065
141065
140265
140065
139665
139665
137865
137465
137365
137365
137865
137865
137865
137865
137865
137865
137865
138865
139465
139465 | 55 ·0 | 056479
056550
056693
056693
056479
056835
056586
055198
055696
055767
054913
055126
054984
055482
055910
055590 | | | | 5. 0 3. 0 144065 057547 10. 0 1. 0 144065 057441 6. 6 15. 0 7. 0 144065 058046 8. 6 20. 0 23. 6. 30 144465 057476 9. 6 25. 0 22. 57. 0 145465 057832 12. 6 30. 0 22. 57. 0 144465 058615 13. 6 35. 0 23. 0. 0 143265 057974 15. 6 37. 0 22. 58. 0 143065 057974 15. 6 38. 0 59. 0 143065 057120 20. 6 40. 0 22. 58. 0 140665 057014 21. 6 45. 0 23. 0. 30 140265 055910 25. 6 50. 0 22. 58. 0 140065 055411 26. 6 51. 0 22. 58. 0 140065 055411 31. 6 52. 0 23. 3. 0 140065 055198 36. 6 54. 0 22. 50. 0 139865 055198 46. 6 55. 0 23. 6. 0 139865 056978 9. 0. 6 | 22. 58. 0
22. 55. 0
23. 0. 0
8. 0
10. 0
12. 0
23. 9. 0
22. 59. 0
23. 1. 0
1. 30
1. 0
2. 0
7. 0
9. 0
11. 0
6. 0
4. 0
3. 0
7. 0
23. 0 | 142065
142965
141065
141065
140265
140065
139665
139465
137465
137465
137365
137365
137365
137865
137865
137865
137865
137865
137865
138865
139465 | 55. 0 | 056479
056550
056693
056693
056479
056835
056586
055198
055696
055767
054913
055126
054984
055482
055910
055590 | | | | 10. 0 | 22. 55. 0 23. 0. 0 8. 0 10. 0 12. 0 23. 9. 0 22. 59. 0 23. 1. 0 1. 30 1. 0 2. 0 7. 0 9. 0 11. 0 4. 0 3. 0 7. 0 23. 0. 0 | 142965
141065
141065
140265
140065
139665
139465
137865
137465
137365
137265
137865
137865
137865
137865
137865
137865
139465
139465 | | 056479
056550
056693
056693
056479
056835
056586
055198
055696
055767
054913
055126
054984
055482
055910
055590 | | | | 15. 0 7. 0 144065 058046 8. 0 20. 0 23. 6. 30 144465 057476 9. 0 25. 0 22. 57. 0 145465 057832 12. 0 30. 0 22. 57. 0 144465 058615 13. 0 35. 0 23. 0. 0 143265 057974 15. 0 37. 0 22. 58. 0 143065 057370 16. 0 38. 0 59. 0 143065 057120 20. 0 40. 0 22. 58. 0 140665 057120 20. 0 45. 0 23. 0. 30 140265 055910 25. 0 50. 0 22. 58. 0 140065 055910 25. 0 51. 0 22. 53. 0 140065 055198 36. 0 52. 0 23. 3. 0 140065 055198 36. 0 54. 0 22. 50. 0 139865 055198 42. 0 55. 0 23. 6. 0 139865 055198 42. 0 6. 58. 0 23. 6. 0 139865 056978 9. 0. 0 7. 0 11. 0 139265 056337 | 23. 0. 0
8. 0
10. 0
12. 0
23. 9. 0
22. 59. 0
23. 1. 0
1. 30
1. 0
2. 0
7. 0
9. 0
11. 0
4. 0
3. 0
7. 0
23. 0 | 141065
141065
140265
140065
139665
139465
137865
137465
137365
137265
137865
137865
137865
137865
137865
138865
139465 | | 056550
056693
056693
056479
056835
056586
055198
055696
055767
054913
055126
054984
055482
055910
055590 | | | | 20. 0 23. 6. 30 144465 057476 9. 0 25. 0 22. 57. 0 145465 057832 12. 0 30. 0 22. 57. 0 144465 058615 13. 0 35. 0 23. 0. 0 143265 057974 15. 0 37. 0 22. 58. 0 143065 057370 16. 0 38. 0 59. 0 143065 0570120 20. 0 40. 0 22. 58. 0 140665 057014 21. 0 45. 0 23. 0. 30 140265 055910 25. 0 50. 0 22. 58. 0 140065 055411 26. 0 51. 0 22. 53. 0 140065 055198 36. 0 52. 0 23. 3. 0 140065 055198 36. 0 54. 0 22. 50. 0 139865 055198 42. 0 56. 0 22. 50. 0 139865 056198 9. 0. 0 6. 58. 0 23. 6. 0 139465 056978 9. 0. 0 2. 0 22. 55. 0 139465 056337 15. 0 3. 0 13. 0 139465 055 | 2. 0
8. 0
10. 0
12.
0
23. 9. 0
22. 59. 0
23. 1. 0
1. 30
1. 0
2. 0
7. 0
9. 0
11. 0
4. 0
3. 0
7. 0 | 141065
140265
140065
139665
139465
137865
137465
137365
137265
137865
137865
137865
137865
137865
138865
139465 | | 056693
056479
056835
056586
055198
055696
055767
054913
055126
054984
055482
055910
055590 | | | | 25. 0 22. 57. 0 145465 | 8. 0
10. 0
12. 0
23. 9. 0
22. 59. 0
23. 1. 0
1. 30
1. 0
2. 0
7. 0
9. 0
11. 0
4. 0
3. 0
7. 0
23. 0 | 140265
140065
139665
139465
137865
137465
137465
137365
137265
137865
137865
137865
138865
139465 | | 056479
056835
056586
055198
055340
055696
055767
054913
055126
054984
055482
055910
055590 | | The second secon | | 30. 0 22. 57. 0 144465 058615 13. 6 35. 0 23. 0. 0 143265 057974 15. 6 37. 0 22. 58. 0 143065 057370 16. 6 38. 0 59. 0 143065 057120 20. 6 40. 0 22. 58. 0 140665 057014 21. 6 45. 0 23. 0. 30 14065 055910 25. 6 50. 0 22. 58. 0 140065 055411 26. 6 51. 0 22. 53. 0 140065 055198 36. 6 52. 0 23. 3. 0 14065 055198 36. 6 54. 0 22. 50. 0 149065 055198 42. 6 55. 0 23. 3. 0 139865 055198 42. 6 56. 0 22. 50. 0 139865 055198 42. 6 6. 58. 0 23. 6. 0 139865 056978 9. 0. 6 7. 0 13. 0 139465 056622 5. 6 3. 0 23. 0. 0 139465 054486 25. 6 5. 0 13. 0 139265 055554 | 12. 0
23. 9. 0
22. 59. 0
23. 1. 0
1. 30
1. 0
2. 0
7. 0
9. 0
11. 0
6. 0
4. 0
3. 0
7. 0
23. 0. 0 | 139665
139465
138065
137865
137465
137465
137365
137865
137865
138865
139465
139465 | | 056835
056586
055198
055340
055696
055767
054913
055126
054984
055482
055910
055590 | | | | 37. 0 22.58. 0 143065 057370 16. 0 38. 0 59. 0 143065 057120 20. 0 40. 0 22.58. 0 140665 057014 21. 0 45. 0 23. 0.30 140265 055910 25. 0 50. 0 22.58. 0 140065 055411 26. 0 51. 0 22.53. 0 140065 055411 26. 0 52. 0 23. 3. 0 140065 055198 36. 0 54. 0 22.50. 0 140065 055126 41. 0 55. 0 23. 3. 0 139865 055198 42. 0 6. 58. 0 22. 50. 0 139865 055198 46. 0 6. 58. 0 23. 6. 0 139865 056978 9. 0. 0 7. 0. 0 22. 26. 30 139465 056337 15. 0 5. 0 13. 0 139465 054486 25. 0 7. 0 11. 0 139265 054466 33. 0 10. 0 23. 6. 30 138865 054166 33. 0 12. 0 22.56. 0 138865 052350 <td>23. 9. 0
22. 59. 0
23. 1. 0
1. 30
1. 0
2. 0
7. 0
9. 0
11. 0
6. 0
4. 0
3. 0
7. 0
23. 0. 0</td> <td>139465
138065
137865
137465
137465
137365
137265
137865
137865
138865
139465
139465</td> <td></td> <td>056586
055198
055340
055696
055767
054913
055126
054984
055482
055910
055590</td> <td></td> <td></td> | 23. 9. 0
22. 59. 0
23. 1. 0
1. 30
1. 0
2. 0
7. 0
9. 0
11. 0
6. 0
4. 0
3. 0
7. 0
23. 0. 0 | 139465
138065
137865
137465
137465
137365
137265
137865
137865
138865
139465
139465 | | 056586
055198
055340
055696
055767
054913
055126
054984
055482
055910
055590 | | | | 38. 0 59. 0 143065 057120 20. 0 40. 0 22. 58. 0 140665 057014 21. 0 45. 0 23. 0. 30 140265 055910 25. 0 50. 0 22. 58. 0 140065 055411 26. 0 51. 0 22. 53. 0 140065 055198 36. 0 52. 0 23. 3. 0 14065 055126 41. 0 55. 0 23. 3. 0 139865 055198 42. 0 56. 0 22. 50. 0 139865 055198 46. 0 6. 58. 0 23. 6. 0 139865 056978 9. 0. 0 2. 0 22. 26. 30 139465 056978 9. 0. 0 3. 0 23., 0. 0 139465 056337 15. 0 5. 0 13. 0 139465 054486 25. 0 7. 0 11. 0 139265 054486 33. 0 10. 0 23. 6. 30 138865 054466 33. 0 12. 0 22. 56. 0 138865 054668 33. 0 14. 0 23. 11. 30 138865 052350 </td <td>22. 59. 0
23. 1. 0
1. 30
1. 0
2. 0
7. 0
9. 0
11. 0
6. 0
4. 0
3. 0
7. 0
23. 0. 0</td> <td>138065
137865
137465
137465
137365
137265
137865
137865
138865
139465
139465</td> <td></td> <td>055198
055340
055696
055767
054913
055126
054984
055482
055910
055590</td> <td></td> <td></td> | 22. 59. 0
23. 1. 0
1. 30
1. 0
2. 0
7. 0
9. 0
11. 0
6. 0
4. 0
3. 0
7. 0
23. 0. 0 | 138065
137865
137465
137465
137365
137265
137865
137865
138865
139465
139465 | | 055198
055340
055696
055767
054913
055126
054984
055482
055910
055590 | | | | 40. 0 22. 58. 0 140665 057014 21. 0 45. 0 23. 0. 30 140265 055910 25. 0 50. 0 22. 58. 0 140065 055411 26. 0 51. 0 22. 53. 0 140065 055198 36. 0 52. 0 23. 3. 0 140065 055126 41. 0 55. 0 23. 3. 0 139865 055126 41. 0 56. 0 22. 50. 0 139865 055198 42. 0 6. 58. 0 23. 6. 0 139865 055198 46. 0 7. 0. 0 22. 26. 30 139665 056978 9. 0. 0 2. 0 22. 55. 0 139465 05637 15. 0 5. 0 13. 0 139465 056337 15. 0 5. 0 11. 0 139265 054486 25. 0 7. 0 11. 0 139265 054466 33. 0 10. 0 23. 6. 30 138865 054466 33. 0 12. 0 22. 56. 0 138865 054368 9. 57. 36 14. 0 23. 11. 30 138865 0540 | 23. 1. 0
1. 30
1. 0
2. 0
7. 0
9. 0
11. 0
6. 0
4. 0
3. 0
7. 0
23. 0. 0 | 137865
137465
137465
137365
137265
137865
137865
138865
139465
139465 | | 055340
055696
055767
054913
055126
054984
055482
055910
055590 | | | | 45. 0 23. 0.30 | 1. 30
1. 0
2. 0
7. 0
9. 0
11. 0
6. 0
4. 0
3. 0
7. 0
23. 0. 0 | 137465
137465
137365
137265
137865
137865
138865
139465
139465 | | 055696
055767
054913
055126
054984
055482
055910
055590 | | | | 50. 0 22. 58. 0 140065 055411 26. 0 51. 0 22. 53. 0 140065 055198 36. 0 52. 0 23. 3. 0 140065 055126 41. 0 55. 0 23. 3. 0 139865 055126 41. 0 56. 0 22. 50. 0 139865 46. 0 6. 58. 0 23. 6. 0 139865 8. 55. 0 7. 0. 0 22. 26. 30 139665 056978 9. 0. 0 2. 0 22. 55. 0 139465 056622 5. 0 3. 0 23., 0. 0 139465 056337 15. 0 5. 0 13. 0 139465 054486 25. 0 7. 0 11. 0 139265 054486 33. 0 10. 0 23. 6. 30 138865 054166 33. 0 12. 0 22. 56. 0 138865 052350 45. 0 14. 0 23. 11. 30 138865 054058 9. 57. 36 | 1. 0
2. 0
7. 0
9. 0
11. 0
6. 0
4. 0
3. 0
7. 0
23. 0. 0 | 137465
137365
137265
137865
137865
138865
139465
139065
139465 | | 054913
055126
054984
055482
055910
055590 | | | | 51. 0 22. 53. 0 140065 055198 36. 0 52. 0 23. 3. 0 140065 055126 41. 0 54. 0 22. 50. 0 140065 055126 41. 0 55. 0 23. 3. 0 139865 055198 42. 0 56. 0 22. 50. 0 139865 46. 0 8. 55. 0 6. 58. 0 23. 6. 0 139865 9. 0. 0 9. 0. 0 2. 0 22. 55. 0 139465 056978 9. 0. 0 3. 0 23., 0. 0 139465 056337 15. 0 5. 0 13. 0 139465 054486 25. 0 7. 0 11. 0 139265 054486 33. 0 10. 0 23. 6. 30 138865 054166 33. 0 12. 0 22. 56. 0 138865 052350 45. 0 14. 0 23. 11. 30 138865 054058 9. 57. 30 | 2. 0
7. 0
9. 0
11. 0
6. 0
4. 0
3. 0
7. 0
23. 0. 0 | 137365
137265
137865
137865
138865
139465
139065
139465 | | 055126
054984
055482
055910
055590 | | | | 52. 0 23. 3. 0 140065 055198 36. 0 54. 0 22. 50. 0 140065 055126 41. 0 55. 0 23. 3. 0 139865 055198 42. 0 56. 0 22. 50. 0 139865 46. 0 46. 0 6. 58. 0 23. 6. 0 139865 9. 0. 0 8. 55. 0 7. 0. 0 22. 26. 30 139465 056622 5. 0 3. 0 23. 0. 0 139465 056337 15. 0 5. 0 13. 0 139465 054486 25. 0 7. 0 11. 0 139265 054486 33. 0 10. 0 23. 6. 30 138865 054166 33. 0 12. 0 22. 56. 0 138865 052350 45. 0 14. 0 23. 11. 30 138865 054058 9. 57. 36 | 9. 0
11. 0
6. 0
4. 0
3. 0
7. 0
23. 0. 0 | 137865
137865
138865
139465
139065
139465 | | 054984
055482
055910
055590 | | | | 55. 0 23. 3. 0 139865 055198 42. 0 56. 0 22. 50. 0 139865 46. 0 6. 58. 0 23. 6. 0 139865 8. 55. 0 7. 0. 0 22. 26. 30 139665 056978 9. 0. 0 2. 0 22. 55. 0 139465 056622 5. 0 3. 0 23. 0. 0 139465 056337 15. 0 5. 0 11. 0 139265 054486 25. 0 7. 0 11. 0 139265 054166 33. 0 10. 0 23. 6. 30 138865 054166 33. 0 12. 0 22. 56. 0 138865 052350 45. 0 14. 0 23. 11. 30 138865 054058 9. 57. 36 | 11. 0
6. 0
4. 0
3. 0
7. 0
23. 0. 0 | 137865
138865
139465
139065
139465 | | 055482
055910
055590 | | | | 56. 0 22. 50. 0 139865 6. 58. 0 23. 6. 0 139865 7. 0. 0 22. 26. 30 139665 2. 0 22. 55. 0 139465 3. 0 23:, 0. 0 139465 5. 0 13. 0 139465 7. 0 11. 0 139465 10. 0 23. 6. 30 138965 12. 0 22. 56. 0 138865 15. 0 23. 11. 30 138865 15. 0 22. 56. 0 138765 | 6. 0
4. 0
3. 0
7. 0
23. 0. 0 | 138865
139465
139065
139465 | | 055910
055590 | | | | 6. 58. 0 23. 6. 0 139865
7. 0. 0 22. 26. 30 139665 056622
3. 0 23. 0. 0 139465 056622
5. 0 13. 0 139465 056337 15. 0
7. 0 11. 0 139265 055554 30. 0
10. 0 23. 6. 30 138865 054166 33. 0
12. 0 22. 56. 0 138865 052350 45. 0
14. 0 23. 11. 30 138865 054058 54. 0
15. 0 22. 56. 0 138765 054058 59. 57. 30 | 4. 0
3. 0
7. 0
23. 0. 0 | 139465
139065
139465 | , | 055910
055590 | | | | 7. 0. 0 22. 26. 30 139665 056978 9. 0. 0 2. 0 22. 55. 0 139465 056622 5. 0 3. 0 23:, 0. 0 139465 056337 15. 0 5. 0 13. 0 139465 054486 25. 0 7. 0 11. 0 139265 055554 30. 0 10. 0 23. 6. 30 138865 054166 33. 0 12. 0 22. 56. 0 138865 052350 45. 0 14. 0 23. 11. 30 138865 054058 9. 57. 30 | 3. 0
7. 0
23. 0. 0 | 139065
139465 | | 055590 | | | | 2. 0 22.55. 0 139465 056622 056337 3. 0 23:, 0. 0 139465 5. 0 13. 0 139465 7. 0 11. 0 139265 10. 0 23. 6.30 138865 12. 0 22.56. 0 138865 14. 0 23.11.30 138865 15. 0 22.56. 0 138765 054058 9.57.36 056622 056337 15. 0 054486 25. 0 054486 054486 054486 054486 054466 054666
054466 054666 054466 054666 054666 054666 054666 054666 054666 054666 054 | 7. 0
23. 0. 0 | 139465 | | | } | | | 3. 0 23:, 0. 0 139465 056337 15. 0 5. 0 13. 0 139465 054486 25. 0 7. 0 11. 0 139265 055554 30. 0 10. 0 23. 6. 30 138865 054166 33. 0 12. 0 22. 56. 0 138865 052350 45. 0 14. 0 23. 11. 30 138865 54. 0 15. 0 22. 56. 0 138765 054058 9. 57. 30 | 23. 0. 0 | 139265 | | OF APPOR | | | | 5. 0 13. 0 139465 054486 25. 6 7. 0 11. 0 139265 055554 30. 6 10. 0 23. 6. 30 138865 054166 33. 6 12. 0 22. 56. 0 138865 052350 45. 6 14. 0 23. 11. 30 138865 54. 6 15. 0 22. 56. 0 138765 054058 9. 57. 36 | 22 47 0 | | | 054735 | | | | 10. 0 23. 6. 30 138865 054166 33. 0
12. 0 22. 56. 0 138865 052350 45. 0
14. 0 23. 11. 30 138865 54. 0
15. 0 22. 56. 0 138765 054058 9. 57. 30 | | 136765 | | | 1 | | | 12. 0 22.56, 0 138865
14. 0 23.11.30 138865
15. 0 22.56, 0 138765 054058 9.57.30 | | 140465 | | 054664 | ĺ | | | 14. 0 23. 11. 30 138865
15. 0 22. 56. 0 138765 054058 54. 0 | | 139865
141265 | | 052563 | | | | 15. 0 22. 56. 0 138765 054058 9. 57. 30 | 22. 44. 30
23. 4. 0 | 141265 | | 002000 | | l | | 10. 0 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 | 22. 40. 0 | 139665 | | 052136 | 55 .0 | | | 18. 0 22. 51. 0 138665 054343 10. 0. 0 | 23. 1. 27 | 137265 | | , | ļ | 1 | | | 22.43. 0 | 135557 | 55.0 | | 1 | | | 20, 30 23, 0, 0 138665 053631 15. (| 23. 1. 0 | 139899 | | | 1 | | | == | 22.44. 0 | 136134 | | | • | | | 22. 0 53. 0 138665 054201 11.45. 0 | | 136381
137016 | | 052849 | 58.5 | E | | 22. 30 53. 0 138665 055055 11. 57. 30
25. 0 55. 0 138965 053774 | | 137062 | | 002040 | 000 | | | 25. 0 55. 0 138965 053774 12. 0. 0
25. 30 52. 0 138965 054414 12. 2. 30 | | | 57.0 | 1 | l | | | | 22. 53. 30 | 138098 | | | ļ | l | | 28. 30 54. 30 142065 055269 37. | 23. 24. 30 | 142986 | | | | | | | 23. 0. 0 | 134744 | | 051495 | 56 .0 | | | | 22. 52. 13 | 134062 | 50.5 | | 1 | | | 32. 0 54. 0 141265 054913 2. 30 | | 135732
136040 | 56 .2 | | | | | 32. 30 | | 136440 | | 1 | 1 | | | 35. 0 56. 0 140465 055198 22. 0
35. 30 57. 0 140465 055055 24. 0 | | 136940 | | | 1 | | | 40. 0 57. 0 139665 054201 28. 0 | | 137440 | · | 1: | 1 | | | 40. 30 57. 0 139665 054770 44. 0 | 1 | 138440 | ' | | | | | 43. 0 56. 30 138665 14. 56. (| | 139040 | , | | | | | 45. 0 45. 0 138065 054664 15. 0. 0
45. 30 22. 46. 0 138065 054072 5. 0 | | 139840
137440 | ٠. | | | | | | | Horizontal | J 8 | Vertical | 5 | (| 1 | | 1 | Horizontal | ~ g | Vertical | ۳. | l | |-------------------------------------|------------------|----------------------------|---|------------------------------|-------------|------------|--------------|-----------------------|--------------|----------------------------|---|-----------------------------|---|---| | Göttingen Mean | Western | Force Read- | Thermometer of
Horizontal Force
Magnetometer. | Force Read- | te er | rs. | | en Mean
tronomical | Western | Force Read- | Thermometer of
Horizontal Force
Magnetometer. | Force Read- | Thermometer of
Vertical Force
Magnetometer. | | | Time (Astronomical
Reckoning) of | Western | ing in parts | om o | ing in parts
of the whole | ome
1 Fo | Observers. | | ning) of | 1 | ing in parts | om or | ing in parts | I Fc | | | Declination | Declination. | of the whole
Hor. Force | rizon | Vert. Force | tica | pse | | nation | Declination. | of the whole
Hor, Force | ring | of the whole
Vert. Force | Tica Spec | l | | Observation. | | cor.for Temp. | Mag H | cor, for Temp. | The
Ver | 0 | Obser | vation. | ļ | cor.for Temp. | The | cor.for Temp. | M V e | 1 | | d b m s | 0 / " | | 0 | | 0 | | d | h m s | 0 / " | | 0 | | 0 | Γ | | Dec. 17. 15. 10, 0 | 22, 51, 30 | 0 ·138640 | | | | В | Dec. 18. | 3. 50. 0 | 23. 0. 0 | 0 ·140465 | | | | G | | 15. 57. 30 | 55. 0 | 138940 | ľ. | 0.051851 | 56 .0 | | | 54. 0 | 5. 0 | 141065 | | | | 1 | | 16. 0. 0 | 53.48 | 138840 | | | | | | 55. 0 | 2. 0 | 141065 | | | | 1 | | | 22, 55, 0 | 138744 | 56 .5 | | | | | 3. 57. 30 | | 139565 | | 0 .052813 | 55 .0 | 1 | | | 23. 0. 0 | 140040 | | | | | 3 | 4. 0. 0 | 22. 52. 34 | 140265 | | | | 1 | | | 22. 50. 30 | 138028 | | | -1 | | | 4. 2.30 | 23. 2. 0 | 140192 | 55 0 | | | 1 | | 16. 52. 0 | 57. 30 | 139816 | | | | | | 7. 50. 0 | 22.54.30 | 139865 | | | | G | | 17. 57. 30 | 56. 0 | 139704 | | 051210 | 55 .5 | | | 7. 57. 30 | 54. 30 | 141065 | | 051851 | 55 .0 | | | 18, 0, 0 | 55. 12 | 139492 | | | | | | 8. 0. 0 | 53. 31 | 1 40465 | | | | 1 | | 18. 2.30 | 55. 30 | 139265 | 56 .0 | A. | | | | 2. 30 | | 140655 | 55 0 | | | 1 | | 19. 57. 30 | 55. 0 | 139381 | | 051566 | 55 .5 | | | 13. 0 | | 139865 | |) | | | | 20. 0. 0 | 55. 11 | 139381 | | 25.3 | | | | 8. 36. 0 | | 143549 | | 4 | | 1 | | 20. 2, 30 | 55. 0 | 139844 | 56 .0 | | | | | 9. 0. 0 | | 141635 | | | | | | 21. 10. 0 | 55. 30 | 139581 | 3 | | | | | 9. 57. 30 | ſ | 139713 | | 050773 | 51 .0 | E | | 11. 0 | 47. 0 | 139569 | | | | | 1 | 10. 0. 0 | | 139713 | | | | 1 | | 20, 0 | 56. 0 | 139557 | | | | В | | 10. 2.30 | | 139971 | 51 0 | | | | | 21. 57. 30 | 55. 0 | 140646 | - | 051395 | 55 .7 | GH | | 11. 57. 30 | | 140704 | 1 | 050621 | 50 .0 | 1 | | 22. 0. 0 | 56.44 | 141134 | | <u> </u> | | - 1 | | 12. 0. 0 | | 140704 | 50.0 | | | L | | 22. 2.30 | 55. 30 | 141871 | 55 .2 | | | | | 2. 30 | 54. 30 | 140325 | 50.0 | | | E | | 23. 57. 30 | 57. 0 | 139346 | - | 051715 | 55 .7 | | D | 10 54 00 | 20 0 0 | 0.100000 | | 0 .044772 | 46 .0 | | | 18. 0. 0. 0 | 56.53 | 139346 | F F . 179 | | | | | 13. 57. 30 | | 0 ·127283
129283 | 1 | 0 044112 | 40 0 | G | | 2. 30 | 56.30 | 139345 | 5 5 · 7 | 1 | | | 1 | 14. 0. 0
2. 30 | | 129283 | 46 0 | | | 1 | | | 22. 58. 0 | 141000 | | | | | | 30, 0 | 1 | 139683 | 30 0 | | | | | 17. 0
19. 0 | 23. 3. 0
2. 0 | 141099
140399 | | | | | | 36. () | 11 | 141793 | | | | | | 38. 0 | 8. 0 | 140088 | | | | | | 14.50. 0 | 1 | 137293 | | | | | | 45. 0 | 1. 30 | 141288 | | | ' | | 1 | 15. 0. 0 | | 126304 | | | | | | 50. 0 | 5.50 | 140876 | | | | | | | 23. 35. 0 | 120704 | | | | | | 51. 0 | 0. 0 | 140876 | | | ł | | | | 22. 56. 0 | 128724 | | | | | | 55. 0 | 6. 30 | 140665 | | | } | | ll . | 52. 0 | | 120714 | 1 | | 1 | ١ | | 1, 57, 30 | | 140265 | | 051780 | 55 .0 | | 1 | 15, 57, 30 | | 120714 | | 044864 | 46 .5 | 1 | | | 22. 59. 31 | 139665 | | 1 3 1 | ••• | | | | 22. 58. 5 | 121324 | | | 1 | | | | 23. 0. 0 | 136946 | 55 0 | | 1 | 1 | | | 23.15. 0 | 122796 | 46 .4 | | | 1 | | 5. 0 | 0. 0 | 136265 | | | | | 1 | 45. 0 | | 133934 | | | • | 1 | | 8. 0 | 23. 3. 0 | 137265 | | | | | | 16. 55. | 27.30 | 133355 | | a sa | | 1 | | | 22. 58. 0 | 140265 | | | İ | Ì | | 17. 5. 0 | | 135165 | | | 1 | 1 | | | 23. 3. 0 | 136265 | | lia in ita | | | | 24. 0 | | 131976 | 2.4 | | | 1 | | | 22. 55. 0 | 136965 | , | A COST OF | | | | 37. 0 | 8. 0 | 137986 | 15 | 1.5 | 1 | ١ | | 35. 0 | 53. 0 | 135865 | 200 | y Titel. | 1 | - E. | 1 | 40. 0 | | 136607 | | | 1 | 1 | | 44. 0 | | 138065 | 100 | 10 m | | | | 45. (| | 136428 | | | | . | | | 22. 58. 0 | 139265 | | 1 54 3 5 5 1 | l | | | 17. 57. 30 | | 134449 | | 049063 | 48 .5 | 1 | | | 23. 0. 0 | 139265 | 1000 | | 1 | | | 18. 0. 0 | | 133670 | 10.0 | 100 | l | 1 | | | 22. 54. 30 | 140665 | | |] | | } | 2. 30 | | 133624 | 48 .0 | İ | l | ı | | | 23. 2. 0 | 141465 | | | | | , | 15. 0 | | 133301 | | |] | | | | 22. 57. 30 | 140265 | 1 | | 1 | 1 | | 25. 0 | | 136112 | 1 | | ł | ١ | | | 23. 2.30 | 139665 | [| | 1 | | | 44. 0 | | 136522 | 1 | | | Į | | 25. 0 | 1 | 141265 | | | 1 | - | | 45. 0 | | 136544 | 1 | 1 | ! | 1 | | 28. 0 | | 139065 | | Miller of the | 1 | | 1 | 50, 0 | | 137754 | | | | 1 | | | 23. 3. 0 | 137265 | 1 |] | 1 | | 1 | 54. 0 | | 137965
137075 | | 1 | | 1 | | | 22. 58. 30 | 139665 | } | | 1 | | ' | 55. 0 | | 136397 | | | | 1 | | 43. 0 | 23. 2. 0 | 139265 | N5.794 | | l | | 11 | 18. 57, 0 | 9. 0 | 100091 | 1 | 1 | ļ | 1 | | Γime
Re
Ι | tingen Mean (Astronomical cekoning) of declination bservation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor.for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor.for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers | |-----------------|--|-------------------------|--|---|--|---
------------|--|----------------------------------|--|---|--|---|-----------| | | d h m s | 0 / " | | 0 | | ٥ | | d h m s | 0 / // | | 0 | | 0 | | | ec. | | 23. 6. 0 | 0 ·136797 | | | | G H | Dec. 19. 23. 43. 0 | 22, 45, 30 | 0 ·135597 | | | | E | | | 14. 0 | 7. 0 | 137397 | | | | | 47. 0 | 36. 0 | 133797 | | - 1 | | | | | 20. 0
30. 0 | 6. 0
2. 0 | 137607
136007 | | | | | 49. 0
55. 0 | 42. 0
25. 0 | 139397 | | | | | | | | 23. 4. 0 | 136218 | | | | | 23. 57. 30 | 30. 0 | 141597
141997 | | 0 .057884 | 49 .0 | E | | | | 22, 59. 0 | 137018 | | | | | 20. 0. 0. 0 | 26. 17 | 143597 | | 0 001004 | 40 0 | , | | | | 23. 1.30 | 137028 | | | | | 2.30 | 45. 0 | 144020 | 49 .0 | | | | | | | 22. 58. 0 | 136639 | | | | | 5. 0 | 41. 0 | 145597 | | | | | | | | 23. 2.30 | 136950 | | | | | 10. 0 | 35. 0 | 143997 | | | | | | | | 22. 57. 30 | 136960 | | | | | 15. 0 | 44. 30 | 140597 | | | | | | | | 23. 12. 0 | 138071 | | 0 .051888 | 5 0 ·0 | | 20. 0 | 30. 0 | 139597 | } | | | | | | 20. 0. 0
2. 30 | 7. 3
14. 30 | 137082 | 49 .8 | | | | 27. 0 | 39. 0 | 144597 | | | | | | | 7. 0 | 7. 30 | 137522
134682 | 40 0 | | | | 31. 0
0. 45. 0 | 34. 0
54. 0 | 141597
133497 | | | | | | | 8. 0 | 17. 0 | 137482 | | | | | 0.45. U
1. 0. 0 | 54. 0
53. 0 | 146597 | } | | | | | | 22. 0 | 25. 0 | 130282 | | | | | 12 | 22. 51. 0 | 140597 | | | | | | | 27 . 0 | 17. 0 | 130871 | | | | | | 23. 7. 0 | 138297 | | | | | | | 29. 0 | 20, 30 | 133871 | | | | | | 22. 54. 0 | 139997 | | | | | | | 39. 0 | 13. 0 | 134471 | | | | | 55. 0 | 23. 9.30 | 139097 | | | | - | | | 44. 0 | 9. 0 | 132071 | | | | | 1. 57. 30 | 6. 0 | 140597 | 7. | 053861 | 49 .0 | E | | | 45. 0 | 11. 0 | 134271 | | | | | 2. 0. 0 | 6. 8 | 142597 | 40.0 | | | | | | 46. 0
48. 0 | 5, 30
9. 0 | 130260
133060 | | l | | | 2. 30 | 6. 0 | 143000 | 49 .0 | | | | | | 20. 50. 0 | 3. 0
3. 0 | 131060 | | | | | 6. 0
15. 0 | 4. 0
24. 0 | 142597
146097 | · | | | | | | | 23. 2.30 | 129460 | | | | | 20. 0 | 1. 0 | 153797 | | , | | | | | | 22.57.30 | 130650 | | | | | 26. 0 | 15. 0 | 156597 | | | | | | | 7. 0 | 56. 0 | 132450 | | | | | 27. 0 | 23. 6. 0 | 159538 | | | | | | | 10. 0 | 59 . 0 | 132450 | | | | | 31. 0 | 22 . 59 . 0 | 157197 | | | | - | | | 11. 0 | 56. 0 | 133250 | | | | | | 23. 20. 0 | 159538 | | | | | | | 12. 0
35. 0 | 58. 0
34. 0 | 131650 | | | | | | 22. 53. 0 | 159548 | | | | | | | 40. 0 | 50. 0 | 133228
131628 | | | | | | 23. 24. 0 | 155618 | | | | | | | 45. 0 | 30. 0 | 125818 | | | | | | 22. 54. 0
23. 37. 0 | 159569
159580 | - | İ | | | | | 53. 0 | 43. 0 | 122618 | | | | | 3. 1. 0 | 3. 0 | 159591 | | | | | | | 55. 0 | 38. 0 | 128607 | | | | GН | | 23. 35. 30 | 159601 | | | | | | | 21. 57. 30 | 40. 0 | 128807 | | 053327 | 49 .0 | ЕН | | 22. 59. 30 | 159616 | | | | | | | 22. 0. 0 | 41.51 | 129597 | | | | | | 23. 16. 0 | 159634 | | | | | | | 2.30 | 42. 0 | | 49 .0 | | | | 21. 0 | | 159645 | | | | | | | 10. 0
11. 0 | 40. 0 | 130797 | | | | | 27. 0 | | 159655 | | | | | | | 20. 0 | 33. 30
44. 0 | 126597
126597 | | | | | 29. 0
34. 0 | 9. 0
23. 15. 30 | 159666 | İ | | | | | | 30. 0 | 38.30 | 127797 | - | | | | | 22, 53, 0 | 159677
159688 | | | | | | | 37. 0 | 42. 0 | 126397 | | | | | | 23. 10. 0 | 159699 | | | | | | | 43. 0 | 36. 0 | 124797 | | | | | 42. 0 | | 159721 | | | | | | | 22.53. 0 | 45. 0 | 127797 | | | | | 47. 0 | | 150191 | | | | | | | 23. 13. 0 | 34. 0 | 130597 | | | | | 53. 0 | 2.30 | 155802 | | | | E | | | 20. 0 | 41. 30 | 128397 | | ļ | | | 3. 57. 30 | 15. 0 | 152513 | | 056107 | 51 .5 | | | | 28. 0 | 33. 0 | 133597 | | | | | 4. 0. 0 | 11. 0 | 147824 | | | | | | | 35. 0
40. 0 | 37. 0
49. 0 | 127597 | | 1 | | | 2.30
16. 0 | 44. 0 | 151117 | 51 .2 | | | | | | 40. 0
42. 0 | 49. 0 | 133597
133997 | | | | | | 20. 0
23. 34. 0 | 159776
148435 | | | | | | | **** O | | 100001 | ı | | | | 20. 0 | -0, 0 x. U | 140400 | i ' | | ł | 1 | | Göttingen Mean Time (Astronomical Reckoning) of Declination Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor. for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical
Force Read-
ing in parts
of the whole
Vert. Force
cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | Göttingen Mean
Time (Astronomical
Reckoning) of
Declination
Observation. | Western
Declination. | Horizontal
Force Read-
ing in parts
of the whole
Hor. Force
cor, for Temp. | Thermometer of
Horizontal Force
Magnetometer. | Vertical Force Reading in parts of the whole Vert. Force cor. for Temp. | Thermometer of
Vertical Force
Magnetometer. | Observers. | |---|---|--|---|--|---|------------|--|---|--|---|---|---|------------| | 30. 0
31. 0
33. 0
34. 0
42. 0
4. 55. 0
5. 8. 0
9. 0
20. 0
22. 0
23. 0 | 0 ' " 22. 29. 0 38. 0 23. 0 28. 0 13. 30 52. 0 19. 30 46. 0 22. 38. 0 23. 7. 0 22. 42. 0 53. 0 | 0·151835
159776
159776
159776
159776
154835
134824
136224
136024
132024
133024
133024 | 0 , | | 0 | G Н | 37. 0
45. 0
50. 0
54. 0
8.58. 0
9. 6. 0
7. 0
17. 0
21. 0
33. 0
41. 0 | 23. 14. 0
22. 28. 30
22. 50. 0
23. 4. 0
22. 28. 0
35. 30
31. 0
39. 30
36. 0
54. 0
42. 0 | 0·141857
135468
126868
130068
128068
137479
131479
133079
133090
134690
131490 | 0 | 0.059909 | | G 1 | | 41. 0
44. 0
48. 0
56. 0
5. 57. 30
6. 0. 0
2. 30
15. 0
16. 0 | 47. 0
22. 48. 0
23. 8. 0
1. 0
7. 0
0. 0
3. 0
1. 42
1. 0
23. 17. 0
22. 59. 0
23. 3. 0 | 132824
156824
151813
141213
139813
142613
142613
139813
138117
140013
142513
141213 | 51 ·0 | 0 ·058000 | 51 ·0 | | 30. 0 | 53. 0
52. 32
22. 56. 0
23. 1. 0
22. 50. 0
54. 0
27. 30
34. 0
50. 0
58. 0
57. 6
58. 0 | 133490
133501
132875
135679
132457
133635
136813
134191
134780
132969
131758
131109 | 51 ·8 | 052096 | 52 · 0
50 · 5 | | | 50. 0
6.53. 0
7. 6. 0
15. 0
30. 0 | 22. 46. 0
46. 0
45. 0
57. 0
22. 37. 30
23. 15. 0
22. 32. 0
59. 0
33. 0
53. 0 | 128613
130813
128624
134824
133024
146224
130435
135235
135435
138835 | | 060450 | 51 ·5 | | 15. 0
12. 30. 0
13. 7. 0
24. 0
30. 0
13. 57. 30
14. 0. 0
14. 2. 30
15. 35. 0
15. 57. 30 | 45. 0
48. 0
49. 0
43. 0
42. 30
45. 0
44. 57
45. 0
54. 0
56. 0 | 135136
132914
128282
129460
130328
130397
130197
129790
132254
133591 | 49 .0 | 052116
052703 | 49 •0 | | | 8. 0. 0
2. 30
4. 0
10. 0
13. 0 | 33. 58
55. 0
40. 0
20. 0
45. 0
22. 50. 0 | 139846
140931
148446
137046
143657
122857 | 51 ·3 | | | | 16. 0. 0
2. 30
16. 15. 0
17. 57. 30
18. 0. 0
2. 30 | | 133591
133160
133059
134686
134786
134446 | 48 ·0 | 052472 | 47 •0 | E | ### ROYAL OBSERVATORY, GREENWICH. # **OBSERVATIONS** of # THE MAGNETIC DIP. 1847. | | | | Obsei | rvation | | | arked Ei
lownwar | | he Ne | edle | Observ | ations | | | narked l
ownwar | | the N | eedle | | | |---|--|------------------------|------------------------|---------|----------|-----------------|---------------------|------------|----------|-----------------|------------------|--------|------------|-----------------|--------------------|-------------|--------|-----------------|----------------------|---| | D A Y | Needle. | Whether | | Ea | | ed Sid | le of Nee | edle
We | st. | | | We | | ced Sid | le of Ne | edle
Ea: | st. | | | | | and | 13 | moved from its bearing | Gradus
(1) E | ated F | ace of (| Circle
West. | Gradu (4) E | ated F | ace of (| Circle
Vest. | Gradua
(4) E | | | Circle
West. | Gradua
(1) E | ated F | ace of | Circle
West. | | | | HOUR, | referring | subsequently
to the | Circ | ele | Cin | rcle
ding | Circ
Read | cle | Cir | | Circ | le | Cir | | Circ
Read | ele | | cle | Resulting | | | 1847. | Letter | last Observation. | Upper. | Lower. Dip. | | | đ h | <u> </u> | | 0 / | 1 | 1 1 | | 0 / | 1 , | | | 0 1 | 1 ~ | , | , | 0 1 | , | , | - | 0 1 | Ť | | Jan. 24.21 | A 1 | { | 68. 75 | 65 | 55 | 60 | 68. 38 | 40 | 30 | 40
| 69. 9 | 0 | 16 | 18 | 69. 25 | 22 | 15 | 25 | 69. 3·25 | • | | Jan. 25. 3 | A 1 | Not moved | | | | | | | | | 68. 69 | 58 | 5 0 | 55 | 68. 75 | 72 | 55 | 6 5 | | • | | Jan. 29. 3 | A 1 | { | 6 8. 7 5 | 80 | 50 | 55 | 68. 53 | 45 | 70 | 78 | 68. 55 | 60 | 5 0 | 45 | 68. 60 | 70 | 50 | 50 | 8. 59.25 | ļ | | Jan. 31.21 | A 1 | { | 68. 65 | 58 | 70 | 72 | 68. 42 | 42 | 32 | 40 | 69. 15 | 18 | 10 | 15 | 68. 50 | 50 | 45 | 47 | 8. 57.00 | | | Feb. 1. 3 | A 1 | Not moved | | | | | | | , | | 69. 10 | | 0 | | 68. 60 | | 45 | 40 | | | | Feb. 4. 3 | A 1 | { | 69 . 15 | 10 | 17 | 15 | 68, 53 | 50 | 42 | 47 | 68. 63 | 55 | 59 | 61 | 69. 5 | 3 | 2 | 7 | 69. 1·50 | | | Feb. 7.21 | A 1 | <i>,</i> | 69. 50 | | 18 | l | 68. 58 | | 40 | 55 | | | | | | | | | } 68. 58·25 | | | • | A 1 | Not moved | | | | | | | | | 68. 35
68. 40 | | 50
50 | ļ | 68. 60
68. 66 | | 30 | 40 | , | | | | A 1 | 5 | | | | | | | | | 68. 7 0 | | 55 | | 68. 6 0 | | 55 | 60 | } 68. 59· 5 0 | | | | | } | 69. 0
68.72 | 5
68 | 10
60 | 20
55 | 68. 40
68. 50 | | 50
50 | 55
60 | | | | | | | | | , | | | Feb. 18. 3 | A 1 | { | 00. 72 | Uo | 00 | 00 | 03.30 | 40 | 30 | UU | 68. 47 | | 50 | 53 | 69. 12 | 10 | 12 | 10 | 68.59.00 | | | Feb. 21.21 | A 1 | { | 69. 15 | 10 | 5 | 10 | 68. 48 | 52 | 60 | 65 | 68. 53 | 48 | 74 | 77 | 68. 60 | 63 | 50 | 52 | 69. 1·50 | | | Feb. 25. 3 | A 1 | { | 69 . 10 | 10 | 0 | 10 | 68.40 | 47 | 40 | 45 | 6 8. 60 | 60 | 55 | 60 | 69. 0 | 10 | 12 | 15 | } 68. 59.75 | | | March 1. 21 | A 1 | { | 68. 60 | E E | 70 | | 68. 96 | 00 | 55 | 58 | 68. 2 8 | 25 | 25 | 35 | 69. 28 | 14 | 5 | 0 | | Į | | March 4. 3 | Δ 1 | | 68.72 | | 65 | | 68. 50 | | 57 | 65 | | | | | | | | | } 69. 1·00 | | | march 4. 5 | А | 1 | | | | | | | | | 68. 40
68. 55 | | 55 | | 69. 12 | | 5 | 10 | , | ۱ | | March 8.21 | A 1 | { | 69. 15 | 12 | 5 | 10 | 68. 45 | 40 | 50 | 55 | 08. 99 | 57 | 68 | 12 | 68. 65 | 62 | 55 | 60 | 69. 0.50 | | | March 9. 3 | A 1 | | 68.45 | | 55 | | 68. 60 | 1 | 58 | 60 | | | | | | | | | | | | March 11. 3 | A 1 | { | 68. 72 | 75 | 58 | 80 | 68. 50 | 45 | 47 | 45 | 68. 65 | 60 | 55 | 57 | 68. 70 | 72 | 50 | 54 | 68. 58·50 | | | March 14. 21 | A 1 | { | 68. 6 0 | 58 | 62 | 70 | 68.80 | 75 | 32 | 30 | 68. 65 | 68 | 28 | 35 | 68. 60 | 52 | 45 | 52 | 8. 54.50 | | | | | | Obser | rvation | | | arked E
lownwar | | he Ne | edle | Observ | ations | with t
poin | he unn
ting de | arked I | End of | the No | eedle | | | |--------------|------------------|--------------------------|-----------------------|---------|------------|--|--------------------|------------|------------|-------------|----------------|------------|----------------|-------------------|------------------------|------------|--------|-------------|--------------------|-----------| | D A Y | edle. | Whether | | Eas | | ed Sid | le of Ne | edle
We | st. | | | We | | ed Sid | e of Nee | dle
Eas | it. | | | | | and | to Needle. | moved from | Gradu | | | Circle | Gradua | ated Fa | ce of (| Circle | Gradua | ted Fa | ace of (| Circle | Gradua | ted Fa | ce of | Circle | | | | APPROXIMATE | rring | its bearing subsequently | (1) E | Cast. | (3) V | Vest. | (4) E | ast. | (2) V | Vest. | (4) E | ist. | (2) V | Vest. | (1) E | ast. | (3) V | Vest. | Resulting | | | HOUR, | Letter referring | to the | Circ
Read | | Cir
Rea | cle
ding | Circ
Read | | Cir
Rea | cle
ding | Circ
Read | | | cle
ding | Circ
Read | | | cle
ding | Dip. | Observer. | | 1847. | Lette | last Observation. | Upper. | Lower. Dip. | Obs | | , d h | <u> </u> | | 0 1 | , | , | | 0 / | , | , | , | 0 / | , | 1 | , | 0 / | , | 1 | , | 0 / | T | | March 21, 21 | A 1 | { | 69. 12 | 10 | 0 | 7 | 68. 50 | 55 | 65 | 70 | 68. 55 | 60 | 70 | 72 | 6 8. 6 0 | 55 | 50 | 45 | 69. 1.00 | Т | | March 28, 21 | A 1 | { | 68. 63 | 60 | 52 | 57 | 68. 60 | 60 | 42 | 50 | 68. 4 0 | 38 | 35 | 45 | 69. 2 0 | 15 | 18 | 23 | 68. 57·50 | L | | March 29. 3 | A 1 | Not moved | 68. 45 | 47 | 60 | 70 | 68, 40 | 40 | 70 | 68 | | | | | | | | | | | | April 1. 3 | A 1 | { | 69. 3 0 | 25 | 0 | 5 | 68. 40 | 40 | 35 | 42 | 69. 15 | 20 | 0 | 0 | 68. 6 0 | 58 | 50 | 56 | 8. 59.75 | L | | April 4. 21 | A 1 | { | 68. 7 2 | 68 | 48 | 45 | 68. 55 | 45 | 60 | 57 | 68. 40 | 3 6 | 25 | 35 | 69. 30 | 22 | 30 | 32 | 68. 58.75 | G I | | April 5. 3 | A 1 | Not, moved | 6 9. 16 | 13 | 2 | 16 | 68. 62 | 56 | 80 | 85 | | | | | | | | | | G F | | April 8. 3 | A 1 | { | 6 8. 90 | 95 | 55 | 60 | 68. 30 | 27 | 50 | 55 | 68. 80 | 85 | 55 | 55 | 68. 50 | 55 | 55 | 60 | 68. 59·75 | TI | | April 11.21 | A 1 | { | 6 8. 42 | 38 | 70 | 68 | 68.82 | 74 | 48 | 40 | 68. 32 | 32 | 58 | 70 | 69. 56 | 48 | 58 | 58 | 69. 9·50 | G I | | April 12. 3 | Αı | Not moved | 68. 40 | 38 | 16 | 25 | 68. 54 | 48 | 58 | 55 | | | | | | | | | | G I | | April 19.21 | A 1 | { | 68. 70 | 60 | 50 | 55 | 68. 50 | 55 | 60 | 65 | 68. 40 | 45 | 50 | 5 0 | 69. 12 | 17 | 20 | 25 | } 69. 0.00 | т | | April 26. 21 | A 1 | { | 6 8. 60 | 55 | 70 | 72 | 68. 57 | 60 | 65 | 65 | 68.45 | 47 | 50 | 55 | 69. 1 0 | 12 | 10 | 15 | 69. 1.75 | | | April 27. 3 | A 1 | Not moved | 68. 5 0 | 55 | 57 | 60 | 69 . 10 | 15 | 20 | 20 | | | | | | | | | , | T I | | April 29. 3 | A 1 | { | 68. 60 | 55 | 65 | 70 | 68. 50 | 45 | 15 | 30 | 68. 7 8 | 70 | 55 | 57 | 68. 30 | 32 | 32 | 40 | 68. 49.00 | L | | May 2. 21 | A 1 | { | 68. 55 | 50 | 65 | 67 | 68. 5 5 | 48 | 55 | 60 | 68.60 | 57 | 50 | 58 | 68. 60 | 70 | 55 | 60 | 68. 58.00 | T I | | May 9.21 | A 1 | { | 68. 47 | 50 | 60 | 70 | 68. 60 | 53 | 50 | 57 | 68. 65 | 60 | 55 | 60 | 68. 3 0 | 35 | 40 | 47 | 68. 52·50 | | | May 10. 3 | A 1 | Not moved | | | | | | | | | 69. 10 | 7 | o | 0 | 68. 40 | 45 | 50 | 53 | | TI | | May 13. 3 | A 1 | { | 6 8. 80 | 85 | 22 | 30 | 68. 42 | 38 | 58 | 62 | 69. 18 | 16 | 30 | 40 | 68. 55 | 50 | 68 | 72 | } 69. 3 ·00 | L | | May 16. 21 | A 1 | } | 69. 20 | 15 | 5 | 10 | 68. 85 | 90 | 45 | 50 | 68. 60 | 55 | 40 | 45 | 68. 7 0 | 72 | 50 | 50 | 69. 2·50 | T I | April 11^d. 21^h. The readings with the unmarked end dipping, and marked side of the needle East, do not agree with others in the same position. It is possible that an error of 1° has been made in each reading, and if so, the resulting dip would be 68°. 54′.5. No use has been made of this observation in subsequent calculations. May 9d. 21h. The observations were unsatisfactory; the needle would not take up a definite position. | | | | | | Obse | rvatio | | | narked E
lownwar | | the Ne | edle | Observ | ations | | | marked
ownward | | f the N | eedle | | | |------------|----------|--------|-------------|---------------------------|------------------------|--------|--------|-----------------|---------------------|------------|----------|--------|-----------------|--------|----------|-------------|----------------------|------------|---------|-----------------|------------------|----| | D | A Y | | Needle. | Whether | | Es | | ked Si | de of Ne | edle
We | st. | | | We | | ed Sid | le of Ne | edle
Ea | st. | | | | | a
APPRO | and | WD. | \$ | moved from
its bearing | Gradus | ated F | ace of | Circle
West. | Gradua
(4) E | | ce of (| | Gradus
(4) E | | ace of (| | Gradua
(1) E | | | Circle
West. | D 14 | | | | DUR, | | r referring | subsequently
to the | Cir
Read | cle | Cin | rcle
iding | Circ | le | <u> </u> | cle | Circ
Read | | | cle
ding | Circ
Read | | | rcle
ding | Resulting | | | 1 | 847. | | Letter | last Observation. | Upper. | Lower. Dip. | }; | | May | d
17. | ь
3 | A 1 | Not moved | 0 / | , | , | , | 0 / | , | , | , | 68. 55 | , | ,
50 | , | 。,
68. 6 0 | 60 | 40 | 45 | 0 , | T | | May | 20. | 3 | A 1 | { | 68. 95 | 93 | 52 | 58 | 68. 60 | 68 | 22 | 25 | 69. 15 | 20 | 10 | 12 | 68. 70 | 62 | 40 | 45 | 69. 1·50 | | | May | 23. | 21 | A 1 | { | 69. 20 | 15 | 0 | 5 | 68.90 | 90 | 45 | 50 | 68. 65 | 60 | 40 | 40 | 68. 75 | 80 | 45 | 50 | } 69. 3·00 | | | May | 24. | 3 | A 1 | Not moved | | | | | | | | | 68. 7 0 | 72 | 45 | 50 | 68. 85 | 90 | 50 | 50 | | Т | | May | 27. | 3 | A 1 | { | 68. 5 5 | 55 | 45 | 48 | 68. 72 | 67 | 48 | 45 | 68.78 | 78 | 49 | 53 | 68. 85 | 82 | 57 | 58 | 8. 59.75 | | | May | 30. 5 | 21 | A 1 | { | 6 8. 60 | 50 | 25 | 30 | 68. 65 | 60 | 30 | 40 | 69. 2 5 | 20 | 110 | 108 | 68. 15 | 15 | 55 | 62 | } 69. 3.00 | 1 | | May | 31. | 3 | A 1 | Not moved | | | | | | | | | 69. 25 | 22 | 2 | 5 | 68. 3 0 | 27 | 28 | 36 | | | | June | 6. 9 | 21 | A 1 | { | 68. 60 | 65 | 40 | 50 | 68. 65 | 55 | 72 | 75 | 69. 13 | 13 | 10 | 25 | 69. 12 | 4 | 12 | 18 | 69. 6.75 | | | June | 7. | 3 | A 1 | Not moved | 6 8. 6 8 | 68 | 45 | 55 | 68. 48 | 48 | 78 | 82 | | | | | | | | | | (| | June | 10. | 3 | A 1 | { | 69. 25 | 30 | 2 | 10 | 68. 27 | 30 | 40 | 46 | 69. 8 | 2 | 8 | 12 | 68.62 | 66 | 42 | 50 | 68. 58.75 | | | June | 13. 5 | 21 | A 1 | { | 68. 4 0 | 40 | 55 | 66 | 68. 80 | 70 | 50 | 48 | 67. 140 | 145 | 50 | 60 | 68.45 | 35 | 68 | 72 | 68. 51.50 | (| | June | 14. | 3 | A 1 | Not moved | 68.78 | 80 | 36 | 48 | 68. 70 | 64 | 30 | 35 | | | | | | | | | | G | | June | 17. | 3 | A 1 | { | 69. 10 | 12 | 0 | 0 | 68. 75 | 80 | 50 | 53 | 68. 70 | 64 | 52 | 56 | 68. 55 | 52 | 63 | 70 | 69. 2.50 | | | June | 20. 2 | 21 | A 1 | { | 69. 25 | 25 | 18 | 30 | 69. 38 | 30 | 2 | 10 | 68. 35 | 38 | 18 | 30 | 68. 60 | 55 | 20 | 30 | 68. 59·00 | | |
June | 21. | 3 | A 1 | Not moved | 68. 38 | 35 | 20 | 32 | 68. 62 | 55 | 30 | 35 | | | | | | | | | | | | June | 27. 2 | 21 | A 1 | { | 68. 6 0 | 55 | 60 | 65 | 68. 72 | 75 | 53 | 57 | 68. 70 | 68 | 38 | 44 | 68. 75 | 72 | 45 | 50 | 69. 0.00 | 7 | | June | 28. | 3 | A 1 | Not moved | | | | | | | | | 68, 60 | ł | 50 | | 68. 58 | | 40 | 45 | | 7 | | July | 1. | 3 | A 1 | { | 68. 55 | 52 | 57 | 63 | 69. 5 | 8 | 13 | 12 | 68. 57 | 55 | 40 | 45 | 69. 5 | 3 | 0 | 0 | 68. 59·50 | | | July | 4.2 | 21 | A 1 | . { | 68. 60 | 57 | 65 | 70 | 68. 70 | 70 | 55 | 60 | 60.60 | 65 | 45 | 50 | 68. 72 | 70 | 50 | 55 | 69. 1.00 | 1 | May 30^d. 21^h. The readings with the unmarked end of the needle dipping, and with the marked side of the needle both West and East, are different from other readings in the same positions. June 13d. 21h. The morning was unfavourable, and the needle would not take up any definite position: the observations were very unsatisfactory. | | | | | Obser | rvatio | | | arked E
lownwar | | he Ne | edle | Observ | ations | | | narked :
ownwar | | the N | eedle | e programme and the second | | |------|------------------|-----------------------------|------------------------|-----------------|--------|--------|-----------------|--------------------|------------|--------|-----------------|-----------------|---------|---------|---------|--------------------|------------|------------|-------------|----------------------------|---| | D | ΑΥ | edle. | Whether | | E | Marl | ced Sid | le of Ne | edle
We | st. | | | We | | sed Sid | le of Ne | edle
Ea | ıst. | | | | | | and | Letter referring to Needle, | moved from its bearing | Gradua
(1) E | | | Circle
West. | Gradus
(4) E | | | Circle
West. | Gradua
(4) E | | ce of (| | Gradu
(1) E | | ace of (| | 7 0 %: | | | | XIMATE
) U R, | referrin | subsequently
to the | Circ | ele | Cir | cle | Circ | cle | Cir | | Circ
Read | le | Cir | | Circ
Read | | Cir
Rea | cle
ding | Resulting | | | 18 | 847. | Letter | last Observation. | Upper. | Lower. Dip. | | | July | d h 5. 3 | A 1 | Not moved | 0 / | , | | , | 0 , | , | , | , | 68. 60 | ,
60 | 45 | 48 | 。
68. 65 | 70 | ,
55 | 60 | 0 / | Т | | July | 8. 3 | A 1 | { | 68.48 | 45 | 30 | 35 | 69. 5 | 8 | 8 | 12 | 68. 35 | 40 | 52 | 55 | 68. 5 5 | 50 | 70 | 72 | } 68. 5 3 ·75 | | | July | 11. 21 | A 1 | { | 68. 55 | 50 | 55 | 60 | 69. 10 | 12 | 0 | 10 | 69. 5 | 8 | 0 | 0 | 68. 60 | 60 | 50 | 55 | } 69. 0·75 | 7 | | July | 12. 3 | A 1 | Not moved | | | | | | | | | 68. 70 | 65 | 55 | 60 | 68. 60 | 60 | 44 | 50 | | | | July | 15. 3 | A 1 | { | 68. 60 | 60 | 34 | 40 | 69. 15 | 10 | 12 | 10 | 68. 70 | 75 | 40 | 45 | 68. 6 0 | 50 | 70 | 72 | 69. 0.50 | 7 | | uly | 18. 21 | A 1 | . { | 68. 75 | 70 | 60 | 56 | 68. 50 | 48 | 42 | 50 | 68. 58 | 55 | 75 | 80 | 68. 60 | 65 | 52 | 60 | } 68. 59·75 | | | uly | 19. 3 | A 1 | Not moved | | | | | | | | | 68. 60 | 60 | 45 | 50 | 68. 60 | 55 | 45 | 50 | | | | uly | 25. 21 | A 1 | { | 67. 45 | 40 | 120 | 130 | 68. 50 | 40 | 17 | 20 | 68. 65 | 65 | 42 | 45 | 68. 48 | 38 | 12 | 15 | } 68. 34.50 | • | | uly | 26. 3 | A 1 | Not moved | 68. 55 | 52 | 92 | 95 | 69. 20 | 32 | 18 | 20 | | | , | | | | | | | | | uly | 29. 3 | A 1 | { | 68. 82 | 78 | 48 | 52 | 68.57 | 54 | 67 | 73 | 68. 6 8 | 60 | 48 | 52 | 68. 45 | 40 | 45 | 54 | 68. 57·50 | | | Aug. | 1. 21 | A 1 | { | 68. 80 | 85 | 60 | 55 | 68. 50 | 45 | 50 | 55 | 68, 55 | 60 | 65 | 70 | 68. 5 0 | 55 | 57 | 60 | 68. 59·50 | 7 | | lug. | 2. 3 | A 1 | Not moved | 68. 60 | 57 | 45 | 50 | 68. 55 | 60 | 60 | 70 | | | | | | | | | | | | Aug. | 12. 3 | A 1 | { | 68. 75 | 80 | 45 | 50 | 68, 65 | 57 | 60 | 65 | 68. 60 | 55 | 50 | 50 | 68. 55 | 60 | 50 | 55 | 68.58.25 | 1 | | lug. | 15. 21 | A 1 | { | 68. 50 | 60 | 42 | 46 | 6 8. 78 | 80 | 65 | 56 | 68. 58 | 66 | 20 | 20 | 68. 78 | 88 | 52 | 60 | 68. 57·50 | 0 | | Aug. | 19. 3 | A 2 | { | 68. 70 | 72 | 60 | 55 | 68. 60 | 70 | 40 | 35 | 68. 60 | 70 | 50 | 55 | 69. 0 | 10 | 10 | 5 | } 69. 0.00 | 7 | | lug. | 22. 21 | A 2 | { | 68. 47 | 50 | 55 | 50 | 68. 7 0 | 78 | 45 | 40 | 69. 0 | 8 | 15 | 12 | 69. 15 | 18 | 5 | 0 | 69. 1.75 | | | ug. | 23. 3 | A 2 | Not moved | 68. 85 | 90 | 50 | 55 | 69. 0 | 5 | 30 | 30 | | | | | | | | | | | | lug. | 26. 3 | A 2 | { | 69. 5 | 10 | 0 | 0 | 68. 70 | 80 | 20 | 25 | 68. 70 | 72 | 50 | 55 | 69. 0 | 10 | 15 | 20 | 69. 1.50 | 7 | | lug. | 29. 21 | A 2 | { | 69. 25 | 30 | 35 | 40 | 68. 5 | 8 | 28 | 32 | 69. 5 | 0 | 15 | 20 | 68. 4 5 | 50 | 45 | 45 | } 68. 56.75 | | July 25^d. 21^h. The readings are discordant as compared with all other observations, and the resulting dip has not been used in subsequent calculations. Aug. 29d. 21h. The readings in all positions differ somewhat from their usual values. | | | | Obse | rvation | | | narked E
lownwar | | the Ne | edle | Observa | ations | | | narked E
ownward | | the No | eedle | - | | |-------------------------|-----------------------------|---------------------------|-----------------|---------|--------|-----------------|---------------------|------------|----------|-------------|------------------------|---------|-------------|-------------|---------------------|-------------|------------|-----------------|----------------------|------------| | DAY | eedle. | Whether | | Eas | | ked Sid | de of Ne | edle
We | st. | | | We | | ed Sic | le of Nee | edle
Eas | t. | - | | | | and APPROXIMATE | Letter referring to Needle. | moved from
its bearing | Gradua
(1) E | | | Circle
West. | Gradus
(4) E | | ace of (| | Gradua
(4) E | | ce of (| | Gradua
(1) E | | | Circle
West. | Resulting | | | HOUR, | er referi | subsequently
to the | Circ
Read | | | rcle
ding | Circ
Read | | | cle
ding | Circ
Read | | Cir
Read | cle
ling | Circ
Read | | Cir
Rea | cle | | Observer. | | 1847. | Lett | last Observation. | Upper. | Lower. Dip. | Obs | | d h Aug. 30. 3 | A 2 | Not moved | 0 / | , | ′ | , | 0 1 | 1 | , | , | 。
68. 7 5 | ,
75 | 20 | 25 | o ,
69. 3 | 10 | 0 | 0 | 0 / | ТД | | Sep. 2. 3 | A 2 | { | 6 8. 70 | 72 | 60 | 55 | 68. 65 | 60 | 40 | 35 | 68. 72 | 77 | 40 | 45 | 68. 65 | 70 | 60 | 55 | } 68. 58· 7 5 | | | Sep. 5, 21 | A 2 | { | 68. 60 | 55 | 70 | 75 | 68. 10 | 12 | 35 | 40 | 69. 10 | 15 | 10 | 12 | 69.15 | 20 | 10 | 12 | } 68. 58 ·75 | | | Sep. 6. 3 | A 2 | Not moved | | | | | | | | | 68. 75 | 80 | 50 | 55 | 69. 0 | 10 | 10 | 12 | | T D | | Sep. 9. 3 | A 2 | { | 68. 57 | 62 | 28 | 30 | 68. 40 | 44 | 50 | 50 | 69. 0 | 5 | 15 | 20 | 68. 68 | 65 | 60 | 58 | } 68. 55·75 | G H | | Sep. 12.21 | A 2 | { | 69. 2 0 | 25 | 15 | 20 | 68. 10 | 15 | 30 | 35 | 6 9. 12 | 15 | 20 | 25 | 68. 50 | 55 | 40 | 45 | 68. 57.00 | T D | | Sep. 13. 3 | A 2 | Not moved | | | | | | | | | 69 . 0 | 5 | 20 | 25 | 68. 55 | 60 | 50 | 55 | | | | Sep. 16. 3 | A 2 | { | 68. 6 0 | 65 | 45 | 50 | 68. 4 5 | 50 | 55 | 60 | 69. 1 0 | 12 | 15 | 20 | 68. 6 0 | 65 | 60 | 55 | 69. 0·50 | T D | | Sep. 19. 2 | A 2 | { | 68. 84 | 86 | 55 | 58 | 68. 65 | 68 | 40 | 40 | 69 . 1 0 | 10 | 17 | 20 | 68. 42 | 50 | 20 | 25 | } 68. 58·00 | с н | | Sep. 20. 3 | A 2 | Not moved | | | | | | | | | 69. 20 | 15 | 8 | 10 | 68. 35 | 40 | 40 | 40 | | G H | | Sep. 24. $5\frac{1}{3}$ | A 2 | { | 67. 90 | 95 | 60 | 95 | 68. 45 | 50 | 30 | 40 | 68. 35 | 40 | 45 | 50 | 68. 40 | 44 | 50 | 53 | 68. 38.75 | тр | | Sep. 26. 21 | A 2 | { | 6 8. 7 8 | 80 | 40 | 30 | 68. 50 | 50 | 50 | 52 | 69. 10 | 12 | 20 | 20 | 68. 4 0 | 50 | 30 | 40 | 68. 55.75 | е н | | Sep. 27. 3 | A 2 | Not moved | | | | | | | | | 68.42 | 48 | 20 | 10 | 69. 30 | 35 | 16 | 14 | | G н | | Sep. 30. 3 | A 2 | { | 68. 70 | 72 | 50 | 55 | 68. 60 | 60 | 50 | 5 5 | 68. 50 | 55 | 60 | 65 | 69. 20 | 15 | 10 | 12 | 69. 2.50 | T D | | Oct. 7. 3 | A 2 | { | 68. 35 | 40 | 55 | 60 | 68. 60 | 70 | 50 | 55 | 68.55 | 60 | 65 | 70 | 69. 12 | 10 | o | 5 | 68. 58.50 | T D | | Oct. 10. 21 | A 2 | { | 68. 45 | 50 | 50 | 55 | 68. 55 | 60 | 50 | 45 | 68. 50 | 55 | 70 | 75 | 69. 2 0 | 25 | 0 | 5 | 68. 59.25 | G H | | Oct. 11. 3 | A 2 | Not moved | 68. 45 | 50 | 50 | 55 | 68. 75 | 80 | 45 | 50 | | | | | | | | | | | | Oct. 14. 3 | A 2 | { | 68. 50 | 62 | 70 | 68 | 68. 50 | 55 | 30 | 32 | 68. 52 | 58 | 58 | 60 | 68. 48 | 52 | 60 | 65 | 68. 54.25 | G H | | Oct. 18, 21 | A 2 | { | 68. 50 | 55 | 55 | 60 | 68. 65 | 72 | 50 | 55 | 68. 45 | 50 | 50 | 60 | 68. 70 | 72 | 57 | 65 | 88. 58-50 | T D | September 24^d. 5^h. 20^m. These readings were taken during the great magnetic disturbance which took place on this day. | | | | Obser | rvation | | | arked E
lownwar | | the Ne | edle | Observ | ations | | | narked l
ownwar | | the N | eedle | | | |-------------|------------------|---------------------------|------------------------|------------|------------|--------------|--------------------|------------|------------|-------------|------------------|--------|----------|-------------|--------------------|------------|----------|--------------|-------------------|-----------| | D A Y | edle. | Whether | | Eas | | ked Sid | le of Ne | edle
We | st. | | | We | | ed Sid | e of Ne | edle
Ea | st. | | | | | and | ng to Needle. | moved from
its bearing | Gradu | | ace of | | Gradu
(4) E | | ace of (| | Gradua
(4) E | | ace of (| | Gradua
(1) E | | ce of (| | Resulting | | | HOUR, | Letter referring | subsequently
to the | Circ
Read | | | rcle
ding | Circ
Read | | | cle
ding | Circ
Read | | | cle
ding | Circ
Read | | | rcle
ding | | Observer. | | 1847. | Lette | last Observation. | Upper. | Lower. Dip. | Obs | | d b | | | 68. 58 | 60 | 40 | 45 | o ,
69. 5 | 10 |
,
10 | 5 | 0 1 | , | , | , | 0 / | , | 1 | • | ° '
} 69. 2:00 | G F | | | A 2 | { | | | | | | | | | 68. 80
68. 65 | 78 | 58
45 | | 68. 50
69. 20 | | 75
10 | 80
5 | | G I | | | A 2 | Not moved | | | | | | | | | 68. 6 5 | | 45 | | 68. 7 0 | | 55 | 60 | } 68. 59·75 | | | Oct. 28. 3 | A 2 | { | 6 8. 4 5 | | 60 | | 68. 65 | | 55 | 60 | | | | | | | | | , | TI | | Nov. 1. 21 | A 2 | { | 68. 80 | 70 | 50 | 55 | 68. 4 0 | 50 | 35 | 32 | 68. 50 | 45 | 60 | 65 | 68. 45 | 50 | 58 | 60 | 68. 52·75 | G E | | Nov. 2. 3 | A 2 | Not moved | | | | | | | | | 68. 58 | 55 | 60 | 65 | 68. 70 | 65 | 52 | 5 5 | | G I | | Nov. 11. 3 | A 2 | { | 6 8. 50 | 55 | 65 | 65 | 68. 5 5 | 60 | 50 | 55 | 68, 60 | 65 | 50 | 55 | 68, 65 | 70 | 55 | 60 | 68. 58·50 | TI | | Nov. 14.21 | A 2 | { | 68. 58 | 70 | 6 0 | 65 | 68. 58 | 60 | 60 | 54 | 68. 65 | 60 | 55 | 50 | 68. 50 | 47 | 65 | 70 | 68. 59·25 | L | | Nov. 15. 3 | A 2 | Not moved | | | | | | | | | 68, 63 | 60 | 58 | 60 | 68. 55 | 58 | 70 | 75 | | L | | Nov. 18. 3 | A 2 | { | 68. 5 5 | 60 | 65 | 70 | 68. 45 | 50 | 50 | 55 | 68. 65 | 70 | 45 | 50 | 68. 6 0 | 65 | 55 | 60 | } 68. 57.50 | TI | | Nov. 21.21 | A 2 | { | 6 8. 53 | | 75 | | 68. 7 0 | | 30 | 25 | 68. 40 | 45 | 35 | 40 | 69. 0 | 0 | 15 | 12 | 68. 54·5 0 | | | Nov. 25. 3 | A 2 | 5 | | | | | | | | 50 | 68. 65 | 65 | 50 | 55 | 68 . 60 | 65 | 55 | 60 | } 68. 56·50 | ТІ | | | | 1 | 68. 55
68. 45 | ł | 60
62 | 65 | 68. 45
68. 72 | | 45
 37 | 50
40 | | | | | | | | |) 60 55.00 | L | | Nov. 28. 21 | A 2 | { | 00. 40 | 10 | 02 | | 00.,2 | | | | 69. 18 | ł | 0 | | 68. 45 | | 30 | | } 68. 55.00 | | | Dec. 6. 21 | A 2 | { | 68. 30 | 30 | 6 0 | 56 | 68. 50 | 52 | 40 | 45 | 69. 8 | 10 | 40 | 40 | 69. 0 | 0 | 12 | 15 | 69. 1.75 | L | | Dec. 7. 3 | A 2 | Not moved | 68. 65 | 65 | 55 | 60 | 69. 0 | 0 | 5 | 10 | | | | | | | | | | TI | | Dec. 9. 3 | A 2 | { | 68.40 | 4 5 | 40 | 50 | 68. 60 | 60 | 50 | 55 | 68. 70 | 65 | 40 | 50 | 68. 40 | 45 | 45 | 40 | 68. 49·75 | G I | | Dec. 19.21 | A 2 | { | 68. 45 | 48 | 25 | 20 | 6 8. 45 | 48 | 60 | 57 | 68, 60 | 65 | 55 | 55 | 69. 20 | 22 | 12 | 15 | } 68. 55.75 | L | | Dec. 20. 3 | A 2 | Not moved | 68. 4 0 | 45 | 60 | 55 | 68. 63 | 65 | 30 | 32 | | | | | | | | | | | | Dec. 26. 21 | A 2 | { | 69. 20 | 25 | 0 | 0 | 68. 52 | 56 | 40 | 40 | 68. 65 | 65 | 35 | 40 | 68. 4 8 | 52 | 45 | 50 | 68. 54.50 | L | October 24^d. 21^h. The recorded readings, with the marked end dipping, the marked side of the needle East, and the graduated face of the instrument West, were 69°. 40′ and 69°. 45′: these values have been altered conjecturally to 68°. 40′ and 68°. 45′. #### ROYAL OBSERVATORY, GREENWICH. ## OBSERVATIONS ÓF # DEFLEXION OF A MAGNET FOR ABSOLUTE MEASURE 0 F HORIZONTAL FORCE. 1847. | Year,
Month,
and
Day. | Position of Marked End
of Declination Magnet. | Position of Deflecting
Magnet with respect to
suspended Magnet. | Distance of Centers
of Magnets. | Tem-
pera-
ture. | Mean
tempe-
rature. | Reduced
Circle
Reading. | Micrometer Reading of Declination Magnet reduced to Arc. | Scale
Reading
of
Hori-
zontal
Force
Magnet. | Circle Reading increased by Micrometer Reading, for Declination Magnet, omitting 2°. | Mean of the
Numbers in the
preceding
Column, when
the Deflecting
Magnet was on
opposite sides
of the suspended
Magnet. | Half Difference of Reduced Readings for Reversed Positions of Deflecting Magnet, or Observed Deflexion. | Natural
Sine
of
Deflexion. | Mean of the Times of
Vibration of Deflecting
Magnet. | Number of Vibrations. | Temperature. | |--------------------------------|--|---|------------------------------------|--------------------------------------|---------------------------|---|--|---|--|--|---|-------------------------------------|--|-----------------------|--------------| | 1847.
Mar. 3 | | Away | ft. in. | 0 | 0 | 24. 0.18:30 | 2.31.41·00 | di v. | ° ' " 24. 31. 59·30 | 0 / // | 0 / 1/ | | 5·011 | 118 | 0
41 | | | E
E
W
W | W
E
W
E | | 41 ·0
41 ·0
41 ·0
41 ·0 | | 11. 19. 12·27
11. 24. 52·72
36. 34. 31·36
36. 43. 1·25 | 2. 31. 3·10
2. 31. 3·10
2. 29. 56·40
2. 29. 34·00 | | 11. 50. 15·37
11. 55. 55·82
37. 4. 27·76
37. 12. 35·25 | 11. 53. 5·60
37. 4. 3·75 | 12. 35. 29.07 | 0.21800 | | | | | | W
W
E
E | N
S
N
S | | 41 ·0
41 ·0
41 ·0
41 ·0 | \
\
>41 •4 | 17. 19. 51·71
17. 28. 7·64
30. 46. 7·27
30. 36. 1·19 | 2. 30. 27·50
2. 30. 27·50
2. 29. 34·00
2. 29. 34·30 | 55·48
55·53 | 17. 50. 19·21
17. 58. 35·14
31. 15. 41·27
31. 5. 35·49 | 17. 54. 27·18
31. 10. 38·38 | 6. 38. 5.60 | 0·11554 | | | | | | W
W
E
E | W
E
W
E | | 44 ·0
42 ·8
41 ·0
41 ·0 | | 27. 47. 7·05
27. 42. 9·13
20. 18. 7·55
20. 21. 11·90 | 2. 28. 48.90
2. 28. 54.80
2. 29. 18.80
2. 28. 42.90 | 55·65
55·80
55·50
55·41 | 28. 15. 55·95
28. 11. 3·93
20. 47. 26·35
20. 49. 54·80 | 28. 13. 29·94
20. 48. 40·58 | 3. 42. 24.68 | 0.06465 | | | | | | E
W
W | N
S
N
S | | 41 ·7
41 ·8
41 ·0
41 ·4 | | 25. 55. 31·31
25. 57. 6·81
22. 11. 13·03
22. 8. 56·03 | 2. 29. 4·60
2. 28. 55·30
2. 27. 49·40
2. 28. 14·60 | 56·00
56·10
55·49
55·59 | 26. 24. 35·91
26. 26. 2·11
22. 39. 2·43
22. 37. 10·63 | 26. 25. 19·01
22. 38. 6·53 | 1. 53. 36·24 | 0.03304 | | | | | | | Away | | | | 24. 3. 52.92 | 2. 29. 16·90 | | 24.33. 9.82 | | | | 5.003 | 76 | 42 | | Apr. 24 | | Away | | | | 23. 37. 45.86 | 2. 44. 41·10 | | 24. 22. 26·96 | | | | 5.022 | 98 | 54 | | | E
E
W
W | W
E
W
E | | 57 ·0
58 ·0
59 ·2 | | 10. 57. 35·46
11. 5. 32·29
36. 7. 53·22
36. 16. 44·07 | 2. 44. 19·70
2. 44. 0·10
2. 42. 55·10
2. 42. 42·00 | 54·37
54·30
54·41
54·38 | 11. 41. 55·16
11. 49. 32·29
36. 50. 48·32
36. 59. 26·07 | 11. 45. 43·73
36. 55. 7·20 | 12. 34. 41.74 | 0.21787 | | | | | | W
W
E
E | N
S
N
S | | 58 ·0
58 ·3
59 ·5
60 ·0 | | 16.50. 2.85
17. 0.56.79
30.26.12.33
30.13.51.01 | 2. 43. 18·80
2. 43. 18·80
2. 42. 33·20
2. 42. 7·60 | 54·32
54·36 | 17. 33. 21.65
17. 44. 15.59
31. 8. 45.53
30. 55. 58.61 | 17. 38. 48·62
31. 2. 22·07 | 6. 41. 51.73 | 0·11663 | | | | | | W
W
E
E | W
E
W
E | | 61 ·0
61 ·5
60 ·0
60 ·9 | | 27. 19. 5·00
27. 17. 50·55
19. 55. 47·85
19. 55. 38·72 | 2. 41. 47·20
2. 41. 47·20
2. 42. 7·00
2. 42. 1·40 | 54·42
54·37 | 28. 0.52·20
27.59.37·75
20.37.54·85
20.37.40·12 | 28. 0.14·98
20.37.47·49 | 3. 41. 13.75 | 0·06431 | | | | | | E
W
W | N
S
N
S | | 62 · 0
62 · 5
57 · 2
60 · 5 | | 25. 28. 37·93
25. 30. 15·39
21. 42. 3·76
21. 42. 35·20 | 2. 41. 43·40
2. 41. 43·40
2. 43. 28·70
2. 41. 54·00 | 54·45
54·45
54·38
54·35 | 26. 10. 21·33
26. 11. 58·79
22. 25. 32·46
22. 24. 29·20 | 26. 11. 10·06
22. 25. 0·83 | 1. 53. 4·62 | 0.02389 | | | | | | | Away | | | | 23. 35. 28.21 | 2. 41. 43.40 | | 24. 17. 11.61 | | | | 5.021 | 98 | 61 | | July 13 | | Away | | | | 22. 27. 4·29 | 2. 27. 7.50 | | 22. 54. 11.79 | | | | 5.038 | 84 | 84 | | | E
E
W
W | W
E
W
E | ļ | 83 ·8
84 ·0
84 ·0
84 ·0 | | 11. 2. 20·52
11. 11. 13·60
35. 49. 54·08
35. 51. 45·27 | 2. 26. 42·80
2. 26. 29·60
2. 25. 0·50
2. 24. 39·80 | 52·65
52·70
52·80
52·85 | 11. 29. 3·32
11. 37. 43·20
36. 14. 54·58
36. 16. 25·07 | 11. 33. 23·26
36. 15. 39·83 | 12. 21. 8.29 | 0·21392 | | | | | - | | | | | J | | | | | | | | | | | | Year,
Month,
and
Day. | Position of Marked End
of Declination Magnet, | Position of Deflecting
Magnet with respect to
suspended Magnet. | Distance of Centers
of Magnets. | Tem-
pera-
ture. | Mean
tempe-
rature. | Reduced
Circle
Reading. | Micron
Read
of
Declins
Magn
reduce
Arc | ing
ation
net
d to | Scale
Reading
of
Hori-
zontal
Force
Magnet. | Circle R
increas
Micron
Readi
for
Declins
Magr
omittin | ed by
neter
ng,
ation | Numb
pred
Column
the D
Magne
oppos
of the s | n of the
ers in the
ceding
in, when
effecting
et was on
ite sides
suspended
agnet. | Half Difference of Reduced Readings for Reversed Positions of Deflecting Magnet, or Observed Deflexion. | Natural
Sine
of
Deflexion. | Mean of the Times of
Vibration of Deflecting
Magnet, | Number of Vibrations. | Temperature. | |--------------------------------|--|---|------------------------------------|----------------------------------|---------------------------|--|--|-----------------------------
---|---|--------------------------------|---|--|---|-------------------------------------|--|-----------------------|--------------| | 1847.
July 13 | W
W
E
E | N
S
N
S | ft. in. | 84 ·0
84 ·0
84 ·0
84 ·0 | | 16. 54. 11·75
16. 55. 15·42
30. 6. 31·60
30. 1. 59·16 | 2. 25. 4
2. 25. 1
2. 24.
2. 24. | 47·60
17·50
7·70 | 52·75
52·80
52·88
52·78 | 0 /
17. 10.
17. 20.
30. 30.
30. 26. | 59·35
32·92
39·30 | } | ′″
5. 46·14
8. 23·08 | 6. 36. 18.47 | 0·11503 | ************************************** | | 0 | | | W
W
E
E | W
E
W
E | 1. 6 | 85 ·2
85 ·2
84 ·0
84 ·0 | | 27. 9. 49·77
27. 11. 13·73
19. 50. 22·44
19. 52. 57·28 | 2. 21. 4
2. 21. 4
2. 23. 4
2. 22. 4 | 46·40
41·50 | 53·10
53·12
52·75
53·07 | 27. 31.
27. 33.
20. 14.
20. 15. | 0·13
3·94 | } | 2. 24·30
4. 52·51 | 3. 38. 45.90 | 0.06359 | | | | | | E
E
W
W | N
S
N
S | | 85 ·4
85 ·4
84 ·0
85 ·0 | | 25. 23. 20·39
25. 24. 37·78
21. 40. 17·49
21. 38. 18·39 | 2. 21. 4
2. 21. 4
2. 22. 5
2. 22. 5 | 49·30
21·20 | 53·11
53·11
53·08
53·09 | 25. 45.
25. 46.
22. 2.
22. 0. | 27·08
38·69 | | 5. 48·39
1. 35·44 | 1. 52. 6·48 | 0·03261 | | | | | | | Away | | | | 23, 31, 37.69 | 2. 30. | 28·84 | | 24. 2. | 6.53 | | | | | 5.027 | 94 | 85 | | Sep. 30 | | Away | | | | 23, 16, 31.03 | 2. 45. | 15·50 | | 24. 1. | 46.53 | | | | | 5.026 | 70 | 58 | | | E
E
W
W | W
E
W
E | | 59 ·0
59 ·0
60 ·3
60 ·0 | | 10. 50. 38·82
10. 56. 32·79
35. 36. 19·56
35. 41. 31·76 | 2. 43. 4
2. 43. 5
2. 42. 5
2. 42. 5 | 35·80
23·80 | 53·10
53·00
53·00
52·92 | 11. 34.
11. 40.
36. 18.
36. 24. | 8·59
33·36 | Ì | 7. 14·41
1. 20·56 | 12. 22. 3· 08 | 0.21418 | | | | | | W
W
E
E | N S N S | i | 59 ·0
59 ·5
61 ·0
60 ·0 | | 16. 36. 49·04
16. 44. 53·63
29. 55. 8·84
28. 23. 54·63 | 2. 43.
2. 42.
2. 42.
2. 41. | 40·70
29·30 | 53·00
53·00
53·00
52·90 | 17. 19.
17. 27.
30. 37.
29. 5. | 34·33
38·14 | | 3. 42·89
1. 37·34 | 6. 13. 57·23 | 0·10856 | | | | | | W
W
E
E | W
E
W
E | | 60 ·0
60 ·0
60 ·0 | >59 ·8 | 26. 55. 56·51
26. 59. 59·01
19. 35. 12·50
19. 35. 58·79 | 2, 39, 4
2, 39, 4
2, 41, 5
2, 40, 6 | 42·90
35·10 | 53·25
53·15
52·90
53·04 | 27. 35.
27. 39.
20. 16.
20. 16. | 41·91
47·60 | | 7. 32·21
6. 52·75 | 3. 40. 19.73 | 0.06405 | | | | | | E
W
W | N
S
N
S | | 59 ·2
59 ·5
60 ·0
60 ·0 | | 25. 8. 39·95
25. 10. 34·46
21. 23. 8·23
21. 23. 14·90 | 2. 39. 4
2. 39. 4
2. 40. 4
2. 40. | 53·30
59·10 | 53·15
53·02
52·90
53·00 | 25. 48.
25. 50.
22. 4.
22. 3. | 27·76
7·33 | 20.4 | 9. 30·51
3. 41·52 | 1. 52, 54·50 | 0 ·03284 | | | | | | | Away | | | · | 23. 16. 56 [.] 24 | 2. 39. | 34.40 | | 23. 56. | 30.64 | | | | | 5·111 | 106 | 5 8 | | | | | Оре | DDV. | TIONS | OF VIBRATIO | N FOR | THE | ABSOL | UTR M | EASUR | R OF | Horizo | ONTAL FORC | CE. | | | | | | ·- <u>-</u> | | | | | Month and Da | | Mean | of the T
Vibration
lecting M | imes of | Nun
o
Vibrat | ber | Tempera- | 1 | | | | | | | | | | | | March | 25 | 1761 | 5 ·016 | | | 28 | 60° | - | | | | | | | | | | | | April | 12
19 | | 5 ·008 | 3 | ; | 96
02 | 64
53 | | | | | | | | | | | | | June | 2 30 | | 5 ·006
5 ·021 | 3 | | 98
96 | 78
76 | | | | | | | | | | | | | July | 10
29 | | 5 ·034
5 ·016 | ı | 19 | 22
22 | 76
82 | | | | | | | | | | | | | September | 10 | | 5 .012 | } | | 96 | 70 | | | | | | | | - | - 1. | | | | November | 19
24 | | 5 ·000
5 ·000 | 1 | | 71
98 | 40
50 | | | | | | ^{*} This value has not been used in subsequent calculations. The observations were unsatisfactory. ROYAL OBSERVATORY, GREENWICH. # METEOROLOGICAL OBSERVATIONS. 1847. | | | | | | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | ECTRICAL INSTRUMENT | | | | | |------|-----------------------|---------------------|---------------|--------------|-----------------------|---------------|-------------------------------|--|--|---------------|--|------------|--|---|---|----------------------|-----------------------|-----------------------|---| | • | l Hour,
ingen | Baro-
meter | Dry | Wet | Ther- | | Point | read at 22h.
of
Free Therm. | Stand of
No. 1,
(Osler's). | From Anemo | | From Who | | Sign
of | | ading | gs of | 1 | Interva
of time | | | omical | Cor- | Ther-
mom. | Ther- | mom.
below
Dry. | Dew
Point. | below
Dry
Ther-
mom. | of
Rad. Therm.
of Therm. in
Water of the | Reading of
No. 2.
Stand of
No. 3. | Direction. | Pressure
in lbs. per
square
foot. | Direction. | Descent of
the pencil
during the
continu-
ance of
eachWind. | Electricity,
as
shewn
by Dry
Pile Appa- | Single
Gold Leaf
of Dry
Pile Appa-
ratus. | Double
Gold Lenf. | Straws of
Volta 1. | Straws of
Volta 2. | the sam degree of tensio after discharg | | | d h | in. | | 0 | 0 | 0 | 0 | Thames. | in. | | from
lbs. to lbs. | | in. | ratus. | 0 | 9 | div. | div. | m | | Ton | 0. 14 | 30.302 | 27.5 | 26.4 | 1.1 | 22.0 | 5.5 | 35.7 | 0.00 | SE | 109, to 105. | | | Pos. | 30 | | 30 | 35 | 5. (| | лац. | 16
18 | 30·258
30·240 | 28·0
27·0 | 26.5 | 1.2 | 20·0
22·0 | 8.0 | $\int \frac{1\cdot8}{41\cdot8}$ | 0.00 | SE
NE | | SSE | 0.24 | Pos. Pos. | 10
10 | • • | 10
8 | 12
10 | 4.
7. | | | 20
22 | 30·222
30·227 | 26·7
28·6 | 25.7 | 1.0 | 20·0
23·0 | 6.7 | 17.0 | 0.000 | NNE
NNE | | NE | 0.20 | Pos. | 20
25 | • • | 20
20 | 25
22 | 7.
20. | | Jan. | | | 30.5 | | | | | 33.0 | | NNE | | •• | | | | 0 | 0 | 0 | | | | 2 | 30.147 | 32.0 | 30.4 | 1.6 | •• | •• | (34.6) | • • | NE
NE | | •• | •• | Pos. | 40 | •• | 50 | 50 | ••• | | | 4
6 | ••• | | :: | ••• | • • | | 28.0 | 0.00 | NE | | | | •• | | •• | | | ••• | | | 8
10 | •• | | | •• | •• | •• | 42.5 | | NE
ENE | | •• | | •• | :: | • • | • • | | | | | 12 | •• | | • • • | | •• | •• | 23.5 | 0.00 | E | | | | •• | •• | • • | • • | • • | | | | 14
16 | •• | •• | •• | •• | •• | •• | | 0.000 | E
E | | • • | | •• | | • • | | :: | | | | 18 | | | | | | | 33.0 | | ENE | | • • • | | | | | ••• | • • | | | | 20 ⁻
22 | 29.900 | 32·7 | | •• | 29·5 | 3.2 | •• | | ENE
ENE | 0 to 1½ | ENE | 1.56 | •• | | | 0 | 0 | ••• | | an. | 2. 0 | 29.844 | 33.0 | | | •• | | | •• | ENE
ENE | •• | •• | | Pos.
Pos. | 2
2 | •• | | | | | | 2
4 | 29.790 | 33.4 | | | | | (33.7) | | E | •• | | | | | • • | | | | | | 6 | •• | •• | | •• | | | 26.0 | 0.00 | SSE
SE | ••• | •• | •• | •• | •• | •• | | ••• | •• | | | 8
10 | • | | | | | |] [] | 0.00 | ESE | •• | | | • | •• | •• | | | | | | 12 | •• | • • | | | •• | •• | 20.0 | 0.00 | SSE
SE | •• | •• | | | •• | •• | • • | ••• | • • | | | 14
16 | | | :: | •• | | | 33.5 | 0.010 | E by S | :: | .: | | | | | •• | | | | | 18 | •• | •• | | | | | [33.0] | | Ĕ | | | •• | ••• | | •• | • • | • • | •• | | | 20
22 | 29 [.] 613 | 30·4 | •• | | •• | | •• | •• | E
E | $\begin{array}{c cccc} 0 & to & \frac{1}{2} \\ 0 & to & \frac{1}{2} \end{array}$ | E | 4.80 | •• | •• | | 0 | 0 | | | an. | | •• | | | | | | •• | •• | E by N
ENE | 0 to 1
0 to 1½ | •• | ••• | •• | | •• | •• | • • | | | | 2
4 | 29.567 | 34.4 | | | | | (40.0) | | ENE | | | | Pos. | ••• | •• | 30 | 40 | | | | 6 | •• | ••• | •• | •• | •• | •• | 30.6 | 0.05 | E
E | •• | E | 1.20 | •• | •• | •• | • • | • • | •• | | | 8
10 | | | | | | | | 0.00 | ${f E}$ | | | | | | •• | | | | | | 12 | | • • | | •• | | | 25·2 | 0.08 | E | | •• | | | | •• | •• | •• | | | | 14
16 | •• | | | | | | 34.0 | 0.110 | E by S
ESE | :: | :: | | | • • | • • | | | | | | 18 | | | | | | | 33.0 | | SE | | •• | | ••• | •• | • • | • • | • • | | | | 20
22 | 29.704 | 39·7 | :: | | 39.0 | 0.7 | •• | | SSE
S | •• | SSE | 2.20 | •• | •• | 0 | Ö | 0 | | | an. | | 29·702
29·670 | | 39·1
39·8 | 0·4
0·2 | •• | | $\left[egin{array}{c} 43\cdot 1 \ 37\cdot 9 \end{array} ight]$ | 0.07 | S by E
SSE | •• | | :: | Pos.
Pos. | 10
10 | 20
20 | 5
5 | | | | | 4 | 29 070 | 400 | 09.6 | | | | | | SSE | | | | | | •• | •• | •• | | | | 6
8 | •• | •• | •• | •• | •• | •• | 35.3 | 0.02 | SE
SSE | •• | | :: | •• | | •• | • • | •• | :: | | | 10 | | • | | | | | 35.0 | 0.155 | SSE | | | | | :: | | | | :: | | | 12 | | | | | | | 33·5 | •• | SSE | | | | •• | •• | •• | •• | • • | ∥ … | The day referred to in the foot-notes is always to be understood as that of Civil Reckoning, unless the time of the observation be mentioned, and then it is referred to Astronomical Reckoning. Jan. 1^d. Every part of each instrument was examined, and found to be in good order. During the month of January a few observations only were taken daily. Wet Thermometer.—Jan. 1d. 22h. The instrument was
found broken. DRY AND WET THERMOMETERS.—Jan. 4d. 0h. From this time a pair of thermometers whose readings were identical when under the same circumstances, the property of Mr. Glaisher, were used. | Amount of Clouds,
0-10. | Phases | | | |----------------------------|-----------|---|-----| | 57 | of | REMARKS. | - 1 | | ount | the | KEMAKS. | ł | | V P | Moon. | | | | | | | | | 10
10 | •• | Overcast: cirro-stratus and fleecy clouds. | | | 5 | :: | Cirro-stratus and fleecy clouds: there are extensive breaks near the N.W. | | | 10 | | Overcast: cirro-stratus and fleecy clouds. | | | 10 | •• | ,, cirro-stratus and scud. | | | | •• | Overcast: slight snow falling; it commenced at about 1 ^h . 30 ^m , at which time the electricity was strongly positive. | | | | Full | Overcast. singlet show failing; it commenced at about 1:50, at which time the electroity was strongly positive. | | | | | | ļ | | . | •• | | | | : | • • | | | | | Transit | | į | | . | •• | | | | • | •• | | | | o | • • | Overcast: cirro-stratus and scud. | | | 0 | | Overcast: cirro-stratus and scud. | | | 0 | •• | 99 | | | \cdot | • • | | | | : | • • | | İ | | . | •• | | Í | | • | Thomasi 4 | | 1 | | | Transit | | | | . | ••• | | - 1 | | | • • | | | | 5 | • • | Cirri, cirro-strati, and scud in various directions. | | | . | •• | | | | 9 | • • | Cirro-stratus and scud: there has been a gradual increase in the amount of the clouds since the last observation. | | | . | • • | At 5 ^h . 30 ^m sleet began to fall, which changed to snow at about 6 ^h . 30 ^m : the day throughout was gloomy. | | | . | •• | | | | | •• | | | | | Transit | | | | | •• | | | | | •• | | | | o | • | Overcast: cirro-stratus and scud. | | |) | | Overcast: cirro-stratus and scud. | | |) | | 22 | | | ٠ | •• | | | | | : | | | | | | · | | | . | | | 1 | MAXIMUM THERMOMETER USED IN DETERMINING THE TEMPERATURE OF THE WATER OF THE THAMES. January 1^d. The instrument was in the hands of the maker for repair. Strength of Wind by Estimation.—In the general remarks, by the expression "wind in gusts to 1½," as on January 23^d at 22^h, is meant that the pressure of the wind by estimation sometimes amounted to 1 and 1½, although its general value for that time was less. The strength of the wind is estimated by considering a calm to be represented by 0, and a hurricane by 6; and the pressure in lbs. per square foot will be nearly measured by the square of the numbers thus given. A similar expression occurs frequently in the general remarks, and is always to be interpreted in the same way. remarks, and is always to be interpreted in the same way. Maximum Radiation Thermometer.—January 2. The instrument was sent to the maker to be repaired. Electricity.—January 3^d. 4^h. There was a spark at the distance of 0ⁱⁿ-03. | | 1 | 1 | 1 | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICA | L IN | STR | UME | NTS. | |-------------------------|--|---------|-------|-----------------------|--------------|----------------|---|----------------------------------|------------------|--|---|---|----------------------------|---|----------------------|-----------------------|-----------------------|--| | Dayand Hou
Göttingen | Baro
mete | _ | Wet | Ther- | | Point
below | of Free Therm. | Stand of
No. 1.
(Osler's). | From (| | From Whe | | Sign
of
Electricity, | Re | ading | s of | | Interve
of time
recover | | Astronomic
Reckoning | ll . | Ther | Ther- | mom.
below
Dry. | Dew
Point | Dry | of Rad. Therm. of Therm. in Water of the Thames. | Stand of No. 3. (Crosley's). | Direction. | Pressure
in lbs. per
square
foot. | Direction. | Descent of
the pencil
during the
continu-
ance of
each Wind. | as
chown | Single
Gold Leaf
of Dry
Pile Appa-
ratus. | Double
Gold Leaf. | Straws of
Volta 1. | Straws of
Volta 2. | the same degree of tensing after discharge | | d | h in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | | from
lbs. to lbs. | | in. | | 0 | 0 | div. | div. | m | | an. 4. 1 | 11 | | | | • • | | •• | ••• | 8 | •• | •• | •• | •• | | ••• | ••• | ••• | | | | 6 | 1 | ∥ … | ••• | •• | • | •• | | S by E | | | | | | | :: | | | | | 8 | | | | | | | | S by E | | | | | | | | | | | | 2 29.6 | 11 | 11 | 0.9 | 41.5 | 1.2 | •• | •• | Š | •• | SSE | 3.43 | •• | •• | 0 | 0 | 0 | •• | | an. 5. | 0 29.6 | | 11 | ī | | | •• | | S by E | •• | | | <u>.</u> . | | 0 | 0 | 0 | • • | | | 2 29.6 | 31 46 | 44.1 | 1.9 | • • | | (40.1) | ••• | S by E
S by E | •• | •• | | Pos. | 2 | | ••• | ••• | | | | 4
6 | | | | •• | | $\begin{pmatrix} 46.1 \\ 35.8 \end{pmatrix}$ | | SSE | | | | | | 1:: | | | | | | 8 | | | :: | | | | 0.10 | SSE | | | | •• | | | | | | | 1 | 0 | | 1 | | | | J L | 0.00 | SSE | | ••• | | •• | •• | | • • | | ∥ •• | | | 2 | | | ••• | | •• | 30.0 | | SSE | | •• | •• | •• | ••• | ••• | • • | ••• | | | | 4 | •• | | ••• | ••• | •• | 35.8 | 0.180 | SSE
SE | •• | :: | :: | •• | ••• | :: | | | 1: | | | 6
8 | | | | | | 34.8 | | Calm | | | | | | | | | : | | | 0 | | | | | | | | Calm | | •• | | | | •• | | | | | | 2 29.7 | 38·4 | 38.4 | 0.1 | 38.0 | 0.2 | •• | •• | Calm | •• | SE | 1.62 | Pos. | 2 | • • | ••• | •• | | | | 0 29.8 | | 11 | | | | •• | | Calm | | •• | | Pos. | 2
2 | | | • • | | | | 2 29.9 | 00 42.9 | 42.0 | | •• | 1 | (42.3) | •• | Calm
Calm | •• | • | | Pos. | _ | | | | : | | | 4
6 | | | | | | 37.9 | | Calm | | | | ••• | •• | | | | : | | | 8 | | | | | | | 0.10 | Calm | | | | | | | | | | | 1 | o | 1 | | | •• | • • | J L | 0.00 | Calm | •• | ٠. | •• | •• | •• | • • | | ••• | | | 1 | 14 | 1 | ••• | •• | •• | • • | 35.5 | | Calm
Calm | •• | •• | •• | •• | . •• | | | | | | | 4
6 | | | •• | | | 35.8 | 0.195 | Calm | :: | :: | | | | | | | ∥ : | | | 8 | | | | | | 34.8 | | Calm | | | | | | • • | | | ∥ . | | | 0 | | | | ••• | | •• | | Calm | •• | COF | ::- | | •• | 1 | | | • | | 2 | 2 29.9 | 40. | 40.0 | 0.0 | 40.0 | 0.0 | •• |) ••) | Colm | | SSE | 0.55 | •• | •• | 0 | 0 | 0 | | | - | 0 29·9
2 29·9 | - 11 | | 1 | •• | •• | •• | ••• | Calm
Calm | | •• | | Pos. |
40 | | 50
30 | 70
40 | 4. | | | $egin{array}{c c} 29.9 \ 4 & \ldots \end{array}$ | 19 42 | 41.0 | 0.2 | | | (42.1) | | Calm | , | | | | | | | ••• | : | | | 6 | 1 | | | | | 36.8 | 0.10 | Calm | •• | •• | | | •• | | | | ▮ . | | | 8 | | | •• | •• | •• | | | Calm | •• | • | •• | •• | •• | ••• | ••• | ••• | | | | 0 | •• | | ••• | ••• | •• | $\left\{\begin{array}{c} \cdot \cdot \cdot \\ 34 \cdot 0 \end{array}\right\}$ | 0.00 | SSE
SSE | •• | | | •• | :: | | | | | | 1
1 | | | | | | | | | SSE | | | | | | | | | : | | | 6 | | 1 | | | | 38.2 | 0.200 | S by E | | | | •• | | | | | | | 1 | 8 | | | •• | | •• | 35.5 | •• | S by E | | •• | •• | •• | •• | ••• | • • | •• | | | . 2 | | 37.0 | 36·5 | 0.5 | 36.0 | 1.0 | •• | | EŠE
SE | 0 to 2 0 to $1\frac{1}{2}$ | ESE | 2.40 | | | | | | : | | an. 8. | | 37.3 | ll . | 0.6 | | | | | SE | | | | Pos. | 10 | | 10 | | | | | | 0 37. | | | | | 33.4 | 0.10 | SE | | •• | •• | Pos. | 5 | | 5 | | 30. | | | 4 | | | | | • • | | 0 10 | E by S | •• | •• | •• | •• | • • | • • | •• | | | | | 6 | | | •• | •• | • • | $\left\{\begin{array}{c} \\ 31.3 \end{array}\right\}$ | 0.00 | E by S | •• | •• | •• | :- | • • | :: | | | | | 1 | 8 | | | | | •• | 01.9 | 0.000 | E by S | | | | •• | | | | | 1: | | 1 | | | | | | | 39.0 | 0.200 | E by S | | •• | •• | | •• | | | | | | 1 | 4 | | | | | | 36.5 | | ESE | | | | | •• | | • • | | ∥ . | Electricity. January 7^d . 0^h . There was a spark at the distance of $0^{in} \cdot 03$. | 3, 1 | Phases | | 1 | |-------|------------
--|-----| | 0-10. | of | | | | [] | the | REMARKS. | | | | Moon. | | | | | MOOH. | | | | | | | | | . | | | | | • | Transit | | - } | | . | •• | | | | io | | Overcast: cirro-stratus and scud. | (| | 0 | | Overcast: cirro-stratus: there is a break towards the S.: rain has been falling since the last observation. | | | 0 | :: | ,, cirro-stratus and scud. | | | | | y y Carro distribution and the control of contr | 1 | | • | •• | | | | . | •• (| | - 1 | | | | | - 1 | | . | | | Ì | | . | Transit | | | | • | •• { | | | | 0 | •• | Overcast: cirro-stratus and scud. | - (| | - | •• | | 1 | | 0 | | Overcast: cirro-stratus and scud: foggy. | , | | 0 | •• | 11 | | | | Anoree | | | | | Apogee | | | | . | | | | | . | | | 1 | | • | Transit | | | | | 1 | | | | | :: | | 1 | | 0 | •• | Overcast: cirro-stratus and scud. | 1 | | 0 | | Overcast: cirro-stratus and scud: a thin misty rain is falling. | 1. | | 0 | | ,, cirro-stratus: a thin misty rain is falling. | - 1 | | • | In Equator | | 1 | | • | •• | | - 1 | | : | | | 1 | | | | | 1 | | • | | | | | • | Transit | | | | | Transit | | | | 0 | •• | Overcast: cirro-stratus and scud. | | | 0 | | Overcast: cirro-stratus and scud. | 1 | | | |),), | | | . | | | | | • | •• | | | | : | •• | | | | . | •• | | | | . | Wet | | Dew | Max. and Min. | GAUGES. | | WIN | D. | | ELE | CTRICAL | NTS. | | | | |---|------------------|----------------------|--------------|-----------------------|------|-------------------------------|--|---|----------------|--|---|--|--|---|-------|-----------------------|-----------------------|---| | Day and Hour, | i) | D | Wet | Ther- | | Point | read at 22h.
of
Free Therm. | Stand of
No. 1.
(Osler's). | From (| | From Who | | Sign
of | Re | ading | s of | | Interval
of time in | | Göttingen Astronomical Reckoning. | Cor-
rected. | Dry
Ther-
mom. | Ther- | mom.
below
Dry. | | below
Dry
Ther-
mom. | of Rad. Therm. of Therm. in Water of the Thames. | Reading of No. 2. Stand of No. 3. (Crosley's). | Direction. | Pressure
in lbs. per
square
foot. | Direction. | Descent of
the pencil
during the
continu-
ance of
eachWind. | electricity, as shewn by Dry Pile Appa- ratus. | Single
Gold Leaf
of Dry
Pile Appa-
ratus. | 음크 | Straws of
Volta 1. | Straws of
Volta 2. | recovering
the same
degree
of tension
after
discharge. | | d h | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | | from
lbs. to lbs. | | in. | | 0 | 0 | div. | div. | m 5 | | Jan. 8. 16 | •• | •• | | •• | •• | •• | •• | •• | E by S
ESE | •• | •• | •• | •• | •• | | | | •• | | 18
20 | | | | | | | | | E | ••• | • | | ••• | | |] | | •• | | 22 | 30.214 | 35.0 | 34.0 | 1.0 | 31.0 | 4.0 | •• | •• | E by S | •• | E | 3.22 | •• | •• | •• | ••• | ••• | •• | | Jan. 9. 0 | 30.223 | | | | | | | | SE | •• | | | | | 0 | 0 | 0 | | | 2
4 | 30.210 | | 33.3 | 0.9 | •• | •• | (36.4) | | E
E | •• | E | 1.20 | Pos. | 2 | ••• | | | | | 6 | | | | •• | :: | | 27.3 | 0.10 | ESE | •• | | | | | | | | | | 8 | 30.238 | 31.9 | 31.0 | 0.9 | ••• | •• | | | SE
SSE | | •• | | Pos. | 5 | •• | 10 | 10 | 10. 0 | | 10
12 | •• | | | | | | 16.0 | 0.00 | SSE | •• | | | | | | | :: | | | 14 | •• | | | •• | | •• | | 0.200 | SSE | | | | •• | | • • | | • • | •• | | 16
18 | | | | •• | •• | | $\begin{bmatrix} 39.0 \\ 37.2 \end{bmatrix}$ | | SE
ESE | • | | | •• | | | | | | | 20 | | | | • • | | | | | ESE | •• | | •• | | | | | | | | 22 | 30.200 | 31.4 | 30.2 | 0.9 | •• | •• | ・・ | ・・ | SSE | •• | ESE | 1.13 | Pos. | 5 | •• | 10 | 10 | 20. 0 | | Jan. 10. 0 | | | | | | | | | ESE | | •• | | | | | | | | | 2 | 20:120 | 30.9 | 20.9 | 0.7 | •• | •• | (32·1) | •• | SSE
SE | •• | • • | •• | Pos. | 5 | • • | 12 | 10 | •• | | 4
6 | 30·139
30·125 | | 30·2
29·8 | 0.2 | | | 24.0 | 0.10 | SSE | • • | | 1 :: | Pos. | 5 | | 12 | 10 | | | 8 | | | | | | •• | | 0.10 | SE | •• | •• | | •• | • • | •• | • • | ••• | | | 10
12 | | ••• | | | :: | | 14.0 | 0.00 | SSE
SSE | • • | | | •• | • • • | | | | | | 14 | •• | | | | | | | 0.200 | SSE | | | | •• | •• | • • | | | •• | | 16
18 | •• | •• | •• | •• | •• | •• | 38·5
37·0 | | SSE
ESE | • • | • • | :: | ••• | | ••• | | :: | | | 20 | | | | | | | | | ESE | •• | | | | | | | | | | 22 | 30.067 | 28.5 | 28.5 | 0.0 | 25.5 | 3.0 | •• | •• | ESE | •• | ESE | 1.22 | •• | •• | 0 | 0 | 0 | ∥ … | | Jan. 11. 0 | 30.041 | | | 1.9 | | | | | Calm | •• | | •• | Pos. | 35 | 35 | 30 | 40 | ∥ | | 2
4 | 30.018 | | 32.0 | 1.2 | •• | •• | (35.2) | •• | Calm
Calm | •• | •• | •• | Pos. | 8 | •• | 15 | 10 | | | 6 | | | | | | | 26.0 | 0.10 | Calm | •• | | | | | | | | | | 8 | 29.976 | 27.2 | 1 1 | 1.2 | •• | •• | | | Calm | •• | •• | | Pos. | 2 | ••• | ••• | ••• | •• | | $\begin{array}{c} 10 \\ 12 \end{array}$ | •• | | | | | | 19.6 | 0.00 | Calm
Calm | • • | | | | | | | | | | 14 | | •• | | •• | | | | 0.205 | Calm | | | | •• | | • • | • • | | ∥ | | 16
18 | •• | ••• | •• | •• | | | 37·8
36·5 | 1 | Calm
Calm | •• | | :: | •• | | | | \:: | | | 20 | | | | | | • | | •• | Calm | •• | | | | | | | | | | 22 | 29.928 | 27.0 | 27.0 | 0.0 | 24.8 | 2.2 | •• | •• | Calm | •• | E | 1.10 | Pos. | 12 | • • | 20 | 25 | 20. 0 | | Jan. 12. 0 | 29.906 | | | 2.0 | | | (39.7) | | SE | | •• | | Pos. | 2 | •• | | | | | 2 | 29.871 | 1 [| 1 } | 2.5 | •• | •• | 30.8 | 0.10 | E by S
Calm | •• | •• | •• | Pos. | 10 | ••• | 15 | 1 | | | 4
6 | | | | : | | | | | Calm | | | :: | •• | | :: | | | | | 8 | 29.805 | | 31.4 | 0.1 | | •• | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 0.01 | Calm | | •• | | Pos. | 2 | | | | ∥ … | | 10
12 | ••• | •• | •• | •• | •• | ••• | | 0.225 | Calm
Calm | | | | ••• | | | | | | | 14 | | :: | :: | | | | $\begin{bmatrix} 37.0 \\ 36.2 \end{bmatrix}$ | | Calm | • | | | | | | | | | | 16 | •• | • • | | •• | | | (00 2) | | Calm | ••• | | •• | •• | •• | •• | | • • | | | Amount of Clouds, | Phases
of
the
Moon. | REMARKS. | | | |-------------------|------------------------------|---|---|---| | |
Transit | | | | | 10 | • • | Overcast: cirro-stratus. | | 7 | | 10 | • • | Overcast: cirro-stratus. | | | | 10 | •• | •••••••••••••••••••••••••••••••••••••• | • | | | 0 | 3rd Qr. | ************************************** | | | | | •• | | | | | | •• | | | | | • | Transit | | | | | 0 | •• | ,, cirro-stratus and scud: there are small breaks in every direction. | | | | $\cdot \mid$ | •• | | | | | 0 | •• | Overcast: cirro-stratus and scud: with the exception of a few breaks in the clo | ouds, the sky has been overcast since 22 ^h . | , | | 9 | •• | 33 | | | | | •• | | | | | . | •• | | | | | | Transit | | • | | | 0 | ·· | Cloudless. | | 1 | | 0 | | Cloudless. | | | | | •• | •• | | | | | •• | ,, before 9 ^h . 40 ^m the sky became nearly overcast. | | 1 | | | •• | | | | | | | | | | | | Transit | | | | | | | Cirro-stratus and vapour around the horizon: there is a slight fog in the Park. | | 1 | | | | Cloudless. | | 1 | | | |) | | 1 | | , | :: | ,, | | | | | :: | | | | | | | | | | | | | | | 1 | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELEC | CTRICAL | INS | STRU | JMEI | NTS. |
|---------------|---------|-------|-------|-------|--------|------------|-------------------------|------------------------|--------------|-----------------------|------------|--------------------------|--------------|----------------------|----------------------|------------|-------------|----------| | Day and Hour, | Baro- | | | Ther- | | Point | read at 22h. | Stand of
No. 1. | From C | | From Whe | | Sign | Rea | ading | s of | | Interval | | Göttingen | meter | Dry | Wet | | | below | Free Therm. | (Osler's). | Anemo | me ter. | Anemom | | Electricity, | G:1- | | | | recoveri | | Astronomical | Cor- | Ther- | Ther- | mom. | Dew | Dry | of
Rad. Therm. | Reading of
No. 2. | | Pressure | | Descent of
the pencil | as
shewn | Single
Gold Leaf | eg e | ٠.
ت | of
2. | the san | | Reckoning. | rected. | mom. | mom. | below | Point. | Ther- | of Therm. in | Stand of | Direction. | in lbs. per
square | Direction. | during the | hv Drv | of Dry
Pile Appa- | d b | aws
lts | aws
olta | of tensi | | teckoning. | recteu. | шош. | mom. | Dry. | | mom. | Water of the
Thames. | No. 3.
(Crosley's). | Direction. | foot. | Direction. | ance of eachWind. | ratus. | ratus. | Double
Gold Leaf. | Str | Str | dischar | | d b | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | | from
lbs. to lbs. | | in, | | 0 | 0 | div. | div. | m | | Jan. 12. 18 | | | | | | 1 | | | Calm | • • | | | | •• | • • | | • • | •• | | 20 | | | | | | | | • • | Calm | •• | _::_ | •• | | • • | • • • | •• | • • | • • • | | 22 | 29.772 | 33·5 | 33.2 | 0.0 | 33.0 | 0.2 | •• | ••• | Calm | •• | ENE | 1.32 | •• | •• | 0 | 0 | 0 | •• | | Jan. 13. 0 | 29.876 | 38.2 | 38.1 | 0.1 | | l l | | | SE | | | | Pos. | 2 | | | | | | 2 | 29.767 | | | | | | | | Calm | •• | | | Pos. | 15 | | 20 | 25 | 15. | | 4 | | | | | | | (40.6) | | Calm | •• | | | | • • • | •• | • • | • • | | | 6 | | | | | | | 28.0 | 0.10 | Calm | •• | ∥ | | •• | •• | | •• | | ••• | | 8 | 29.819 | 35.2 | 35.1 | 0.1 | | | | 0 10 | Calm | •• | ∥ ~ | • • • | • • | ••• | 0 | 0 | 0 | •• | | ' 10 | ∥ | | | ••• | •• | | J L | 0.00 | Calm | •• | | ••• | •• | | | | | ••• | | 12 | ∥ | | • • | •• | •• | • • | 19.0 | | Calm | •• | | •• | ••• | •• | •• | | ••• | ••• | | 14 | | ••• | | • • | •• | $ \cdots $ | | 0.225 | Calm | •• | •• | •• | ••• | •• | ••• | | | | | 16 | •• | ••• | ••• | •• | •• | •• | 37.0 | | Calm | •• | • • • | •• | •• | ••• | ••• | | :: | | | 18 | •• | ••• | •• | • • | •• | •• | [36.0] | ••• | Calm
Calm | •• | •• | | ••• | | | | | | | 20 | 29.912 | 20.0 | 29.5 | 0.2 | 26.0 | 0.7 | •• | •• | Calm | •• | SSE | 0.29 | Pos. | 2 | | | | | | 22 | 29.912 | 29.7 | 29.9 | 0.2 | 20.0 | 3.7 | •• | •• | Calm | •• | BBL | 0 20 | I Us. | _ | ` | | | | | Jan. 14. 0 | 29.907 | 36.9 | 35.2 | 1.7 | | | | | Calm | •• | | | Pos. | 8 | ••• | 20 | 20 | • • • | | 2 | 29.910 | 40.8 | 38.9 | 1.9 | | | •• | •• | Calm | •• | ∥ | | Pos. | 25 | | 30 | 30 | ••• | | 4 | | •• | •• | | • • | | (42.6) | | Calm | •• | | •• | • • | ~·• | •• | • | | | | 6 | | | •• | ••• | •• | | 26.0 | 0.10 | Calm | •• | ⊪ •• | •• | | • • • | | 12 | 10 | 7. | | 8 | 29.947 | 32.2 | 31.5 | 1.0 | •• | • • | | | Calm | •• | ∥ •• | •• | Pos. | 5 | ••• | | 10 | 1 | | 10 | •• | ••• | •• | ••• | •• | ••• | \ .:. \ | 0.00 | Calm | •• | ∥ | •• | ••• | ••• | | | | • | | 12 | •• | •• | ••• | •• | •• | • • | 14.7 | | Calm
Calm | •• | ∦ | 1 | •• | ••• | | | | | | 14
16 | • • | •• | ••• | | •• | • • | 36.5 | 0.230 | Calm | •• | | •• | ••• | | :: | | | | | 18 | •• | ••• | •• | | | | 35.5 | 1 | Calm | •• | :: | | | | | l | | | | 20 | • • | ••• | | | :: | •• | (000) | ••• | Calm | • • | | | | | | | | | | 22 | 29.956 | 30.0 | - 1 | 0.0 | 28.0 | 2.0 | | | Calm | | ESE | 0.69 | Pos. | 2 | | ٠. | | | | Jan. 15. 0 | 29.947 | 35.5 | 33.9 | 1.6 | | | | | Calm | | | | Pos. | 8 | | 20 | 20 | 5. | | 2 2 | 29.928 | 38.0 | 11 | 1.2 | ••• | | •• | •• | Calm | | ∥ ∷ | | Pos. | 10 | | 10 | 10 | | | 4 | | •. | • • • | | | | (39.8) | | Calm | | | | | | | | ., | | | 6 | | | | | :: | : | 27.7 | {} | Calm | | | | | . . | | | | | | 8 | 29.915 | 32.0 | 11 | , , | | | | 0.10 | Calm | | | | Pos. | 30 | | 30 | 40 | • • | | 10 | | | | | | l | | 0.00 | Calm | •• | ∥ | | • • | •• | | | • • | | | 12 | • • | | | | | | 22.2 | 0.00 | Calm | •• | | ••• | •• | •• | ••• | ••• | ••• | ••• | | 14 | • • | • • | | | •• | | | 0.235 | Calm | •• | | | •• | •• | ••• | ••• | | | | 16 | • • | •• | •• | • • | | • • | 36.0 | | Calm | •• | | •• | •• | •• | •• | | | ∥ … | | 18 | • • • | •• | •• | •• | •• | • • | (34 ⋅8) | •• | Calm | •• | ∦ •• | •• | ••• | • • • | ••• | | 1 | • • • | | 20 | 20.024 | 90.7 | 90.5 | | 20.7 | | •• | •• | Calm | •• | ESE | 0.98 | •• | ••• | 0 | 0 | o | | | 22 | 29.924 | 30.5 | 30.2 | 0.0 | 30.5 | 0.0 | •• | •• | Calm | •• | ESE | - 0.88 | •• | ••• | " | " | | | | Jan. 16. 0 | 29.931 | | | | | | •• | •• | E by S | •• | | | Pos. | 2 | | | • • | ∥ … | | 2 | 29.921 | 34.0 | 33.2 | 0.2 | | | | •• | ENE | •• | | •• | Pos. | 2 | • • | • • | | ••• | | 4 | •• | ••• | •• | •• | • • | •• | 35.6 | •• | ENE | •• | | | •• | •• | | | | | | 6 | | | 20.0 | | ••• | ••• | 27.2 | 0.10 | ENE | •• | | •• | •• | •• | 0 | 0 | 0 | | | 8 | 29.972 | 29.5 | 29.0 | 0.2 | •• | •• | | | ENE | ••• | | •• | •• | •• | l | | 1. | | | | •• | ••• | •• | | •• | • • | 3000 | 0.00 | ENE | •• | | | •• | •• | | | | :: | | 10 | 15 | •• | • • | •• | •• | $ \cdots $ | 23.8 | | NE
ENE | •• | 1 | • | • • | | | | | | | 12 | ••• | 1 | 11 | | | | | n 1 | 1 151N.E3 | 1 | | | | ,, | | | | 11 | | 12
14 | | •• | •• | • • | ••• | | 35.0 | 0.245 | | 1 | | ! | 1 | l | ١ | ١ | | | | 12 | •• | ••• | •• | •• | ••• | | 35·8
34·0 | 0.245 | NE
NNE | | | | | •• | | :: | | | Barometer. January $13^d.0^h$. The reading had increased $0^{in}\cdot 104$ since the previous observation. ELECTRICITY. January 15^d . 0^h . There was a spark at the distance of $0^{i\alpha}\cdot 02$. | Amount of Clouds,
0—10. | Phases
of
the | | | | | | | | R E | MA | RK S | 3. | | | | | | | | | |----------------------------|---------------------|------------|---------------------|---|--|-----------------------|----------------------|--------------|-----------|-------------------|-----------------|-------------------------|-------------------|-------------|--------|-------|--------|---------|---------|-------| | Amou | Moon. | | *. | | | 2 | - | | | | | | | | | | | | ٠. | | | | | ÿ | | *************************************** | · | | | | · | | | | | | | | | | | - - | | ••• | • • | 7 | | | | | | | | | | | | . , | | | | | | | | 10 | Transit | Overcas | st : cir | ro-str | atus ar | d broke | n scud: | dur | ing the r | night se | me fr | ozen rain | fell. | • • | | | | | | | | 10 | | Overcas | | | | | : | | 1 | | | * | | | | | | | | | | 10. | | The clo | uds ar | e now | slight | ly broke | n in sev | eral (| direction | ıs. | | | | • | | | , | | | | | | •• | | | . • | | • | | | | | | | | | : " | * 1 | 4 4 | | • | | | 10 | | The sky | is cov | vered | with c | irro-stra | tus and | thir | send. t | hrongl | whic | h Juniter | is vis | sible : | a th | in ha | ze pre | vails : | the sky | | | | | h | as beer | n unif | ormly | covered | since 5 ^h | | . souu, t | | | h Jupiter | | | | | ac pro | | the sky | | | | • • • | | | e - e | · · · | | | * | | | | | | | | | | ٠. | | | | •• | •• | | | · • | | · • | | ٠. | | | | | | | ٠. | • | ٠. | | | | | | : 1 | en es | | * 1 | | | • | | | | | | - | | | | • • | • | | | | | | | | | | | - | | | | | | | | | | | | | | | 0 | Transit | Cloudle | ss. | | | | | | | | | | | | | | | | | | | 0 | | Cloudle | ee | | 1 | • | • | | | | | * * | • | • | | | | | | 1 | | 0 | | Cioudio | 30. | | | | | | | | | | • | | | | . , | | | 1 | | ••• | • • * • . | | | * : | | | | ÷ | | | | | | | | | | | • | 1 | | 1 | Greatest decli- | Cinno at | motus e | ond w | | mound t | ho howin | on • | hogy: 1 | ho ekv | has h | oon conor | ally cl | ondle | ed ein | co 9h | - ; | • • | | | | . 1 | nation S. | A dense | ratus a
e fog fo | anu vi
ormed | apour a
Lat this | irouna i
s time, a | nd conti | ou :
nuec | l through | ne sky
h the g | nas o
reater | een gener
part of tl | any or
ie nigl | ouuic
1t | es sim | | • | | | 1 | | . | | 12 00120 | | 2 1 | | , 011110, 1 | | | | | | P | | , | | , | | | | | | ••• | ••• | | | s • | 3 5 | | | | | | | | | | | | • | | | 1 | | | | | | • " | | | | | | • | * | | | • | | * | | | | - | | | | · · | | 1 * | . ' | | | | | | | , | | • * | | | | | | | | 0 | | Cloudle | SS. | | | | | | | | | | | | | | | | | | | 0 | Transit | Cloudle | 20 | | 0.5 | ~ | | | | | • : | • | ٠, | • • | | | | | | 1, | | 0 | Tansit | Cioudie | 55. | | | | 7 | | | | | * * | | | | | | | | - ' | | | | , , , , | | | 4 . | , , | * 4 | | | | | | | . * | | | | | | | | | 0. | •• | , ,,, | | | • | - 1 | > | | | | | • • | | | * | • • | | * 1 | | 1 | | | | | | • | | | | | | | | | • • | | | | | | | | | • | | | | c • | 2 1 | • • | | | | | | | | | | ~ | • • | | | | | • | ••• | , | | s + | | | | | | | | | | - | • | ٠. | | | | | | | | | | • | * | | • | * | | | | • • | • | • | | | • | | | | | 10 | | A dense | | • | | | | | | | - | . • | | | | | | | | | | 10 | Transit | Overcas | t ciri | ro-str |
atus an | d send | , | | | | | | | 5.4 | | | | | | | | 10 | | The sky | is cov | ered | with a | thin clo | ud, of th | ie cii | ro-strati | as char | acter, | slightly b | roken | in se | everal | direc | tions. | • : | | | | • . | •• | | | | • • | 8 | | | | | | | • | ٠. | | | • | • | | | | io | •• | Overcas | t oim | ro_etm | atue | | | * | | | | | | t· • | | | | | | | | • | •• | O V CT CAS | t. CHI | LJU-SUJ | awa, | | | | | | | * * | 4 . | • • | , | | | | | | | • | | | | | | * * | , | | | | | | | | | | | 2 6 | | | | • - | New | | | . • | • • | | | - | | | | | | | | . • | ¥ | • • | | | | | | | | • • | | | 7
| • | | | | | | | t. | | . , | • • | | | | | ••• | | | : | | , | | | | | . • | | , | - | | • | | , , | | | | | | | | | ······································ | | | | | | | | , | | | | | | | | | | | | | | | | | | | , | l | | | Wet | | Dar | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICA | L IN | STR | UME | NTS. | |--|---------------------|--------------|--------------|---------------|--------|---------------|-------------------------------------|------------------------------------|----------------|--|------------|--|---|---|----------------------|----------|-----------|---| | Day and Hour, | Baro- | C | 387 | Ther- | | Dew
Point | read at 22h. | Stand of
No. 1. | From C | | From Whe | | Sign
of | Res | ading | s of | | Interval
of time in | | Göttingen
Astronomical | meter
Cor- | Dry
Ther- | Wet
Ther- | mom. | Dew | below
Dry | Free Therm. | Reading of No. 2. | Alleino | | - Anemolii | Descent of | Electricity,
as | Single | 4 | Jo . | of
2. | recovering
the same | | Reckoning. | rected. | mom. | mom. | below
Dry. | Point. | Ther-
mom. | Rad. Therm. in Water of the Thames. | Stand of
No. 3.
(Crosley's). | Direction. | Pressure
in lbs. per
square
foot. | Direction. | the pencil
during the
continu-
ance of
eachWind. | shewn
by Dry
Pile Appa-
ratus. | Gold Leaf
of Dry
Pile Appa-
ratus. | Double
Gold Leaf. | Straws o | Straws o | degree
of tension
after
discharge. | | d h | in. | 0 | 0 | 0 | • | 0 | 0 | in. | | from
lbs. to lbs. | | in. | | 0 | ٥ | div. | div. | m 8 | | Jan. 16. 20
22 | 30 ·02 0 | 28.8 | 28.5 | 0.3 | •• | •• | •• | •• | NE
NE | •• | ŇĚ | 2.12 | •• | •• | •• | , 0 | 0 | • • | | Jan. 17. 0 | •• | | | | | | •• | | E by N
ENE | •• | •• | | •• | •• | • • | •• | | | | 2
4 | 29·999 | 29.3 | 29·2 | 0.1 | •• | :: | (29.4) | :: | ENE | | | | | | 0 | 0 | 0 | | | 6 | | | ••• | •• | | | 28.3 | 0.10 | ENE | | •• | | •• | | | • • | | | | 8 | •• | . • • | ••• | •• | | - | | | ENE | • • • | •• | •• | •• | •• | •• | •• | • • • | •• | | 10
12 | •• | ••• | ••• | ••• | •• | • • | 24.7 | 0.00 | SSE | | | | | | :: | | | | | 14 | •• | | | :: | | | | 0.245 | SSE | | | | | | •• | | | | | 16 | | •• | • • • | | | | 35.0 | 0 240 | SSE | •• | •• | •• | •• | •• | •• | • • | • • | •• | | 18 | •• | •• | ••• | ••• | •• | • • | [33·5] | ••• | SSE | •• | •• | •• | •• | •• | •• | | | •• | | $egin{array}{c} 20 \\ 22 \\ \end{array}$ | 29:990 | 28.4 | 28.0 | 0.4 | 24.0 | 4.4 | •• | | ENE | •• | Ë | 1.20 | Pos. | 10 | • • | 10 | 5 | •• | | Jan. 18. 0 | 30·002
29·983 | 29·0
31·5 | 28·9
31·5 | | •• | | | | E by S
Calm | | | | Pos.
Pos. | 2
2 | | | | | | 4 | 2000 | | | | | :: | (32.6) | | Calm | ••• | | | | | • • | | | | | 6 | | • • | • • | •• | • • | | 28.0 | 0.10 | Calm | •• | ••• | | •• | •• | • • | •• | | •• | | 8
10 | •• | ••• | •• | •• | •• | • • | | | Calm
Calm | ٠٠ ا | •• | • • • | •• | ••• | | | • • | • • • | | 10
12 | ••• | | | •• | • • | | 24.9 | 0.00 | Calm | | .: | | | | | | | • • • | | 14 | | | | •• | | | | 0.245 | Calm | •• | | | •• | | • • | ••• | . • • • | ••• | | 16 | ••, | •• | •• | • • | • • | •• | 34.8 | 0 240 | Calm | •• | ••• | •• | •• | •• | • • | | ••• | •• | | 18
20 | • • | | •• | •• | ••• | • • | 33.5 |] ::] | Calm
Calm | | :: | :: | | | • • | | | | | 22 | 30.053 | 31.1 | 31.0 | 0.1 | 26.5 | 4.6 | •• | | Calm | •• | E | 0.71 | Pos. | 10 | 30 | 10 | 15 | •• | | Jan. 19. 0 | 30·040
30·014 | | 32·0
32·1 | 0·0
0·1 | •• | | •• | | Calm
Calm | •• | •• | | Pos. | 15
40 | 45
95 | 15
40 | 20
50 | 5. 0 | | 4 | 30 014 | | 02 1 | | | :: | (33.3) | | Calm | • • | | :: | 105. | | ••• | | | | | 6 | | | | | | | 28.5 | 0.10 | Calm | •• | | | | | | | | | | 8 | 29.988 | 31.9 | 31.8 | 0.1 | •• | •• | | | Calm | •• | •• | •• | Pos. | 25 | •• | 30 | 40 | 5 . 0 | | 10
12 | •• | • | | •• | | :: | 19.5 | 0.00 | Calm
Calm | • • | • • • | :: | •• | | • • | | | | | 14 | | | | | | | | 0.245 | Calm | | | | | | • • | | | | | 16 | | •• | | | •• | •• | 34.5 | 0 240 | Calm | •• | •• | | •• | | •• | ••• | •• | •• | | 18
20 | •• | • • | •• | • • | •• | •• | [[33⋅5] | • | Calm
Calm | •• | ••• | :: | | • • | •• | :: | • 7 | ••• | | 20
22 | 29 [.] 935 | 27.1 | 27:1 | 0.0 | 25·8 | 1.3 | •• | •• | Calm | •• | N | 0.09 | | ••• | 0 | 0 | 0 | •• | | | 29.933 | | 30.7 | 0.5 | | •• | •• | | Calm
Calm | •• | •• | | Pos.
Pos. | 10
40 | 3 0 | 20 | 30
100 | 5. 0 | | 2
4 | 29.901 | 33.0 | 32.0 | 1.0 | •• | : | (35.4.) | | Calm | • • | | | ros. | 4.0 | • • | 30 | 100 | 3. 0 | | 6 | | | | | | | 28.6 | 0.13 | Calm | | | | | | •• | | | | | | 29.881 | 31.8 | 31.2 | 0.3 | | | | | SSW | •• | ••• | | Pos. | 20 | •• | 20 | 25 | 5. 0 | | 10
12 | •• | •• | •• | | •• | $ \cdots $ | 19.6 | 0.03 | SSW
S by W | •• | • • • | | :: | ••• | • • | | •• | ••• | | 14 | | | | | | | 190 | 0.000 | SSW | •• | | | | | • • | | | | | 16 | | ••• | | | | | 34.5 | 0.280 | SSW | • • | • • | | | | •• | | | •• | | 18 | ••• | ••• | •• | •• | •• | •• | 〔33·5 〕 | •• | SSW | •• | •• | | ・・ | ••• | •• | •• | ••• | •• | | 20 | 29.808 | 33.5 | 32·5 | 1.0 | 29.0 | 4.5 | | •• | SSW
S | •• | sśw | 0.73 | Pos. | ··· 2 | • • | 3 | 5 | 6. 0 | Minimum Free Thermometer. January 19^d . 22^h . The reading was higher than that of the Dry Thermometer at 22^h . Electricity. January 20^d . There was a spark at the distance of $0^{in}\cdot 02$. RAIN. January 20^d . The increase in the rain-gauges was caused by the melting of snow. | Transit Overcast: cirro-stratus and scud. of Overca | ds, | Phases | | | | , | | | | | | | | | | | | | | | | |--|-----|---------|-----------|--------|---------------|--------------------|--------|-----------|--------------------------|----------|----------|--------|----------|-------------|-------|--------|-------|-------|----------------|----------|---| | Overcast: cirro-stratus and seud. Transit Overcast: cirro-stratus and seud. , , cirro-stratus. Overcast: cirro-stratus and seud: Transit Perige Overcast: cirro-stratus and seud: a light snow beginning to fall. Cirro-strati, soud, and fleecy clouds: at 1 ^h the clouds became broken in many directions, exhibiting large portions of clear sky. Overcast: cirro-stratus and scud. Overcast: cirro-stratus and scud. Transit Transit Overcast: cirro-stratus and scud. | | of | Overcast: cirro-stratus and seud. Transit Overcast: cirro-stratus and seud. Overcast: cirro-stratus. Overcast: cirro-stratus and seud: a light snow beginning to fall. Cirro-strati, seud, and fleecy clouds: at 1 ^h the clouds became broken in many directions, exhibiting large portions of clear sky. Overcast: cirro-stratus and seud. seud seud. Overcast: cirro-stratus and seud. Overcast: cirro-stratus and seud. Overcast: cirro-stratus seud. Overcast: cirro-stratus and seud. | Ĩ | the | 1 | | , | | | | | RE. | MA | RKS | • | | | | | | | | | | Overcast: cirro-stratus and scud. Transit Overcast: cirro-stratus and scud. , cirro-stratus. Overcast: cirro-stratus and scud: a light snow beginning to fall. Cirro-strati, scud, and fleecy clouds: at 1 th the clouds became broken in many directions, exhibiting large portions of clear sky. Overcast: cirro-stratus and scud. Overcast: cirro-stratus and scud. Transit , very dark. Cirro-stratus and scud towards the S. horizon. Cirro-stratus and scud diptic clouds; the Sun is shining
through them. Overcast: cirro-stratus: snow is falling. | | Moon. | Overcast: cirro-stratus and scud. Transit Overcast: cirro-stratus and scud. Overcast: cirro-stratus. Overcast: cirro-stratus and scud: a light snow beginning to fall. Transit Perigee Overcast: cirro-stratus and scud: at 12 the clouds became broken in many directions, exhibiting large portions of clear sky. Overcast: cirro-stratus and scud. Overcast: cirro-stratus and scud. Transit Overcast: cirro-stratus and scud. Overcast: cirro-stratus and scud. Transit Transit Cirro-stratus and scud towards the S. horizon. Cirro-stratus and scud towards the S. horizon and about the zenith. Cirro-stratus and scud towards the S. norizon and about the zenith. Overcast: cirro-stratus: snow is falling. | | | | | 1 4 1 | | | | | | | | | | | | | | | | | | Overcast: cirro-stratus and soud. Transit Overcast: cirro-stratus and soud. Transit Perige Overcast: cirro-stratus and soud: a light snow beginning to fall. Cirro-strati, soud, and fleecy clouds: at 12 the clouds became broken in many directions, exhibiting large portions of clear sky. Overcast: cirro-stratus and soud. Transit Overcast: cirro-stratus and soud. Overcast: cirro-stratus and soud. Transit Transit A bank of cirro-stratus towards the S. horizon. Cirro-stratus and soud towards the S. horizon and about the zenith. Cirro-stratus and light clouds; the Sun is shining through them. Overcast: cirro-stratus snow is falling. | | } | Transit Overcast: cirro-stratus and scud. Overcast: cirro-stratus and scud: a light snow beginning to fall. Cirro-strati, scud, and fleecy clouds: at 12 the clouds became broken in many directions, exhibiting large portions of clear sky. Overcast: cirro-stratus and scud. Overcast: cirro-stratus and scud. Transit A bank of cirro-stratus towards the S. horizon. Cirro-stratus and scud towards the S. horizon and about the zenith. Cirro-stratus and light clouds; the Sun is shining through them. Overcast: cirro-stratus: snow is falling. | | | | | | | | | | | | | 1 - | ٠ . | | | | | | | | | Overcast: cirro-stratus and soud: a light snow beginning to fall. Transit Perige Overcast: cirro-stratus and soud: a light snow beginning to fall. Overcast: cirro-stratis, soud, and fleecy clouds: at 1 ^k the clouds became broken in many directions, exhibiting large portions of clear sky. Overcast: cirro-stratus and soud. Transit Overcast: cirro-stratus and soud. Overcast: cirro-stratus and soud. Overcast: cirro-stratus and soud. Transit A bank of cirro-stratus towards the S. horizon. Cirro-stratus and soud towards the S. horizon and about the zenith. Cirro-stratus and light clouds; the Sun is shining through them. Overcast: cirro-stratus: snow is falling. | 0. | • • • | Overcas | st: c | irro-st | tratus | and | scud. | | | | | | 2 - | ; + | | | | | | 1 | | Overcast: cirro-stratus and soud: a light snow beginning to fall. Transit Perige Overcast: cirro-stratus and soud: a light snow beginning to fall. Overcast: cirro-stratis, soud, and fleecy clouds: at 1 ^k the clouds became broken in many directions, exhibiting large portions of clear sky. Overcast: cirro-stratus and soud. Transit Overcast: cirro-stratus and soud. Overcast: cirro-stratus and soud. Overcast: cirro-stratus and soud. Transit A bank of cirro-stratus towards the S. horizon. Cirro-stratus and soud towards the S. horizon and about the zenith. Cirro-stratus and light clouds; the Sun is shining through them. Overcast: cirro-stratus: snow is falling. | | | | | ; = | | | | y * | | | s | | | | · 8 | , | 1 4 | · | | | | Overcast: cirro-stratus and seud. Overcast: cirro-stratus. Overcast: cirro-stratus and scud: a light snow beginning to fall. Cirro-strati, scud, and fleecy clouds: at 1º the clouds became broken in many directions, exhibiting large portions of clear sky. Overcast: cirro-stratus and scud. Transit A bank of cirro-stratus towards the S. horizon. Cirro-stratus and scud towards the S. horizon and about the zenith. Cirro-stratus and light clouds; the Sun is shining through them. Overcast: cirro-stratus: snow is falling. | | Transit | | ş | | | | * * | * * | | | | | ٠. | | * * | t | 7 | * | | 1 | | Overcast: cirro-stratus and scud: a light snow beginning to fall. Cirro-strati, scud, and fleecy clouds: at 1 th the clouds became broken in many directions, exhibiting large portions of clear sky. Overcast: cirro-stratus and scud. Overcast: cirro-stratus and scud. ''' ''' A bank of cirro-stratus towards the S. horizon. Cirro-stratus and scud towards the S. horizon and about the zenith. Cirro-stratus and ight clouds; the Sun is shining through them. Overcast: cirro-stratus: snow is falling. | | 1 | Overcas | st: c | irro-st | tratus | and | scud. | | | | | | | | | | | | * | | | Overcast: cirro-stratus and scud: a light snow beginning to fall. Cirro-strati, soud, and fleecy clouds: at 1 ^k the clouds became broken in many directions, exhibiting large portions of clear sky. Overcast: cirro-stratus and scud. Overcast: cirro-stratus and scud. ''' ''' A bank of cirro-stratus towards the S. horizon. Cirro-stratus and scud towards the S. horizon and about the zenith. Cirro-stratus and scud towards the S. horizon them. Overcast: cirro-stratus: snow is falling. ''' In Equator ''' In Equator | • . | ì | Overcast: cirro-stratus and scud: a light snow beginning to fall. Cirro-strati, scud, and fleecy clouds: at 1 the clouds became broken in many directions, exhibiting large portions of clear sky. Overcast: cirro-stratus and scud. Overcast: cirro-stratus and scud. Transit Transit A bank of cirro-stratus towards the S. horizon. Cirro-stratus and light clouds: the Sun is shining through them. Overcast: cirro-stratus: snow is falling. | | •• | | | | | | v | | | | | | £ | 5 | | | | . : | | | | Overcast: cirro-stratus and scud; a light snow beginning to fall. Cirro-strati, scud, and fleecy clouds: at 1 th the clouds became broken in many directions, exhibiting large portions of clear sky. Overcast: cirro-stratus and scud. Overcast: cirro-stratus and scud. Transit Transit A bank of cirro-stratus towards the S. horizon. Cirro-stratus and sight clouds; the Sun is shining through them. Overcast: cirro-stratus: snow is falling. | • . | | | | \$ 1 | | . ; | 4.5 | | | | 14 | | | | | | | 3 . | | 1 | | Overcast: cirro-stratus and scud: a light snow beginning to fall. Cirro-strati, scud, and fleecy clouds: at 1 th the clouds became broken in many directions, exhibiting large portions of clear sky. Overcast: cirro-stratus and scud. Overcast: cirro-stratus and scud. Transit A bank of cirro-stratus towards the S. horizon. Cirro-stratus and scud towards the S. horizon and about the zenith. Cirro-stratus and light clouds; the Sun is shining through them. Overcast: cirro-stratus: snow is falling. | | | | • | | | | | × * | | | | | | | | | | 5 - | | | | , , cirro-stratus. Overcast: cirro-stratus and seud: a light snow beginning to fall. Cirro-strati, soud, and fleecy clouds: at 1 ^h the clouds became broken in many directions, exhibiting large portions of clear sky. Overcast: cirro-stratus and scud. Transit A bank of cirro-stratus towards the S. horizon. Cirro-stratus and scud towards the S. horizon and about the zenith, Cirro-stratu and light clouds; the Sun is shining through them. Overcast: cirro-stratus: snow is falling. | - 1 | | , | | | . : | | | - | | | | , . | | | | 5 | | | | 1 | | Overcast: cirro-stratus and scud: a light snow beginning to fall. Cirro-strati, scud, and fleecy clouds: at 1 th the clouds became broken in many directions, exhibiting large portions of clear sky. Overcast: cirro-stratus and scud. Transit A bank of cirro-stratus towards the S. horizon. Cirro-stratus and scud towards the S. horizon and about the zenith. Cirro-stratia and light clouds; the Sun is shining through them. Overcast: cirro-stratus: snow is falling. | | •• | | | | | | | | | | | | | | | | | | | 1 | | Overcast: cirro-stratus and scud: a light snow beginning to fall. Cirro-strati, scud, and fleecy clouds: at 1 th the clouds became broken in many directions, exhibiting large portions of clear sky. Overcast: cirro-stratus and scud. Overcast: cirro-stratus and scud. Transit A bank of cirro-stratus towards the S. horizon. Cirro-stratus and scud towards the S. horizon and about the zenith. Cirro-stratus and light clouds; the Sun is shining through them. Overcast: cirro-stratus: snow is falling. | | • • | | | - | | | | | | | | | :*. | | | | | | | 1 | | Overcast: cirro-stratus and scud. Overcast: cirro-stratus and scud. Transit A bank of cirro-stratus towards the S. horizon. Cirro-stratus and scud towards the S. horizon and about the zenith. Cirro-stratia and light clouds; the Sun is shining through them. Overcast: cirro-stratus: snow is falling. | 0 | • • | ,, | ci | irro-st | ratus. | • | | | | | • | * 4 | | | | | | | | | | Overcast: cirro-stratus and scud. Overcast: cirro-stratus and scud. Transit A bank of cirro-stratus towards the S. horizon. Cirro-stratus and scud towards the S. horizon and about the zenith. Cirro-stratus and light clouds; the Sun is shining through them. Overcast: cirro-stratus: snow is falling. | n l | | Overcas | it c | irro_g | tratus | and | send · a | light snow | heginnir | nor to f | all. | | | 2 | ٤. | | ¥ - | 4 . | | - | | Overcast: cirro-stratus and scud. Overcast: cirro-stratus and scud. '''' '''' A bank of cirro-stratus towards the S. horizon. Cirro-stratus and scud towards the S. horizon and about the zenith. Cirro-stratu and light clouds; the Sun is shining through them. Overcast: cirro-stratus: snow is falling. '''' In Equator | 8 | Transit | Cirro-st | rati, | scud, | , and | fleec | y clouds | s: at 1 ^h the | clouds | becar | ne bro | ken in : | many | direc | tions, | exhib | iting | large | portions | | | Overcast: cirro-stratus and scud. Overcast: cirro-stratus and scud. Transit A bank of cirro-stratus towards the S. horizon.
Cirro-stratus and scud towards the S. horizon and about the zenith. Cirro-stratus and light clouds; the Sun is shining through them. Overcast: cirro-stratus: snow is falling. | - 1 | | . 0. | OIOU. | a ony. | | | , , | 9 | | | | | | | | | | | | 1 | | Overcast: cirro-stratus and scud. Overcast: cirro-stratus and scud. Transit A bank of cirro-stratus towards the S. horizon. Cirro-stratus and scud towards the S. horizon and about the zenith. Cirro-stratia and light clouds; the Sun is shining through them. Overcast: cirro-stratus: snow is falling. | . | • • | | | | | | | | | | | | | | * 2 | | | | | | | Overcast: cirro-stratus and scud. Overcast: cirro-stratus and scud. Transit A bank of cirro-stratus towards the S. horizon. Cirro-stratus and scud towards the S. horizon and about the zenith. Cirro-strati and light clouds; the Sun is shining through them. Overcast: cirro-stratus: snow is falling. | . | • • | | , | • | , | | ¥ | | | | | | | | * | 4 | · • | 5 4 | | 1 | | Overcast: cirro-stratus and scud. Overcast: cirro-stratus and scud. ''' ''' A bank of cirro-stratus towards the S. horizon. Cirro-stratus and scud towards the S. horizon and about the zenith. Cirro-stratus and light clouds; the Sun is shining through them. Overcast: cirro-stratus: snow is falling. ''' In Equator | ٠ | • | | | | | | | | - | | | | | | | | | | | | | Overcast: cirro-stratus and scud. Transit A bank of cirro-stratus towards the S. horizon. Cirro-stratus and scud towards the S. horizon and about the zenith. Cirro-strati and light clouds; the Sun is shining through them. Overcast: cirro-stratus: snow is falling. | | | | | * | | | | | | | | | | . * | | | | 3 | | - | | Overcast: cirro-stratus and scud. Overcast: cirro-stratus and scud. ''''''''''''''''''''''''''''''''''' | - 1 | | | ٠ | | | | | | | | * | | | | | | | | | 1 | | Overcast: cirro-stratus and scud. Transit A bank of cirro-stratus towards the S. horizon. Cirro-stratus and scud towards the S. horizon and about the zenith. Cirro-strati and light clouds; the Sun is shining through them. Overcast: cirro-stratus: snow is falling. | | •• | | | | | | • | • | | | | | . 1 | | | | | | | | | Transit A bank of cirro-stratus towards the S. horizon. Cirro-stratus and scud towards the S. horizon and about the zenith. Cirro-strati and light clouds; the Sun is shining through them. Overcast: cirro-stratus: snow is falling. |) | • • | Overcas | t: ci | irro-st | ratus | and s | scud. | | | | | | | | | | | | | 1 | | Transit A bank of cirro-stratus towards the S. horizon. Cirro-stratus and scud towards the S. horizon and about the zenith. Cirro-strati and light clouds; the Sun is shining through them. Overcast: cirro-stratus: snow is falling. | | | Overens | i ai | irro at | rotna | and s | hend | | | | | | ٠. | | 100 | | | | | 1 | | Transit , , , , , , very dark. A bank of cirro-stratus towards the S. horizon. Cirro-stratus and scud towards the S. horizon and about the zenith. Cirro-strati and light clouds; the Sun is shining through them. Overcast: cirro-stratus: snow is falling. In Equator In Equator | | | | · · · | 1110-50 | | ana | ouu. | | | | | | | | | | | | | | | A bank of cirro-stratus towards the S. horizon. Cirro-stratus and scud towards the S. horizon and about the zenith. Cirro-strati and light clouds; the Sun is shining through them. Overcast: cirro-stratus: snow is falling. | | Transit | | | | | | | | | | | | | 4 8 | | | | , , | | | | A bank of cirro-stratus towards the S. horizon. Cirro-stratus and scud towards the S. horizon and about the zenith. Cirro-strati and light clouds; the Sun is shining through them. Overcast: cirro-stratus: snow is falling. | | •• | , | , | i . | | | 2.7 | 1 11 | | | | | | | * | , | | | | | | A bank of cirro-stratus towards the S. horizon. Cirro-stratus and scud towards the S. horizon and about the zenith. Cirro-strati and light clouds; the Sun is shining through them. Overcast: cirro-stratus: snow is falling. | - 1 | •• | . , , | | | > > , | | . ve | ry dark. | | | | | | | , | | , | • • | | | | A bank of cirro-stratus towards the S. horizon. Cirro-stratus and scud towards the S. horizon and about the zenith. Cirro-strati and light clouds; the Sun is shining through them. Overcast: cirro-stratus: snow is falling. | - 1 | 1 | • | | | , | | • | 4 - + | | | | | | | | | * | | | | | A bank of cirro-stratus towards the S. horizon. Cirro-stratus and scud towards the S. horizon and about the zenith. Cirro-strati and light clouds; the Sun is shining through them. Overcast: cirro-stratus: snow is falling. | | | | | | , | | * * | | | | | | | | | | | | | | | A bank of cirro-stratus towards the S. horizon. Cirro-stratus and scud towards the S. horizon and about the zenith. Cirro-strati and light clouds; the Sun is shining through them. Overcast: cirro-stratus: snow is falling. | | | | • | | | . 1 | | | | | | | ٠. | | | | | | | | | A bank of cirro-stratus towards the S. horizon. Cirro-stratus and scud towards the S. horizon and about the zenith. Cirro-strati and light clouds; the Sun is shining through them. Overcast: cirro-stratus: snow is falling. | Cirro-stratus and scud towards the S. horizon and about the zenith. Cirro-strati and light clouds; the Sun is shining through them. Overcast: cirro-stratus: snow is falling. | | 1 | A honk | of ai | inno at | notne | tower | rde the | S horizon | | | . t | | | | | , | | | | | | In Equator | 1 | ••• | | | | | | | | | | | 2. 1 | | | | * 4 | | | | | | In Equator | | | Cirro-sti | ratus | and s | cud t | toward | ds the S | . horizon an | d about | the z | enith. | | | | | • • | , * | | | 1 | | In Equator | 3 | | Cirro-str | rati a | and lig | sht cl | ouds; | the Su | n is shining | through | h then | 1. | | | | | | | | | | | In Equator | - 1 | ł | Overcast | t : ci | irro-st | ratus | : sno | w is fall | ing. | | | | | | ~ | ٠ | | 2 . | | | | | In Equator | | 1 | | | | | | | , | | | | | | | | | | | | 1 | | | | | . ** | | . ,,,, | | | | f .v | | | | • | 3 | | • | ٠ | , | , | | | | | T | | | • | • • | | | | | | | | | | • | | | , | ٠ | | | | | 1 | ł | , | | . . | | | | 1 | | | | | | | | | * | | | 1 | | | - } | •• | | | | | | | | | | | | , | | | | | | | | | ,, ,, snow has fallen to the depth of half an inch. | ł | 1 | * - | | > . | | | | | | | . > | * • | | | | | | | | | | | | j | • • | | | | sno | w has fa | allen to the | depth of | half a | n inch |
l• | • | | | | | | | | | , - | • | - | | | | | | | • | | | | | • | Wet | | Dew | Max, and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICAL | _ IN | STRI | UME | NTS. | |----------------------------|------------------|-------|-------|-----------------------|------|----------------|---|---|------------------|---|------------|---|--|---|----------------------|-----------------------|-----------------------|---| | Day and Hour,
Göttingen | Baro-
meter | Dry | Wet | Ther- | | Point
below | read at 22h. of Free Therm. | Stand of
No. 1.
(Osler's). | From (| | From Who | | Sign
of | Rea | ding | s of | | Interval
of time in | | Astronomical Reckoning. | cor- | Ther- | Ther- | mom.
below
Dry. | | Dry | of Rad. Therm. of Therm. in Water of the Thames. | Reading of No. 2. Stand of No. 3. (Crosley s). | Direction. | Pressure
in lbs. per
square
foot. | Direction. | Descent of
the pencil
during the
continu-
ance of
each Wind. | Electricity, as shewn by Dry Pile Appa- ratus. | Single
Gold Leaf
of Dry
Pile Appa-
ratus. | Double
Gold Leaf. | Straws of
Volta 1. | Straws of
Volta 2. | recovering
the same
degree
of tension
after
discharge. | | đ h | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | | from | | in. | | 0 | 0 | div. | div. | m s | | Jan. 21. 0 | | 35.5 | 11 | 1.7 | | | •• | | Calm
Calm | •• | •• | | Pos. | 10
30 | • • | 20
20 | 25
20 | 15. 0
8. 0 | | 2
4 | [] | 33.0 | 32.8 | 0.2 | | .: | (3 7 ·8) | | Calm | | , , , | | 1 05. | 30 | | | | 3 | | 6 | | | ∥ | | | | 32.8 | 0.18 | Calm | | | | ·.· | | •• | •• | | ••• | | 8
10 | 13 | i! | ll . | 1 , | | • • | | | Calm
Calm | •• | • • | •• | Pos. | 2 | • • | :: | | ••• | | 10
12 | | | | | | | 29.5 | 0.34 | SSW | | • • | | | | | | | | | 14 | | | | | | | | 0.685 | S | | •• | | •• | | •• | •• | •• | •• | | 16
18 | | ••• | ••• | ••• | | •• | 34·5
33·8 | | SSE
SSE | •• | •• | •• | ••• | •• | ••• | :: | ••• | ••• | | 20 | | | | | | | (33.6) | | SSE | | :: | :: | | 1 :: | | | | | | 22 | 13 | | 34.0 | 1 | 34.0 | l | •• | •• | SSE | •• | S | 0.17 | Pos. | 2 | | | | ••• | | Jan. 22. 0 | 11 | 11 | 35.0 | 0.0 | | | • • | •• | Calm
Calm | | | | Pos.
Pos. | 10
10 |
80 | 50
30 | 80
40 | 1.30
5.0 | | 4 | 11 | | 30 0 | -0.0 | | | (36.5) | | Calm | | | | | | | | | | | 6 | 11 | | | ••• | | | 32.8 | 0.18 | Calm | · | ••• | | <u>.</u> | | • • | | •• | | | 8
10 | 15 | 35.0 | 35.0 | 0.0 | •• | • • | | | Calm
Calm | •• | •• | | Pos. | 2 | ••• | •• | ••• | | | 12 | | | | • • • | .: | | ₹ 27.5 | 0.00 | Calm | ••• | :: | | | | | | | | | 14 | ∥ | •• | •• | | •• | | | 0.695 | Calm | | •• | | •• | ••• | | | ••• | ••• | | 16
18 | 11 | •• | •• | •• | •• | •• | 34·8
34·0 | | Calm
ESE | •• | •• | ••
| •• | •• | ••• | •• | •• | | | 20 | 1 | | | :: | | | | | ESE | | | :: | | | | | | • • • | | 22 | 29.560 | 33.2 | 33.4 | | 32.0 | | •• | | S by E | | S | 1.13 | •• | •• | 0 | 0 | 0 | | | Jan. 23. 0 | 11 | 36·1 | 36.0 | | •• | | •• | | S by E | •• | | | Pos. | 10 | 10 | 8 | | ••• | | 2
4 | 29.521 | 38.0 | 38.0 | 0.0 | •• | •• |
(43·9 ┐ | | S by E | •• | •• | •• | •• | • • | 0 | 0 | 0 | | | 6 | | | | • • | | | 32.8 | 0.10 | S by W | | | | | | | | | | | 8 | 29.564 | 40.0 | 39.5 | 0.2 | •• | | | 0.18 | S by W | | • • | | Pos. | 2 | • • | • • | •• | | | 10
12 | •• | •• | •• | •• | •• | •• | $\begin{vmatrix} & \ddots & \\ \mathbf{31 \cdot 3} & \end{vmatrix}$ | 0.03 | S by W
S by W | •• | •• | ••• | •• | •• | | | | | | 14 | | | | •• | | •• | | 0.710 | S by W | | | :: | | | | | | | | 16 | ••• | •• | •• | | | •• | 35.5 | 0.710 | S by W | | •• | | •• | | •• | •• | | | | 18 | •• | •• | •• | •• | •• | •• | [34.0] | •• | S by W | 0 to 1 | •• | •• | •• | •• | • • | ••• | :: | | | 20
22 | 29.303 | 43.4 | 42.0 | 1.4 | :: | ••• | •• | | S | $\begin{array}{c c} 0 & \text{to} & \frac{1}{2} \\ 0 & \text{to} & 2 \end{array}$ | s s | 4.94 | •• | | 0 | 0 | | | | Jan. 24. 0 | | | | | | | | | S by W | 1 to 5 | •• | | | | | | | | | 2 | | | | •• | •• | •• | •• | ••• | S | 1 to 5 | S | 1.30 | •• | •• | • • | • • | • • | •• | | 4
5 | 29.175 | 48·0 | 46·3 | 1.7 | ••• | •• | (52.7) | •• | SSW
WSW | 1 to 3 0 to 3 | •• | | | • • • | . 0 | 0 | 0 | • | | | 20 170 | 40 0 | 400 | - 1 | | •• | 39.2 | 0.28 | | | •• | '' | | | | | | | | 6 | 11 1 | •• | •• | •• | •• | •• | | | SW
SSW | 0 to 1 | sw | 9:40 | •• | ••• | | ••• | •• | ••• | | 8
10 | | •• | •• | | | | 33.7 | 0.07 | S by W | 0 to 1 | SW | 3.40 | | | | | | | | 12 | | | | | | | | 0.890 | S | | | | | | •• | | | ••• | | 14 | 29.238 | | 41.2 | 3.4 | 20.0 | 5.0 | 37.0 | [[| S | 1 to 4 | •• | | Pos. | 2 | | | | | | 16
18 | 29·190
29·184 | | | 2·0
1·8 | 38.0 | 5.0 | (34.5) | :: | S
S | 2 to 6
1 to 5 | • • | :: | ••• | | 0 | 0 | 0 | | | 20 | 29.217 | 41.5 | 39.7 | 1.8 | | | | | S by E | 1 to 3 | •• | | | | o | 0 | 0 | | | 22 | 29.213 | | | 2.2 | 34.2 | 6.0 | •• | | S by E | 1 to 3½ | S | 5.15 | Pos. | 3 | •• | 5 | 5 | 15. 0 | ELECTRICITY. January 21^d, at 2^h, and 22^d, at 0^h and 2^h. There were sparks at the distances of 0ⁱⁿ·01, 0ⁱⁿ·03, 0ⁱⁿ·03, and 0ⁱⁿ·03 respectively. DRY THERMOMETER. January 22^d . 2^h . The reading was lower than that of the Wet Thermometer. | epa. | Phases | | |-------------------|---|--| | 9 | of | | | | the | REMARKS. | | Amount of Clouds, | Moon. | | | 10 | | Overcast: cirro-stratus: a few flakes of light snow are falling. | | 10 | | ,, snow has been constantly falling since the last observation. | | ••• | Transit | | | 10 | ••• | ,, rain and sleet falling: a rapid thaw has been going forward during the evening. | | .] | • • | ,, , , i tain and siece faithing. a rapid than has been going for ward during the evening. | | | •• | | | | • • | | | • | •• | | | • | • • | | | 0 | • • | ,, dense cirro-stratus; a thin rain falling: very hazy. | | | •• | 19 COUNTY OF THE PARTY P | | 0 | • • | Overcast: cirro-stratus: a dense fog. | | . [| •• | ,, ,, the electricity has been very active during the morning. | | . [| m · · | | | | Transit | | | 0 | •• | ere gg (v r. 1996) ere ere 29 0 ere ere ere ere ere ere ere ere ere er | | | •• | | | | • | | | . | ••• | | | | •• | | | | •• | | | σ | •• | ,, cirro-stratus and scud. | | σ | | Overcast: cirro-stratus and scud. | | ŏ | | 33 | | . | 1st Qr. | | | . 1 | Transit | to the state of th | | 0 | | ,, cirro-stratus and scud, through which the Moon is visible. | | • | •• | | | | | | | | | and the control of | | . | | | | | •• | | | 0 | ••• | ,, dense cirro-stratus: a thick misty rain is falling: the wind is blowing in gusts to 1½. | | 1 | | | | | • | | | | :: | | | 9 | •• | Cirro-stratus and broken scud in the W. and S.W.: along the horizon, extending from the N. N.W. to S.W., there is a long line of blue sky, within which the Sun is visible: rain fell heavily from 0 ^h to 4 ^h . | | | Transit | | | | | | | | | | | 7 | | Cirro-strati and masses of loose scud in every direction: the wind is blowing in gusts to 3. | | 0 | | Overcast: cirro-stratus and scud: the wind is blowing in gusts to 4, | | 0 | | the wind is blowing in gusts to 3. | | 0 | •• | the wind is blowing in occasional gusts to 3\frac{1}{2}: slight rain is falling. | | 7 | •• | Cirro-strati and large masses of slate-coloured scud in rapid motion; gusts of wind to 1½ and 2. | | | | | | Wet | | | Max. and Min. | RAIN
GAUGES. | i | WIN | D. | | ELE | CTRICAL | LIN | STR | UME | NTS. | |----------------------------|------------------|---------------|---------------|------------|--------|--------------|---|------------------------------|------------|--|------------|---|-----------------|-----------------------------------|-----------------------|-----------------------|-----------------------|-------------------------------| | Day and Hour, | Baro- | | | Ther- | | Dew
Point | read at 22h. | Stand of
No. 1. | From (| | From Whe | | Sign
of | Rea | ading | s of | | Interval
of time in | | Göttingen | meter | Dry | Wet | mom. | Dew | below | Free Therm. | (Osler's). Reading of | Anemo | meter. | Anemome | Descent of | Electricity, | Single | | | | recovering | | Astronomical
Reckoning. | Cor-
rected. | Ther-
mom. | Ther-
mom. | below | Point. | Dry
Ther- | Rad. Therm.
of Therm. in
Water of the | No. 2.
Stand of
No. 3. | Direction. | Pressure
in lbs. per
square | Direction. | the pencil
during the
continu-
ance of | shewn
by Dry | Gold Leaf
of Dry
Pile Appa- | Devable
Gold Lenf. | Straws of
Volta 1. | Straws of
Volta 2. | degree
of tension
after | | | | | | Dry. | | mom. | Thames. | (Crosley's). | | foot. | | eachWind. | ratus. | ratus. | Č. | div. | div. | discharge. | | Jan. 25. 0 | in.
29·242 | 43·0 | 40.5 | 。
2·5 | 0 | • | 0 | in. | ssw | from lbs. to lbs. 1½ to 2 | | in. | Pos. | 2 | | | uiv. | m | | Jan. 20. 0 | 29.251 | 45.0 | 1 | 2.3 | 11 | | | | SSW | 1 to 2 | | | Pos. | 2 | [| | | • • • | | 4 | 29.261 | 44.2 | | | 38.0 | | •• | | SSW | $\frac{1}{2}$ to 2 | SW | 3.58 | Pos. | 2 | • • | • • | ••• | ••. | | 6 | 29.279 | i i | | | | •• | (45.2) | •• | SSW | $\frac{1}{2}$ to $2\frac{1}{2}$ | •• | •• | Pos. | 2 | 0 | 0 | 0 | •• | | 8
10 | 29·275
29·239 | | 11 | Ī | | 2.8 | 38.1 | 0.31 | SW
S | •• | • • | | Pos. | | | 5 | 5 | 7. 0 | | | | | | | | |] [| 0.04 | | | | | | | | | | | | 12 | 29.224 | 1 1 | 1) | ì | 11 | • • | 31.5 | | S by E | •• | ssw | 1.42 | Pos. | 2 | 0 | 0 | 0 | • • • | | 14
16 | 29·195
29·193 | 1 1 | 42·0 | Į. | l i | 0.5 | 38.8 | 0.945 | SŠE | | 35 ** | 1.42 | | | ŏ | ő | Õ | | | 18 | 29.204 | 40.0 | () | ł | 11 | | 35.8 | | SSE | | ., | | | | 0 | 0 | Q | | | 20 | 29.247 | | | í | 11 | •• | •• | • • | SSE | •• | •• | •• | Pos. | 15 | 20 | 10 | 15 | 7. 0 | | 22 | 29·301 | 41.2 | 40.5 | 0.7 | 39.8 | 1.4 | | •• | s | •• | sw | 0.70 | Pos. | •• | ••• | 5 | 8 | 12. 0 | | I 00 0 | 90.990 | 47.0 | 44.9 | 0.7 | | | | | sw | | | | Pos. | 5
1
1 | | 8 | 10 | | | Jan. 26. 0 | 29·330
29·354 | 47·0
49·3 | 1 | 2·7
3·6 | | | | | wsw | 0 to $2\frac{1}{2}$ | | :: | Pos. | | | 10 | 10 | 5. 0 | | 4 | 29.347 | | 44.0 | _ | 41.0 | 7.0 | | | ssw | 0 to 1 | sw | 5.75 | Pos. | ••• | | 10 | 15 | 6. 0 | | 6 | 29.287 | 46.0 | 43.0 | 3.0 | | ••• | | | ssw | ½ to 3 | •• | | Pos. | 15 | 20 | 10 | 15 | 10. 0 | | 8 | 29.203 | 44.8 | 43.0 | 1.8 | •• | •• | •• | ・・ | SSW | 2 to 7 | •• | ••• | Pos. | 2 | ••• | ••• | •.•. | ••• | | 8. 15 | 29.164 | | | | •• | | •• | | SSW | $1\frac{1}{2}$ to 5 | | | •• |
••• | | ••• | ••• | | | 8. 30 | 29.188 | •• | •• | ••• | •• | • • | •• | •• | SSW | 2½ to 4 | •• | | •• | •• | 1 | ••• | •• | ••• | | 8. 50 | 29.180 | •• | ••• | •• | •• | ••• | ••• | •• | SSW
SSW | $2\frac{1}{2}$ to 5 $2\frac{1}{2}$ to 5 | •• | | • • | • • • | | | • • | ••• | | - 1 | 29·158
29·151 | 46.6 | 45.0 | 1.6 | 44.0 | 2.6 | (49.4) | | SSW | $\frac{2\frac{1}{2}}{2\frac{1}{2}}$ to $\frac{3}{7}$ | • • | | | | o | 0 | 0 | | | | 29.107 | | 1 | | | | 95-5 | 0.37 | SSW | 2 to 6 | | | | • | | | | | | 12. 0 | 29.107 | 48.0 | 45.6 | 2.4 | | | | 0.31 | SSW | 3 to 7 | wsw | 2.05 | Pos. | 2 | | •• | | • • • | | 12. 30 | 29.113 | •• | •• | •• | •• | | 56.4 | 0.00 | SSW | $2\frac{1}{2}$ to 10 | •• | • • | •• | •• | • • | ••• | •• | •• | | 13. 0 | 29.078 | •• | •• | • • | •• | ••• | 35.5 | | SSW
SSW | 3 to $3\frac{1}{2}$ 3 to 5 | •• | ••• | •• | • • | | • | • | ••• | | 13. 30
14. 0 | 29·070
29·059 | 46.0 | 43.0 | 3.0 | | | 39.8 | 1.095 | SSW | $1\frac{1}{2}$ to 4 | | | | | 0 | 6 | 0 | | | 14. 50 | 29.052 | | | | | | 37.0 | | SSW | 6 to 10 | | | | | | | | | | - 1 | 29.052 | | | | | | | | SW | 4 to 5 | •• | | <u>.</u> | •• | | •• | | ••• | | | 29.074 | | 46.0 | 2.0 | 42.0 | 6.0 | •• | ••• | SW | $3\frac{1}{2}$ to 7 | •• | • • | Pos. | 2 | | •• | • • | •• | | 16. 15 | 29.085 | • • | ••• | •.• | •• | ••• | •• | •• | SW | 4 to $7\frac{1}{2}$ | •• | •• | •• | • • | | • | • • • | •• | | | 29.153 | | | | | •• | | •• | WSW | 6 constant | •• | | Pos. | 2 | | •• | ••• | •• | | | 29·225
29·282 | | | | 35·0 | 9·0 | •• | •• | SW
SSW | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | \dot{sw} | 0.60 | •• | | 0 | 0 | 0. | • • | | Jan. 27. 0 | 1 | | | | | | | | ssw | 0 to 2 | | | Pos. | 2 | | | | | | 2 | 29.282 | 48.2 | 45.1 | 3.1 | | | (49.1) | • • | SSW | 0 to $1\frac{1}{2}$ | | | Pos. | 2 | | | | | | 4 | 29.240 | 48.3 | 45.8 | 2.5 | 45.0 | | 44.4 | 0.41 | SSW | 0 to $1\frac{3}{2}$ | •• | | Pos. | 5 | | 5 | 5 | | | | 29.218 | | | | | ••• | | | SSW | | • • • | | Pos. | 20 | •• | 8 | | 12. 0 | | 8 | 29·188 | 44.2 | 43.0 | 1.2 | ••• | •• | 48·3 36·4 | 0.07 | ssw | 0 to 1 | •• | ••• | Pos. | 30 | | 20 | 20 | 15. 0 | | 10 | 29·14 0 | 46.2 | 45.5 | 0.7 | 45.0 | 1.2 | 41.0 | 1.130 | ssw | 1 to 2 | •• | ••• | Pos. | 2 | ••• | | | •• | | | 29.110 | | | | 1 | • • | [39·0] | | SSW
SSW | 1 to 21/2 1 to 21/2 | | •• | •• | | 0 | 0 | | 1 . | | 14 | 29.036 | 4970 | 47'0 | 2.0 | •• | • • | •• | | JO W | 1 10 23 | •• | ••• | •• | ••• | " | " | | •• | Osler's Anemometer. January 26^d . 16^h . 20^m . A pressure of $11\frac{1}{2}$ lbs. was recorded. MAXIMUM RADIATION THERMOMETER. January 25^d. The instrument was returned from the maker. | Amount of Clouds, | Phases of the Moon. | REMARKS. | | |---|-------------------------|---|-------------| | 1
9
3
2
10
4
10
10
5
10
7 | Transit | Cirro-stratus and scud towards the S.W. horizon: very thin cirro-stratus about the zenith, but to no numerical amount. Cirro-stratus and scud in various direction: the wind is blowing in gusts to 1½. Loose scud and fleecy clouds in various directions: the wind is blowing in gusts to 2. Loose scud towards the N. and W.: the wind is blowing in gusts to 2½. Overcast: cirro-stratus and scud: the wind is blowing in gusts to 1: rain falling. Fleecy clouds, of various densities, are distributed in every direction, but principally to the N.: gusts of wind occasionally to 1: at 10h. 10m the sky became covered by cloud. Cirro-stratus and scud: the aspect of the sky is very wild and stormy: the wind is blowing in gusts to 1½. Overcast: cirro-stratus and masses of dark scud: the wind is blowing in gusts from 1½ to 2. Dense cirro-stratus: since the last observation the wind has lulled. Cirro-stratus all around the horizon to a considerable altitude: those stars situated near the zenith are shining. The sky is covered with cirro-stratus and masses of scud of various densities: a few drops of rain have fallen since the last observation. Cirri, passing into cirro-strati, S. of zenith; fleecy clouds and scud in motion in other directions: an extensive bank | н | | 1½
8
10
10 | | of cirro-stratus around the S. horizon. A few fleecy clouds in different directions. Cirro-strati, fleecy clouds, and scud in every direction; the sky became covered with these clouds at 0 ^h . 40 ^m . Cirro-stratus, extending from the N horizon to the zenith; the remaining portion of the sky is covered with a thin stratus. Overcast: cirro-stratus and scud: the wind is blowing in gusts to 2 and 2½. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | G
H
T | | 8 | Transit | Cirro-stratus and masses of quick-moving scud: a few stars have been occasionally seen: the Moon has been visible at intervals, and rain has fallen occasionally since 8h: the wind is blowing in gusts to 2½ and 3. Cirro-stratus and scud; the latter is of a fleecy texture, and is moving rapidly from the S.W.: the wind is blowing in frequent gusts to 2½: the amount of-cloud is constantly varying. Fleecy clouds passing rapidly from the S.W.: gusts of wind to 2½: a heavy shower of rain fell between 12h. 10m and 12h. 23m: there were frequent gusts of wind at this time to 3. | т | | 4
5
0
0 | •• | Fleecy clouds and cirro-strati: the wind is blowing in frequent gusts to 3 and $3\frac{1}{2}$: light rain is falling: a heavy gust of wind occurred at $15^{\rm h}$. $10^{\rm m}$ to $3\frac{1}{2}$ +. Cirro-strati and large masses of scud are continually passing: frequent gusts of wind to 3. Cloudless: gusts of wind occasionally to $2\frac{1}{2}$. Overcast: thin cirro-stratus. | H
G | | 0 0 0 0 8 | Greatest declination N. | Overcast: cirro-stratus and scud: the wind is blowing in gusts to 1. ,, occasional gusts of wind to 1. ,, occasional drops of rain. Fleecy clouds and cirro-strati in every direction: a low scud is continually passing over the sky: the wind is blowing in gusts to 1: half an hour since the amount of cloud was scarcely 3. | G
H | | 0 0 | Transit | The sky became overcast, with cirro-stratus and scud, soon after the last observation, and still continues so: rain has been falling: frequent gusts of wind to 1½. Overcast: cirro-stratus and scud: the Moon's place is visible: the wind is blowing in gusts to 1. ,, ,, the wind is blowing in gusts to 2: a few drops of rain have fallen since the last observation. | H
G | | | | | | | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICAI | IN | STR | UME | NTS. | |--------------------------|----------|------------------|--------------|--------------|-----------------------|---------------|----------------|--|---|------------------------|---|------------|--|--|---|----------|-----------------------|-----------------------|---| | Day and Hou
Göttingen | - 1 | Baro-
meter | Dry | Wet | Ther- | | Point
below | read at 22h.
of
Free Therm. | Stand of
No. 1.
(Osler's). | From C
Anemo | | From Whe | | Sign
of | | ading | s of | | Interva
of time i | | Astronomic
Reckoning | al | Cor-
rected. | Ther- | Ther- | mom.
below
Dry. | Dew
Point. | Dry | of Rad. Therm. of Therm. in Water of the Thames. | Reading of No. 2. Stand of No. 3. (Crosley's). | Direction. | Pressure
in lbs. per
square
foot. | Direction. | Descent of
the pencil
during the
continu-
ance of
eachWind, | Riectricit y as shewn by Dry Pile Appa- ratus. | Single
Gold Leaf
of Dry
Pile Appa-
ratus. | ابوا | Straws of
Volta 1. | Straws of
Volta 2. | recovering the same degree of tension after discharge | | Jan. 27. 1 | ь
16 | in.
28.973 | o
48·0 | °
46·9 | o
1·1 | o
45·0 | 3·0 | • | in. | ssw | from lbs. to lbs. 2 to 5 | . • | in. | •• | • | 0 | div. | div. | m | | | - 15 | 28·867
28·888 | 48.2 | | 1 . | •• | | | | SSW
SSW | 1 to 4
2 to 7 | •• | | •• | •• | 0 | 0 | 0 | | | | | 28.904 | 42·5
44·8 | 40.0 | | 38.0 | 6 ·8 | ••• | | SSW | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | sw | 10.55 | •• | •• | 0 | 0 | .0 | | | Jan. 28. | 0 | 28.966 | 47.0 | 42.0 | 5.0 | | | •• | | wsw | 5 to 12 | • • • | — | | | 0 | 0 | 0 | | | | 1. | 28.990 | 44.0 | | | | •• | | • • • | $\mathbf{s}\mathbf{w}$ | 1 to
$3\frac{1}{2}$ | • • | | <u></u> . | •• | 0 | 0 | 0 | | | | | | 44.0 | | | 38.0 | 6.0 | (47.1) | | WSW | $1\frac{1}{2}$ to 4 | •• | | Neg. | • • | | •• | | 3. | | | | 29:046 | 41.0 | 11 | 1 | •• | ••• | 35.2 | 0.41 | WSW
WSW | $\frac{1}{2}$ to 2 | •• | •• | ••• | •• | 0 | 0 | 0 | ••• | | | 8 | 29.118 | 38.9 | | | | ••• | $\left \frac{}{52\cdot 3} \right $ | 0.41 | | •• | +-4 | : | _ | •• | 0 | | 0 | | | | | 29.182 | | 35.9 | 1 | 33.0 | 5.0 | 32.3 } | 0.00 | SW | •• | ٠. | ••• | Pos. | 6 | 6 | 6 | | | | | - 1 | 29.199 | 11 | 37.0 | , | ∥ … | ••• | | 1.100 | SSW | | •• | ••• | Pos. | 15 | | 10 | | 2. | | | - 1 | 29·196
29·204 | 38.7 | 37·0 | | 35.0 | 3.0 | 41.5 | 1.130 | S by E | ••• | •• | | •• | •• | 0 | 0 | 0 | • | | | | 29.199 | | 35.2 | | ll . | | 【40·0 】 | •• | S by E
S by E | •• | • • | | • • | •• | 0 | 0 | 0 | •• | | | | 29.205 | 1 | 36.2 | | | | | | S by W | | | | | | ŏ | o | Ŏ | | | | 31 | 29.221 | | 36.0 | | 33.8 | | | | s s | | sw | 6.98 | •• | | ŏ | 0 | 0 | | | Jan. 29. | 0 | 29.250 | 40.0 | 38.0 | 2.0 | | | •• | | wsw | | | | Pos. | 15 | | 10 | 15 | 5. | | | - 11 | 29.242 | 41.0 | 11 | 1 | | • • | •• | ∥ | sw | | •• | | Pos. | 2 | | •• | • • | | | | - 1 | 29.245 | 41.8 | 19 | | 36.0 | 5.8 | (44.5) | ∥ | WSW | | ••• | ••• | Pos. | 15 | | 10 | 15 | 5. | | | 6 | 29.253 | 37.0 | 35.5 | 1.2 | •• | •• | 29.4 | 0.41 | wsw | •• | ••• | | Pos. | 20 | •• | 15 | 20 | 5. | | | 8 | 29.273 | 35.2 | 34.4 | 0.8 | ∥ | | 1 | | wsw | | | | Pos. | 40 | | 30 | 40 | 2. | | . 1 | | 29.281 | | 34.0 | 1 ' | 33.5 | | 56.6 | 0.00 | W by S | | . . | | Pos. | 2 | | | | | | 1 | 12 | 29.303 | 30.2 | 30.0 | 0.2 | | | 20.7 | ļ | W by S | | | | Pos. | 2 | | | | ٠. | | | - 1 | 29.306 | 11 | 30.0 | 3 | ∥ | | 41.2 | 1.165 | SW | | | | Pos. | 2 | | •• | •• | | | | | 29.316 | H | 30.0 | | 28.0 | 2.0 | 39.5 | | wsw | •• | •• | •• | Pos. | 2 | ••• | •• | | | | | | 29.335 | | 30.0 | 1 | •• | • • | (00.0) | | SW | •• | •• | | Pos. | 15 | ••• | 10 | 15 | 7. | | | - 1 | 29·347
29·379 | 30·2 | 30·2
31·7 | | 31.3 | 1.4 | •• | :: | SW
SW | •• | wsw | 1.35 | Pos.
Pos. | .15
23 | 95 | 10
30 | 12
30 | 2. | | Jan. 30. | | | | | | | | •• | | wsw | •• | •• | | Pos. | 40 | | | 150 | 1 | | | 2 | 29.398 | 40.5 | 39.0 | 1.2 | •• | | (40.00 | | wsw | •• | •• | •• | Pos. | 40 | • • | 70 | 100 | 5. | | | | 29.414 | | | | 38.5 | 1.5 | $\left\{ egin{array}{c} 40.9 \\ 31.9 \end{array} \right\}$ | ∥ | W by S | | • • | | | •• | 0 | 0 | 0 | | | | | 29.430 | | | | | •• | 010 | 0.41 | Calm | •• | • • | | Pos. | 20 | 30 | 20 | | 8. | | | | 29.444 | | | | 20.0 | | 45.5 | 0.00 | Calm | •• | •• . | | Pos. | 30 | 1 | 20 | 20 | 4. 8 | | | | 29.446 | | | | 36.0 | 1 | 29.8 | 0.00 | Calm | •• | •• | | Pos. | 40
40 | ••• | 30
30 | | 3.
12. | | | 12
14 | | 37.9 | il . | 1 | ••• | | | 1.165 | Calm
Calm | •• | ••• | • • | | | • • | UU | υ | } | | | 16 | • • | | | | | | 40.5 | 1 109 | Calm | •• | • • | | • • | • • • • | • • | · · | ,, | | | | 18 | | | | | | | 39.0 | :: | Calm | | | | | | | | ., | | | | 20 | | | | | | | • • • | ∥ | NNW | | | | | | | | , , | • • | | | | 29.463 | | 35.9 | | | | •• | | NNW | •• | N | 1.35 | Pos. | 10 | | 10 | 15 | | | Jan. 31. | - 1 | • • | | | | | | | | N | 0 to 1/4 | •• | •• | ••• | | | •• | | ٠. | | | 2 | | ••• | | | | • • | | ∥ | N | | •• | •• | <u>.</u> | • | • • | •• | • • | | | • | | 29.470 | 39.0 | 36.9 | 2.1 | •• | | ••• | ∥ | N
N | •• | •• | ••• | Pos. | 10 , | •• | 10 | 20 | •• | | | 4 | | | | | I I | | | | rs PNJ | | | | | | | | •• | ٠ | Barometer. January 27^d . 18^h . The reading was 0^{in} . 106 less than at the previous observation. MINIMUM FREE THERMOMETER. January 27^d. 22^h. The reading was higher than that of the Dry Thermometer at 20^h. OSLER'S ANEMOMETER. January 27^d. 19^h and 21^h, There was a pressure of 11 lbs, on the square foot recorded at both these times. | uds, | Phases | | | |-------------------|---------|--|----| | S. S. | of | | | | 50 | the | REMARKS. | | | Amount of Clouds, | Moon. | | | | 10 | | Overcast: cirro-stratus and scud: the wind is blowing in gusts to 2: rain commenced falling heavily just before this | G | | 10
9 | • • | observation: negative electricity was strongly shewn for two or three minutes, and then suddenly ceased. Overcast: cirro-stratus and scud: the rain ceased about one hour since: the wind is blowing in gusts to 2. Cirro-stratus and scud: the wind is blowing in gusts to 3: at about 19 ^h a violent squall of wind and rain, during which the mercury in the barometer oscillated. | G | | 8 | •• | Cirro-stratus and scud are scattered in masses over the sky: the wind is blowing in gusts to 2 and 3. | 7 | | 8
10
7 | • • | Cirro-stratus, cumulo-stratus, and masses of scud in every direction: the wind is blowing in gusts to 3+. The sky is covered with cirro-stratus, through which the Sun is visible: at about 1 ^h . 50 ^m a shower of rain fell. Cirro-stratus and scud in various directions: the wind is blowing in gusts to 3. | T | | 0 ² | Transit | A very small amount of thin scud near the S., the rest of the sky being cloudless: the wind is blowing in gusts to 1. A few lines of cirri towards the S., of no numerical amount: fifteen minutes before this observation slightly positive electricity was shewn. | | | 3 | Transit | Cloudless. Fleecy clouds near the place of the Moon, and towards the S. and W. horizon. | 19 | | 8 | •• | Cirro-stratus and fleecy clouds cover the greater part of the sky; the only portion of clear sky is towards the N. | l | | 9 | •• | Cirro-stratus and fleecy clouds; small breaks in various directions. | | | $\frac{1}{2}$ | • • | A few clouds about the place of the Moon; the sky is clear elsewhere. | | | 9 | •• | Overcast: cirro-stratus and scud. The whole of the sky is covered with a thin cirro-stratus, with the exception of a few breaks in the W. | | | 10
8 | •• | Overcast: cirro-stratus and scud. Cirro-stratus and masses of white scud: large portions of blue sky are seen S. and S. E. of the zenith. | | | 10 | •• | Cirro-stratus and masses of white scud: large portions of olde sky are seen 3. and 3. E. of the zenth. Cirro-stratus, fleecy clouds, and scud cover the sky: a few small breaks here and there, but to no numerical extent. Since the last observation the sky has been generally about one-half covered with clouds; at present there are only some masses of dark brown scud towards the W. horizon. | | | 0 | | Cloudy around the horizon: foggy: very few stars are visible.
Cloudless: foggy. | | | 0 | Transit | ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, | | | 0 | • • | | | | 0 | •• | ,, the fog has nearly disappeared. | | | 0 | • • | ,, the ground is covered with hoar frost. | 1 | | 5 | •• | Fleecy clouds in several directions: cirro-stratus around the horizon. | | | 9 9 | •• | The sky is nearly covered with cirro-stratus, fleecy clouds, and scud.
Cirro-strati and fleecy clouds: the clouds are extensively broken to the S. of the zenith: a slight fog prevails: the | | | | | cirro-strati in the neighbourhood of the Sun are slightly tinged with red. | 1 | | 0 | • • | Overcast: cirro-stratus: very gloomy: at about 3 ^h . 30 ^m slight rain commenced falling. | 1 | | 0 | • • | ,, ,, hazy. | | | 0 | •• | ,, | 1. | | 0 | Transit | ,, ,, ,, | | | . | ••• | ,, · · ·), | | | . | •• | | | | . | • • • | | | | 912 | Full | Cirro-stratus and scud; a break towards the N. | | | . | | | | | : | | | - | | 8 | | Cirro-stratus and scud. | | | . | •• | | 10 | ELECTRICITY. January 28^d. 4^b. There were sparks at the distance of 0ⁱⁿ·16, two in a second. January 29^d. 22^h. There was a spark at the distance of 0ⁱⁿ·01. January 30^d. 0^h and 2^h. There were sparks at the distances of 0ⁱⁿ·02 and 0ⁱⁿ·01 respectively. Henley's Electrometer. January 28^d. 4^h. The reading was 22°. | ł | | | | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICA | LINS | STR | UME | NTS. | |--|------------------|--------------|-------|-------|---------|---------------|------------------------------|------------------------------------|------------|-------------------------|------------|--------------------------|----------------------|---|-------|-----------------------|-------------------|------------------------| | Day and Hour, | Baro- | D | Wet | Ther- | | Point | read at 22h. | Stand of
No. 1, | From (| | From Who | | Sign
of | Re | ading | s of | | Interva | | Göttingen | meter | Dry | 1 | mom. | Dew | below | Free Therm. | (Osler's). Reading of | THEM | | | Descent of | Electricity,
as | Single | | ٠. | of | recovering
the same | | Astronomical | Cor- | Ther- | Ther- | below | Point. | Dry | Rad. Therm. | No. 2. | | Pressure
in lbs. per | | the pencil
during the | shewn
by Dry | Gold Leaf | Lea | ws (| ws (| degre
of tensi | | Reckoning. | rected. | mom. | mom. | Dry. | I OILL. | Ther-
mom. | of Therm. in
Water of the | Stand of
No. 3.
(Crosley's). | Direction. | equare
foot. | Direction. | ance of
eachWind. | Pile Appa-
ratus. | Single
Gold Leaf
of Dry
Pile Appa-
ratus. | Dou | Straws of
Volta 1. | Straws
Volta 2 | after
dischar | | d h | in. | 0 | 0 | 0 | - | 0 | Thames. | in. | | from | | in. | | 0 | 0 | di⊽. | div. | m | | d h
Jan. 31. 6 | | | | | | | - | | N | lbs. to lbs. | | 1 | | | | | | | | зац. эт. о
8 | • • | • • | | | | | $\left(40.7\right)$ | | N | • • | | |
 | | | | | | 10 | • • | ••• | | l : . | | | 31 4 | 0.41 | N | | | | | | | | | | | 12 | | | | | | | 53.4 | | N by W | | | | | | | | •• | | | 14 | 29.501 | 29.8 | 28.5 | 1 1 | | | 51.4 | 0.00 | W by S | •• | | | Pos. | 40 | | 5 0 | 50 | 0. 3 | | 16 | 29.499 | 28.8 | 28.0 | 0.8 | 26.0 | 2.8 | 19.5 | | W | • • | | | Pos. | 10 | | 20 | 20 | 20. | | 18 | 29.487 | 29.6 | 29.0 | 0.6 | | | 40.0 | 1.165 | SW | •• | · · | 1 | Pos. | 40 | • • | 50 | 1 | | | 20 | 29.491 | 30.5 | 30.0 | 0.2 | | | 38.5 | | WSW | •• | <u>::</u> | | Pos. | - 8 | ••• | 8 | 10 | 15. | | 22 | 29.509 | 31.5 | 30.8 | 0.4 | 28.5 | 2.7 | (000) | •• | SSW | • • | N | 2.32 | Pos. | 40 | •• | 60 | 100 | 0.3 | | Feb. 1. 0 | 29.525 | 33.2 | 32.0 | 1.2 | | | • • | | SW | •• | ∥ | | Pos. | 40 | | | 120 | | | 2 | 29.544 | 35 2 | 34.1 | 1.1 | | | •• | | SE | •• | | | Pos. | 30 | 80 | 30 | | | | 4 | 29.572 | 11 | 12 | 1 1 | 28.0 | 6.2 | (36.1) | | ENE | •• | | | Pos. | 3 | • • | 5 | | 2. | | 6 | 29.599 | | | | • • | •• | 29.8 | 0.41 | ENE | • • | ·· | 1 | Pos. | 30
20 | | 25 | | I | | 8 | 29.634 | | | | • • | :- | 10.0 | | NNE | •• | •• | •• | Pos. | 15 | • • | 15
12 | | 13. | | 10 | 29.650 | 13 | | | 30.5 | 1.7 | 40.0 | 0.00 | N | •• | · · | 1 | Pos. | 2 | •• | 12 | | ì | | 12 | 29.663 | | 32.0 | | ••• | •• | 22.3 | | N
N | •• | · · · | | Pos. | 30 | |
40 | 5 0 | | | 14 | 29.670 | 32.2 | 31.9 | | 97.0 | 2.9 | 39.5 | 1.165 | N | • • | | | Pos. | 10 | | 20 | | 15. | | 16 | 29.680 | | | 0.7 | 27.0 | | 37.2 | | NNE | •• | | | Pos. | 30 | | 40 | | | | 18
20 | 29.680
29.696 | 31·0
32·5 | 1 | 0.6 | •• | ••• | - | •• | N by E | • • | | | Pos. | 10 | | 20 | | 20. | | $\frac{20}{22}$ | 29.714 | 1 | lt. | | 31.0 | 2.0 | | | N | •• | NNE | 1.53 | Pos. | 2 | | • • | • • | •• | | Feb. 2. 0 | 29.709 | 35.0 | 33.9 | 1.8 | | | | | N | 0 to 1 | | | Pos. | 2 | | | | | | 2 | 29.681 | | | 0.9 | | | | | N | | | | | | 0 | 0 | 0 | | | 4 | 29.672 | 34.8 | 11 | | 31.0 | | (37.2) | | NNE | 0 to 1 | ii | | •• | •• | 0 | 0 | 0 | | | 6 | 29.673 | | | | | | 31.3 | 0.41 | N by E | • • | | | Pos. | 2 | | | • • | | | 8 | 29.679 | | | 0.5 | | | | | Ň | • • | | | Pos. | 2 | | | • • • | | | 10 | 29.688 | 32.0 | | 0.2 | 32.0 | 0.0 | 43.0 | 0.00 | N | • • | | | Pos. | 2 | •• | ٠. | • • | | | 12 | 29.696 | 31.5 | 31.2 | 0.3 | | | 28.0 | | N | • • | | •• | | •• | 0 | 0 | | • • • | | 14 | 29.695 | 31.2 | 11 | | | | | 1.175 | N | •• | • • | | •• | • • • | 0 | 0 | | · · · | | . 16 | 29.695 | 31.7 | | 0.3 | 30.2 | 1.5 | 39.0 | | N by W | •• | | •• | •• | •• | 0 | 0 | | • • • | | 18 | 29.695 | | 10 | | • • | •• | (36·5) | •• | N by W | •• | | •• | • • | •• | 0 | 0 | 1 | ٠. | | 20 | 29.714 | 32.2 | 32.3 | 0.2 | | | •• | •• | N by W | •• | Ň | 3.53 | | •• | 0 | 0 | | ٠. | | 22 | 29.753 | 33.0 | 33.0 | 0.0 | 32.0 | 1.0 | •• | | N by E | •• | 1 | 0.00 | ••• | •• | | U | | • • | | Feb. 3. 0 | 29.789 | | | | •• | | •• | •• | NNE
ENE | •• | | •• | •• | •• | 0 | 0 | ا ما | | | 2 | 29·806
29·852 | | | | 31.0 | 1.8 | (36.4) | | ENE | • • | •• | | •• | | o | 0 | | | | 4 | 29.832 | | | | | 1 1 | 31.2 | •• | NE | • • • | | | | | 0 | 0 | | | | 6
8 | 29.931 | | | | | ••• | | 0.41 | NE | | | | | | 0 | 0 | | 11 | | 10 | 29.934 | | | | 27.0 | 4.9 | 39.2 | | ENE | | | 1 | Pos. | 40 | | 100 | 120 | 10. | | 12 | 29.956 | | | | | | 25.5 | 0.07 | ENE | | | | | | 0 | 0 | | 11 | | 14 | 29.960 | | | | | | | 1.095 | N by E | •• | | | | •• | 0 | 0 | | | | 16 | 29.960 | | | | 29.3 | | 38.0 | 1.235 | Ň | • • | ₩ •• | 1 | •• | • • • | 0 | 0 | 1 | 1 | | 18 | 29.962 | | | | | | 36.0 | | N | •• | 1 | •• | • • • | • • | 0 | 0 | 1 | 11 | | $egin{array}{c} 20 \\ 22 \\ \end{array}$ | 29·989
30·018 | | | | 26·5 | 5.0 | •• | •• | N by W | • • | NE | 1.47 | Pos. | 40 | 0 | . 0
70 | | 13. | | | | | | | | | | | | - | | | | 40 | | | ļ | 25. | | Feb. 4. 0 | 30.035 | | | | •• | | •• | •• | NNW | •• | | | Pos. Pos. | 40
30 | | 20 | | | | 2 | 30.033 | | | | | | •• | •• | N by W | •• | ∥ … | | Pos. Pos. | 2 | • • | | l | [[| | 4 | 30.032 | 38.0 | 35.0 | 3.0 | 29.5 | | | •• | N by W | •• | ∥ | | Pos. | 2 | | • | | | | 6 | 30.054 | 36.0 | 33.0 | 3.0 | | | • • | | NNW | • • | | 1 | T OS. | 11 - | • • | • • • | | • • | Minimum Free Thermometer. January 31^d. 22^h. The reading was higher than those of the Dry Thermometer at 14^h, 16^h, 18^h, 20^h, and 22^h. ELECTRICITY. January 31^d. 14^h and 22^h. There were sparks at the distances of 0ⁱⁿ·02 and 0ⁱⁿ·01 respectively. February 3^d. 22^h. There was a spark at the distance of 0ⁱⁿ·01. February 4^d. 0^h and 22^h. There were sparks at the distances of 0ⁱⁿ·04 and 0ⁱⁿ02 respectively. | 0-10. | Phases
of | | | | | |-------|--------------|-------------|---|---|---| | ÌI | | | | REMARKS. | | | | the | | | REMARKS. | | | | Moon. | | | | _ | | | | | | | | | 1 | | | | | 1 | | | • • | | | | | |) | Transit | Cloudless | hazv | | | | | •• | At 15h. 35 | m some fleecy clouds ca | me up from the W., and in a short time covered the sky. A finely-coloured lunar | į | | 1 | • • | | cirro-stratus and scud. | | | |) | • • | ,, | ,, | . 6.11 | | | 1 | • • | ,, | ,, | snow is falling. | | | 1 2 | •• | i | cirro-stratus and scud | snow ceased falling at 22 ^h . 30 ^m . a few breaks about the zenith. | | | - | •• | Cirro-strat | tus, scud, and vapour: | breaks in every direction. | | | 1 | •• | | cirro-stratus and scud. | · | | | | • • | ,, | , , | | | | | •• | ,, | ,, | the Moon is occasionally faintly visible. | | | 1 | Transit | ,, |))
)) | the filodi is occasionally landly visitors. | | | | | Cloudless. | | | | | 1 | •• | | | s have gradually increased since the last observation. | | | | •• | Overcast: | cirro-stratus and scud: | a small quantity of snow has fallen since the last observation. | | | | • • | Cirro-strat | us and thin scud in eve | ry direction, with several patches of blue sky, principally in the horizon. | | | | | Overcast: | cirro-stratus and scud. | [at present look dark and threatening. at about 1^h snow and rain commenced falling, and continued till 1^h . 50^m : the clouds | | | | •• | ,, | cirro-stratus: sleet fell | just before the observation: at present fine snow is falling. | | | | | , , | cirro-stratus and scud | snow has fallen heavily since the last observation; it has now ceased. | | | | ••• | ,, | ,, | fine snow is falling slightly. | | | | •• | ,, | ,, | the snow has ceased falling. | | | | Transit | ,, | ,, | the show has ceased failing. | | | | | ,, | ,, | slight snow is falling. | | | | | ,, | , , | ,, | | | | | , , | ,, | the snow ceased falling soon after the last observation. | | | 1 | Apogee | , , , , , | ,, | snow falling slightly. | | | | | | us, cumulo-stratus, and
cirro-stratus. | masses of scud: snow has fallen frequently since 22h. | | | | | ,, | | very fine snow is falling occasionally. | | | | | ,, | ,, | | | | | | , , | ,, | | | | | ••• | " | ,, | | | | J | n Equator | ,, | cirro-stratus. | | | | | Transit | ,, | ,, | | | | | •• | ,, | ,, | | | | | • | Cirro-strat | us, fleecy clouds, and so | eud: a few detached cumuli in the N.E. | | | | | Overcast: | cirro-stratus and scud: | the clouds were extensively broken at 22 ^h . 40 ^m . | į | | | •• | Cipro atret | ns soud and fleeer clar | uds: a few small breaks here and there. | | | | •• 1 | onro-suat | cirro-stratus and scud. | uus. a 10w shiah Dicaks hele ahu thele. | ı | Henley's Electrometer. February 4^d . 0^h . The reading was 3° . January 31^d. 12^h. The amount collected during the month of January in the rain-gauge No. 4 was 1ⁱⁿ.38, and that collected by the Rev. G. Fisher in a rain-gauge of the same construction at Greenwich Hospital Schools during the same period was 1ⁱⁿ.19. | D | D. | | | Wet | | Dew | Max. and Min. | GAUGES. | | WIN | D. | | ELEC | TRICAL | INS | STRU | JME | NTS. | |--|------------------|-------|--------------|------------|--------|--------------|--|------------------------|--------------------------------|-------------------------|------------|----------------------------------|----------------------|----------------------|----------------------|-----------------------|-----------------------|------------------| | Day and Hour,
Göttingen | Baro-
meter | Dry | Wet | Ther- | | Point | read at 22h. | Stand of
No. 1. | From C | | From Whe | | Sign
of | Re | ading | s of | | Interv | | | | · 1 | | mom. | Dew | below | Free Therm. | (Osler's). Reading of | Anemo | inewi. | Aucilou | Descent of | Electricity,
as | Single
Gold Leaf | ١ | | | recover | | Astronomical | Cor- | Ther- | Ther- | below | Point. | Dry
Ther- | Rad. Therm. | No. 2.
Stand of | | Pressure
in lbs. per | | the pencil
during the | shewn
by Dry | Gold Leaf
of Dry | Lea | 1 1. | 8.2° | degre
of tens | | Reckoning. | rected. | mom. | mom. | Dry. | , ome | mom. | Water of the
Thames. | No. 3.
(Crosley's). | Direction. | square
foot. | Direction. | continu-
ance of
eachWind. | Pile Appa-
ratus. | Pile Appa-
ratus. | Double
Gold Leaf. | Straws of
Volta 1. | Straws of
Volta 2. | after
dischar | | d b | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | | from
lbs. to lbs. | | in, | | .0 | 0 | div. | div. | m | | Feb. 4. 8 | 30.056 | 1 | 33·0
31·5 | 3·0
1·5 | 20.5 | | $\left[\begin{array}{c} 39.6 \\ 39.4 \end{array}\right]$ | •• | NW
NNW | •• | •• | •• | Pos. Pos. | 2
30 | •• | 20 | 25 | 3. | | 10
12 | 30·071
30·082 | | | | 29.5 | 3.2 | 28.4 | 0.41 | NNW | :: | | | Pos. | 20 | • • | 10 | 10 | | | 14 | 30.069 | | | | | | 48.0 | 0.00 | wsw | | | | Pos. | 2 | | | | | | 16 | 30.056 | | 28.0 | 0.2 | 27.0 | 1.2 | 20.4 | 0.00 | wsw | | | | Pos. | 30 | | 20 | 20 | 12. | | 18
| 30.049 | 1 | | 0.4 | | | | 1.245 | SSW | | •• | | Pos. | 2 | •• | | •• | | | 20 | 30.037 | | 30.6 | 0.9 | ••• | | 37.5 | 1 -10 | S by W | •• | *** | | Pos. | 30 | • • | 20 | 25 | 0 | | 22 | 30.040 | 32.8 | 31.9 | 0.9 | 27.5 | 5.3 | (35.5) | •• | SW | •• | W | 1.85 | Pos. | 40 | •• | 120 | 150 | 15. | | Feb. 5. 0 | 30.021 | 1 1 | , , | 1.1 | | | | •• | SW | | •• | | Pos. | 40 | | , | I | 20. | | 2 | 29.979 | | 35.3 | 1.8 | 00.5 | 4.5 | C40.00 | •• | WSW | •• | •• | •• | Pos.
Pos. | 40
20 | •• | 1 | 1 | 30. | | 4
6 | 29·952
29·922 | | 37.0 | 1·7
1·0 | 33.2 | 4.2 | $\left[\left[egin{matrix} 42.7 \\ 31.9 \end{smallmatrix} ight] \right]$ | | WSW
SW | •• | •• | •• | Pos. | 40 | ••• | 30
30 | 30
35 | 1 | | 8 | 29.898 | 1 1 | | 0.6 | • | | | 0.41 | SW | | | | Pos. | 30 | • • | 15 | 1 | 40. | | 10 | 29.860 | | | 0.8 | 35.0 | 3.3 | 48.0 | 0.03 | WSW | | | | Pos. | 30 | | 20 | 1 | 25. | | 12 | 29.820 | 1 | 37.2 | 0.8 | | | 7 28.0 ↑ | 0.09 | SW | •• | • • • | | Pos. | 40 | • • | 40 | ş. | 10. | | 14 | 29.770 | | | 0.6 | 300 | | | 1.280 | WSW | •• | •• | •• | •• | •• | 0 | 0 | | | | 16
18 | 29·704
29·660 | | 38.5 | 0.0 | 37.5 | 1.2 | 36·5
35·2 | | SW
SW | •• | •• | •• | Pos. | 2 | 0 | 0 | 0 | 1 | | 20 | | | 40.8 | 0.4 | | | (33.2) | | SW | | :: | | Pos. | 2 | •• | | | | | $egin{array}{c} oldsymbol{22} \end{array}$ | 29.572 | 42.6 | - 1 | - 11 | 40.0 | 2.6 | • | | $\tilde{\mathbf{s}}\mathbf{w}$ | •• | wsw | 4.25 | Neg. | •• | | 50 | 70 | If . | | Feb. 6. 0 | 29.526 | 48.5 | 45.5 | 3.0 | | | | | wsw | 1 to 2 | | | Pos. | 2 | | | | | | 2 | 29.429 | . 13 | 45.8 | 2.7 | | | | | WSW | 1 to 3 | •• | | Pos. | 2 | | | • • | • • • | | 4 | 29.375 | | 45.6 | 16 | 43.2 | 4.3 | | •• | WSW | 1 to 2 | •• | | •• | •• | 0 | 0 | 0 | | | 6
8 | 29·356
29·386 | 47.1 | 45·2
41·2 | 1·9
2·9 | •• | •• | [49.0] | ・・ | WSW
NW | $\frac{1}{2}$ to 2 | •• | •• | Pos. | ···
2 | √0 | 0 | 0 | | | 10 | 29 360 | 11 | 37.8 | | 33.5 | 7.4 | 33.2 | 0.41 | WNW | 1 to 4
1 to 3 | | | Pos. | 2 | | • • • | | | | 12 | 29.445 | 38.2 | 35.2 | 3.0 | | | 59.3 | | WNW | | | | Pos. | 2 | | | | :: | | 14 | | | | | | •• | 325·5 } | 0.00 | \mathbf{w} | | | 1 | •• | •• | | | | | | 16 | •• | •• | •• | •• | •• | | | 1.285 | W | ••• | •• | •• | •• | •• | •• | •• | • • | •• | | 18
20 | •• | •• | •• | •• | •• | | 37.0 | | W by S
WSW | | • • | •• | •• | • • | •• | ٠٠. | •• | •• | | 20
22 | | | | | •• | | (35.5) | | SW | :: | w | 5.80 | | •• | :: | | | | | 22. 20 | 29.382 | 1 | 31.3 | 1.4 | | | •• | | SW | | | | Pos. | 35 | | 25 | 30 | | | | 29.392 | | 32.5 | 0.6 | •• | | • • | | S | | •• | | Pos. | 2 | | | | ••• | | Feb. 7. 0 | | | | | | | | | s | | | | | | ٠,٠ | | | | | 2 | • • | | [| | | | | | ESE | | •• | | | • • | • • | | | | | 4 | 29.277 | 30.0 | 30.0 | 0.0 | ••• | ••• | 33.7 | •• | NE | | •• |) ·· | Pos. | 30 | •• | 25 | 30 | 5. | | 6
8 | •• | • • | | ••• | •• | ••• | 18.8 | 0.41 | NE
N | ••• | •• | | •• | •• | •• | ••• | • • | ••• | | 10 | | | | | | | 34.5 | | NNW | | | | | , , , | • • | · · · | • | | | 12 | | | | | | | 13.0 | 0.00 | NNW | 0 to 1 | | | | •• | | | | | | 14 | 29.471 | 23.8 | 22.8 | 1.0 | | | 1 | 1.290 | NW | 0 to $\frac{1}{2}$ | | | Pos. | 15 | • • | 10 | | ** | | | 29.508 | | 19.6 | 11 | 15.0 | 5.0 | 36.5 | 1.380 | W by N | | •• | •• | Pos. | 2 | •• | •• | • • | ••• | | | 29·528
29·541 | | | 0·5
0·5 | | 6·0
6·0 | (35·2) | •• | WSW
SW | •• | • • | •• | Pos.
Pos. | 2
20 | •• | 1.5 | 20 | ··· | | | 29.552 | | | 1.0 | 1 | 6.2 | • • | •• | SW | | ssw | 1.98 | Pos. | 25 | • • | 15
20 | | | | ?eb. 8. 0 | 29.534 | 27.2 | 26.2 | 1.0 | 20.0 | 7.2 | | | sw | | • • | | Pos. | 2 | | | | | | 2 | 29.493 | 28.0 | 27.2 | 0.8 | 23.0 | 5.0 | •• | •• | SSW | | | | Pos. | 2 | • • | ٠. | | | | 4 ! | 29.380 | 28.2 | 28.4 | _0.9 | 28·0 | 0.2 | | | SSE | 1 | •• | | Pos. | 15 | | 1 10 | 15 | 1. | BAROMETER. February 6^d . From 0^h to 6^h the decrease in the readings was considerable. February 8^d . The reading was 0^{in} ·113 less than at the previous observation. Wet Bulb Thermometer. February $8^{\rm d}$. 4h. The reading was higher than that of the Dry Thermometer. MINIMUM FREE THERMOMETER. February 7^d. 22^h. The reading was higher than that of the Dry Thermometer at 20^h. | | | | T | |-------------------|----------|---|-----| | ર્સ | Phases | | | | Amount of Clouds, | | | 1 | | Žë. | of | D. T. M. A. D. W. C. | - | | | the | REMARKS. | ĺ | | | Moon. | | 1 | | ¥
 | | | - - | | 9 | | Cirro-stratus, scud, and vapour: a few stars are visible occasionally in the zenith. | | | 6 | •• | Cirro-stratus and vapour around the horizon: the stars are bright in the zenith. | 1 | | 6 | ••• | Fleecy clouds and cirro-strati covering the eastern portion of the sky have recently risen from the S. E. | 1 | | $9\frac{3}{4}$ | • | Cirro-strati, fleecy clouds, and scud: the sky became cloudless at about 12 ^h . 30 ^m , and remained so generally till 13 ^h . 35 ^m . | 1 | | 1 | Transit | Fleecy clouds around the horizon; otherwise cloudless: the amount of cloud has been variable since 14 ^h . | | | ō | | Overcast: cirro-stratus and scud: a heavy bank of cirro-stratus came up from the N. at about 16 ^h . 20 ^m , and in a few | 1 | | 0 | | minutes covered every portion of the sky. | 1 | | 0 | | ,, cirro-stratus. | | | | | • | | | 0 | • • | Overcast: cirro-stratus. | 1 | | 0 | • • | ,, cirro-stratus and scud. | 1 | | 0 | •• | ,, a slight shower of rain. | 1 | | 0 | •• | ,, | - | | 0 | • • | ,, a shower of rain fell at about 7 ^h . 30 ^m . | | | 0 | •• | ,, several stars have been visible since the last observation: foggy. | 1 | | 0 | •• | ** *** *** *** *** *** *** *** *** *** | 1 | | 0 | | ** | 1 | | 0 | Transit | ,, a slight rain is falling. | ١ | | 0 | • • | ,, the rain has ceased falling. | 1 | | 0 | •• | ,, cirro-stratus and broken soud. | 1 | | 0 | •• | ,, light rain is falling. | | | 3 | •• | Cirro-stratus around the horizon: light clouds here and there: the wind is blowing in gusts to $\frac{1}{2}$. | | | 0 | •• | Overcast: cirro-stratus and scud: the wind is blowing in gusts to \(\frac{3}{4} \). | 1 | | 0 | • • | " | 1 | | 8 | •• | ,, clear towards the S. | | | 0 | • • | Cloudless: the wind is blowing in gusts to 1. At 7 ^h . 50 ^m a bright meteor passed from the zenith towards Orion. | | | 0 | •• | ,, | 1 | | 0 | •• | , | ı | | . | •• | | 1 | | . | m · · | | ١ | | • | Transit | | | | | •• | | ١ | | .] | ••• | | ١ | |) | | Overcast: sleet is falling. | | |) | •• | ,, the sleet has ceased falling. | | | | | | 1 | | | •• | | - | | | •• | 0 . 11.1 1 00 1 | | |) | •• | Overcast: snow and sleet have been falling almost incessantly since the last observation. | - | | | •• | | 1 | | | •• | | 1 | | | •• | | | | , | ••• | Cloudless: gusts of wind to $\frac{1}{2}$. | 1 | | | | - | 1 | | ı | Transit | | 1 | | | | A few light clouds, but to no numerical amount. | | |) | | The sky is covered with cirro-stratus and scud: the clouds came up at 21 ^h . 45 ^m . | | | , | | Overcast; cirro-stratus: the sky has been covered with clouds since the last observation. | | | - 1 | 3rd Qr. | gnow gammanaed fallings t near | 1 | | | ora der. | ,, snow is falling heavily. | | | | | ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, | 1 | R_{AIN} . February 8^d . The increase in the readings of the rain-gauges was caused by the melting of snow. ELECTRICITY. February 5^d.0^h, 2^h, 12^h, and 22^h. There were sparks at the distances of 0ⁱⁿ·02, 0ⁱⁿ·02, 0ⁱⁿ·01, and 0ⁱⁿ·02 respectively. | | | | | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICAL | INS | STRU | J M F.I | NTS. | |----------------------------|------------------|---------------|---------------|---------------|--------|----------------------|--|---|------------------------|--|---------------|---|---|---|----------------------|-----------------------|-----------------------|---------------------------------------| | Oay and Hour,
Göttingen | Baro-
meter | Dry | Wet | Ther- | | Point | read at 22h. | Stand of
No. 1.
(Osler's). | From (| | From Who | | Sign
of | Rea | ading | s of | | Interv | | - 1 | 1 | | 1 | mom. | Dew | below | Free Therm. | | - Themo | | | Descent of | Electricity,
as | Single | ن ا | | _ | recover
the sa | | Astronomical Reckoning. | Cor-
rected. | Ther-
mom. | Ther-
mom. | below
Dry. | Point. | Dry
Ther-
mom. | Rad. Therm. of Therm. in Water of the Thames. | Reading of
No. 2.
Stand of
No. 3.
(Crosley's). | Direction. | Pressure
in lbs. per
square
foot. | Direction. | the pencil
during the
continu-
ance of
each Wind, | shewn
by Dry
Pile Appa-
ratus. | Single
Gold Leaf
of Dry
Pile Appa-
ratus. | Double
Gold Leaf. | Straws of
Volta 1. | Straws of
Volta 2. | degre
of tensi
after
dischar | | d h | in. | 0 | 0 | 0 | 0 | 0 | o , | in. | | from | | in. | | 0 | 0 | div. | div. | m | | Feb. 8. 6 | 29.298 | 27.0 | 26.5 | 0.5 | | | 600.0 | | SE | lbs. to lbs. | | | Pos. | 40 | ٠,٠ | 30 | 40 | 2. | | 8 | $29 \cdot 228$ | | 27.2 | | | | $\begin{pmatrix} 30.1 \\ 10.0 \end{pmatrix}$ | l | ENE | | | | Pos. | 30 | | 20 | 30 | 2. | | 10 | 29.217 | 27.5 | | 0.3 | 25.0 | 2.5 | 18.3 | 0.41 | NE | | | | Pos. | 40 | | 30 | 40 | 3. | | 12 | 29.244 | | | 1 | | | (31.2) | | NNW | | | | Pos. | 40 | • • | 40 | 45 | 2. | | 14 | 29.281 | | 25.5 | | 24.0 | | 14.5 | 0.37 | NW | | • • | •• | •• | | 0 | 0 | 0 | • • | | 16 | 29.272 | |
| | 22.0 | 1 1 | | | WSW | ••• | • • | •• | <u>.</u> | | 0 | 0 | 0 | ļ <u>.</u> | | 18 | 29.257 | | | 1 1 | 19.5 | 1 | 35.8 | 1.390 | WSW | •• | •• | •• | Pos. | 20 | • • | 10 | 15 | 7. | | 20 | 29.257 | 18.0 | 18.0 | 1 1 | 17.0 | 1 | 35.0 | •• | SW | ••• | Wex | 0.42 | •• | •• | 0 | 0 | 0 | • • | | 22 | 29.275 | 19.5 | 19.7 | -0.2 | 17.0 | 2.9 | | •• | SW | •• | WSW | 0.42 | | ••• | U | U | U | ••• | | Feb. 9. 0 | 29·306
29·292 | | 24·5
27·7 | 0.3 | 19.0 | 5.8 | •• | •• | WSW
W | •• | •• | | Pos. Pos. | 10 | • • | 8 | 5 | 5. | | 2
4 | 29.292 | | | 1 1 | 17:0 | 10.5 | (29.6) | •• | W | •• | •• | • | ! ! | 1 | | 0 | 0 | li i | | 6 | 29.305 | | II` /I | 0.5 | 17.0 | 1 1 | 19.8 | •• | W by S | •• | •• | | Pos. | 40 | | 30 | 40 | | | 8 | 29.289 | 25.4 | 25.2 | | 1 | | | 0.41 | W by S | •• | | | Pos. | 30 | | 25 | 25 | 4. | | 10 | 29.288 | 23.7 | 23.5 | / 1 | 19.0 | 1 1 | 37.2 | 0.00 | wsw | | | | Pos. | 20 | | 20 | 20 | 7. | | 12 | 29.275 | 24.5 | 24.0 | 0.5 | 22.0 | 2.5 | 12.0 | 0.00 | W | | | | Pos. | 25 | • • | 30 | 30 | 14. | | 14 | 29.266 | 21.0 | 20.7 | 0.3 | 17.0 | | | 1.470 | wsw | | | | Pos. | 8 | • • | 10 | 10 | 4. | | 16 | | 19.5 | 19.2 | 0.3 | 17.0 | 2.2 | 34.8 | 14,0 | $\mathbf{s}\mathbf{w}$ | •• | | | Pos. | 2 | • • | | | | | 18 | 29.285 | | 21.5 | | •• | ••• | [34.0] | •• | W by S | ••• | • • | •• | Pos. | 30 | •• | 12 | 15 | 12. | | 20 | 29.320 | | 21.2 | 0.3 | 18.0 | | ••• | ••• | N | • • | 0.0777 | | Pos. | 30 | •• | 20 | 20 | 12. | | 22 | 29.365 | 24.0 | 23.7 | 0.3 | 20.5 | 3.2 | • • | •• | N by W | •• | ssw | 3.05 | Pos. | 20 | •• | 10 | 15 | 3. | | Feb. 10. 0 | 29.401 | | 30.2 | - 1 | | | | | NW | | •• | | Pos. | 25 | 25 | 20 | 25 | 4.
7. | | 2 | 29.408 | - 1 | | 0.5 | ••• | | | •• | WNW | 0 to $\frac{1}{2}$ | . •• | •• | Pos. | 15 | • • | 10 | 12 | 7. | | 4 | | 34.5 | 1 1 | | 24.0 | l 1 | $\left[\begin{array}{c}36.2\\35.7\end{array}\right]$ | 0.51 | W | 0 to $\frac{1}{2}$ | | | •• | •• | 0 | 0 | 0 | • • | | 6
8 | | 31·7
29·8 | 30·8
28·5 | 0.9 | •• | •• | 25.7 | 0.21 | W by S
W | 0 to $\frac{1}{2}$ | • • • | | •• | •• | 0 | 0 | 0 | • • • | | 10 | 29 441 | 29.7 | 28.5 | 1.3 | 25.0 | 4.7 | 38.4 | | W by S | | •• | | •• | | 0 | 0 | 0 | ••• | | 12 | - 11 | 27.0 | 27.0 | 0.0 | 24.0 | | 18.3 | 0.00 | w | | :: | | | | ő | 0 | 0 | | | 14 | | 27.2 | 27.2 | 0.0 | 24.0 | | | 7.500 | $\dot{\mathbf{w}}$ | | | | | | 0 | 0 | o | | | 16 | | 29.7 | 29.5 | 0.2 | 25.5 | | 34.0 | 1.580 | W by N | | | | | | 0 | 0 | 0 | | | 18 | 29.510 | 31.0 | 30.9 | 0.1 | | | 33.5 | | NW | | | | Pos. | 35 | 5 0 | 20 | 30 | 20. | | 20 | 29.550 | 30.2 | 30.2 | 0.0 | | • • | | | NNW | | •• | 1 | Pos. | 2 | • • | | | | | 22 | 29.582 | 32.0 | 31.2 | 0.2 | 29.0 | 3.0 | •• | •• | N by E | •• | W | 4.00 | Pos. | 2 | •• | ••• | • • | • • | | | 29.617 | | | | •• | | | | N by W | | | | <u></u> | | 0 | 0 | 0 | | | | 29.642 | | | | ••• | | | | N | •• | | •• | Pos. | 20 | ٠. | 12 | 15 | 8. | | | 29.669 | | | | 29.8 | | 39.6 | •• | N by E | ••• | • • | •• | Pos. | 30 | • • | 20 | 40 | | | | 29·702
29·732 | | | | ••• | ••• | 11.2 | 0.24 | N
Calm | •• | • • | | Pos.
Pos. | 10
40 | •• | 10
60 | 20
80 | 9.
10. | | 10 | 29.768 | 25.0 | 24.0 | 1·0 | 23.0 | 2.0 | 54.0 | | Calm | ••• | ••• | | Pos. | 40 | • • | | | 12. | | | 29.764 | | | | 15.0 | | 6.5 | 0.00 | Calm | •• | | | Pos. | 40 | • • | 30 | 30 | 2. | | 14 | 29.765 | 15.0 | 14.6 | 0.4 | | | | No. 200 | Calm | | | | Pos. | 2 | | | | | | 16 | 29.763 | 12.5 | 12.0 | 0.5 | 9.8 | | 34.0 | Q .780 | $\mathbf{s}\mathbf{w}$ | | | | Pos. | 40 | | 40 | 50 | 4. | | | 29.761 | | | | | | $\lfloor 32.8 \rfloor$ | [| SW | • • • | • • | | | | 0 | 0 | 0 | ∥ | | | 29.774 | | | | | | | •• | SW
SW | • •• | ssw | 0.72 | Pos. Pos. | 30
30 | • • | 20
20 | 30 | 7.
30. | | | 29.778 | i i | | l, | 16.5 | 2.3 | •• | | | •• | VV 0.0 | - 12 | | · | •• | 20 | JU | ou. | | eb. 12. 0 | 29.773 | 29.0 | 28.2 | | •• | | •• | •• | SW | •• | •• | | Pos. | 20 | • • | 10 | | | | | 29.752 | | | | 05.5 | 0.5 | •• | •• | SW | •• | •• | •• | Pos. | 15 | • • | 10 | 12 | •• | | 4 | 29·751
29·757 | 92.0 | 20.0 | 2.0 | 29.9 | ł | •• | •• | WSW
WSW | • • | •• | | Pos. Pos. | 2
40 | • • | 40 | 50 | 2. | | U | mu 101 | 40 3 | 40 U | 10 | •• } | •• } | •• | 1 1 | 17 53 77 | •• | • • | 1 1 | T OB. | 1 TU | • • | *U | UU | . <u>ب</u> | DRY THERMOMETER. February 11^d. The increase in the reading between 22^h and 24^h was 10°·2. February 11^d. 22^h. The reading was lower than that of the Wet Thermometer. Wet Bulb Thermometer. February 8^d. 22^h. The reading was higher than that of the Dry Thermometer. February 9^d. 4^h. The reading was 27° 5, which is evidently wrong; the inferred reading from the readings of the Dry and Dew Point Thermometers is 25° 8, which reading is used in subsequent calculations. | Amount of Clouds,
0-10. | Phases of the Moon. | REMARKS. | Observer. | |--|---|--|-----------------| | 10
10
10
8
10
10
7
3 | ··· ·· ·· ·· ·· ·· Transit | Overcast: cirro-stratus: snow is falling heavily. ',' snow is falling, but not so heavily. Cirro-stratus all round the horizon; in the N. it extends from the horizon to the zenith: at about 11 ^h . 50 ^m the sky Overcast: cirro-stratus. [became cloudless. Cirro-stratus, scud, and fleecy clouds: near the Moon's place the clouds are much broken. Cirro-stratus in the eastern horizon; the sky is otherwise cloudless. Cirri and light clouds: there are 5½ inches of snow on the level. | L
T 1
T 1 | | 10
5
0
8
8
2
0
0
8
10
7
3 | | Overcast: cirro-stratus and scud. The clouds became broken at 1 ^h . 30 ^m ; at present cirro-strati and light scud prevail: haze around the horizon. Cloudless; the horizon misty. Cirro-stratus and scud: clear about the zenith. Cirro-stratus: clear about the zenith. Cloudy around the horizon; clear elsewhere, but the stars look dim: at about 10 ^h . 5 ^m the northern portion of the sky Cloudless, but hazy. Cirro-stratus and dense vapour: the sky became totally obscured at about 14 ^h . 35 ^m , and since that time the amount of Overcast: cirro-stratus and scud: snow is falling. Cirro-stratus and vapour. Hazy around the horizon; otherwise the sky is clear. | H G I G I L L H | | 4
8
8
4
0
0
0
10
10
10 | Transit
Greatest dec, S. | Cirro-stratus from the N. horizon to within 10° of the zenith: cirri and light clouds are scattered in various directions. Cirro-stratus in every direction; near the place of the Sun, and N. of the zenith, the clouds are much broken. Cirro-stratus, scud, and light clouds. Cirro-stratus and vapour principally around the horizon. Cloudless, but hazy near the horizon. Cloudless. Overcast: cirro-stratus and scud. | T : T : H : G : | | 8
7
8
10
10
0
0
4 | ••••••••••••••••••••••••••••••••••••••• | Cirro-stratus all around: in the zenith some portions of clear sky are visible: a few flakes of snow are falling. Cirro-stratus and light fleecy clouds: several portions of clear sky are visible N. of the zenith: from 22 ^h . 30 ^m to Cirro-stratus, fleecy clouds, and scud. [23 ^h . 20 ^m snow was falling thickly. Overcast: cirro-stratus: a heavy bank of scud towards the S.W. horizon. , thin cirro-stratus about the zenith; scud towards the S.W. Cloudless. Cirro-stratus around the horizon: hazy: several small meteors have been seen since 10 ^h . | T
G
G | | 0
0
7
10
0 | Transit | Cloudless: very hazy. Cirro-stratus and thick haze all around: in the zenith a few stars are visible. Cloudless. Cloudless. | T
I
G | | 3
8
9 | •• | Light fleecy clouds towards the N.; clear elsewhere. Thin cirro-stratus: lines of cirri and fleecy clouds in every direction. Thin cirro-stratus, cumulo-stratus, and thin scud in every direction. | T | Maximum Radiation Thermometer. February 8^d . 22^h . The reading was noted as $21^\circ\cdot 5$, it is altered conjecturally to $31^\circ\cdot 5$. MINIMUM FREE THERMOMETER. February 8^d. 22^h. The reading was higher than that of the Dry Thermometer at 20^h. February 9^d. 22^h. The reading was higher than that of the Dry Thermometer at 16^h. ELECTRICITY. February 11^d. 10^h. There was a spark at the distance of 0ⁱⁿ·01. | | | | | Wet | | Dew | Max. and Min.
as
read at 22b. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICA | LIN | STR | UME | NTS. | |--|---------------------|---------------|---------------|---------------|--------------|---------------|--|-------------------------------------|------------------------------|--|---------------------|---|---|---|----------------------|-----------------------|----------|--| | Dayand Hour, | Baro- | D | Wet | Ther- | | Point | of | Stand of
No. 1. | From C
Anemo | | From Whe | | Sign
of | Re |
ading | s of | | Interval
of time in | | Göttingen | meter | Dry | | mom. | Dew | below
Dry | Free Therm. | (Osler's). Reading of | 7110110 | 1 | Themon | Descent of | Electricity, | Single | ایرا | ¥ -: | of . | recovering
the same | | Astronomical Reckoning. | Cor-
rected. | Ther-
mom. | Ther-
mom. | below
Dry. | Point. | Ther-
mom. | Rad. Therm.
of Therm. in
Water of the | No. 2. Stand of No. 3. (Crosley's). | Direction. | Pressure
in lbs. per
square
foot. | Direction. | the pencil
during the
continu-
ance of
each Wind. | shewn
by Dry
Pile Appa-
ratus. | Gold Leaf
of Dry
Pile Appa-
ratus. | Double
Gold Leaf. | Straws of
Volta 1. | Straws o | degree
of tension
after
discharge | | d h | in. | 0 | 0 | 0 | 0 | • | Thames. | in. | | from
lbs. to lbs. | | in. | | 0 | 0 | div. | div. | m 8 | | Feb. 12. 8 | 29.764 | | | 1.2 | | •• | (35.5) | | WSW | •• | •• | | •• | •• | 0 | 0 | 0 | •• | | 10 | 29.782 | | | | 24.0 | 4.0 | 18.5 | 0.54 | WSW
WSW | •• | •• | | ••• | •• | 0 | 0 | 0 | •• | | 12
14 | 29.800
29.803 | 27.5 | 26.8
22.5 | 0.7 | | | 45.6 | | wsw | | | | • • | | 0 | 0 | 0 | | | 16 | 29·818 | 22.0 | 21.4 | - 1 | 18.0 | 4.0 | 11.4 | 0.00 | wsw | | •• | | •• | | 0 | 0 | 0 | •• | | 18 | 29.835 | 20.0 | 19.5 | | 18.0 | 2.0 | | 1.780 | WSW | •• | •• | | D | | 0 | 0 | 0
20 | | | 20
22 | 29·876
29·909 | | | | 18·0
20·0 | 2·5
0·5 | $\begin{bmatrix} 33.2 \\ 32.5 \end{bmatrix}$ | | w
wsw | •• | sw | 2.00 | Pos. Pos. | 25
30 | :: | 20
30 | 30 | 4. 0
9. 0 | | Feb. 13. 0 | 29.922 | | 21.3 | | 19•0 | 2.3 | •• | •• | SSW | • • | • • | | Pos. | 30 | | 30 | 30 | 5. 0 | | 2 | 29.927 | 28.5 | 27.5 | 1.0 | 22.0 | 6.5 | •• | •• | SW | •• | ••• | •• | Pos. | 30 | • • | 30 | 35 | 20. 0 | | 4 | 29.937 | 31.8 | 30.0 | 1.8 | 20.5 | 11.3 | (41.2) | •• | $\mathbf{s}\mathbf{w}$ | | sw | 5.28 | Pos. | 35 | | 25 | 30 | 5. 0 | | 6 | 29.923 | 27.0 | | 0.8 | 20.0 | 7.0 | 20.2 | 0.54 | SSW | | • • | | Pos. | 40 | • • | 30 | 30 | 3. 0 | | 8 | | 25.2 | | | 19.0 | 6.2 | 41.5 | 0.22 | SSW
SSW | •• | • • • | •• | Pos. | 30
15 | • • | 20
10 | 25
12 | 5. 0
7. 0 | | 10
12 | 29·853
29·849 | 26·5
30·5 | 11 | | •• | •• | 17.0 | | SSW | $\frac{1}{2}$ to 1 | | | Pos. | 8 | | 8 | 10 | 12. 0 | | 14 | 20 0 10 | | | | | | $\begin{vmatrix} \\ 33\cdot 2 \end{vmatrix}$ | 2.040 | ssw | 1 to 2 | | | . . | • • | | | | • • | | 16 | | | •• | | •• | ••• | 32.5 | •• | SSW | $1\frac{1}{2}$ to 3 | •• | •• | •• | •• | ••• | • • | •• | •• | | 18 | •• | •• | •• | •• | •• | •• | | •• | SSW
SW | $2\frac{1}{2}$ to 3 3 to $4\frac{1}{3}$ | •• | :: | •• | • | | • • | | •• | | $egin{array}{c} 20 \\ 22 \\ \end{array}$ | 29 [.] 515 | 41.0 | 41.0 | 0.0 | •• | •• | •• | • • | wsw | $2\frac{1}{2}$ to 3 | wsw | 0.62 | •• | •• | 0 | 0 | .0 | •• | | Feb. 14. 0 | 29.515 | 42.7 | 42.5 | 0.2 | | •• | | •• | SW | 0 to $\frac{1}{2}$ | ••, | | •• | •• | 0 | 0 | 0 | •• | | $egin{array}{c} 2 \ 4 \end{array}$ | •• | | •• | •• | •• | •• | (46.2) | •• | W by S
W by S | $\begin{array}{c cccc} 0 & to & \frac{1}{2} \\ 0 & to & \frac{1}{5} \end{array}$ | $\ddot{\mathbf{w}}$ | 4.51 | •• | | | • • | | | | 6 | • • | | | | •• | •• | 39.9 | 0.54 | Calm | 2 | | | | | | • • | | | | 8 | • • • | | | | | •• | | 0.24 | Calm | | •• | | • • | | • • | • • | • • | | | 10 | •• | •• | •• | •• | •• | •• | 39.0 | 0.15 | Calm
Calm | •• | •• | •• | •• | •• | • • | • • | •• | •• | | 12
14 | 29.484 | 44.9 | 44.5 | 0.4 | | | 390 | | Calm | •• | | | Pos. | 2 | | • • | | | | 16 | 29.496 | 44.0 | 1 1 | 1 | 43.8 | 0.2 | 34.0 | 2.215 | Calm | | •• | | Pos. | •• | $ \dots $ | 30 | 40 | | | 18 | 29.490 | 1 1 | | 0.1 | •• | •• | 〔32·5 〕 | •• | Calm | | •• | •• | Pos. | 2 | $ \cdots $ | • • | •• | •• | | 20
22 | 29·465
29·376 | 44·0
44·0 | 43·9
44·0 | 0.0 | 44·0 | 0.0 | •• | •• | Calm
Calm | •• | s. | 0:30 | ros. | 2 | 0 | | 0 | | | Feb. 15. 0 | 29.292 | 46.5 | 45.2 | 1.3 | | •• | • • | •• | \mathbf{sw} | ½ to 1 | | | | | 0 | 0 | 0 | 5 • • | | 2 | 29.261 | | | | 45.5 | 4.5 | |) ·· | WSW | 1 to 3 | •• | •• | •• | •• | 0 | 0 | 0 | •• | | 4
6 | 29·247
29·267 | | | | | 4.5 | (49.2) | •• | $\mathbf{wsw}\\\mathbf{wsw}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | Pos. | ··· 2 | 0 | 0 | 0 | | | 8 | 29.342 | | | | •• | •• | 37.1 | 0.54 | W by S | 4 to 7 | | | ••• | •• | 0 | 0 | 0 | | | | 29.420 | | | | 1 1 | 8.2 | 55·0 30·8 | 0.26 | W by S | 2 to 3
2 to 3½ | wsw | 6.69 | Pos.
Pos. | 10
2 | •• | 5 | 8 | 10. | | $\begin{array}{c} 12 \\ 14 \end{array}$ | 29·484
29·545 | | | 3·8 | •• | • • | | 2.375 | W by S
W by S | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | W S W | 6.09 | ros. | | | 0 | 0 | | | | 29.608 | | | | 33.0 | 6.0 | 37.0 | 2 370 | WSW | 2 to $2\frac{1}{2}$ | | | | | 0. | ő | 1 | ∥ ∷ | | 18 | 29.648 | 38.5 | 36.1 | 2.4 | | | [.34·0] | | WSW | 1 to $1\frac{1}{2}$ | •• | | D | • : | 0 | 0 | 0 | | | $egin{array}{c c} 20 \\ 22 \\ \end{array}$ | 29·692
29·700 | | | 1·1
1·7 | 35·0 | 5·0 | •• | •• | SSW
SSW | 0 to ½ | sw | 0.80 | Pos.
Pos. | 5
2 | 7 | 8 | 10 | | | Feb. 16. 0 | 29.684 | 44.0 | 41.2 | 2.8 | | | • • | •• | ssw | 0 to 4 | | | Pos. | 2 | | • • | | | | $2 \parallel$ | 29.647 | 44.0 | 42.4 | 1.6 | | •• | | | \mathbf{ssw} |] | •• | | Pos. | 2 | | • • | | ∥ … | | 4 | 29.571 | 43.1 | 42.5 | 0.6 | 40.0 | 3.1 | •• | | . S | •• | | •• | •• | • • | 0 | 0 | 0 | | Maximum Free Thermometer. February 15^d. 22^h. The reading was lower than those of the Dry Thermometer at 2^h, 4^h, and 6^h. OSLER'S RAIN GAUGE. Feb 14^d. The rain-cistern was full and the water was frozen. ELECTRICITY. February 12^d. 22^h and 13^d. 0^h and 6^h. There were sparks at the distances of 0ⁱⁿ02, 0ⁱⁿ01, and 0ⁱⁿ02 respectively. February 14^d. 16^h. There was a spark at the distance of 0ⁱⁿ01. | 0-10. | Phases | | | |-------|-----------|---|-----| | • | of | | 1 | | 7 | the | REMARKS. | - | | • | Moon. | | | | | Moon. | | | | | | | | | 0 | | Overcast: cirro-stratus. | 1 | | 0 | •• | 11 | | | 0 - | •• | 99 | | | 0 | •• | | 1 | | 0 | •• | e and the same of | | | 0 | • • | a few stars are visible in the zenith. | - | | 6 | Transit | Cirro-stratus around the horizon; clear in and about the zenith. | 1 | | 1 | 1 ransit | Overcast: cirro-stratus: foggy: the Sun's place is visible. | - | | 0 | | Overcast: cirro-stratus: foggy. | ١ | | 5 | | Cirro-stratus and vapour principally S. of the zenith and near the horizon: the fog has cleared off considerably | . | | 1 | | since 0 ^h ; and the temperature has increased 7° ·2 since that time: there is a slight tinge of colour around the Sun. | . | | 2 | •• | Thin cirro-stratus around the horizon; clear elsewhere. | - | | 2 | •• | | ı | | 3 - | •• | Cloudy around the horizon. | 1 | | • | •• | The greater part of the sky became covered with clouds soon after 8h; at present it is nearly overcast. | | |) | •• | Overcast: cirro-stratus and scud: a few stars are occasionally visible. | | | } | •• | | | | | • • | | | | | •• | | | | , | •• | Overcast: cirro-stratus and scud: slight rain is falling. | | | | •• | Overcast: cirro-stratus and scud. siight rain is faming. | | | • | Transit | Overcast: cirro-stratus and scud. | | | | •• | | | | 1 | •• | | | | - | •• | | | | | •• | | | | - | •• | | | | . | • | Overcast: cirro-stratus and scud. | | | | • | | | | . | | | | | | | ,, a damp fog is prevalent. | | | 1 | | rain is falling heavily. | | | - | 75 | | | | 1 | Transit | Overcast: cirro-stratus: a few drops of rain are falling. [observation. | | | ľ | - MENTALL | Offic-strates and soud, a bloak now the souther, the sun is occasionary visite, the fain coupon soon area and | t | | | •• | Overcast: cirro-stratus and scud; slight breaks frequently occur: the wind is blowing in gusts to 12. | | | | •• | Cirro-stratus and scud, the latter in rapid motion from the
W.S.W.: gusts of wind to 2. | | | 1 | ••• | Cloudless: at 6 ^h . 20 ^m the clouds became dark and threatening; shortly afterwards a shower of rain fell; during this | • | | | | time the wind was blowing very frequently in gusts to $2\frac{1}{2}+$. | | | 1 | •• | Cirro-stratus and vapour: at 8 ^h . 30 ^m the sky was overcast: since 8 ^h . 40 ^m it has been generally cloudless: occasional Cloudless: the wind is blowing in gusts to 2. | L | | 1 | Perigee | the mind in blamina in grants to 1 | 1 | | 1 | - origon | 41 | | | | | the wind is blowing in gusts to 1 | Ì | | | | Overcast: very thin cirro-stratus, with a few lines of cirri, towards the E. horizon. | | | | | ,, cirro-stratus, fleecy clouds, and scud: the Sun's place is visible. | - [| | | 1 | | | | , | Transit | Overcast: cirro-stratus and scud. | | | - 1 | TIPOKTI | ,, rain has just begun to fall slightly. | - 1 | | | - Tuliste | ,, light rain is falling. | Į | | | | | | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICAL | LIN | STRI | UME | NTS. | |-------------------------|------------------|---------------|---------------|------------|--------|--------------|--|------------------------|------------|--|------------|---|-------------------------------|---|------|-------------------|-----------------------|----------------------| | Day and Hour, | Baro- | n | 387-4 | Ther- | | Point | read at 22h. | Stand of
No. 1. | From (| | From Whe | | Sign | Rea | ding | s of | | Interva
of time i | | Göttingen | meter | Dry | Wet | mom. | Dew | below
Dry | Free Therm. | (Osler's). Reading of | | ı | - Incinoni | Descent of | Electricity, | Single
Gold Leaf | ا ن | . . | . يو | recovering the same | | Astronomical Reckoning. | Cor- | Ther-
mom. | Ther-
mom. | below | Point. | Ther- | Rad. Therm. in Water of the | No. 2. Stand of No. 3. | Direction. | Pressure
in lbs. per
square
foot. | Direction. | the pencil
during the
continu-
ance of | shewn
by Dry
Pile Appa- | of Dry
Pile Appa- | 염구 | raws o
Volta I | Straws of
Volta 2. | degree
of tension | | | | | | Dry. | | mom. | Thames. | (Crosley's). | | | | eachWind, | ratus. | ratus. | | | - | discharg | | d h | in. | 40.0 | 0 | 0 | 0 | ٥ | (40.00 | in. | S by E | F from
lbs. to lbs. | | in. | | • | 0 | div. | div. | m | | Feb. 16. 6 | 29·523
29·526 | | 42·8
45·8 | | | | $\begin{pmatrix} 46.8 \\ 38.9 \end{pmatrix}$ | •• | WSW | | • • | | Pos. | 10 | 10 | 20 | 30 | :: | | 10 | 29.571 | 45.2 | 44.2 | 1.0 | 43.0 | | | 0.61 | WSW | 0 to $\frac{1}{2}$ | •• | | Pos. | 25 | 18 | 30
10 | 40
12 | | | 12
14 | 29·612
29·639 | 11 | 11 | | | •• | 50·5
36·0 | 0.15 | sw
wsw | 0 to $\frac{1}{2}$ 1 to $2\frac{1}{2}$ | •• | | Pos.
Pos. | 15
2 | | | 12 | 5. | | 16 | 29.656 | 44.0 | 42.6 | 1.4 | 40.0 | | | 2.555 | wsw | 1 to $2\frac{1}{2}$ | ••, | | Pos. | 2 | •• | | • • | •• | | 18 | 29.687 | 11 | | 1 | •• | •• | 35.5 | | WSW
WSW | 3 to 4 $\frac{1}{2}$ to 1 | • • | ••• | Pos.
Pos. | 2 2 | | | •• | •• | | 20
22 | 29·747
29·788 | | | 1 | 42.3 | 4.2 | (33.3) | :. | sw | $\begin{bmatrix} \frac{1}{2} & \text{to } & 1 \\ \frac{1}{2} & \text{to } & 1 \end{bmatrix}$ | wsw | 6.90 | | | 0 | 0 | 0 | | | Feb. 17. 0 | 29.815 | 50.0 | 46.5 | 3.5 | | | | , | sw | 1 to 2 | | | | | 0 | 0 | 0 | | | 2 | 29.795 | 54.0 | 48.9 | l | | | | | SW | 0 to 2 | wsw | 2:19 | | | 0 | 0 | | | | 4 | 29.778 | | | 1 | 45.0 | 1 . | 55·0
45·5 | •• | SW
SW | 1 to 3 | sw | 1.88 | •• | •• | 0 | 0 | 0 | ••• | | 6
8 | 29·774
29·760 | | | f | | | 45 5 | 0.61 | SW | 1 to 3 | | 1 00 | | • | 0 | 0 | 0 | | | 10 | 29.771 | 51.0 | 49.6 | 1.4 | 48.0 | 3.0 | 65.5 | 0.00 | WSW | 2 to $2\frac{1}{2}$ | WSW | 1.75 | | •• | 0 | 0 | 1 | • • • | | 12
14 | 29·784
29·780 | | | - | | | 39.0 | | WSW
WSW | $\begin{array}{c cccc} 1 & to & 4 \\ \frac{1}{2} & to & 2 \end{array}$ | ••• | | •• | | 0 | o | 1 - | | | 16 | 29.776 | 11 | 11 | 2.0 | 47.0 | 3.0 | 41.2 | 2.555 | WSW | 1 to $3\frac{1}{2}$ | | | | ••• | 0 | 0 | 1 - | •• | | 18 | 29·782
29·789 | 11 | | | | ••• | 37.5 | | SW
WSW | 1 to $3\frac{1}{2}$ 3 to $4\frac{1}{2}$ | sw | 2.35 | •• | | 0 | 0 | 1 | | | 20
22 | 29.806 | | 48.2 | | 46.0 | - 0 | •• | ··· | wsw | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | wsw | 1.48 | Pos. | 2 | | | •• | •• | | Feb. 18. 0 | 29.804 | 52.0 | 49.5 | 2.5 | | | | | sw | 1½ to 4 | | | •• | ••, | | | | | | 2 | 29.782 | | i 1 | | 40.0 |
4·0 | (55.0) | | SW
SW | $\frac{2}{11}$ to $\frac{41}{2}$ | •• | | Pos. | 2 | 0 | 0 | 0 | •• | | 4
6 | 29·761
29·735 | 11 | | 1 | 46.0 | | 42.5 | 0.61 | sw | $\frac{1\frac{1}{2}}{3}$ to 4 | •• | | | | o | 0 | 1 | | | 8 | 29.704 | 48·0 | 47.6 | 0.4 | | 1.6 | 57.0 | | SW | $\frac{2}{1}$ to $3\frac{1}{2}$ | •• | | •• | ••• | 0 | 0 | 0 | •• | | 10
12 | 29·667
29·605 | и. | | 0.1 | 46.0 | 1.6 | 35.5 | 0.01 | SW
SW | $1\frac{1}{2}$ to 4 2 to 4 | • • | | Pos. | ··· 2 | | | | | | 14 | 29.539 | | ,l • = | t | ∥ | •• | $\left \frac{1}{44\cdot 0} \right $ | 2.585 | SW | 2 to 5 | •• | | | | 0 | 0 | 1 - | | | 16 | 29.525 | ł í | 48.8 | 1 | 46.0 | 1 | 40.2 | •• | SW
WSW | 3 to 6 5 to 18 | •• | •,;• | • • | •• , , | 0 | 0 | 1 | ••• | | 18
20 | 29·540
29·685 | P1 | 14 | 1 | | | | | wsw | $3\frac{1}{2}$ to 12 | | | ••• | • | 0 | o | | • • | | 22 | 29.787 | 45.5 | 40.9 | 4.6 | 35.0 | 10.5 | | | wsw | 4 to 5 | sw | 11.55 | | • • | 0 | 0 | 0 | | | Feb. 19. 0 | | | | | | | | | wsw | 2 to 8 | • •, | - | | | 0 | 0 | 0 | | | 2 | 29.913 | 47.6 | 40.4 | 7.2 | | | ••• | | wsw | 3 to $4\frac{1}{2}$ | | | •• | | 0 | 0 | 0 | | | 4 | 29.975 | 47.5 | 40.6 | 6.9 | 11 | 16.5 | | •• | WSW
WSW | $\begin{array}{c c} 1 & \text{to } 2\frac{1}{2} \\ 1 & \text{to } 1 \end{array}$ | • • | | •• | •• | 0 | 0 | 1 | | | 6
8 | 30·020
30·060 | 45.1 | 38.6 | 4·7
2·9 | | | 37.9 | 0.61 | WSW | ½ to 1 | | | Pos. | 2 | | | | | | 10 | 30.093 | 39.7 | 37.9 | 1.8 | 35.5 | 4.2 | 59.5 | 0.00 | wsw | | | | Pos. | 2 | | | | | | 12
14 | 30·114
30·114 | | | | •• | | 31.0 | i | WSW
WSW | 0 to ½ | •• | :: | •• | •• | 0 | 0 | 1 | | | 16 | 30.103 | 39.2 | 37.7 | 1.5 | 35.0 | 1 | 44.2 | 2.585 | WSW | | •• | | | •• | 0 | 0 | 0 | | | 18 | 30.116 | | | | •• | •• | [42.0] | | WSW
WSW | •• | •• | •• | •• | •• | 0 | 0 | | •• | | 20
22 | 30·131
30·149 | | | | 37·5 | 4·0 | •• | •• | wsw | | wsw | 6.65 | Pos. | 35 | | 4 | 1 | 10. | | Feb. 20. 0 | 30.150 | | | | | | •• | •• | sw | 0 to ½ | •• | | Pos. | 30 | | 20 | | 10. | | 2 | 30.122 | 49.0 | 44.9 | 4.1 | | • • • | •• | | SW
WSW | 0 to $\frac{1}{2}$ | •• | •• | Pos.
Pos. | 10
2 | ••• | 10 | 1 | 10. | | 4 | 30.116 | 49.3 | 44.4 | 4.9 | 39.7 | 9.6 | •• | •• | **** | | •• | ••• | 1 08. | 4 | ••• | • • | | | Barometer. February 18^d . 22^h . The reading had increased by $0^{in} \cdot 247$ since 18^h . DRY AND WET THERMOMETERS. February 18^d. 2^h. Commencing with this observation the Dry and Wet Thermometers of the Royal Observatory were used, the latter having been repaired; both instruments had been compared with a standard instrument. MAXIMUM FREE THERMOMETER. February 19^d. 22^h. The reading was lower than those of the Dry Thermometer at 0^h, 2^h, and 4^h. | 10 10 10 0 0 0 0 1 1 1 1 2 10 10 10 10 10 10 10 10 10 10 10 10 10 | Phases of the Moon Equator Cransit | Overcast: cirro-strutus and scud. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | T D Observer. | |--|------------------------------------|--|----------------------| | 10 10 10 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 | of the Moon. | Overcast: cirro-strutus and scud.
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | G H
L
L
T D | | 10 10 10 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 | the Moon. | Overcast: cirro-strutus and scud. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | G H
L
L
T D | | 10 10 10 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 | Moon. | Overcast: cirro-strutus and scud. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | G H
L
L | | 10 10 10 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 | Equator | damp falling. ,, at about 15 ^m before this observation the sky was cloudless. Cloudless. , the wind is blowing in gusts to ½. ,, Cirro-stratus and light scud scattered here and there. Cirro-stratus, scud, and light fleecy clouds N. of the zenith; a portion of the sky is perfectly clear. | G H
L
L | | 10 10 10 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 | Equator | damp falling. ,, at about 15 ^m before this observation the sky was cloudless. Cloudless. , the wind is blowing in gusts to ½. ,, Cirro-stratus and light scud scattered here and there. Cirro-stratus, scud, and light fleecy clouds N. of the zenith; a portion of the sky is perfectly clear. | G H
L
L | | 10 10 0 0 0 0 0 0 1 1 1 1 1 2 10 10 10 10 10 10 10 10 10 10 10 10 10 | Equator | damp falling. ,, at about 15 ^m before this observation the sky was cloudless. Cloudless. , the wind is blowing in gusts to ½. ,, Cirro-stratus and light scud scattered here and there. Cirro-stratus, scud, and light fleecy clouds N. of the zenith; a portion of the sky is perfectly clear. | G H
L
T D | | 10 10 0 0 0 0 0 0 1 1 1 1 1 2 10 10 10 10 10 10 10 10 10 10 10 10 10 | Equator | damp falling. ,, at about 15 ^m before this observation the sky was cloudless. Cloudless. , the wind is blowing in gusts to ½. ,, Cirro-stratus and light scud scattered here and there. Cirro-stratus, scud, and light fleecy clouds N. of the zenith; a portion of the sky is perfectly clear. | G H
L
T D | | 10 10 0 0 0 0 0 0 1 1 1 1 1 2 10 10 10 10 10 10 10 10 10 10 10 10 10 | Equator | damp falling. ,, at about 15 ^m before this observation the sky was cloudless. Cloudless. , the wind is blowing in gusts to ½. ,, Cirro-stratus and light scud scattered here and there. Cirro-stratus, scud, and light fleecy clouds N. of the zenith; a portion of the sky is perfectly clear. | G H
L
T D | | 10
0
0
0
0
0
0
4
7
4
7
4
2
10
10 | Equator | cloudless. the wind is blowing in gusts to ½. ''' Cirro-stratus and light scud scattered here and there. Cirro-stratus, scud, and light fleecy clouds N. of the zenith; a portion of the sky is perfectly clear. | L
T D | | 0 0 0 0 0 1n 1 4 7 4 2 10 10 | Equator | Choudless. , the wind is blowing in gusts to ½. ,, Cirro-stratus and light scud scattered here and there. Cirro-stratus, scud, and light fleecy clouds N. of the zenith; a portion of the sky is perfectly clear. | L
T D | | 0 0 0 0 1n 1 4 7 4 2 10 10 | Equator | the wind is blowing in gusts to \(\frac{1}{2} \). ''' Cirro-stratus and light scud scattered here and there. Cirro-stratus, scud, and light fleecy clouds N. of the zenith; a portion of the sky is perfectly clear. | L
T D | | 0 0 1n 1 7 4 2 10 10 10 | Equator
Cransit | Cirro-stratus and light scud scattered here and there. Cirro-stratus, scud, and light fleecy clouds N. of the zenith; a portion of the sky is perfectly clear. | L
T D | | 7 4 Tr | Equator

Cransit | Cirro-stratus, scud, and light fleecy clouds N. of the zenith; a portion of the sky is perfectly clear. | TD | | 7 4 Tr | Cransit | Cirro-stratus, scud, and light fleecy clouds N. of the zenith; a portion of the sky is perfectly clear. | TD | | 7
4
2
10
10 | Cransit | Cirro-stratus, scud, and light fleecy clouds N. of the zenith; a portion of the sky is perfectly clear. | | | 4 T1 2 10 10 10 | Cransit | Cirro-stratus, seud, and light fleecy clouds N. of the zenith; a portion of the sky is perfectly clear. Cirro-strati, cumuli, and fleecy clouds chiefly around the horizon, the zenith being beautifully clear. | T - | | 4 T1 2 10 10 10 | Cransit | Cirro-stratis, soud, and light fleecy clouds N. of the zenith; a portion of the sky is perfectly clear. Cirro-strati, cumuli, and fleecy clouds chiefly around the horizon, the zenith being beautifully clear. | W 2 | | 2
10
10 | •• | Ciffo-sitali, cumuli, and neecy clouds chieny around the notizon, the zenith being deadling clear. | | | 10
10 | 1 | Cirro-stratus towards the N. horizon: light clouds and scud in every direction: the wind is blowing in gusts to 1. | TD | | 10 | •• | Overcast: cirro-stratus and scud: the sky became covered with clouds soon after 4^h : the wind is blowing in gusts to 3. | L | | 10 | | the wind is blowing in gusts to 1+. | | | | | e de la companya del companya de la companya del companya de la co | L | | 10 | •• | ,, a few drops of rain are falling occasionally: the wind is blowing in gusts to $\frac{2}{4}$ +. | T D | | 1 1 | •• | ,, the wind is blowing in gusts to $1\frac{1}{2}$. | | | 1 1 | •• | a few stars are faintly seen here and there. | | | 1 - 1 | •• | Cirro-stratus and dark masses of scud: the wind is blowing in gusts to 2. | 1 | | | •• | The sky is covered with cirro-stratus and masses of quickly-moving scud: the wind is blowing in gusts to 2. | TD | | 93 | • | Cirro-stratus and scud; small breaks constantly appear: frequent gusts of wind to 2. | нв | | 10 | | Cirro-stratus and quickly-moving scud: gusts of wind to 2 and 2+. | | | 10 | | Overcast: cirro-stratus and scud: the wind is blowing in gusts to 2. | н в | | 10 Tr | ransit | ,, ,, the wind is blowing in gusts to 2+. | TD | | 10 | | | , | | 10 | •• | a few drops of a misty rain are falling occasionally. | | | 1 - 1 | •• | very dark: the wind is blowing in gusts to $2\frac{1}{2}$. | T D | | , , | •• | ,, rain is falling: gusts of wind to 2 and $2\frac{1}{2}$. | н в | | | | rain is falling heavily: gusts of wind to 2. gusts of wind to 2½: the clouds are extensively broken S. of the zenith. | | | | :: | cavaral store are visible; the slav is very unsettled; guest of wind to A and A + | | | - | | ,, cirro-stratus and scud in every direction: gusts of wind to $3\frac{1}{2}$: the amount of cloud is exceedingly variable: | | | | · | soon after the last observation the wind blew in frequent gusts to 4 and 4+. | н в | | 4. | | Light fleecy clouds in every direction. | TD | | | | | | | | •• | Light fleecy clouds and scud in every direction: the wind is blowing in gusts to 2. | G H | | 1 1 | ransit | Cumuli towards the S. horizon; fleecy clouds and scud towards the W. and N.: the wind is blowing in gusts to 2. | GH | | | | Cumuli, cirro-strati, and masses of scud around the horizon in every direction: gusts of wind to 2 and $2\frac{1}{2}$. | H B
H B | | | •• | Cirro-stratus around the horizon; fleecy clouds and cirri in other directions. Cloudless: hazy. | H B | | | | * ** ** * * * * * * * * * * * * * * * | L . | | 1 | | Cloudy towards the S. horizon; clear elsewhere. | | | 1 . | | | 1 | | | | Clear about the zenith; cirro-stratus and scud in other directions. | | | | | Overcast: cirro-stratus and scud: the clouds are very thin towards the S. | | | | •• | ,, cirro-stratus. | L | | 10 . | | ,, cirro-stratus and scud. | GH | | 8 | | The greater nortion of the sky is covered with a thin cloud of the sime stratus characters in the E nortions of blue | 7.5 | | | | The greater portion of the sky is covered with a thin cloud of the cirro-stratus character; in the E. portions of blue Thin cirro-stratus about the zenith: portions of cumuli near the horizon generally. [sky are seen.] | T D
G H | | 10 | | Overcast: cirro-stratus and scud: a few drops of rain have just fallen. | TD | | . 1 | | and the state of t | 1 1 | Maximum Free Thermometer. February 17^d. 22^b. The reading was 50°, which is evidently wrong; the inferred reading is 55° 0, which value is used in subsequent calculations. ELECTRICITY. February 18d. 0b. The apparatus was lowered for examination, and hence no observation could be taken. | | | | | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICAL | LIN | STR | UME | NTS. | |-------------------------------------|--------------------------|---------------|----------|---------------|-------|----------------------|--|--------------------------------------|-----------------|--|------------|--|---|---|-------|-----------------------|----------|--| | Day and Hour, | Baro- | | | Ther- | | Point | read at 22h. | Stand of
No. 1. | From (| | From Whe | - 1 | Sign | Re | ading | s of | | Interval
of time in | | Göttingen | meter | Dry | | mom. | Dew | below | Free Therm. | (Osler's). Reading of | Anemo | meter. | Anemom | Descent of | Electricity
as | Single | | . | of
2. | recovering
the same | | Astronomical Reckoning. | Cor-
rected. | Ther-
mom. | | below
Dry. | ll. | Dry
Ther-
mom. | Rad. Therm.
of Therm. in
Water of the
Thames. | No. 2. Stand of No. 3. (Crosley's). | Direction. | Pressure
in lbs. per
square
foot. | Direction. | the pencil
during the
continu-
ance of
eachWind. | shewn
by Dry
Pile Appa-
ratus. | Single
Gold Leaf
of Dry
Pile Appa-
ratus. | 염백 | Straws of
Volta 1. | Straws o | degree
of tension
after
discharge | | d h | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | | from
lbs. to lbs. | | in. | | 0 | 0 | div. | div. | m 8 | | Feb. 20. 6 | 30.117 | 46.9 | 1 | | • • • | •• | (51.9) | ••• | SSW | •• | | | Pos. | 2 | • • | •• | | | | 8
10 | 30·117
30·133 | 44.6 | 1 | _ | 40.0 | 3·5 | 39.2 | 0.61 | SSW
SSW | •• | •• | | Pos. | 25
15 | 30 | 40
10 | 50
20 | 15. 0 | | 12 | 30 137 | 43.2 | | - | 400 | | | | SSW | • • • • • | | | Pos. | 15 | | 10 | 12 |
5. 0 | | . 14 | • • | | | | ٠. | •• | 62·0 36·5 | 0.00 | SSW | •• | •• | | | • • | | • • | | | | 16 | • • | •• | •• | •• | • • | •• | | 2.585 | SSW | •• | •• | •• | •• | •• | •• | •• | ••• | •• | | 18
20 | •• | • • • | | •• | •• | •• | 44.0 | 2 303 | SW
SW | :: | | •• | ••• | | | | | | | 22 | 30.148 | 46·5 | и | 1.6 | | •• | (43·2 J | | ssw | •• | sw | 5.27 | •• | •• | 0 | 0 | 0 | | | Feb. 21. 0 |
30·168 | 48·5 | 45.77 |
2·8 | •• | •• | •• | ••• | wsw
wsw | ½ constant | •• | ••• | | •• | | | | •• | | 4 | 30 108 | 40.0 | 45.7 | 2.0 | | | | •• | WSW | : | | | ••• | | | | | | | 6 | •• | | | | | •• | (45'8) | •• | wsw | | •• | | | | | | | | | 8 | •• | ••• | •• | •• | ٠. | •• | 42.4 | 0.61 | WSW | •• | ••• | | | •• | •• | • • | • • | | | 10
12 | •• | ••• | ••• | •• | •• | •• | | 0.61 | WSW
W by S | •• | •• | •• | ••• | •• | ••• | • • | • | •• | | 14 | 30.179 | 45.1 | 44.4 | 0.7 | | | 51.3 | 0.00 | W by S | | | | Pos. | 15 | | 20 | 30 | | | 16 | 30.180 | 45.1 | 44.4 | 0.7 | 44.0 | 1.1 | 36.0 | - | wsw | | | | Pos. | 10 | 10 | 8 | 20 | | | 18 | 30.200 | 45.2 | 1 | 0.7 | •• | ••• | 44.0 | 2.585 | WSW | | •• | ••• | Pos. | 2 | ••• | • • | • • | • • | | 19
20 | 30·203
30·209 | 45·7
45·9 | 1 | 1.1 | ••• | •• | 43.5 | | WSW
W by S | •• | •• | | Pos. | 10 | 10 | 8 | 20 | 10. 0 | | 21 | 30.225 | 45.7 | 1 | 1.2 | | •• | | | wsw | | | | | | | | | 10. 0 | | 22 | 30.204 | 46.0 | | 1.2 | 43.0 | 3.0 | | | wsw | | | | Pos. | 2 | • • | •• | •• [| | | 23 | 30.206 | 46.0 | 44.4 | 1.6 | •• | •• | •• | •• | WSW | | WSW | 2.95 | •• | •• | •• | ••• | •• | • .• | | | 30.206 | 46.1 | ì | 1.3 | | •• | | | WSW | | •• | | Pos. | 30 | •• | 20 | 30 | 4. 0 | | $egin{array}{c} 1 \\ 2 \end{array}$ | 30·206
30·188 | 46·0
45·6 | ! | 1.3 | • • • | •• | | ••• | WSW
WSW | •• | •• | •• | Pos. | 15 | | 12 | 15 | 7. 0 | | 3 | 30.186 | 45.5 | 1 | - 1 | | • • | | | wsw | | | | | | | | | | | 4 | 30.185 | 45.5 | 1 | 1 1 | 41.0 | 4.2 | ٠ | | \mathbf{w} | | •• | | Pos. | 10 | 15 | 10 | 20 | | | 5 | 30.185 | 45.3 | Į. | - 1 | • • | •• | •• | ••• | W | •• | •• | •• | •• | •• | 0 | | 0 | •• | | 6
8 | 30·190
30·187 | 44·9
44·1 | | 1·0
0·4 | | | (46.3) | | W by N
WNW | ••• | | •• | | | 0 | 0 | 0 | •• | | 9 | 30.181 | 44.0 | | | | | 38.0 | 0.61 | WNW | | | | | | | • • | • • | | | 10 | 30.176 | | | - 1 | 43.0 | 1.6 | 10.5 | | WNW | •• | • • | | Pos. | 10 | 30 | 20 | 40 | 10. 0 | | | 30·175
30·177 | | | | • • • | •• | 35·0 | 0.00 | WNW | •• | •• | ••• | Pos. | 20 | •• | 12 | 15 | 7. 0 | | 13 | 30.171 | 44.2 | 43.2 | 1.0 | | ••• | | 0.505 | WNW | ••• | | | 1 05. | | | ••• | • • | 7. 0 | | 14 | 30.167 | 44.4 | 43.2 | 0.9 | | •• | 44.0 | 2.585 | WNW | | | | Pos. | 25 | •• | 20 | | 5. 0 | | | 30.165 | | | | 49.0 | 0.6 | L 43·5 J | •• | WNW | •• | •• | | Don I | 15 | •• |
10 | 12 | | | | 30·157
30·148 | | | | 1 | 0.6 | | •• | W N W
E by S | | :: | :: | Pos. | 15 | • • | 10 | 12 | 5. 0 | | | 30.144 | | | | | | | | E by S | | :: | | Pos. | 15 | •• | 10 | | 7. 0 | | 19 | 30.144 | 41.5 | 41.0 | 0.2 | | ٠. | | •• | E by S | | | | •• | ••, | | •• | •• | •• | | | 30.152 | | | | 1 | 0.6 | •• | •• | E by S | 0 to $\frac{1}{2}$ | •• | | •• | •• | 0 | 0 | 0 | •• | | | 30·158
30·15 7 | | | | 39.0 | 0.6 | | | E by N | •• | Ë | 0.50 | •• | •• | | •• | •• | | | Feb. 23. 0 | 30·150 | 40.9 | 40.2 | 0.7 | | •• | •• | •• | ESE | | | | | •• | 0 | 0 | 0 | | | 1 | 30.157 | 40.4 | 39.1 | 1.3 | | •• | | | E | 1 1 | •• | •• | | | •• | ••• | •• | •• | | | 30·140
30·127 | | | | 1 1 | •• | | •• | E
E | 0 to $\frac{1}{2}$ | •• | •• | Pos. | 2 | • • | •• | | •• | | 3 | 00 127 | 41 1 | 00.0 | 20 | •• | •• | •• | •• | ند | •• | •• | •• | •• | | • ; • | • | | •• | Dry Thermometer. February 22^d . 20^h . The reading was lower than that of the Wet Thermometer. MAXIMUM FREE THERMOMETER. February 21^d. 22^h. The reading was lower than that of the Dry Thermometer at 2^h. | Transit Transit Overcast: cirro-stratus and seud: a light rain has commenced falling. [whose diameter is about 28' Overcast, with very thin cirro-stratus, through which the Moon and the principal stars are visible. There is a lunar hale overcast: cirro-stratus and seud: the Moon's place is visible, and some of the principal stars. Overcast: cirro-stratus and seud. Transit Overcast: cirro-stratus and seud: misty. Transit Transit Overcast: cirro-stratus and send: misty. Transit: Overcast: cirro-stratus and send: misty. Overcast: cirro-stratus and send: misty. Overcast: cirro-stratus and send: misty. Overcast: cirro-stratus and send: misty. Overcast: cirro-stratus and send: misty. Overcast: cirro-stratus and send: misty. | Phases
of
the
Moon. | | | | | | R E | MARKS | | | | | | |--|------------------------------|---------------------------------------|------------------------|----------------------|------------------------|---|--|--|-----------------|-----------------|-----------------|---------------------------------|------------------------| | Overcast: cirro-stratus and soud. Transit Overcast: cirro-stratus and soud: misty. Overcast: cirro-stratus and soud: misty. Transit T | | Overcast:
Overcast: | : cirro-st
with ver | ratus an
y thin c | d scud :
cirro-stra | a light rainatus, through | n has con
h which the
s place is | menced fallin
he Moon and s
visible, and s | g.
the princ | cipal stars are | [whose visible. | diameter is al
There is a lu | oout 25°.
nar halo, | | Overcast: cirro-stratus and soud. Transit Overcast: cirro-stratus and soud: misty. Overcast: cirro-stratus and soud: misty. Transit ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1 | i | · OHIO BU | | a south | 1110 1120011 | o place is | 1101010, 011010 | | no brinospin | Stars. | | | | Overcast: cirro-stratus and soud. Transit Overcast: cirro-stratus and soud: misty. Overcast: cirro-stratus and soud: misty. ''' ''' Transit ''' ''' ''' ''' ''' ''' ''' | .} •• | ., | | | | | | | | | | | | | Overcast: cirro-stratus and scud. Transit Overcast: cirro-stratus and scud: misty. Overcast: cirro-stratus and scud: misty. Transit T | 1 | | | 4 - | .4 | | | | | 4 | | | | | Overcast: cirro-stratus and scud. Transit Overcast: cirro-stratus and scud: misty. Overcast: cirro-stratus and scud: misty. Transit T | Į. | | ₹ • | | t. | | | | | * . | | | | | Overcast: cirro-stratus and soud. Transit Overcast: cirro-stratus and soud: misty. Overcast: cirro-stratus and soud: misty. a slight rain is falling. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ſ | | | • • | | 4 2 | | | | | | | | | Overcast: cirro-stratus and soud. Transit Overcast: cirro-stratus and soud: misty. Overcast: cirro-stratus and soud: misty. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | , • | , | | | * | | | | | | | Transit 1st Qr. ,,, ,,, ,,, Overcast: cirro-stratus and scud: misty. Transit ,, ,,, ,, ,,, ,,, ,,, ,,, ,,, | i | | | | 1 1 | | | | * * | | | | | | Transit | 1 | Overcast: | cirro-sti | ratus an | a scua. | | | | | | | | | | 1st Qr. | | | | | • • | | | | • | A 5 5 | | | | | Ist Qr. | l | | | | | | | • | | . * | | | | | Ist Qr. | ' | | | · | | . 4 | | | | | | | | | 1st Qr. Overcast: cirro-stratus and soud: misty. | | | | | ٠ | | | | | • • • | | | | | Overcast: cirro-stratus and send: misty. Overcast: cirro-stratus and send: misty. | | ,,, | , | | | ¢ | | | | | | | | | Overcast: cirro-stratus and scud: misty. | | 1 | | | | | | | | | | | | | Overcast: cirro-stratus and scud: misty. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | · · | | e 4 | | | 9 4 | | | | * | | | | | Overcast: cirro-stratus and scud: misty. ''''''''''''''''''''''''''''''''''' | | ,, | 4 | | ٠ | . • | | | | 6 , • | | | | | Overcast: cirro-stratus and soud: misty. ''''''''''''''''''''''''''''''''''' | | | | | * * | | | | | | | | | | Transit ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, , | | , ,
| ` | • • | | • • | | | | | | | | | Transit ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, , | | 0 | .: | | | | | | | | | | | | Transit ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, , | | Overcast: | cirro-str | atus and | a scua : | misty. | | | 4. | | | | | | Transit ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, , | | ,, | | , , | | | | | | | | | | | Transit ,,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, | • • | | | | | | | | | | | | | | Transit ,, ,, a slight rain is falling. , ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, | | , , | | 2,5 | | + 4 | | | | | | | | | Transit ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, | | | | •• | | a slight rai | n is fallin | g. | | * | | | | | , ,, ,, foggy; the fog has come up since 19 th , ,, ,, foggy; the fog has come up since 19 th Overcast: cirro-stratus and scud. | | | | | | <i>0</i> | | | | | | | | | Overcast: cirro-stratus and scud. | • .• | | | v - w | | | | | | 4 . 4 | | | | | , ,, ,, foggy; the fog has come up since 19 ^h , ,, ,, foggy; the fog has come up since 19 ^h Overcast: cirro-stratus and scud. | | . ,, | | 2 ,9 | | | | | | | | | | | Overcast: cirro-stratus and scud. | | | * | | | * * | | | 4 + | | | | | | Overcast: cirro-stratus and scud. | | , | | • • | | 4.4 | | | | | | | | | Overcast: cirro-stratus and scud. | | · v | | 22 | . 4 | * 1 | | | | | | | | | Overcast: cirro-stratus and scud. | | | | | | | | - / | | | | | | | , ,, foggy; the fog has come up since 19 th Overcast: cirro-stratus and scud. | | ,, | | > 7 | | . • | | | | | | | | | Overcast: cirro-stratus and scud. | | ,, | | ,, | | • • | | | | | | | | | Overcast: cirro-stratus and scud. | | | | | | forger . Al | for here | omo | 104 | | | | | | Overcast: cirro-stratus and scud. | | | | | | roggy; me | rog mas c | ome uh since | 15. | V (1) | | | | | Overcast: cirro-stratus and scud. | | · · · · · · · · · · · · · · · · · · · | | ,, | | v | | | | • • | | | | | •• | | | • | | | • | | | | | | | | | •• •• •• •• •• •• •• •• •• •• •• •• •• | | Overcast: | cirro-stra | atus and | scud. | * | - 1 | , , | | | * * | | | • • | | | | | | | • | | | | | | | | | | | | | | | • | | | | | | | - | | | | | | | | | | | | | • | • | | | | | | | | | | | | | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICA | LIN | STR | UME | NTS. | |--------------------------------------|------------------|----------------|--------------|------------|--------|--------------|--|------------------------------------|--------------|---------------------------------------|------------|--|--------------------------------|-------------------------------|----------------------|-----------------|------------|--------------------| | Day and Hour, | Baro- | _ | | Ther- | | Point | read at 22h. | Stand of
No. 1. | From (| | From Whe | | Sign | Re | ading | s of | | Interva
of time | | Göttingen | meter | Dry | Wet | mom. | Dew | below | Free Therm. | (Osler's). Reading of | Anemo | meter. | Anemom | ı | Electricity,
as | Single | | : | | recovering | | Astronomical | cor- | Ther- | Ther- | below | Point. | Dry
Ther- | Rad. Therm. | No. 2. | | Pressure
in lbs. per | | Descent of
the pencil
during the | shewn | Single
Gold Leaf
of Dry | Leaf | s 1. | 2 S. | degree | | Reckoning. | rected. | rom. | mom. | Dry. | | mom. | of Therm. in
Water of the
Thames. | Stand of
No. 3.
(Crosley's). | Direction. | square
foot. | Direction. | continu-
ance of
each Wind. | by Dry
Pile Appa-
ratus. | | Denble
Gold Leaf. | Straws of Volta | Straws | after
discharg | | d h | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | | from
lbs. to lbs. | | in. | D | 0 | ٥ | div. | div. | ın | | Feb. 23. 4 | 30.137 | | 37.3 | 2.7 | 34.0 | 6.0 | •• | •• | E | • • | •• | | Pos. | 2 | •• | • • | •• | • • | | 5 | 30.126 | 1 | 36.5 | 2.8 | •• | •• | (44.7) | | E
E | 0 to 1 | •• | ••• | ••• | <i>i</i> • | 0 | 0 | 0 | | | 6
8 | 30·121
30·126 | 38.6 | 36·2
35·5 | 2·4
2·5 | •• | •• | 29.1 | 0.61 | ESE | 0 to $\frac{1}{2}$ 0 to $\frac{1}{2}$ | • • | | | | 0 | 0 | o | 1 | | 10 | 30.107 | | 35.5 | 1.8 | 33.5 | 3.5 | | 001 | E | ••• | | | | | 0 | 0 | .0 | | | 12 | 30.107 | 1 1 | 32.2 | 0.2 | •• | | 44.5 | 0.00 | E | •• | | | | •• | 0 | 0 | .0 | | | 14 | 30.096 | | | 1.8 | •• | | 22.5 | | ESE | •• | •• | | •• | • • • | 0 | 0 | 0 | • • | | 16 | 30.085 | | 29.7 | 1.8 | 25.0 | 6.2 | 43.8 | 2.585 | ESE | | •• | •• | •• | •• | 0 | 0 | 0 | | | 18 | 30.083 | | 28.6 | 1.9 | •• | •• | 43.0 | •• | ESE | •• | •• | •• | •• | ••• | 0 | 0 | 0 | "" | | $egin{array}{c} 20 \ 22 \end{array}$ | 30·096
30·108 | | 28·6
31·2 | 2·8 | 25.0 | 9.0 | | •• | E
E | •• | Ë | 4.50 | • • | | 0 | 0 | 0.0 | | | 42 | 90 108 | 9-£ U | 01.2 | 40 | 40 U | 90 | •• | | 15 | •• | 1 | - 00 | •• | | | ľ | | | | Feb. 24. 0 | 30.102 | 39.2 | 31.7 | 7.5 | | | | | ESE | 0 to 1 | • • | | Pos. | 5 | 8 | 5 | 10 | | | 2 | 30.084 | ι. ι | 32.7 | 7.3 | •• | | | | ESE | 0 to 1 | •• | | Pos. | 5 | 8 | 5 | 10 | • • | | 4 | 30.060 | 37.7 | 33.6 | 4.1 | 26.5 | 11.2 | (40.2) | | E | 0 to $\frac{1}{2}$ | •• | •• | Pos. | 30 | | 10 | 20 | | | 6 | 1 1 | | 31.6 | 3.1 | •• | | 29.0 | 0.61 | E | •• | •• | ••• | Pos. | 2 | • • | • • | • • | | | 8 | 30.059 | | 29.7 | 1.8 | 25.0 | | 51.0 | | Calm | •• | •• | • • • | Pos.
Pos. | 20
30 | | 5
10 | . 8
10 | | | 10
12 | 30·059
30·055 | 30·6
29·7 | 28.6 28.2 | 2·0
1·5 | 25.0 | 5.6 | 51.8 | 0.00 | Calm
Calm | •• | •• | • | Pos. | 10 | | 20 | 40 | | | 14 | 30.043 | 1 1 | 29.2 | 2.0 | | | 19.5 | | Calm | | | | Pos. | 2 | | | | | | 16 | | | 29.1 | | 23.0 | 8.5 | 42.8 | 2.585 | Calm | | :: | | | | 0 | 0 | 0 | | | 18 | 30.027 | | 28.6 | 2.0 | • • | | 42.0 | | ESE | | | | | ••• | 0 | 0 | . 0 | | | 20 | 30.027 | 30.8 | 29.2 | 1.6 | | | ••• | | ESE | •• | | | | ••• | 0 | 0 | - 0 | | | 22 | 30.044 | 34.8 | 31.5 | 3.3 | 26.0 | 8.8 | •• | •• | E | •• | E | 2.90 | •• | •• * * | 0 | 0 | 0 | | | Feb. 25. 0 | 30.038 | - 1 | - 1 | 5.6 | | | •• | •• | E | •• | •• | •• | Pos. Pos. | 2
2 | • • | • • | $ \cdots $ | •• | | 2
4 | 30·023
29·999 | 40·3
39·7 | 34·6
33·9 | 5·7
5·8 | 99.0 | 10.0 | (41.5) | •• | ENE
ENE | ••' | ••• | • • | 1 1 | | 0 | 0 | 0 | | | 6 | 29 999 | 1 1 | 31.1 | 3.7 | 22.0 | - 11 | $\begin{bmatrix} 41.5 \\ 27.9 \end{bmatrix}$ | | Calm | | | | | ••• | o | 0 | .0 | | | 8 | 1 | 32.0 | 29.5 | 2.5 | | | | 0.61 | Calm | | | | Pos. | 20 | | 30 | 50 | 20. | | 10 | | 30.4 | 28.6 | 1.8 | 24.0 | 6.4 | 58.2 | 0.00 | Calm | | |]] | Pos. | 20 ; | | 40 | 60 | | | 12 | 29.985 | 30.0 | 28.6 | 1.4 | | • | \begin{aligned} 15.5 | 0.00 | Calm | •• | | •• | Pos. | 30 | • • | 20 | 20 | 6. | | 14 | 1 - 1 | | 27.6 | 1.4 | • • | • • | | 2.585 | Calm | •• | NE | 1.10 | Pos. | 2 | ••• | •• | | • • | | 16 | 1 1 | | 27.5 | | 24.0 | 4.5 | 42.0 | 2 505 | Calm | •• | •• | •• | Pos. | 2 | | 20 | 20 | ••• | | 18
20 | 29·955
29·959 | $31.0 \\ 32.0$ | 29·5
30·9 | 1·5
1·1 | ••• | •• | (41.0) | •• | Calm
Calm | •• | ••• | 1 | Pos. Pos. | 30
40 | | 30 | 30 | 2.
1. | | | 29 939 | | | | 28.5 | 5.6 | ••• | | Calm | •• | NNW | 0.32 | Pos. | 40 | | ı | 140 | 1 | | Feb. 26. 0 | 29.981 | 38.2 | 36.2 | 2.0 | | | | | NE | •• | | | Pos. | 30 | | 30 | 30 | | | 2 | 30.000 | | | 2.6 | | | | | ESE | •• | • • | | Pos. | 30 | | 20 | 20 | 15. | | | 30.012 | | | | 30.5 | | (40.4) | | E | •• | •• | •• | Pos. | 25 | ••• | 20 | | 1 | | | 30.039 | | | | 21.0 | 1 | 27.2 | 0.61 | E | •• | •• | •• | Pos. | ••• | 30 | 30
10 | 35 | | | | 30·046
30·029 | | | 2·1
1·4 | 24.0 | 5·0 | 55.5 | | ENE
ENE | •• | •• | | Pos. | 12 | • • | 10 | 1.2 | 15. | | | 30.029 | | | 0.9 | 24.0 | | 19.2 | 0.00 | ENE | •• | •• | | Pos. | 2 | | | | | | | 30.008 | | | 1.3 | | | | 0:505 | NNE | | | | Pos. | 2 | | •• | | | | | 29.978 | | | 0.7 | | | 41.5 | 2.585 | NNE | •• | | | Pos. | 2 | • • | ,• • | | | | | 29.971 | | | 1.9 | | | 〔39·2 | | ENE | •• | •• | | Pos. | 2 | | | ••• | •• | | | 29.976 | | | 2.8 | ••• | | •• | | E by N | •• |
T | 0.25 | Pos. | 20 | 12
10 | 7 | •• | •• | | 22 | 29.996 | 31.3 | 28.3 | 3.0 | 20.0 | 11.3 | •• | •• | ENE | •• | E | 2.35 | Pos. | • • | 10 | • • | | | | | 30.002 | | | 1.7 | | | • • | | E | 0 to $\frac{1}{2}$ | •• | •• | Pos.
Pos. | 2 · · · 2 | · · 5 | • • | | | | 2 | 29.986 | 21.4 | 28.3 | 3.4 | • • | • • | •• | | _ L | • • | •• | •• | _ ± ∪s. | - | ر ا
ا | ••• | • • | | Dew Point Thermometer. February $26^{\rm d}$. $16^{\rm h}$. The observation was inadvertently omitted. Henley's Electrometer. February $25^{\rm d}$. $22^{\rm h}$. The reading was $3^{\rm o}$. | 0 | of the Moon. Transit Greatest declination N. | REMARKS. Overcast: cirro-stratus and scud: the Sun has been occasionally visible since 2 ^h , | | |---|---
---|-----| | 0 | Moon. Transit | | | | 0 | Transit | Overcast: cirro-stratus and scud: the Sun has been occasionally visible since 2 ^h , | - | | | Transit | Overcast: cirro-stratus and scud: the Sun has been occasionally visible since 2 ^h , | - - | | | Transit | Overcast: cirro-stratus and scud: the Sun has been occasionally visible since 2 ^h , | | | | Transit | Overcast: cirro-stratus and scud: the Sun has been occasionally visible since 2 ^h , | | | | Greatest dccli- | | 1 | | | Greatest dccli- | | | | | Greatest dccli- | த் நக்கு ந தி பார்க்கு நக்கு பார்க்கு பார்க்கு மார்க்கு முறிய வருக்கு நக்கு நக்கு முறிய வருக்கு நக்கு முறிய வருக | | | | Greatest decli-
nation N | ,, , , , [the sky suddenly became nearly free from clouds at 9 ^h . 50 ^m . | | | 1 | | Cirro-stratus, cumulo-stratus, and scud, chiefly around the horizon; every other part of the sky is beautifully clear: | | | | ••• | Cloudless. | | | | • • • | المنافع المنافع والمعافرة والمعافرة والمنافع والم | | | | | the second of the group of the control of the second of the second of the second of the control of the control of the second | | | | • • • | ,, the night has been unusually clear. | | | | | the second second great and the control of the second second second second second second second second second | | | 1 | • • • | | - | | 1 | | 01 | 1 | | 1 | • * • | Cloudless. | 1 | | | • • • | and 🕶 🗝 and the second second second and the second second and the second second second and the second second | | | | • • • | Cimi sing annuali sing starti and garana | 1 | | 1. | The maid | Cirri, cirro-cumuli, cirro-strati, and vapour. Fleecy clouds and cirro-strati in every direction. The Moon is occasionally surrounded by an imperfectly coloured corona. | ١ | | 1 | Transit | Fleecy clouds and cirro-strati in every direction. The moon is occasionary surrounded by an imperiectly coloured corona. Fleecy clouds and cirro-strati; the latter are distributed principally in the E. | | | 1 | • • | Fleecy clouds and chro-strati; the latter are distributed principally in the E. | 1 | | | • • | Overcast: cirro-stratus and scud. | 1 | | | • • • | Overcast, with very thin cirro-stratus, | - | | - | • • | Overcast: cirro-stratus and scud. | 1 | | | • • | Overcast. Unit-states and some. | ١ | | | • • | Cirro-stratus, light soud, and fleecy clouds. | | | | | | - | | 1 | | Cirro-strati and finely-formed cumuli are scattered over the sky. | 1 | | | | A few detached portions of cumuli are scattered over the sky. | | | 1 | | Cirro-stratus: the sky is clear towards the W. | | | | • • | Overcast, with thin cirro-stratus broken in every direction. | | | 1 | | Cirro-stratus: the sky is clear towards the N.W. | 1 | | 1 | Transit | Overcast, with thin fleecy clouds broken in every direction. | | | | | Cirro-stratus, cumulo-stratus, and scud. A coloured corona is visible around the Moon. | | | 1 | | The sky near the Moon's place is clear. [in and near the zenith. | | | | •• | Cirro-stratus all around the horizon to a considerable altitude: detached portions of cirri and fleecy clouds are scattered | | | | •• | Overcast: cirro-stratus: snow is now falling; it commenced at about 17h. 15m. | | | | •• | the snow ceased at 18 ^h . 50 ^m . | | | 1. | ••• | Fleecy clouds: cirro-stratus and scud. | 1 | | 1 | | [22 ^h . 40 ^m a shower of snow fell. Cirro-stratus and scud: breaks of considerable extent in the N.E.: the sky became overcast at about 22 ^h . 10 ^m ; and at | | | 1 | •• | ,, a remarkable gloom has prevailed since the last observation: the clouds towards the N. were | | | 1 | •• | Cirro-stratus, cumulo-stratus, and scud: clear breaks S. E. of the zenith. [exceedingly dark and threatening at 1 ^h . | | | 1 | • • | A few thin clouds are scattered about the sky. | - | | | •• | Cloudless. | - | | , | Transit | Cirro-stratus, cumulo-stratus, and scud. | | | | 1 | Cumulo-stratus, cumulo-stratus, and sedd. Cumulo-stratus in the S. horizon, and near the place of the Moon; every other part of the sky is clear. | 1 | | 1 | • | Broken masses of fleecy clouds and scud in every direction. | ١ | | | i | Cirro-stratus and scud: snow commenced falling at about 15 ^h , and still continues falling slightly. | | | | | Overcast: cirro-stratus and scud. | | | | | | | | | :: | a few small flakes of snow are occasionally falling. | | | | • 1 | 2) A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A | | | | | Cirro-stratus and scud: snow is falling slightly, | 1 | | | | Overcast: snow is falling slightly. | | ELECTRICITY. February 25^d, 20^h and 22^h. There were sparks at the distance of 0ⁱⁿ·03. | | | | | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | ECTRICA | L IN | STR | UME | ENTS. | |---|--------------------|--------------|--------------|---------------|--------|---------------|---|--------------------------------------|-----------------|--|------------|--|---|---|----------------------|-----------------------|-----------------------|--| | Day and Hour, | Baro-
meter | Dry | Wet | Ther- | | Point | read at 22h. | Stand of
No. 1. | From (
Anemo | | From Whe | | Sign | Re | ading | s of | | Interval
of time in | | Göttingen
Astronomical | Cor- | 1 1 | Ther- | mom. | Dew | below
Dry | Free Therm. | (Osler's). Reading of No. 2. | Tinemo | ı ——— [| - Inchor | Descent of | Electricity, | Single | 4 | . | . . | recovering the same | | Reckoning. | rected. | mom. | mom. | below
Dry. | Point. | Ther-
mom. | Rad. Therm. in Water of the Thames. | No. 2. Stand of No. 3. (Crosley's). | Direction. | Pressure
in lbs. per
square
foot. | Direction. | the pencil
during the
continu-
ance of
eachWind. | shewn
by Dry
Pile Apps-
ratus. | Gold Leaf
of Dry
Pile Appa-
ratus. | Double
Gold Leaf. | Straws of
Volta 1. | Straws of
Volta 2. | degree
of tension
after
discharge | | d h | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | | from
lbs. to lbs. | | in. | | 0 | 0 | div. | div. | m 5 | | Feb. 27. 4 | 29.966 | 33.2 | 30.1 | 3.1 | 23.0 | 10;2 | (34.1) | | E | 0 to 1 | E | 0.55 | Pos. | 20 | | 12 | 15 | 10. 0 | | 6
8 | 29·961
29·976 | 30·2
28·5 | 28·7
25·7 | 1·5
2·8 | | :: | 26.7 | 0.61 | ESE
ENE | 1 | ESE | 1.08 | Pos. Pos. | 4 2 | 5 | 10 | | ••- | | 10 | 29.991 | 29.3 | 27.1 | 2.2 | 22.0 | | 40.6 | | ENE | :: | | •• | Pos. | 25 | | 15 | 12 | 15. 0 | | 12 | 30.009 | 29.2 | 27.3 | 1.9 | •• | •• | 19.0 | 0.00 | ENE | | | | Pos. | 30 | •• | 12 | 15 | 13. 0 | | 14
16 | ••• | •• | | | | | | 2.585 | ENE
NE | •• | •• | •• | •• | | • • | •• | | ••• | | 18 | | | | | | | 40.2 | 2 000 | NE | | .: | | :: | | | • • | | | | 20 | | | • • | | • • • | •• | (37.8) | | ENE | •• | | | _•• | | | • • | ٠,٠ | | | 22 | 20.100 | 32·7
34·8 | 31·4
31·8 | | • • | •• | •• | ••• | ENE
E | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | SE | 0.92 | Pos.
Pos. | 10
2 | •• | 5 | .8 | • • | | 23 | 30.109 | 94 0 | 91 8 | | | •• | •• | ••• | IE. | 1 10 02 | SE | 0.92 | ros. | 2 | •• | •• | • | • | | Feb. 28. 0 | | | | | ••• | • • | •• | | ENE | 1 to 3 | | | | | •• | • • | •.• | •• | | 2 | •• | •• | •• | •• | •• | •• | (38.6) | •• | NE
NE | 1 to 3 0 to $\frac{1}{6}$ | •• | •• | •• | ••• | •• | • • | •,• | •• | | 4
6 | | | | | | | 31.6 | | NE
NE | 0 to $\frac{1}{2}$ | | | | | | • • | | | | 8 | 30.110 | 34.0 | 32.2 | 1.8 | •• | • • | | 0.61 | NE | 0 to $\frac{1}{2}$ | NE | 1.40 | Pos. | 1 | 3 | | •• | | | 10 | · · · | { · · | •• | •• | •• | •• | 51.0 | 0.00 | NNE | 1/2 to 2 | ••• | •• | •• | •• | •
• | •• | •• | •• | | 12
14 | 30.127 | 35.9 | 33.8 | 2.1 | | | 27.0 | | NNE
NNE | 0 to 1 | | | Pos. | 3 | 5 | • • | | :: | | 16 | 30.123 | 35.1 | 34.6 | | 33.0 | | 39.2 | 2.585 | NNE | 2 | | | Pos. | 2 | | | •, •, | | | 18 | 30.146 | 35.5 | 34.6 | | ••• | •• | ∟36·2 ∫ | | NNE | | | •• | Pos. | . 1 | 3 | •• | •. • . | •• | | $\begin{array}{c} 20 \\ 22 \end{array}$ | 30·172
30·194 | 34·0
36·3 | 33·0
34·1 | | 32.0 | 4.3 | | •• | NNE
NNE | | NNE | 2.95 | Pos. | | 0 | | 0 | | | | 00 10 1 | | | | | | | •• | | | 2,11,1 | | • | | | | | '` | | Mar. 1. 0 | 30.225 | | 35·2
35·7 | | •• | •• | •• | •• | NE | $\begin{array}{c cccc} 0 & to & \frac{1}{2} \\ 0 & to & \frac{1}{2} \end{array}$ | •• | ••• | •• | •• | 0 | 0 | 0 | •• | | $\begin{array}{c c} 2\\ 4 \end{array}$ | $30.220 \\ 30.217$ | 38·5
38·9 | 11 : | 1 1 | 30.5 | 8.4 | (38.87) | • • • | NE
NE | 0 to $\frac{1}{2}$ | | | Pos. | 8 | 5 | 5 | 5 | 30. 0 | | 6 | 30.230 | 1 1 | 11 | 2.6 | ••• | • • | 31.6 | 0.61 | NE | | | | Pos. | 1 | 3 | •• | | | | 8 | 30.263 | 1 1 | i i | 1 1 | 31.5 | 4.3 | 49.0 | 0 01 | NNE | | | •• | Pos. | 30 | ••• | 10 | 10 | | | 10
12 | 30·293
30·295 | | | | 01.0 | 4.0 | 42.0 23.5 | 0.00 | NNE
NNE | :: | • | :: | Pos.
Pos. | 30
2 | | 10 | 10 | ••• | | 14 | 30.302 | 34.0 | 32.4 | | •• | | | 2.590 | NNE | | | | Pos. | 2 | | • • | • | :: | | 16 | 30.300 | | ll . | 0.4 | 31.0 | | 38.5 | 2 380 | NNE | | •• | ••• | | •• | 0 | 0 | 0 | • • | | 18
20 | 30·312
30·352 | 35.3 | | | | | ₹36.0 } | ••• | NNE
N | • • | •• | :: | | | 0 | 0 | 0 | ••• | | 22 | 30.361 | 39.0 | 36.7 | 2.3 | | | | | Ñ | | NNE | 1.55 | | | 0 | | | | | | | | | | | | | | NUNTER | 0 40 1 | | | | | | | | | | Mar. 2. 0 | 30.378 | | | | | | • | | NNE
N | 0 to 1 | | :: | Pos. | 2 | 0 | 0 | 0 | | | | 30.373 | | | 3.7 | 11 | 1 1 | (45.3) | | N | | | | Pos. | 2 | | | • | | | | 30.387 | | | | •• | • • | 37.9 | 0.61 | N | •• | • • | | Pos. | 2 | •• | ••• | ••• | | | 8
10 | 30·398
30·399 | 41.3 | 39.4 | 1·9
1·5 | 36.0 | 4.0 | 58.2 | | N
N | | | 1 :: | Pos. | 15
15 | | 10
10 | 12
12 | 7. 0
5. 0 | | 12 | 30.399 | 39.3 | 38.0 | 1.3 | | | 32.5 | 0.00 | N | | | | Pos. | 2 | ' | | | | | 14 | 30.399 | | | | 97.0 | 9:0 | | 2.590 | N | •• | • • • | •• | Pos. | 2 | •• | •• | ٠. | •• | | 16
18 | 30·386
30·380 | 39·5 | 36.7 | 0.9
2.8 | 37.0 | 2.0 | 38.0 | | N
N | | •• | :: | Pos. | 4 | 0
4 | 0
5 | 0 | •• | | 20 | 30.390 | 38.4 | 36.8 | 1.6 | | | •• | | N | | | | | | 0 | o | o | | | 22 | 30.397 | | | | 30.0 | 9.6 | •• | •• | N | | NNE | 3.28 | Pos. | 12 | • • | 10 | 12 | •• | | Mar. 3. 0 | | | | | •• | | •• | •• | ENE
NE | | •• | ••• | Pos.
Pos. | ٠ | 20
10 | • | • • | •• | | 2 | 30.395 | 40.0 | 30 0 | 4.0 | ••• | •• | •• | •• | NE | | • • • | | I US. | • • • | 10 | • • | • • | ••• | Maximum Free Thermometer. March 1^d . 22^h . The reading was lower than those of the Dry Thermometer at 4^h and 22^h . Osler's Anemometer. February $27^{\rm d}$. $23^{\rm h}$. $20^{\rm m}$. A pressure of $5\frac{1}{2}$ lbs. was recorded. Electricity. February 27^d. 10^h . There was a spark at the distance of $0^{in}\cdot 01$. | Amount of Clouds,
0-10. | Phases
of | | | |----------------------------|--------------|--|----------| | 9
- 19
- 19 | the | REMARKS. | | | ount
-0 | | وي هم يعد عدد صد يعد | 1 | | Am, | Moon. | | | | 3 | | Cirro-stratus and clouds of the cumulus character scattered around the horizon. | | | 2 | | Cirro-stratus around the horizon; every other part of the sky is clear. | | | 8 | | Fleecy clouds in every direction. | | | 10 | /m | Overcast: cirro-stratus and scud. | | | 10 | Transit | ,, ··· · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | | | | 9 | ••• | Cirro-stratus and scud. | | | 8 | . •• | The clouds are extensively broken S. of the zenith. | | | •• | | | | | •• | •• | | | | | | | 1 | | 10 | | Overcast: cirro-stratus and scud: the sky has been overcast, with few exceptions, since 23h. | | | •• | | | | | ••• | Transit | the Moon is occasionally visible. | | | 10
10 | •• | sleet is falling. | 1 | | 10 | | ,, ,, ,, sicot is fairing. | | | 10 | • | ,, ,, | l | | 10 | •• | ,, ,, | | | 10 | •• | Overcast: cirro-stratus and scud. | | | 10 | •• | ,, | | | 10 | •• | Cirro-stratus and scud: the clouds are broken in in several directions. | | | 10
10 | •• | Overcast: cirro-stratus and scud. | 1 | | 10 | | | 1 | | 8 | Transit | Loose masses of soud and fleecy clouds are in every direction. | į | | 10 | | Overcast: cirro-stratus, fleecy clouds, and scud. | | | 10 | Full | ,, cirro-stratus and scud. | I | | 10
10 | •• | ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, |] | | 10 | | a slight rain falling. | | | 10 | | Overcast: cirro-stratus and scud. | ļ | | 10 | Apogee | ,, ,, ,, | 1 | | 10 | | ,, | 1 | | 10 | •• | ,, ,, | | | 10 | •• | ,, ,, | İ | | 10
10 | •• | 33 | | | 10 | Transit | ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, | | | 10 | •• |) | | | 10 | •• | ,, | | | | In Equator | 99 | | | 10 | •• | ,, | | | 10 | | Overcast: cirro-stratus and scud. | <u> </u> | | 10 | | ,, , , , , , , , , , , , , , , , , , | | Whenell's Anemometer. February 28^d. The readings were registered S. W. and S. S. W., which are evidently wrong: they have been altered conjecturally to N. E. and N. N. E., which directions have been used in subsequent calculations. February 28d. 12h. The amount collected during the month of February in the rain-gauge No. 4 was 1in.39, and that collected by the Rev. G. Fisher in a rain-gauge of the same construction at Greenwich Hospital Schools during the same period was 1in.45. | | | | | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELEC | CTRICAL | INS | TRU | JME | NTS. | |---------------------------|------------------|---------------|--------------|-------------------------------|---------------|----------------------|--|---|---|--|------------|---|---|---|----------------------|-----------------------|-----------------------|---| | ay and Hour,
Göttingen | Baro-
meter | Dry | Wet | Ther- | | Point
below | read at 22h.
of
Free Therm. | Stand of
No. 1.
(Osler's). | From (| | From Whe | | Sign
of | Rea | ading | s of | | Interval | | Astronomical Reckoning. | Cor- | Ther-
mom. | Ther- | mom.
below
Dry. | Dew
Point. | Dry
Ther-
mom. | of Rad. Therm. of Therm. in Water of the Thames. | Reading of
No. 2.
Stand of
No. 3.
(Crosley's). | Direction. | Pressure
in lbs. per
square
foot. | Direction. | Descent of
the pencil
during the
continu-
ance of
each Wind. | Electricity,
as
shewn
by Dry
Pile Appa-
ratus. | Single
Gold Leaf
of Dry
Pile Appa-
ratus. | Double
Gold Leaf. | Straws of
Volta 1. | Straws of
Volta 2. | recovering the same degree of tension after discharge | | d h | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | 373773 | from
lbs. to lbs. | | in. | D | 0 | 0 | div. | div. | m s | | Mar. 3. 4 | 30·374
30·373 | 41·5
39·8 | 37·2
36·7 | 4·3
3·1 | 31.0 | 10.5 | (40.0) | :: | NNE
NNE | •• | .: | :: | Pos. Pos. | 5
8 | 8 | 10
 10 | •• | •• | | 8 | 30.393 | 34.4 | 33.0 | 1.4 | | | 27.3 | 0.61 | Calm | | | | Pos.
Pos. | 8 | 8 | 15
80 | 20
100 | 10. 0 | | 10
12 | 30·394
30·404 | 30·8
31·5 | 30·3 | 0·5
0·4 | 28.0 | 2.8 | 51.6 | 0.00 | Calm
Calm | :: | :: | | Pos. | :: | | 50 | 70 | 10. 0
8. 0 | | 14 | 30.394 | | 30.6 | 1 | | | 15.0 | 0.00 | Calm | | •• | •• | •• | | 0 | 0 | 0 | •• | | 16
18 | 30·387
30·386 | 31·5
29·6 | 31·1
29·1 | 0·4
0·5 | 31.0 | 0.5 | 38.0 | 2.590 | Calm
Calm | •• | · : | :: | Pos. | 40 | 0 | 30 | 40 | 5. (| | 20 | 30.386 | 11 1 | 29.6 | | | | 37.0 | | Calm | | | | Pos. | | | 150 | | 1. 30 | | 22 | 30.367 | 33.9 | 32.0 | 1.9 | 29.5 | 4.4 | •• | •• | Calm | •• | ENE | 0.28 | Pos. | ••• | •• | ••• | 180 | 25. (| | Iar. 4. 0 | 30.346 | 1 | 36.8 | 2.9 | | •• | | •• | NNE | | •• | | Pos. Pos. | 40
30 | | 30 | 150
70 | (1 | | 2
4 | 30·319
30·290 | 43·0
42·5 | 39·7
39·2 | 3.3 | 36.0 | 6.5 | (43.3) | | NNE
NNE | :: | | :: | Pos. | 40 | :: | 40 | | 11 | | 6 | 30.281 | 40.0 | 38.2 | 1.8 | | | 32.0 | 0.61 | NNE | | 31311 | | Pos. | 35 | | 30 | 1 | | | 8
10 | 30·284
30·272 | 39·7
39·0 | 37·7
37·6 | 2·0
1·4 | 36·0 | 3.0 | 63.0 | | NNE
NNE | | NNE | 1.70 | Pos.
Pos. | 40 | | 80 | 120
100 | 11 | | 12 | 30.261 | | | 0.9 | | | 29.7 | 0.00 | NNE | | | | Pos. | | | 70 | 90 | 20. | | 14 | 30.242 | 38.6 | 37.7 | 0.9 | 20.0 | 1.0 | | 2.595 | N
N | | •• | | Pos. | 30
20 | •• | 30
 12 | | 12. | | 16
18 | 30·208
30·175 | 39·3
39·4 | 38·7
38·7 | 0·6
0·7 | 38.0 | 1.3 | $\begin{bmatrix} 37.8 \\ 37.2 \end{bmatrix}$ | | N | • • • | | | Neg. | 20 | | 10 | | 11 | | 20 | 30.157 | 40.0 | 39.4 | 0.6 | | | | | \mathbf{N} | | TAT. | | Pos. | | 5 | 2 | | | | 22 | 30.155 | 40.2 | 39.5 | 0.7 | 38.0 | 2.2 | •• | •• | N by E | •• | N | 0.55 | Pos. | 15 | | 15 | 20 | 20. | | ar. 5. 0 | 30.152 | 1 | 39.2 | 2.3 | | | | | NNE
NE | 0 to 1 | •• | | Pos. | 10
15 | •• | 10
10 | 1 | 11 | | 2
4 | 30·145
30·129 | 41·0
41·9 | 38.8 | 2·1
3·1 | 34.5 | 7.4 | (42.4) | • • • | NNE | 0 to $\frac{1}{2}$ | • | | Pos. | 20 | | 10 | | 11 | | 6 | 30.132 | 1 1 | 38.7 | 2.1 | | | 34.3 | 0.61 | NNE | | •• | | Pos. | 10 | | 8 | | 10. | | 8
10 |
30·144
30·141 | 38·8
37·1 | 37·4
35·2 | 1·4
1·9 | 32.0 | 5·1 | 44.0 | | NE
NE | | | | Pos. Pos. | 8 | 10
10 | 3
5 | | 15. | | 12 | 30.144 | 36.0 | 34.8 | 1.2 | | | 31.3 | 0.00 | NE | | | | Pos. | 2 | | | | | | 14 | 30·122
30·093 | 35.8 | 34·5
34·3 | | 33.0 | | 20.0 | 2.600 | NNE
NNE | 0 to 1 | , •• | •• | Pos. Pos. | 2 2 | •• | ••• | ••• | ∥ •• | | 16
18 | 30.075 | 1 | 34.2 | 1·0
1·0 | 33.0 | 2.3 | $\begin{bmatrix} 38.0 \\ 38.0 \end{bmatrix}$ | | NNE | 0 to 1 0 to 1 | | :: | Pos. | 2 | | | | ∥ ∷ | | 20 | 30.070 | 35.2 | 34.1 | 1.4 | | | | •• | NNE | 0 to $\frac{1}{2}$ | NI AT ES | | Pos. | 2 | | | ٠. | ∥ … | | 22 | 30.064 | 36.4 | 34.7 | 1.7 | 31.5 | 4.9 | •• | •• | NNE | •• | NNE | 2.85 | Pos. | 5 | 5 | 8 | | ∥ … | | ar. 6. 0 | 30·054
30·022 | | | $\frac{2 \cdot 2}{3 \cdot 1}$ | | •• | •• | •• | NNE
NNE | •• | • • | | Pos. Pos. | 10
10 | 10
20 | 12
10 | | 11 | | 4 | 29.992 | | | | 31.0 | 8.6 | (40.3) | •• | NNE | •• | | | Pos. | 20 | 40 | 20 | 30 | | | 6 | 29.968 | 40.0 | 37.2 | 2.8 | | | 32.3 | 0.61 | N by E | •• | NINE | 1.00 | Pos. | 30 | • • | 25 | | 12. | | 8
10 | 29·969
29·945 | | | $\frac{4.0}{2.2}$ | 33.0 | 4·s | 42.0 | | N by E
N | | NNE | 1.00 | Pos. Pos. | 15
10 | | 10
8 | | 10,
10. | | 12 | 29.925 | | | 0.9 | | | 27.0 | 0.01 | \mathbf{N} | | | | Pos. | 10 | | 8 | ı | | | 14
16 | •• | •• | •• | | •• | •• | 38.0 | 2.615 | $f N \\ f N$ | | •• | •• | •• | | ••• | | | •• | | 18 | •• | | | | | • | 38.0 | | \mathbf{N} | | | | | | | | | | | 20 | 00.052 | 40:7 | 30:0 | 1.7 | •• | •• | ••• | •• | $egin{array}{c} \mathbf{N} \\ \mathbf{N} \end{array}$ | •• | NNW | 1.75 | Pos. | ··· 2 | • • | | ••• | •• | | 22 | 29.853 | 40.7 | 39.0 | 1.7 | ••• | •• | •• | •• | | •• | 7174 44 | - 10 | I US. | | •• | | | | | Mar. 7. 0 | •• | •• | •• | | •• | •• | •• | •• | NE
N | 0 to 2 | ••• | •• | | | | :: | | | | 4 | | ••• | ۱ ا | ••• | • • | | •• | •• | NNE | 0 to 2 | :: | | | | | | ••• | | Maximum Free Thermometer. March 3^d. 22^h. The reading was lower than those of the Dry Thermometer at 0^h, 2^h, and 4^h. March 5^d. 22^h. The reading was registered 37°·4, which is evidently wrong; the inferred reading is 42°·4, which is used in subsequent calculations. Electricity. March 3^d. 10^h, 12^h, 18^h, 20^h, and 22^h. There were sparks at the distances of 0ⁱⁿ·01, 0ⁱⁿ·02, 0ⁱⁿ·03, 0ⁱⁿ·02, and 0ⁱⁿ·02 respectively. March 4^d. 0^h, 4^h, 6^h, 8^h, and 10^h. There were sparks at the distances of 0ⁱⁿ·02, 0ⁱⁿ·03, 0ⁱⁿ·03, 0ⁱⁿ·03, 0ⁱⁿ·03, respectively. | Amount of Clouds, | Phases
of | | | | |-------------------|--------------|---|------------------|--| | 57 | Ì | | | REMARKS. | | | the | | | REMARKS. | | A | Moon. | in the second | | | | 6 | •• | Cirro-stratus | and fleecy cloud | ls, principally around the horizon. | | 3 | •• | | | s are scattered about the sky. | | $\frac{1}{2}$ | •• | Cirro-stratus | in the W., near | the horizon. | | 0 | •• | Cloudless, but | hazy: a small | but well-defined corona around the Moon. | | 0 | Transit | Owamanati aim | no atmotra and | scud: the Moon is indistinctly visible through the clouds. | | 0 | | ł | | seud: the Moon is indistinctly visible through the clouds. | | 0 | • • | ,, | > 7 · | | | 0 | • • | Cirro-stratus, | scud, and light | clouds. | | 0 | •• | Overcast: cir | ro-stratus and s | scud. | | | | | | [became covered. | | 0 | •• | | | scud: the clouds were extensively broken at 22h. 40m, but the sky shortly afterwards | | 0 | •• | ,, | ,, | | | 0 | • • | ,, | ,, | about 4 ^h . 20 ^m a shower of rain fell, and rain has been falling at intervals since | | 0 | | ,, | ,, | [that time. | | 0 | •• | , | ,, | | | 0 | | ,, | ,, | | | 0 | Transit | ,, | ,, | | | 0
0 | •• | ,, | ,, | occasional drops of rain. | | o l | • • | ** | ,, | misty rain has been falling since 18 ^h . | | o | • | ,, | ,, | slight rain is falling. | | | | | | | | 0 | • • | Overcast: cir | ro-stratus and s | cud. | | 0 | •• | ,, | ,, | | | 0 | •• | ,, | , , | | | o l | ••• | ,, | ,, | | | 0 | •• | ,, | ,, | | | 0 | •• | ,, | ,, | | | 0 | m · · · | ,, | ,, | | | 0 | Transit | ,, | ,, | | | 0 | •• | ,, | ,, | | | o | | ,, | , , | | | | | | | | | 0 | •• | Overcast: cir | ro-stratus and s | cud. | | 0 | •• | ,, | ,, | | | 0 | • • | ,, | ,, | | | 0 | •• | ,, | ,, | | | 0 | | · • • • • • • • • • • • • • • • • • • • | ,, | a few drops of fine rain are falling. | | 0 | | ,, | ,, | | | . | Tunnia | | | | | ٠ | Transit | | | | | | ••• | | | | | 0 | | , , | ,, | ,, the sky was overcast, with cirro-stratus and | | | l | • • | *, * | [scud throughout the day. | | . | | | | | | ٠ | •• | | | | | ٠ ا | •• | | | | Henley's Electrometer. March 3^d, 22^h. The reading was 2°. March 4^d. 0^h. The reading was 1°. | | | | | Wet | | Dom | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICA | LINS | STR | UME | NTS. | |---|------------------|---------------|---------------|---------------|-------|----------------------|--|--------------------------------------|---------------|--|------------|--|-----------------------------------|---|---|------------|-----------------------|--| | Day and Hour, | Baro- | | | Ther- | | Dew
Point | read at 22h. | Stand of
No. 1, | From | | From Whe | | Sign | Re | ading | s of | | Interva | | Göttingen | meter | Dry | Wet | mom. | Dew | below | Free Therm. | (Osler's). Reading of | Anemo | meter. | Anemom | Descent of | Electricity, | Single | | <u>.</u> و | ٠, يو | recovering the same | | Astronomical Reckoning. | Cor-
rected. | Ther-
mom. | Ther-
mom. | below
Dry. | | Dry
Ther-
mom. | Rad. Therm.
of Therm. in
Water of the
Thames. | No. 2. Stand of No. 3. (Crosley's). | Direction. | Pressure
in lbs. per
square
foot. | Direction. | the pencil
during the
continu-
ance of
eachWind. | as shewn by Dry Pile Appa- ratus. | Gold Leaf
of Dry
Pile Appa-
ratus. | Double
Gold Leaf. | Straws o | Straws of
Volta 2. | degree
of tension
after
discharge | | d h | in. | 0 | 0 | 0 | 0 | 0 | . 0 | in. | | from
lbs. to lbs. | | in. | | ٥ | 0 | div. | điv. | m | | Mar. 7. 6 | | | | | | | (41.6) | | NE | ••• | •• | | | | • • | • • | • • | • • | | 8 | •• | | •• | | | | 34.2 | 0.07 | N by E | •• | •• | •• | • • | | 1 | • • | ••• | ••• | | 10 | •• | ••• | • • | •• | | ••• | | 0.61 | NNE
N | • • • | •• | •• | | :: | :: | • • | | | | 12
14 | 30.021 | 35.0 | 34.3 | 0.7 | • • | | 50.5 | 0.00 | N | | | | Pos. | 20 | 40 | 20 | 30 | | | 16 | 30.001 | 35.3 | 11 | 0.1 | 35.0 | 0.3 | 26.5 | | N | | | 1 | Pos. | 10 | 20 | 15 | •• | | | 18 | 30.007 | 36.6 | | | | | 20.0 | 2.630 | \mathbf{N} | | | | Pos. | 10 | | 10 | 20 | ••• | | 20 | 30.015 | | | | | | 38.2 | •• | N | | | | Pos. | 1 | • • | • • | | ••• | | 22 | 30.018 | 41.6 | 39.2 | 2.4 | 37.0 | 4.6 | (60 2) | •• | N | | NNE | 2.92 | Pos. | 30 | • • | 20 | 30 | 3. | | Mar. 8. 0 | 30.018 | 1 | 11 . | 1 1 | | •• | •• | •• | N | | | | Pos. | 12 | $ \cdot\cdot $ | 10 | | 5.
7. | | 2 | 29.989 | | 11 | | | | 640.00 | •• | N | 0 to 1 | •• | | Pos. | 15 | .: | 10
5 | i | | | 4 | 29.982 | | | | 38.0 | } | $\begin{pmatrix} 48.8 \\ 34.3 \end{pmatrix}$ | •• | N
NNW | •• | •• | 1 | Pos. Pos. | 3 | 8 5 | 5
5 | :: | | | 6
8 | 29·971
29·976 | t I | 11 | | | | 34 3 | 0.61 | N | | | | Pos. | 10 | 12 | 10 | 1 | | | 10 | 29.945 | 11 | 11 | | 37.0 | 6.2 | 67.0 | | Ñ | | | | Pos. | 10 | $ \ldots $ | 20 | 30 | | | 12 | 29.918 | 11 | 11 | 1 1 | | | 27.3 | 0.00 | WSW | | | 1 | Pos. | 2 | | | | | | 14 | 29.882 | | H | | | | { | 2.640 | \mathbf{W} | •• | •• | | Pos. | 10 | • • | 10 | 12 | i i | | 16 | 29.860 | | | | 36.0 | 30 | 38.8 | 2 040 | W | | •• | | Pos. | | 10 | •• | ٠٠, | 15. | | 18 | 29.859 | 1 | | | ••• | •• | (38.8) | •• | N by W
NNW | 0 to $2\frac{1}{2}$ | •• | •• | D - | | $\begin{vmatrix} 0 \\ 12 \end{vmatrix}$ | 0 | | 10. | | 20
22 | 29·884
29·886 | 36·9
39·5 | | | 26.0 | 13·5 | • • | | NNW | 1 to $3\frac{1}{2}$ | wnw | 2.78 | Pos.
Pos. | 8 | | • • | | | | Mar. 9. 0 | 29.900 | 40.0 | 34.6 | 5.4 | | | | | N | 2 to 3 | | | | | o | 0 | 0 | | | 2 | 29.908 | 38.8 | | 1 1 | | | | | Ñ | 1 to 2 | | 1 | | | 0 | 0 | | | | 4 | 29.911 | 40.2 | | | | 14.2 | (.5) | | N | $\frac{1}{2}$ to 1 | | | | | 0 | 0 | 0 | | | 6 | 29.926 | | | 1 1 | | | 27.0 | 0.61 | N by E | | | | Pos. | 2 | { • • } | • • | • • | | | 8 | 29.929 | 30.8 | | | ••• | | | | NNE | •• | •• | •• | Pos. | 2 | $ \cdot\cdot $ | • • | ••• | • • • | | 10 | 29.919 | 30.6 | | | 26.0 | 1 | 55.2 | 0.00 | WSW
W | •• | •• | •• | Pos. | 2 | 0 | | 0 | • • | | 12
14 | 29·910
29·882 | 29·9
29·4 | 29·1
28·7 | | ••• | ••• | 19.0 | | Ň | | •• | | • • • | | 0 | 0 | | | | 16 | 29.861 | 29.0 | | | 27.0 | 2.0 | 39.0 | 2.640 | NNW | | | | | | 0 | 0 | , | | | 18 | 29.843 | 28.2 | 11 | 1 1 |] | | 39.0 | | NNW | | | | | | 0 | 0 | 0 | | | 20 | 29.837 | 29.5 | 29.1 | 0.4 | | |] | •• | WSW | ••• | •• | | • • | | 0 | 0 | 1 | | | 22 | 29.821 | 30.6 | 29.9 | 0.7 | 27.0 | 3.6 | •• | •• | SW | •• | WNW | 2.05 | Pos. | 20 | 85 | 30 | 40 | 5. | | Mar.10. 0 | | | | | | | | •• | NNE | | • • | ! | Pos. | 15 | 80 | | | 15. | | 2 | | 38.0 | 33.2 | 4.8 | 20.0 | •• | •• | ••• | NNE | •• | •• | •• | Pos. | 12 | 0 | 30 | | [[| | 4 | 29.850 | 34.5 | 32.1 | 2.4 | 29.0 | 5.2 | (44.0 | •• | ESE | •• | •• | | •• | •• | ١ | U | " | ••• | | 6 | 29.901 | | | | | | 16.9 | 0.61 | ENE | •• | •• | •• | Pos. | ••• | • • | 10
15 | | | | 8 | 29·957
30·007 | | | | 15.0 | 9.7 | 53.5 | 0.00 | NE
NE | | | |
Pos.
Pos. | | | 20 | | il | | 10
12 | и 1 | | | | 15.0 | 1 | 3.2 | 0 00 | ENE | | | | Pos. | | 90 | 40 | | | | 14 | 30.077 | | | | :: | :: | | 2.640 | ENE | | | | Pos. | | 80 | 20 | | | | 16 | 30.101 | 21.5 | 20.4 | 1.1 | 1 | | 39·0
38·5 | • • | ENE | | | | Pos. | ∥ | 10 | 8 | • • | | | 18 | 30.134 | | | | | | ر ته وقت | • • | ENE | •• | •• | •• | •• | ∥ •• | 0 | 0 | 1 - | 11 | | $\begin{array}{c} 20 \\ 22 \end{array}$ | 30·154
30·077 | 18.7 | 18·1
24·9 | 3·2 | 8:0 | 20.0 | •• | •• | ENE
SSW | •• | ŇĖ | 1.00 | Pos. | 30 | 0 | 50 | | () | | | | | 1 | | | | | •• | | | | | |]] | | |] | | | Mar. 11. 0 | 11 | | | | 1 | 10.5 | •• | • • | SSW | •• | •• | 1 | Pos.
Pos. | 10
2 | ••• | 10 | 12 | [| | 2
4 | 30·161
30·136 | | | | 15.0 | 18.9 | •• | ••• | SW
WSW | | | :: | ı us. | | 0 | 0 | 0 | | | 4 | 00 100 | 200 2 | 02.2 | 30 | 1.4.9 | 201 | •• | •• | 1, 2, 1, | | 11 | 1 | , , | | | ٦ | ١ | II | BAROMETER. March 11^d . 0^h . The reading had increased 0^{in} . 108 since the previous observation. MAXIMUM FREE THERMOMETER. March 9d. The instrument was out of order. | Amount of Clouds, | Phases
of
the
Moon. | REMARKS. | Observer. | |----------------------|------------------------------|---|------------| | ,, | | | | | | | | } | | 10 | •• | Overcast: cirro-stratus and scud: rain is falling: the electricity has suddenly become negative. Thin cirro-stratus towards the S.W. part of the horizon; the rest of the sky clear: the rain ceased soon after the last | G H | | 10
10
10 | Transit | Overcast, with very thin cirro-stratus. Overcast: cirro-stratus and scud: a slight rain is falling. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | G H | | 10
9 | | Cirro-stratus and scud: a few small breaks in the S. horizon: the Sun has been occasionally visible since the last Cirro-stratus and scud slightly broken S. of the zenith. | T D | | 10 | | Overcast: cirro-stratus and scud. | G H | | 10
10
10
10 | •• | ,, very dark: rain fell shortly after the last observation. ,, cirro-stratus: a thin rain is falling. ,, the rain has ceased. | G H
T D | | 10
10
7
10 | Transit | there have been frequent gusts of wind since the last observation. cirro-stratus and scud extending all around the horizon: detached portions of cirri in the zenith. cirro-stratus and scud: the wind is blowing in gusts. | T D | | 10 | •• | Overcast: cirro-stratus and scud: a few small breaks, but to no numerical extent. | | | 10
9
4 | •• | snow is falling. Cirro-stratus and light scud, chiefly in the horizon. | T D | | 4
7
10 | •• | Cirro-stratus and haze all around the horizon: the stars in every direction look dim. Cirro-stratus and haze: the stars visible in and near the zenith are rendered indistinct by vapour. Overcast: cirro-stratus and scud: a few flakes of snow are falling. | T D | | 10
10
10 | Transit
3rd Quarter | the snow ceased soon after the last observation. The sky is covered with a thin cirro-stratus, through which some of the larger stars are visible. | | | 10 10 | •• | Thin cirro-stratus, fleecy clouds, and badly-formed cirri cover the sky. Overcast: cirro-stratus and scud, through which the Sun is occasionally visible. | G H | | 10
10
5 | Greatest
declination S. | Overcast: stratus and scud. Overcast, with very thin stratus and masses of scud in various directions. Cumulo-strati near the S. horizon: cirro-stratus and light scud in various directions: the sky is clear principally about the zenith, and in the N. snow was falling heavily at about 3 ^h . 10 ^m . | G H | | 7 1 0 | | Cirro-stratus and light clouds: small breaks in various directions: snow has been falling at intervals since the last A few loose clouds about the N. and W.; the other part of the sky is clear. [observation.] | L | | 1 1 | •• | Clear, with the exception of some small patches of scud towards the E. and S. E. A few patches of scud towards the S.; otherwise the sky is cloudless. A few patches of scud towards the S., and near the Moon's place. | G H | | 0 0 0 | Transit | Cloudless. | G H
T D | | 4 2 1 | •• | Cirro-strati, cumulo-strati, and scud are scattered in every direction. Detached portions of cirri chiefly N. of the zenith. Small portions of light cumuli are scattered over the W. | T D
G H | Electricity. March 10^d . 22^h . There was a spark at the distance of $0^{in}\cdot02$. RAIN. March 11^d. The increase in the rain-gauges Nos. 2 and 3 was from the melting of snow. | | _ | | | Wet | | Dew | Max. and Min. | GAUGES. | | | w i | N | D. | | ELEC | TRICAL | INS | STRU | JMEN | ITS. | |----------------------------|------------------|--------------|--------------|------------|------------|-------|---|----------------------------------|--|-----|------------------------|-------------|--------------|----------------------------------|----------------------|---|----------|-------|------------|----------------------| | Day and Hour,
Göttingen | Baro-
meter | Dry | Wet | Ther- | | Point | read at 22h.
of
Free Therm. | Stand of
No. 1.
(Osler's). | From (| | | | From Whe | | Sign | | ading | | | Interval | | · 1 | 1 1 | | | mom. | Dew | below | of | Reading of | | 1 | | - | | Descent of | Electricity,
as | Single | | _ | _ | recovering the sam | | Astronomical | Cor- | Ther- | Ther- | below | 6 1 | Dry | Rad. Therm. | No. 2.
Stand of | | ١. | Pressure
n lbs. per | - 11 | | the peucil
during the | shewn
by Dry | Gold Leaf
of Dry | Lea | 20.4 | 78 0 | degree
of tension | | Reckoning. | rected. | mom. | mom. | Dry. | 1 OILL | mom. | Water of the
Thames. | No. 3.
(Crosley's). | Direction. | Ľ | square
foot. | | Direction. | continu-
ance of
eachWind. | Pile Appa-
ratus. | Single
Gold Leaf
of Dry
Pile Appa-
ratus. | Gold | Strav | Stra | after
discharg | | d b | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | | , | from
bs. to lbs. | | | in, | | 0 | 0 | di▼• | div. | m 6 | | Mar. 11. 6 | 30.115 | | | 3.7 | | | | | SSW | 1 | • • | | • • | ••• | Pos. | 2 | 3 | | • • | • • | | 8 | 30.094 | | | 2.4 | ••• | | 38.1 | | SSW | | • • | - | • • | | Pos. | 5 | 8 | 6 | •• | ••• | | 10 | 30.064 | | | 2.9 | 19.0 | 10.4 | 24.8 | 0.61 | SW | 1, | • • | , | • • | | Pos. | 8
2 | 12 | 10 | | ••• | | 12 | 30.013 | | | 2·7
0·4 | ••• | • • | 53.5 | | sw
wsw | 0 2 | to
to 3 | 5 | • • | ••• | Pos. Pos. | 40 | •• | 70 | 100 | 2. 0 | | 14
16 | 29:942
29:908 | 33.0 | 11 | 0.6 | 31.0 | 2.0 | 33 3 5 E | 0.03 | wsw | 1 | | - 11 | • • | | Pos. | 40 | | 80 | 100 | 2. 30 | | 18 | 29 908 | 33.8 | | | 1 | i i | 210 | | wsw | * | | | • • | | Pos. | 2 | | | | | | 20 | 29.921 | 34.0 | | | • • | :: | 38.5 | 2.740 | wsw | 1 | •• | 1 | • • • | | | l | 0 | 0 | 0 | l :: | | 20 | 20 021 | 0.0 | | | | ' | 38.2 | | | 1 | | | • • | 1 | | | ŀ | İ | | | | 22 | 29.949 | 38.7 | 35.5 | 3.3 | 31.0 | 7.7 | •• | | N | | • • | | SW | 5.40 | •• | •• | 0 | 0 | 0 | •• | | Mar. 12. 0 | 29.984 | | | 4.7 | | | ., | | N by W | 0 | to | 12 | | | | | 0 | 0 | 0 | | | 2 | 30.009 | | | 6.7 | | •• | | •• | N by W | 0 | to | 2
1
2 | • • | | <u></u> | ٠. | 0 | 0 | 0 | ••• | | 4 | 30.030 | | | | 29.0 | 16.8 | (45.9) | | NNW | | • • | 1 | • • | •• | Pos. | 2 | | | | ••• | | 6 | 30.063 | | | | •• | | 31.9 | 0.61 | N | | • • | | NT | 1.70 | D | 7.5 | 0 | 0 | 0 | , | | 8 | 30.091 | 36.0 | 32.3 | | 07.0 | 0.0 | CC.4 | | N
E | ı | • • | I | \mathbf{N} | 1.10 | Pos.
Pos. | 15
2 | ••• | 20 | 20 | 7. | | 10 | 30·118
30·125 | 33·6
33·6 | | 2.9 | 27.0 | 6.6 | $\left\{egin{array}{c} 66.4 \\ 22.0 \end{array} ight. ight\}$ | 0.00 | S | 1 | •• | | •• | •• | | | 0 | 0 | 0 | ••• | | 12
14 | 30.129 | 34.5 | | 2.4 | ••• | ••• | 22.0 | | ssw | | •• | | • • | | | | 0 | 0 | 0 | ••• | | 16 | | 34.7 | 32.4 | | 28.0 | 6.7 | 38.0 | 2.745. | wsw | 1 | • • | 1 | • • | | | | ő | 0 | o | :: | | 18 | 1 1 | 33.2 | , , | | | | 38.0 | | $\widetilde{\mathbf{s}}\mathbf{w}$ | 1 | •• | II. | •• | | | | Ŏ | o | 0 | | | 20 | 1 | 32.3 | | 1.0 | | | | | wsw | 1 | •• | I | • • | | Pos. | 10 | | 8 | 10 | 7. (| | 22 | 1 31 | 37.8 | | 2.7 | 30.2 | 7.3 | •• | •• | wsw | - | • • | i | \mathbf{w} | 2.07 | Pos. | 20 | •• | 50 | 70 | •• | | Mar. 13. 0 | 30.160 | 43.7 | 38.3 | | | | | | W | | •• | | •• | | | | 0 | 0 | o | •• | | 2 | 30.155 | 45.3 | | | | •• | •• | •• | W by S | | • • | ∥ | •• | | ••• | •• | 0 | 0 | 0 | •• | | 4 | 30.146 | | 39.7 | | 34.0 | 11.8 | [45.4] | | W | 1 | • • | - | •• | • • • | •• | •• | 0 | 0 | 0 | ••• | | 6 | 30.161 | 45.0 | 40.4 | | • • | ••• | 35.8 | 0.61 | WSW | | •• | | • • | | •• | •• | 0 | 0 | 0 | •• | | 8 | 30.194 | 43.0 | 39·9
39·7 | 3·1
2·3 | 35.0 | ••• | 50.5 | | WSW
WSW | | • • | 1 | • • | •• | ••• | ••• | 0 | 0 | 0 | •• | | 10
12 | 30·200
30·231 | 42·0
41·6 | 38.7 | 2.9 | j | 7.0 | 58·5 () 27·0 (| 0.00 | WSW | | •• | - | • • | ••• | ••• | •• | 0 | 0 | 0 | ••• | | 14 | 1 1 | | 1 | | ••• | •• | 270 | | SW | | • • | | •• | | 1 | •• | l° | | | ••• | | 16 | | •• | | | • • | •• | 38.5 | 2.745 | $\tilde{\mathbf{s}}$ | 1 | •• | 1 | •• | | | | | | | | | 18 | | | | | | | 38.5 | | $\tilde{\mathbf{s}}\tilde{\mathbf{w}}$ | 1 | | - }} | •• | | | | . | 1 | | ••• | | 20 | | | | | | | | | ssw | 1 | •• | 1 | • • | | | | | | | | | | 30.261 | | 40.2 | 5.2 | | •• | •• | •• | wsw | | •• | | sw | 3.42 | •• | •• | 0 | 0 | 0 | •• | | Mar. 14. 0 | | | | | | | •• | | ssw | | •• | | • • | | | | | | | •• | | 2 | 30.213 | 49.5 | 42.0 | 7.5 | • • | •• | C40.3 3 | •• | S by W | 0 | | 2 | ,• • | ••
 •• | •• | 0 | 0 | 0 | • • • | | 4 | •• | ••• | •• | | •• | •• | 48-1 | •• | S by W | 0 | to | 2 | • • | •• | •• | • • | ••• | ••• | • • | •• | | 6 | •• | ••• | •• | | | •• | 32.1 | 0.61 | S by W
S by W | | • • | | •• | '' | | | | | | • | | 8
10 | | | | | | ••• | 64.0 | | Sby W | Į | •• | | •• | | | | | | | ••• | | 12 | | | | | | | 23.5 | 0.00 | $\ddot{\mathbf{s}}$ | 1 | •• | | ••• | | | :: | | | | | | 14 | 30.158 | 38.2 | 35.7 | 2.5 | | | | 0:245 | S by W | | •• | | •• | | Pos. | 15 | 35 | 8 | 15 | | | 16 | | | 35.0 | | 32.0 | 4.6 | 39.2 | 2.745 | SŠW | | | | • • | | Pos. | 15 | 35 | 8 | 15 | •• | | 18 | 30.112 | 33.7 | 32.6 | 1.1 | | | [39⋅0] | | S | 1 | • • | | • • | | Pos. | 20 | · · | 40 | 50 | •• | | 20 | 30.112 | 35.6 | 34.3 | 1.3 | | • • | •• | | S by E | 1 | •• | | CONT | | -:· | | 0 | 0 | 0 | • • | | 22 | 30.100 | 43.5 | 38.7 | 4.8 | 33.0 | 10.5 | •• | •• | S | | • • | | SSW | 3.78 | Pos. | 2 | ••• | | •• | •• | | Mar. 15. 0 | 30.079 | 50.7 | 41.7 | 9.0 | | | | | SSW | 0 | to | 12 | •• | | Pos. | | 15 | | $ \ldots $ | | | | | | 43 8 | 11.2 | | | | | SSW | 1 | • • | | • • | | Pos. | ••• | 12 | | | 4. | | | | 55.0 | | | 1 | 24.2 | 1 | 11 I | SSW | | | - 11 | 1 | . . | Pos. | 10 | 10 | 8 | | I ^ | Maximum Free Thermometer. March 11^d. 22^h. The reading was lower than that of the Dry Thermometer at 22^h. March 13^d. 22^h. The reading was lower than those of the Dry Thermometer at 4^h and 22^h. March 14^d. 22^h. The reading was lower than those of the Dry Thermometer at 2^h and 22^h. | 0-10. | Phases of the Moon. | REMARKS. | Ohserver | |----------|---------------------|--|----------| | 5 | •• | Cirri and scud in all directions, Cloudless. | G | | 10 | | Overcast. | G | | 10
10 | •• | ,, cirro-stratus. | T | | 10 | • | ,, ,, snow commenced falling about half an hour previous to this observation. ,, ,, snow is falling. | | | 10 | | ,, ,, the snow ceased falling at about 17 ^h . 10 ^m . | | | 5 | Transit | Cirro-stratus, light cirri, fleecy clouds, and scud: at 18 ^h . 55 ^m the sky was nearly cloudless, and remained so until 19 ^h . 30 ^m , after which time dark clouds came up from every direction, and the sky was covered for a short time. A few light clouds towards the N. horizon, but to no numerical extent. | Т | | | | | | | 3
6 | •• | Cloudless N. of the zenith: cirro-stratus and light clouds scattered about the S. Cirro-cumulus and scud in various directions. | G | | 5 | •• | Cirro-cumulus and scud in various directions. Cirro-stratus, cumulo-stratus, and scud around the horizon: the zenith is clear. | G | | 5 | • • | Cirro-stratus, cumulo-stratus, and scud. | Т | | 4 | •• | Cirro-stratus in the W. and N. W. horizon: hazy. | _ | | 0 | •• | Overcast: cirro-stratus. ,, cirro-stratus and scud. | T | | 3 | | Cloudy around the horizon; clear elsewhere. | | | 0 | •• | Overcast: cirro-stratus: it became cloudy shortly after the last observation. | | | 0
3 | • • | ,, cirro-stratus and scud: a few stars are occasionally visible. Cirro-stratus and light haze around the horizon: a few fleecy and light clouds in the zenith. | | | o | Transit | Overcast: cirro-stratus and scud. | G | | 0 | • • | Overcast: cirro-stratus and scud. | | | 0 | • • | ,, | G | | 9 | • • | ,, cirro-stratus, scud, and fleecy clouds: a few small breaks near the zenith. Cirro-stratus, scud, and fleecy clouds: small breaks in various directions. | | | 0 | ••• | Overcast: cirro-stratus and scud. | | | 0 | • • | 2) | 1 | | 0 | • • | " | 19 | | : | • • | | | | | | | | | o | Transit | Cloudless. | | | 8 | •• | The sky throughout the day was partly covered with thin cirri. | | | . | •• | | | | • | •• | | 1 | | | • | | | | | •• | | | | 0 | •• | Cloudless. | | | 0 | • • | 9.9
9.9 : | | | 0 2 | •• | Some light clouds in the N. horizon; every other part of the sky is clear. | 7 | | 0 | Transit | Cloudless. | | | 0 | •• | ••• • • • • • • • • • • • • • • • • • | 7 | | 0 | •• | ** | G | Electricity. March 11^d . 14^h and 16^h . There were sparks at the distance of 0^{in} .03. | | | | | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICA | LIN | STR | UME | NTS. | |---|------------------|-------|--------------|-------|----------------|---------------|--|------------------------------------|------------------|--|---|----------------------------------|----------------------|---------------------|-----------------|----------|-----------------|-------------------| | Day and Hour, | Baro- | | | Ther- | | Point | read at 22h. | Stand of
No. 1. | From (| | From Whe | | Sign
of | Re | ading | s of | | Interv | | Göttingen | meter | Dry | Wet | mom. | Dew | below | Free Therm. | (Osler's). Reading of | Anemo | meter. | Anemom | Descentof | Electricity, | Single | ا ا | | L . | recover
the sa | | Astronomical | Cor- | Ther- | Ther- | , , | | Dry | Rad. Therm. | No. 2. | | Pressure | | the pencil
during the | shewn
by Dry | Gold Leaf
of Dry | uble
d Leaf. | vs of | vs of | degre
of tens | | Reckoning. | rected. | mom. | mom. | Dry. | Point. | Ther-
mom. | of Therm. in
Water of the
Thames. | Stand of
No. 3.
(Crosley's). | Direction. | in lbs. per
square
foot. | Direction. | continu-
ance of
eachWind. | Pile Appa-
ratus. | Pile Apparatus. | Gold | Straws | Straws
Volta | afte
dischar | | d h | in. | 0 | 0 | 0 | 0 | 0 | 0 | ìn. | | from
lbs. to lbs. | | in. | | 0 | 0 | div. | div. | m | | Mar. 15. 6 | 29.965 | | 11 | 1 | | •• | (1) | •• | S | •• | • • | ••• | Pos.
Pos. | 4 | 8 7 | 5
4 | • • | | | 8 | 29.941 | 43.9 | | | | 10.5 | 41.8 | 0.61 | SSE | •• | •• | •• | Pos. | 3 | 5 | | | | | 10 | 29·921
29·896 | | 40·1
40·9 | | 33.0 | 12.5 | 70.5 | | ssw | | • | | Pos. | 2 | | | | | | 12
14 | 29.858 | 11 | } i | 1 | | | 31.7 | 0.00 | SSW | | | | Pos. | 2 | | | | | | 16 | 29.819 | 11 | II . | 1 | 31.5 | 1 . 1 | | 0.745 | SSW | | | | Pos. | 2 | • • | • • | | | | 18 | 29.795 | 43.6 | 38.2 | 1 | | | 40.2 | 2.745 | SSW | 0 to 2 | | •• | Pos. | 2 | •• | ••• | • • • | •• | | 20 | 29.814 | | | 1 | | •• | (39·2) | | SSW | •• | | 5.00 | Pos. | 2 | • • | 25 | 30 | . | | 22 | 29.792 | 49.3 | 42.6 | 6.7 | 35.0 | 14.3 | •• | •• | ssw | ••• | S | 5.20 | Pos. | 30 | | | | 4. | | Mar. 16. 0 | 29.791 | 11 | 11 | i . | •• | ••• | •• | •• | S | 1 to 1 | • • | •• | Pos.
Pos. | 20
20 | | 18
15 | 20
20 | 5.
7. | | 2
4 | 29·750
29·712 | | | | 37.0 | 21.3 | (57.13 | | S by E | $\begin{array}{c c} \frac{1}{2} \text{ to } 1 \\ 0 \text{ to } 1 \end{array}$ | | | Pos. | 12 | | 10 | 12 | | | 6 | 29.707 | | | | | | 43.2 | | S by E | 1 to 2 | | | | | 0 | 0 | 0 | | | 8 | 29.702 | и | | 1 | | | | 0.61 | S by E | 1 to $1\frac{1}{2}$ | | | Pos. | 2 | •• | •• | | | | 10 | 29.689 | 50.7 | | 6.4 | 39.0 | 11.7 | 72.1 | 0.00 | S | $2\frac{1}{2}$ to $3\frac{1}{2}$ | •• | | Pos. | 2 | | | | | | 12 | 29.677 | | 43.1 | 5.9 | •• | •• | 35.8 | | S by W | 0 to $\frac{1}{2}$ | | •• | • • • | •• | 0 | 0 | 0 | ∥ •• | | 14 | 29.686 | | | | | ••• | 12.0 | 2.745 | S by W | $\begin{array}{c cccc} 0 & to & \frac{1}{2} \\ 0 & to & 1 \end{array}$ | • • • | ••• | | •• | 0 | 0 | 0 | :: | | 16 | 29·677
29·689 | 1 | | | 37.0 | 1 1 | 41.8 | | Š | $\begin{array}{c cccc} 0 & \text{to } 1 \\ 0 & \text{to } \frac{1}{2} \end{array}$ | | | Pos. | 15 | | 10 | 15 | 4. | | $\begin{array}{c} 18 \\ 20 \end{array}$ | 29.089 | | 40.5 | | ••• | | (400) | | S by W | 0 10 2 | | | Pos. | 30 | | 20 | 25 | 8. | | 22 | 29.711 | 52.2 | i i | | 32.0 | | | ••• | S by W | $\frac{1}{2}$ to $1\frac{1}{2}$ | ssw | 6.20 | Pos. | 15 | 40 | 20 | | | | Mar. 17. 0 | 29.717 | | | 1 ! | | | •• | •• | S by W | •• | | •• | Pos. | 10
10 | 35 | 15
10 | 20 | | | 2 | 29.711 | 60.2 | | | | 00.0 | | •• | S by W
S by W | •• | | ••• | Pos.
Pos. | 20 | | 15 | 15 | 2. | | 4 | 29.700 | | | 11.3 | $34.0 \\ 33.0$ | | • • | •• | Calm | | :: | | Pos. | 15 | | 10 | 15 | 11 | | 6
8 | 29.696
29.710 | 49.7 | 40.1 | | 94.0 | 20 4 | | | Calm | :: | | | Pos. | 10 | | 8 | 10 | II | | 10 | 29.730 | | 11 | 1 | 34.5 | 13.5 | i . | | Calm | | •• | | Pos. | 40 | | 15 | 20 | 35. | | 11 | 29.738 | 1 | H | l i | | | $\begin{bmatrix} 64.2 \\ 37.8 \end{bmatrix}$ | | Calm | | | | | ••• | 0 | 0 | 0 | ., | | 12 | 29.724 | 45.1 | 40.7 | 4.4 | | | 3/8 | 0.61 | Calm | | •• | 1 | Pos. | 40 | | 17 | 20 | 10 | | 13 | 29.716 | | | | •• | •• | 77.3 | | Calm | | | •• | Pos. | 25
30 | | 10
20 | 12
 20 | 11 | | 14 | 29.717 | | I ł | | • • | • • | 29.3 | 0.00 | Calm
Calm | •• | | •• | Pos. | 12 | | 10 | 12 | £1 | | 15
16 | 29·715
29·721 | 4 . | | 4 : | 33.0 | 8.2 | | 2.745 | Calm | | | | Pos. | 3 | 5 | | | | | 17 | 29.721 | | | | 99 0 | | 42.8 | 2 110 | Calm | | | | Pos. | 4 | 8 | 5 | | ١ | | 18 | | 40.7 | 37.2 | 3.2 | | | (41·0) | | Calm | | | | Pos. | 10 | | 10 | 1 | 11 | | 19 | 29.729 | 39.4 | 35.8 | 3.6 | | | •• | | Calm | | | | Pos. | 20 | • • | 15 | | | | 20 | 29.735 | 42.3 | 37.9 | 4.4 | • • • | | •• | •• | 8 | •• | •• | •• | Pos. | 12 | } • • • | 10
30 | 1 | | | 21 | 29.740 | | | | | 10.4 | •• | •• | ssw | | •• | •• | Pos. Pos. | 30
40 | :: | 12 | | 11 | | 22
23 | 29·744
29·749 | | | | 32.5 | 19.4 | •• | •• | SSW | | sśw | 4.69 | | ••• | | | | | | Mar. 18. 0 | 29.743 | 57.7 | 44.3 | 13·4 | | | | | ssw | | •• | | Pos. | 40 | | 20 | 20 | | | 1 | 29.730 | 58.5 | 43.8 | 14.7 | | | (61.5) | | SSW |
| •• | | -:- | | | :: | | | | 2 | 29.725 | 60.5 | 45.1 | 15.4 | | | 37.2 | 0.61 | SSW | | | | Pos. | 20 | :: | | | 30. | | 3 | 29.713 | | | | | | | | SSW | •• | •• | •• | Pos. Pos. | 10
5 | 10 | 10
10 | 1 | | | 4 | 29.719 | | | | } |]] | 77.3 | 0.00 | SSW
SSW | ••• | ••• | | Pos. | 8 | 20 | 10 | | | | 5 | 29.720 | | | | •• | •• | 28.8 | | SSW | | | | Pos. | 5 | | 5 | | 11 | | 6
7 | 29·721
29·728 | | | | •• | •• | 43.2 | 2.745 | S | | | | | | | | | | | 8 | 29.723 | 46.1 | 39.2 | 6.9 | • | | 41.2 | | Calm | | | | Pos. | 25 | | 20 | 20 | 8. | | 9 | | | 37.3 | | | | 1 1 | | Calm | | | | | | | | | ₩ | Maximum Free Thermometer. March 15^d. 22^h. The instrument was out of order. March 16^d. 22^h. The reading was registered 52°·1, which is evidently wrong, as several of the readings of the Dry Thermometer were greater than this value. It has been altered conjecturally to 57°·1, which is still less than the reading of the Dry Thermometer at 4^h. The value used in subsequent calculations is 57°·1. | 0-10. | Phases of the Moon. | REMARKS. | | |--|---------------------|---|------| | 0 | • • | Cloudless. | | | 0 | •• | • • • • • • • • • • • • • • • • • • • | | | 0 | •• | ** | | | 0 | •• | ,, | | | 0 | •• | ,, | | | 0 | • • | ,,, | | | 0 | • • | , · | | | 2 | Transit | Cirri and light clouds in various directions. | | | 3 | Perigee | Reticulated cirri about the zenith: light clouds in various directions. | | | 3 | • • | A C = 1: 14 1 1 1 | | | $egin{array}{c c} 2 & \\ 2 & \\ \end{array}$ | In Equator | A few light clouds are scattered in various directions. Cirro-stratus low in the horizon; every other part of the sky is clear. | | | 0 | New | Cloudless. | | | 0 | •• | ,, | | | 0 | • • | ••• | | | 1 | • • | A bank of cirro-stratus along the N. and W. horizon; clear elsewhere. A bank of cirro-stratus: a few light clouds in the zenith. | | | L | •• | A bank of cirro-stratus: a few light clouds in the zenith. | | | 0 | •• | Cloudless. | | |) | | Cloudless. | | | 9 | Transit | " | | | | •• | A few light clouds, but to no numerical extent. | | | | • • | Cloudless. | | |) | | ,, | | | | •• | · · · · · · · · · · · · · · · · · · · | | | | | 99.
99 | | |) | | ** | | |) | •• | , | | | | | ************************************** | | | | | 99 .
99 | | | | ••• | " | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | ,,
,, | | | • | | ,, | | | | | Cloudless. | | | | | 1, | | | | Transit | " | | | | :: | ,, | | | | | ,,
,, | | | | •• | ,, | | | | | ;; | | | | | a splendid night; the Moon, Venus, and Mars have been shining with great brilliancy. | | | | | | ···· | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICA | L IN | STR | UME | ENTS. | |---|------------------|---------------|---------------|------------|--------|-------|---|--|------------------|-----------------------------------|------------|--|-------------------------------------|---|--------------------|----------|---------|-------------------------------| | Day and Hour | 1 | | | Ther- | | Point | read at 22h. | Stand of
No. 1. | From | | From Whe | | Sign | Re | ading | s of | | Interval
of time in | | Göttingen | meter | Dry | Wet | mom. | Dew | below | Free Therm. | (Osler's). | Anemo | meter. | Anemom | 1 | Electricity, | Single | | | | recoverin | | Astronomical
Reckoning. | Cor-
rected. | Ther-
mom. | Ther-
mom. | | Point. | | Rad. Therm.
of Therm. in
Water of the | Reading of
No. 2.
Stand of
No. 3. | Direction. | Pressure
in lbs. per
square | Direction. | Descent of
the pencil
during the
continu- | as
shewn
by Dry
Pile Appa- | Single
Gold Leaf
of Dry
Pile Appa-
ratus. | Souble
old Leaf | raws of | raws of | degree
of tension
after | | | | | | Dry. | | mom. | Thames. | (Crusley's). | | foot. | | ance of
eachWind. | ratus. | ratus. | T 5 | <u> </u> | 20 | discharge | | d 1 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | in. | C-1 | from
lbs. to lbs. | | in. | | ٥ | 0 | div. | ١ | na s | | Mar.18. 10 | | :1 | | 5·8
5·1 | 1 | 12.7 | •• | ••• | Calm
Calm | | •• | • • • | Pos. | 3 | 5 | | | | | 12
14 | 11 | | | 4.7 | •• | ••• | •• | | Calm | : | | | Pos. | 2 | l | | | | | 16 | 11 | | 37.7 | | 32.0 | 10.2 | | | S | | | | Pos. | 2 | | | | | | 18 | 11 : | | 35.8 | | | | | | s | l | | | Pos. | 2 | | | | | | 20 | | | 37.4 | | | | | | SSE | | | | Pos. | 20 | | 20 | 40 | | | 22 | 29.601 | 50.7 | 43.8 | 6.9 | 35.0 | 15.7 | •• | •• | SSE | ••• | SSW | 1.26 | Pos. | 2 | • • | •• | ••• | •• | | Mar.19. 0 | 29.579 | 56.6 | 44.8 | 11.8 | l l | | | | s | 1 to 2 | | | Pos. | | 12 | | | | | 2 | 29.525 | | | | | | •• | | S | 1 to 2 | | | Pos. | 2 | | | | | | . 4 | 29.474 | 57.0 | 44.3 | 12.7 | | | 10 | ••• | S | 2 to $3\frac{1}{2}$ | | | | | 0 | 0 | 0 | •• | | 6 | 11 1 | | 43.8 | | •• | •• | 45.6 | | S | 1 to $1\frac{1}{2}$ | •• | •• | D | | 0 | 0 | 0 | | | 8 | 29.415 | | | | 99.0 | 14.5 | | 0.61 | S | | •• | | Pos. Pos. | 2
20 | •• | 40 | 50 | ••• | | 10 | | | | | 33.0 | 1 | 71.7 | 0.00 | SSW | | | •• | Pos. | 20 | •• | ł | } | ••• | | 12 | 29.379 | 479 | 410 | 6.1 | ••• | ••• | 38.0 | | 88 W | | •• | | 1 03. | 2 | ••• | ••• | | •• | | 14 | 29.362 | | | 3.2 | | | 44.5 | 2.745 | SSW | $\frac{1}{2}$ to 3 | • • • | | | •• | 0 | 0 | 0 | • • | | 16 | | | | 2.3 | 42.5 | 5.0 | 42.5 | •• | SW | 0 to $\frac{1}{2}$ | | •• | •• | •• | 0 | 0 | 0 | •• | | 18 | 0 1 | | | | •• | •• | (+) | •• | SSW | •• | • • | •• | Pos. |
15 | 0 | 0
10 | 0
12 | 12. 0 | | $\begin{array}{c} 20 \\ 22 \end{array}$ | | | | 1·8
2·0 | 45.0 | 3.7 | •• | :: | SSW
SW | | ssw | 6.15 | Pos. | 25 | | | | 12. 0 | | | | | | | 200 | | •• | | | | | | | | | | 20 | | | Mar.20. 0 | 1 | | | 3.0 | • • | • • | •• | ••• | SSW | 0 to $\frac{1}{2}$ | • • | | Pos. | 20 | •• | 15 | 1 | •• | | $\frac{2}{4}$ | 29.433 | | | 7.8 | 20.0 | 15.0 | Cro.# | •• | SSW | 1 to $1\frac{1}{2}$ | • • | | Pos.
Pos. | 20
30 | •• | 15
20 | 1 | 4. 0 | | $\frac{4}{6}$ | 29·452
29·442 | 54.9 | | 7·9
5·8 | 39.0 | - 1 | $egin{bmatrix} 56.7 \ 44.1 \ \end{bmatrix}$ | ••• | SSW
S by W | 1 to 3 | ••• | •• | Pos. | 30 | •• | 20 | 25 | 12. 0 | | 8 | 29 442 | | | 4.7 | | | 44 1 | 0.61 | S by W | | • • | | Pos. | 2 | | | | 12. 0 | | 10 | 29.408 | 46.0 | 42.9 | 3.1 | 40.8 | 5.2 | 71.0 | | SSE | | | | Pos. | $ar{f 2}$ | | | | | | 12 | | 46.0 | | 3.5 | | | 36.2 | 0.00 | SSE | | | | Pos. | 2 | | | | | | 14 | | | | | | | i | 2.745 | SSE | | •• | | | • • | •• | | • • | •• | | 16 | | | • • | | •• | •• | 45.0 | 2 140 | S | 0 to $\frac{1}{2}$ | •• | ••• | | ••• | •• | •• | • • | | | 18 | 20.10 | | | | • • | •• | 〔43 ·2 〕 | | S | | •• | •• | Pos. | | •• | 20 | 30 | 10.0 | | $egin{array}{c} 20 \ 22 \end{array}$ | 29·407
29·428 | 49·5
50·7 | 45·7
45·9 | 3·8
4·8 | | | •• | | S by W | 0 to 1 | św | 5.52 | Pos. | 20
12 | • • | 12 | 1 | 10. 0
12. 0 | Mar.21. 0
2 | | •• | •• | | •• | •• | •• | •• | S by W
S by W | •• | • • | :: | | •• | • • | •• | | :: | | 4 | | 57 ·5 | 50.8 | 6.7 | | | ··. | :: | S by W | | ssw | 1.38 | Pos. | | • | 20 | 20 | | | 6 | | | | | | | (58.2) | | S | | •• | ••• | | | • • | | | ••• | | 8 | | | | | •• | •• | 31.3 | | S by E | •• | • • • | ••• | •• | • • | • • | • • | | •• | | 10 | •• | •• | • • | | • • | • • | | 0.61 | S by E | ••• | •• | ••• | •• | •• | • • | •• | • • | •• | | 12 | | 35·3 | 33.8 | 1.5 | •• | ••• | 70.5 | 0.00 | S by E
S by E | •• | | •• | | •• | 0 | | 0 | •• | | 14
16 | . , | 34.7 | | 1.3 | 31.0 | 3.7 | 25.0 | | S by E | | | | | | 0 | 0 | ì | | | 18 | | | | 0.2 | | | | 2.745 | S by E | | | | | | o | o | 1 | | | 19 | 11 1 | | | 0.3 | •• | | 45.0 | | SŠE | | | | | | 0 | 0 | 0 | | | 20 | 29.599 | 35.5 | 35.4 | 0.1 | | | [[44.0] | | SE | | •• | | | •• | 0 | 0 | 0 | . • | | 21 | 29.599 | | | 0.4 | | | | | SE | •• | | 0.90 | D | | •• | | | ••• | | $egin{array}{c} 22 \ 23 \end{array}$ | | | | 2·0
1·0 | 42.0 | 5.0 | | | SE
NE | | E | 0.50 | Pos. | 10 | ••• | 10 | 20 | • | | | | | | | •• | •• | •• | | | | •• | | D | | ••• | ••• | | •• | | Mar.22. 0
1 | 29.628
29.651 | 57.6 | 50.3 | 7·3
8·7 | • • | •• | | ••• | NE
ENE | ••• | •• | •• | Pos. | 10 | 30 | 10 | | | | , 1 | 25 OO 1 | 01.0 | 140 0 | 0 1 | ••] | •• 1 | | ••• | نق لانناس ر |) · ·) | | 1 1 | ••• | •• | • • | • • | | • • | DEW POINT THERMOMETER. March 19^d. 4^h The observation was inadvertently omitted. MAXIMUM FREE THERMOMETER. March 19^d. The instrument was out of order. March 20^d. 22^b. The reading was lower than that of the Dry Thermometer at 2^b. | Amount of Clouds, | Phases of the Moon. | REMARKS. | Observer. | |----------------------------------|---------------------
--|-----------| | 0 | | Cloudless. | G | | 0 | :: | , , , , , , , , , , , , , , , , , , , | G I | | 0 | | , , , , , , , , , , , , , , , , , , , | | | 0 | •• | ,, | | | 0 | .: | ,, | GI | | | | | * ' | | 0 | •• | Cloudless. | | | 0 | Transit | • • • • • • • • • • • • • • • • • • • | G I | | 0 | ··· | • • • • • • • • • • • • • • • • • • • | 16. | | 2
4
5 | •• | A heavy bank of cloud with a few light cirri towards the S. and W. parts of the horizon. [to beyond the zenith. Clouds generally about the horizon: clear about the zenith: a stream of white light from the S.W. part of the horizon Cirro-stratus extending from the S. and S.W. horizon to the zenith: in the N. a bank of cirro-stratus is also exhibited, but at a low elevation. | G I | | 10
10 | •• | Overcast: cirro-stratus and scud: a thin misty rain is falling: the wind is blowing in gusts to 2. | | | 10 | •• | ,, the rain has ceased, and the wind has abated considerably. | | | 10 | | 22 | T | | 10 | • • | ,, fine rain has been falling since the last observation. | L | | 10
5
7
7
7
6
9 | Transit | Overcast: cirro-stratus and scud. The greater part of the sky N. of the zenith is covered with cirro-stratus and detached cumuli: clear mostly in the S. Cirro-stratus, cumulo-stratus, and scud scattered in every direction. Cirro-stratus, scud, and light clouds in every direction. A thin cirro-stratus. A faint corona is visible around the Moon. [N. N. E. to S. Long lines of strati in the W. obscuring the Moon: a bank of cirro-stratus extending around the horizon from the Clear in the W. horizon; cloudy elsewhere. | T I | |
7
8 | •• | Cirro-stratus, cumulo-stratus, and scud scattered in every direction. | TI | | | •• | | | | 5 | •• | Cirri, loose cumuli, and thin scud are scattered over the sky: a very fine day, followed by a very clear bright night. | G | | •• | Transit | | | | ••• | •• | | . | | :: | | | | | 0 | | Cloudless. | L | | 1 0 | •• | A few light clouds in the E. Cloudless: foggy: hoar frost. | | | 0 | | ordinates in the second of | | | 0 | | ** ** ** ** ** | | | 0 | ••• | A small bank of light cloud in the S. | L | | 5 | | Cirri, and light fleecy clouds in various directions. | G 1 | | 8 | | Light fleecy clouds and scud in various directions: several breaks near the zenith. Overcast: cirro-stratus and scud. | | | | | | | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICAL | _ IN | STR | UME | NTS. | |---------------|------------------|--------------|--------------|--------------|--------|--------------|-------------------------|------------------------|--|---|------------|----------------------------------|----------------------|---|-------|-------|-------|--------------------| | Day and Hour, | Baro- | D. | 747 | Ther- | | Point | read at 22h. | Stand of
No. 1. | From C | | From Who | | Sign
of | Rea | ading | s of | | Interva
of time | | Göttingen | meter | Dry | Wet | mom. | Dew | below | Free Therm. | (Osler's). Reading of | Anemo | meter. | Anemon | Descent of | Electricity, | Single | ي ا | | | recoveri | | Astronomical | cor- | Ther- | Ther- | below | Point. | Dry
Ther- | Rad. Therm. | No. 2.
Stand of | | Pressure
in lbs. per | | the pencil | sbewn | Gold Leaf
of Dry | Lea | ws of | vs of | degree
of tensi | | Reckoning. | rected. | rom. | mom. | Dry. | | mom. | Water of the
Thames. | No. 3.
(Crosley's). | Direction. | square
foot. | Direction. | continu-
ance of
eachWind. | Pile Appa-
ratus. | Single
Gold Leaf
of Dry
Pile Appa-
ratus. | Gold | Stra | Stra | after
dischar | | d h | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | | from
lbs. to lbs. | | in. | | 0 | ٥ | div. | div. | m | | Mar. 22. 2 | 29.653 | 1 | | 1 | • • | | | •• | NE | •• | ••• | | Pos. | 8 | 20 | 10 | • • | •• | | 3 | 29.660 | 58.0 | 1 | 7.6 | H | 11.5 | •• | ••• | NE
E by S | •• | •• | | Pos. | 20 | ••• | 20 | 20 | 3. | | 4
5 | 29·667
29·674 | | | 1 1 | | 11.5 | •• | | E by S | •• | | :: | 1 05. | | :: | | 20 | | | 6 | 29.686 | 11 | | 3.6 | :: | | | | E by S | | | | Pos. | 15 | | 15 | 20 | | | 7 | 29.702 | | | 2.5 | 11 | | | | E by S | | • • | | <u>.</u> | | | • • | • • | | | 8 | 29.711 | 47.5 | ii : | 2.1 | •• | | (60.4) | •• | E by S | | •• | | Pos. | 15 | •• | 12 | 15 | | | 9 | 29.718 | 46.3 | | 1.9 | | | 38.0 | 0.07 | E by S | •• | •• | •• | Pos. | 12 | • • | 10 | 10 | ••• | | 10
12 | 29·718
29·721 | 46·0
45·5 | | 1·7
1·6 | | i i | | 0.61 | E by S
E by S | •• | •• | | 1 | 12 | 0 | 0 | 0 | | | 13 | 29.721 29.722 | 11 | | 1 1 | | •• | 77.7 | 0.00 | E by S | ••• | | | | :: | | | | ∥ ∷ | | 14 | 29.723 | | | 1.1 | 1 | | 30.6 | | $\widetilde{\mathbf{E}}$ by $\widetilde{\mathbf{S}}$ | | | | | | 0 | 0 | 0 | II. | | 15 | 29.718 | 16 | | 1.3 | 1 | | 46.2 | 2.750 | SSW | | •• | | | • • | • • | | | | | 16 | 29.700 | | | 0.8 | | 1.2 | 45.2 | | S by W | | | | Pos. | 6 | 12 | 10 | • • | | | 17 | 29.697 | | 40.2 | 0.6 | •• | • • | | •• | S by W | | •• | | Dos | 2 | • • • | ••• | ••• | | | 18
19 | 29·693
29·706 | | | 0·1
0·4 | ••• | •• | •• | •• | SSW
SSW | •• | •• | 1 | Pos. | | | | | | | 20 | 29.707 | | | 0.6 | • • • | | •• | | SW | •• | | | | | 0 | 0 | 0 | 11 | | 21 | 20 101 | | 00 / | | | | | | ŝw | | | | | | | | | | | 22 | 29.694 | 49.4 | 45.4 | 4.0 | 42.0 | 7.4 | | | $\mathbf{s}\mathbf{w}$ | | | | Pos. | | 10 | | | | | 23 | 29.690 | 52.5 | 46.4 | 6.1 | •• | •• | •• | | SW | • •• | sw | 0.77 | •• | •• | ••• | • • | | | | Iar. 23. 0 | 29.688 | 54.0 | 44.1 | 9.9 | | | • • | | sw | 1 to 2 | | · | Pos. | | 12 | | | ∥ | | 1 | 29.684 | | 43.3 | 9.5 | | | •• | | SSW | $\frac{1}{2}$ to 1 | | | | •• | | | | ∥ | | 2 | 29.664 | | 43.3 | 8.2 | | | •• | •• | ssw | 1 to $2\frac{1}{2}$ | | | Pos. | • • • | 10 | ••• | | | | 3 | 29.638 | | 45.8 | 8.3 | | ••• | (55.7) | •• | SSW | 1 to $2\frac{\tilde{1}}{2}$ | OCAN | 3.00 | 5 . | •• | •• | | • • | | | 4
5 | 29.618
29.616 | | 44·8
43·9 | 5·7
4·6 | 40.0 | - 1 | 37.0 | 0.61 | SSW
SSW | $1\frac{1}{2}$ to 3 1 to $2\frac{1}{3}$ | ssw | 3.63 | Pos. | 4 | 8 | 6 | | | | 6 | 29.604 | | 44.0 | 1.6 | | | | | S by W | 1 to $1\frac{1}{5}$ | •,• | | | | 0 | 0 | 0 | | | 8 | 29.605 | | 43.5 | 1.2 | | | 72.0 | 0.00 | SSW | 0 to 1 | | | Pos. | 10 | 15 | 10 | | | | 10 | 29.620 | 41.6 | 41.0 | 0.6 | 40.5 | 1.1 | 30.8 | | SSW | * | | | Pos. | 3 | 8 | 5 | | | | 12 | 29.619 | 40.0 | 39.7 | 0.3 | ••• | | 46.8 | 2.775 | SSW | •• | •• | | Pos. | 2 | •• | • • | • • | | | 14 | •• | •• | •• | •• | •• | | 46.0 | •• | SSW
SSW | •• | •• | •• | •• | •• | ••• | | | | | 16
18 | •• | ••• | ••• | •• | •• | •• | | •• | WSW | •• | • • | | . | ••• | | \ | | | | 20 | •• | | | | | | | •• | wsw | •• | | | | | | :: | | | | | 29.691 | 47.0 | 42.8 | 4.2 | •• | | •• | •• | wsw | •• | wsw | 1.60 | Pos. | 20 | | 15 | | | | far. 24. 0 | 29.695 | 47.7 | 42.5 | 5.2 | •• | | •• | | wsw | | | · | Pos. | 2 | | | | . . | | 2 | | | | | | | | | wsw | 0 to $\frac{1}{2}$ | 11 | | | •• | | | | | | 4 | | | | | •• | | ••• | | W by S | 0 to $\frac{1}{2}$ | | | <u></u> | •• | | | | | | | 29.746 | 48.0 | 42.5 | 5.2 | •• | | 54.2 | •• | WbyS | •• | •• | •• | Pos. | 10 | • • | 8 | 10 | | | 8
10 | 29· 7 97 | 10:6 | 30.3 | 2.3 | 35·5 | 5·1 | 30.8 | 0.61 | WSW
SW | ••• | •• | | Pos. | 40 | • • | 20 | 20 | | | | 29.811 | | | 2.3 | 35.5 | 3.1 | 64.0 | | SW | | | | Pos. | 40 | | 20 | | 35. | | | 29.817 | | | 1.8 | | | 23.3 | 0.00 | $\tilde{\mathbf{s}}\mathbf{w}$ | | | | Pos. | 40 | :: | 18 | 1 | 30. | | 13 | 29.822 | 38.7 | 37.2 | 1.2 | | |] | 2.775 | SW | •• | •• | | Pos. | 10 | | 8 | (| | | | 29.850 | | | 2.2 | ••• | | 46.5 | 2 110 | SW | | •• | | Pos. | 12 | 20 | 15 | | | | | 29.848 | | | 0.5 | | 1.0 | [46.0] | ••• | SW | •• | •• | •• | Pos. | 15 | •• | 20 | | | | |
29·857
29·871 | | | $0.9 \\ 0.2$ | 32.0 | - 1 | • • | •• | SW
SSW | ••• | •• | | Pos. | 10 | | 10 | 12 | 20. | | | 29.883 | | | 0.3 | | | • • | •• | SSW | | | | Pos. | 20 | | 15 | 1 | | | | | | | | | | 1 | | | | 1 | 1 | H | ll | l Ť | l i | 1 | 11 | | 9
10 | •• | Cirro-stratus and scud: breaks towards the S. E. Overcast: cirro-stratus and broken scud. | | |---------|-----------------|---|---| | 10 | • • | Cirro-strati, cumulo-strati, and scud: several breaks near the zenith, but to no numerical extent. | 1 | | 10
7 | Transit | Overcast: cirro-stratus and scud. Cirro-stratus and scud: breaks about the zenith. | - | | 10 | • • | Overcast: thin cirro-stratus and scud: the Moon's place is visible. | - | | 10
9 | • • | Thin cirro-stratus covers the sky, through which the Moon and a few stars are visible. The sky is covered with a thin cirro-stratus. | | | 10 | • • | Overcast: cirro-stratus and scud. | | | 10 | • • | ,, | | | 0 | •• | ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, | | | 4 | Greatest decli- | Cirro-stratus and scud: clear about the zenith. | ١ | | 5
1 | nation N. | A heavy bank of cloud towards the S. E. portion of the horizon; the rest of the sky is clear. | ١ | | 1 | • • | A heavy bank of cloud towards the S. E. portion of the horizon, with a few lines of cirri above it. | | | 14 | • • | A few lines of strati about the horizon: the atmosphere hazy. | 1 | | 1 | •• | A bank of cumulo-stratus in the S.W. horizon: a few detached cirri about the zenith. | 1 | | 0 | •• | Cloudless. | 1 | | U | •• | A few light clouds in the W., but to no numerical amount. | | | 5 | •• | Thin cirro-strati are distributed in large detached portions, but of so thin a character that blue sky is visible. | l | | 9 | •• | Cirro-stratus and scud, which have gradually accumulated since the last observation. | | | 0 | • • | Cirro-stratus and scud: the Sun's place is visible. Cirro-strati, cumulo-strati, and scud: breaks towards the N. and W. | | | o | •• | Overcast: cirro-stratus and heavy scud. [S.W. and lasted about 15 ^m . | 1 | | 0 | • •
Transit | about ten minutes after the last observation a squall of rain came up from the | | | 0
3 | lst Quarter | ,, cirro-stratus and scud: rain has just commenced falling. Light fleecy clouds about the zenith, with cirro-stratus and scud around the horizon: the rain ceased at about 30 ^m after | | | 0 | •• | Cloudless. [the last observation. | 1 | | 0 | •• | ** | - | | · | •• | | 1 | | | • • | | 1 | | | •• | | | |) | •• | Overcast: cirro-strati, cumulo-strati, and scud. | | | | •• | Overcast: cirro-strati, cumulo-strati, and scud. | | | | •• | | | | 3 | | Cloudy around the horizon: light clouds here and there. | 1 | | | Transit | Cloudless. | 1 | | | :: | ordinates. | 1 | | | ••• | ** | 1 | | | •• | , | 1 | | | :: | | | | | | , , , , , , , , , , , , , , , , , , , | | | | |); | 1 | | | | | | Wet | | Dew | Max. and Min.
as | RAIN
GAUGES. | | WIN | D. | | ELF | CTRICA: | L IN | STR | UME | NTS. | |---|------------------|--------------|---------------|---------------|----------|----------------------|---|--------------------------------------|------------------|--|---|--|---|---------------------|----------------------|-----------------------|-----------------------|---| | Day and Hour, | Baro- | | T#7 . | Ther- | | Point | read at 22h. | Stand of
No. 1. | From C | | From Whe | | Sign | Re | ading | s of | | Interval
of time in | | Göttingen | meter | Dry | Wet | mom. | Dew | below | Free Therm. | (Osler's). Reading of | Anemo | meter. | Anemoni | Descent of | Electricity, | Single
Gold Leaf | ا ا | | | recovering
the same | | Astronomical
Reckoning. | Cor-
rected. | | Ther-
mom. | below
Dry. | Point. | Dry
Ther-
mom. | Rad. Therm. in Water of the Thames. | No. 2. Stand of No. 3. (Crosley's). | Direction. | Pressure
in lbs. per
square
foot. | Direction. | the pencil
during the
continu-
ance of
eachWind, | shewn
by Dry
Pile Appa-
ratus. | of Dry | Double
Gold Leaf. | Straws of
Volta 1. | Straws of
Volta 2. | degree
of tension
after
discharge. | | d h | in. | 0 | 0 | 0 | 0 | 0 | o o | in, | | from
lbs. to lbs. | | in. | | 0 | 0 | div. | div. | m s | | Mar. 24, 19 | 29.886 | | 31.6 | 0.3 | | | •• | | SSW | tos. to tos. | •• | | | | | | | • • | | 20 | 29·893
29·895 | | | 0·4
2·4 | •• | •• | •• | | SSW
SSW | •• | •• | ••• | Pos. | 25 | •,• | 20 | 25 | 6.0 | | $\begin{array}{c} 21 \\ 22 \end{array}$ | 29.895 | 14 8 | 39.8 | | 36.7 | 5.5 | •• | | SE | •• | $\ddot{\mathbf{w}}$ | 1.70 | Pos. | 25 | | 20 | 25 | | | 23 | 29.906 | | 47.4 | 5.6 | | •• | •• | | SE | •• | . •• | •• | •• | •• | •• | •• | •• | •• | | Mar.25. 0 | 29.908 | 55.5 | 48.0 | 7.5 | | | •• | | SSE | •• | | | Pos. | 40 | 40 | 10 | 10 | | | 1 | 29.894 | | | 9.6 | •• | •• | •• | | SSE | •• | | •• | Don | 10 | 15 | 10 | ••• | •• | | 3 | 29.888
29.879 | | | | | | •• | •• | SE
SE | •• | • • | | Pos. | 10 | | | | | | 4 | 29.876 | 54.5 | 47.7 | 6.8 | 40.0 | 14.5 | •• | | E | •• | | | Pos. | 2 | •• | •• | | •• | | 5 | 29.868 | | , , | 5.4 | ••• | | (60⋅2) | | E by N | ••• | •• | •• | D | • • | •• | •• | •• | • • | | 6 | 29·877
29·884 | 1 1 | 45·8
43·7 | 4·7
3·5 | •• | ••• | 39.6 | 0.61 | E by N
E by N | •• | •• | •• | Pos. Pos. | 2
5 | 10 | 8 | | | | 8 | 29.901 | | | 2.0 | | | 00.0 | | E by N | ••• | | | Pos. | 10 | | 10 | 20 | | | 9 | 29.925 | 41.2 | 39.7 | 1.2 | | | $\begin{array}{c c} 33.0 \\ 80.0 \end{array}$ | 0.00 | E by N | •• | •• | | •• | •• | • • | •• | •• | •• | | 10 | 29.914 | 42.3 | 39.3 | 3.0 | 36.0 | 6.3 | 46.3 | 2.785 | E by N | •• | •• | | Pos. | 40 | •• | 15 | 20 | 15. 0 | | 12 | 29 888 | 40.5 | 38.7 | 1.8 | | | 46·3 ∫ | | E by N | •• | | | | | 0 | 0 | 0 | | | 14 | 29.891 | | | 1.3 | | ••• | •• | | E by N | •• | •• | •• | •• | | 0 | 0 | 0 | • • | | 16
18 | 29·874
29·847 | | | 0.9 | 41.0 | 1.2 | •• | •• | ENE
ENE | •• | •• | | •• | •• | 0 | 0 | 0 | | | 20 | | 42.5 | 41.8 | 0.7 | | | | | E | | | | Pos. | 12 | | 10 | 12 | 13. 0 | | 22 | 29.880 | 48.2 | 45.6 | 2.6 | 43.0 | 5.2 | | •• | ENE | •• | E | 1.80 | •• | •• | 0 | 0 | 0 | •• | | Mar. 26. 0 | 29.890 | | | 4.9 | | | | •• | E | •• | •• | | | ••• | 0 | 0 | 0 | •• | | $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$ | 29·873
29·869 | - 11 | | 6·6
7·6 | 45.0 | 15:0 | (62.2) | •• | WSW
SW | •• | •• | •• | Pos.
Pos. | 20
15 | :: | 20
10 | 25
12 | 20.0 | | 6 | | 11 | | 5.9 | 40 0 | 100 | 40.3 | 0.61 | sw
sw | • | | | Pos. | 25 | | 20 | 20 | 5. 0 | | 8 | 29.902 | 51.0 | 47.3 | 3.7 | | | | 0.61 | SSW | | •• | | Pos. | 30 | •• | 20 | 20 | 9. 0 | | 10
12 | | 47·5
46·0 | 45.9 | 1·6
1·1 | 44.0 | 3.2 | } 79·0
 32·0 | 0.00 | SSW
SSW | •• | ••• | •• | Pos.
Pos. | 2 | •• | :: | •• | •• | | 14 | 29.916 | 44.0 | 42.8 | 1.2 | | | 32 0 | 0.500 | SSW | • • | | | Pos. | 2 | | | | | | 16 | 29.903 | 43.0 | 42.6 | 0.4 | | 1.0 | 46.7 | 2.790 | W | •• | | | Pos. | . 2 | • • | | | •• | | 18 | 29·894
29·899 | 41.2 | 41.0 | 0.2 | •• | | [46·7] | •• | W
S | •• | •• | •• | Pos.
Pos. | 30
40 | ••• | 30
50 | 40
50 | 1. 30
1. 0 | | 22 | 29.900 | 45.4 | 44.9 | 0.2 | 44.0 | 1.4 | •• | •• | S by E | •• | wsw | 1.82 | | •• | 0 | | | | | Mar. 27. 0 | | | | | •• | | | •• | ENE | •• | | | | | 0 | o | 0 | • • | | 2
4 | 29·838
29·814 | 60.0 | 52.9 | 7.1 |
43·0 | 17.3 | •• | •• | SE
S | •• | •• | •• | Pos. | 2
5 | 3 | 3 | 5 | ••• | | 6 | 29.791 | 57·8 | 47.7 | 10.1 | 400 | | 62.2 | | S | •• | • | :: | Pos. | 10 | | 8 | 10 | •• | | 8 | 29.760 | 51.6 | 47.2 | 4.4 | ••• | | 42.8 | 0.61 | \mathbf{s} | | | •• | Pos. | 2 | | ••• | | | | | 29.734 | | 44·5
43·3 | 1·9
1·7 | [| 4.4 | 89.0 | 0.00 | SSE
SSE | •• | • • | •• | Pos. | 2
15 | • | 20 | 40 | •• | | 12
14 | 29.702 | 45.0 | 43.3 | | | | 35·5 | | SSE | •• | | | Tos. | 10 | | | | | | 16 | | | | | | | 47.2 | 2.790 | SSE | •• | •• | | •• | •• | | | | ., | | 18
20 | | | | | | ∥ | 47.0 | •• | SSE
SSE | •• | •• | • | •• | •• | | | | •• | | - 11 | 29.473 | 51.4 | 46.9 | 4.5 | :: | | | •• | SSE | •• | s | 0.20 | Pos. | | 30 | 20 | 20 | | | | 29.439 | | | 2.9 | | | • • | | SSE | | | | Neg. | | | 30 | 30 | | ELECTRICITY. March 26^d . 20^h . There was a spark at the distance of $0^{in}\cdot 02$. | Amount of Clouds, | Phases of the Moon. | REMARKS. | | |--|---------------------|--|---| | 0 | •• | Cloudless: hoar frost. | Т | | 0
0
0 | •• | ,,, | T | | 0 2 | •• | Cloudless. Thin cirri are scattered about the sky. | | | 2 3 | •• | Light cirri in every direction; some light fragments of scud are also seen in the zenith. Light clouds in various directions; a few loose cumuli towards the South. | G | | $\begin{bmatrix} 2\\3\\3 \end{bmatrix}$ | •• | Light clouds in various directions. Light clouds chiefly W. of the zenith. | | | 4 4 9 | Transit | Light clouds in various directions. A band of cymoid cirri reaching across the zenith from N. to S.: a heavy bank of stratus towards the W. and N. W. The sky is nearly covered by white loose clouds, through which in many places the stars are visible;
there is no upper | G | | 4 | •• | cloud. White clouds grouped together with a beautiful clear sky between them, the appearance of the sky is very variable; at times it has been beautifully mottled with white clouds, and at other times nearly cloudless. | 0 | | 0 0 | •• | Overcast: cirro-stratus and scud: the sky became covered at 11 ^h . 50 ^m . no change since 12 ^h . shower of rain has fellon since the last observation | 7 | | $\begin{bmatrix} 0 \\ 7\frac{1}{2} \\ 2 \end{bmatrix}$ | ••• | Cirro-stratus, cumulo-stratus, and scud: since the last observation the aspect of the sky has been very variable, occa-A bank of cirro-stratus towards the horizon in the E., a few light clouds in various directions. | Т | | 3 | •• | Overcast: cirro-stratus, fleecy clouds and scud. Dark cirro-stratus N. of the zenith; cumuli towards the S.; loose scud floating about. The sky is covered with cirro-strati, cumuli, and scud: the Sun is occasionally seen through the clouds. | 7 | | 3 7 1 |
Transit | Cirro-stratus, cumulo-stratus, light cirri, and scud: Cirri, cumuli, cirro-strati, and masses of scud: a corona around the Moon. Light clouds of the stratus character chiefly in the horizon, and in the zenith but of small amount. Cloudless. | 7 | | | • • | ,,
,, | | | 0 | •• | Overcast: thick fog. ,, the trees are dripping with moisture. Very foggy. | 6 | | | •• | Overcast: cirro-stratus and scud. ,, cirro-stratus and broken scud. | | | | | Cirri and light clouds in various directions; the clouds have cleared off within the last half-hour. Cirro-stratus: fleecy clouds and scud. There is a perfect halo formed around the Moon: radius 23° by measurement. | | | | Transit : | A few light clouds. The halo has just disappeared, but has been very faint for some time. Cirri and light fleecy clouds in various directions, more particularly towards the N. W. and N. parts of the horizon. | G | | | •• | | | | 9 | :: | Overcast: a light rain has just began to fall. ,, rain is falling. | | | | | | | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICAL | INS | STR | UME | NTS. | |-----------------|------------------|--------------|--------------|------------|---|-------|---|------------------------------------|------------------|----------------------------------|------------|-----------------------------------|----------------------|-------------------------------|----------------------|-----------------------|-----------------------|------------------------------| | Day and Hour, | 1 1 | | | Ther- | | Point | read at 22h. | Stand of
No. 1. | From (| | From Whe | | Sign
of | Re | ading | s of | | Interve | | Göttingen | meter | 1 | Wet | mom. | Dew | below | Free Therm. | (Osler's).
Reading of | Anemo | meter. | Anemom | Descent of | Electricity
as | Single | | . | . | recoveri | | Astronomical | Cor- | Ther- | Ther- | | Point. | Dry | Rad. Therm. | No. 2. | | Pressure | | the pencil
during the | shewn
by Dry | Single
Gold Leaf
of Dry | eg g | ws o | ws o | the san | | Reckoning. | rected. | mom. | mom. | Dry. | | mom. | of Therm. in
Water of the
Thames. | Stand of
No. 3.
(Crosley's). | Direction. | in lbs. per
square
foot. | Direction. | continu-
ance of
each Wind. | Pile Appa-
ratus. | Pile Appa-
ratus. | Double
Gold Leaf. | Straws of
Volta I. | Straws of
Volta 2. | of tensi
after
dischar | | d h | in. | 0 | 0 | 0 | 0 | 0 | ۰ | in. | | from
lbs. to lbs. | | in. | | ٥ | ٥ | đi v . | div. | m | | Mar. 28. 0
1 | 29·3 7 7 | 47.7 | 48.0 | -0.3 | | | | ••• | SSE
SSE | | •• | :: | Neg. | 40 | :: | •• | 50 | 0. | | 1. 30 | 29.369 | | 47.9 | | | | | | SSE | | | | Neg. | 40 | | | 50 | | | 2. 0 | | | •• | | | •• | (52.9) | | SW | | | | •• | | | •• | • • | | | 4. 0
4. 40 | 29·312 | 49.7 | 47.7 | 2.0 | | •• | 31.6 | 0.81 | wsw
wsw | •• | •• | •• | Neg. | ••• | :: | 30 | 40 | | | h | 29 312 | 45 / | 417 | 20 | • | | 07:0 | | 1 | •• | • • • | '' | | •• | | | | | | 6
8 | •• | | | :: | | | $igg \left\{ egin{array}{l} 67.0 \ 24.0 \end{array} ight. ight.$ | 0.25 | W by S
N by E | 1 to 31 | | | •• | • • | | • | | | | 10 | | | | | | | | 3.185 | Ň | $1\frac{1}{2}$ to $4\frac{1}{2}$ | | | | | | •• | | | | 12 | | • • • | ••• | | | •• | 47.0 | 9,109 | N | 1 to $3\frac{1}{2}$ | •• | •• | | •• | | •• | | ∥ … | | 14 | 29.552 | 36·8
35·6 | 34·8
33·6 | | 21.0 | 4.6 | [47.0] | | WNW | •• | •• | •• | Pos. | 2 | 0 | 0 | 0 | | | 16
18 | 29·591
29·614 | | 31.7 | | 31.0 | 40 | :: | | WNW | • • • | •• | | Pos. | 2 | | | | | | 20 | 29.646 | | | | | | | | \mathbf{w} | •• | | | Pos. | 2 | | • • | • • | | | 22 | 29.643 | 37.6 | 34.1 | 3.2 | 28.5 | 9.1 | •• | •• | W | •• | NNW | 3.85 | Pos. | •• | • • | 100 | 120 | 3. | | Mar. 29. 0 | 29.620 | 1 - | 38.7 | | | | •• | | W | •• | ••• | | <u>.</u> | ••• | 0 | 0 | | 11 | | 2
4 | 29.590 | 44·4
42·3 | 38·7
38·5 | | 33.0 | 9.3 | •• | | NNW
N | •• | •• | | Pos.
Neg. | 12
2 | | 10 | 12 | 17. | | 6 | 29·551
29·539 | | 37.2 | 1.8 | 35.0 | 9.3 | 〔46·3 ┐ | | NNW | | | | Neg. | 10 | 15 | 10 | | | | | | | | | | | 30.6 | 0.86 | | | | | | | | | | | | 8 | 29.552 | 34.2 | 33.3 | 1.2 | | l | | 0.05 | NNE | •• | | | Pos. | | | 60 | | Recove | | 10 | 29.557 | | | | 31.0 | 3.2 | 24.2 | 0.03 | W | | ••• | •• | Pos. | 20 | ••• | 20 | | 11 | | 12
14 | 29·551
29·550 | 36.2 | | | ••• | • • | 47.0 | 3.270 | W
W | •• | ••• | •• | Pos. | 30
25 | • • | 30
20 | | 7.
10. | | 16 | 29.558 | | 33.1 | | 31.0 | 3.5 | 46.2 | | w | | • • | | Pos. | 10 | | 12 | 1 | 12. | | 18 | 29.579 | 32.6 | 32.0 | 0.6 | ٠. | | · | | W | | • • | | Pos. | 20 | | 15 | | 12. | | 20 | 29.593 | | | | | | | •• | WSW | ••• | 7NT W37 | 0.10 | Pos. | 27 | • • | 15
20 | | } } | | 22 | 29.598 | | 36.2 | | 33.0 | 6.2 | •• | •• | NW | •• | NW | 2.18 | ros. | 30 | • • | | | ••• | | Mar. 30. 0 | 29·587
29·554 | | 37·2
36·5 | | ••• | • • | •• | •• | WNW | •• | W | 0.42 | Pos. | | 0 | 0 | 0 | 1 | | 4 | 29.532 | 43.7 | lí . | | 28:0 | 15.7 | (45.3) | | WSW | •• | ••• | :: | Pos. | 2 | | | | | | 6 | 29.514 | 43.2 | 37.6 | 5.9 | | | 25.3 | 0.86 | wsw | •• | | | Pos. | 12 | | 10 | 12 | | | 8 | 29.506 | | | | | | (70.0) | | SSW | •• | •• | •• | Pos.
Pos. | 30 | •• | 50 | • | | | 10
12 | 29·502
29·490 | 31.0 | 34.0 | 1·5
0·4 | 32.0 | 1 1 | \ \ (53.0) \ \ \ \ \ 15.0 \ | 0.00 | SW
SSW | •• | | | Pos. | 25
35 | | 30
45 | 1 | 11 | | 14 | 29.464 | | | | | : : | | 0.070 | SW | | | :: | Pos. | 30 | | 25 | | | | 16 | 29.430 | 29.0 | 28.8 | 0.2 | | | 46.2 | 3.270 | WsW | | | | Pos. | 25 | • • | 20 | | ш | | 18 | 29.412 | | | | • • • | • • | (46.0) | | S by W
S by W | •• | •• | •• | Pos. Pos. | 10
25 | • • | 10
30 | | | | 20
22 | 29·414
29·415 | | | | 32.8 | 4.2 | •• | :: | SSE | | Ë | 0.12 | Pos. | 25 | | | | 5.
5. | | Mar. 31. 0 | 29.396 | 43.2 | 39.9 | 4.3 | | | (45.8) | | ENE | | | | Pos. | 25 | | 30 | 40 | 12. | | 2 | 29.354 | 42.5 | 37.4 | 5.1 | | | 29.5 | 0.86 | NE | •• | | | Pos. | 25 | | 40 | 50 | | | 4 | 29.313 | 44.2 | 38.5 | | 28.5 | 15.7 | | | NE | •• | •• | | Pos. | 15 | • • | 15 | 1 | | | 6
8 | 29·309
29·309 | | | | | | 60·5 22·0 | 0.00 | NE
NE | •• | •• | | Pos.
Pos. | 20
25 | | 20
25 | | 10.
10. | | | | | 33.1 | | 31.0 | 3.2 | 220 | 3.270 | E by S | | •• | | Pos. | 15 | :: | 15 | | | | | 29 014 | | | 1 | , | 1 | | II 3.270 | | | н . | 1 1 | | 1 | 1 1 | | 1 | II | | 10
12 | 29·308
29·301 | 34.6 | 33.1 | 1.5 | | | 45.5 | | SW
SW | | • • • | •• | Pos. | 2 2 | | • • | | ∥ •• | DRY THERMOMETER. March 28^d. 1^h and 1^h. 30^m. The readings were lower than those of the Wet Thermometer. Maximum Radiation Thermometer. March 29^d. The instrument was out of order. ELECTRICITY. March 28^d.22^h; 29^d.8^h; 30^d.8^h; and 31^d.0^h. There were sparks at the distances of 0ⁱⁿ·04, 0ⁱⁿ·01, 0ⁱⁿ·02, and 0ⁱⁿ·02 respectively. Galvanometer. March 30^d. 8^h. There was a current of 1° towards B. | 0—10. | Phases
of | | | |-------|--------------|---|---| | Ĭ | the | REMARKS. | | | _ | Moon. | | - | | 0 | •• | Overcast: rain is falling. | | | , | •• | • | | | | •• | ,, , , , , , , , , , , , , , , , , , , | | | | • • | | | |) | • • | ,, rain continued falling heavily till 2 ^h . 40 ^m ; since then light rain has fallen, and it still continues. | | | | • • | | | | | Transit | | | | , | •• | ,, cirro-stratus and scud. | | | | •• | Cirro-stratus, fleecy clouds, and scud: a large space S. of the zenith is clear. Cloudless. | | | | •• | Overcast, with very thin cirro-stratus. | | | 1 | •• | Thin cirro-stratus: very hazy. | | | | • • | Cirro-stratus, cumulo-stratus, and scud: hazy in the horizon. | | | | •• | Cirro-stratus and scud: a large break towards the N.: a shower of rain has just fallen, which lasted about ten minutes. | | | | Apogee | A few light cirri, of no numerical amount, about the zenith: a heavy bank of cumuli about the eastern horizon: at 4 ^h . 50 ^m a large mass of cirro-stratus and scud passed from the N. W. over the zenith, when very strong negative electricity was shewn; heavy rain fell at the same time and lasted about thirty minutes. | | | | •• | Overcast: cirro-stratus and scud: rain beginning to fall. Light fleecy clouds and scud towards the S.; the rest of the sky is clear. | | | | Transit | Cirro-stratus and masses of scud chiefly N. and N. W. of the zenith. | ļ | | | | Cloudless. | | | İ | • • | A few detached cirri in the W.; every other portion
of the sky is clear. Some lines of cirri in the W.: hazy: hoar frost. | į | | | •• | Cirro-stratus, fleecy clouds, and scud: a thin fog prevails. | | | | •• | Cloudy around the horizon: vapour is prevalent: cumuli and loose scud are in various directions. | | | | •• | Cumulo-strati, fleecy clouds, and loose scud in every direction. | | | 1 | In Equator | Clear about the zenith; cumulo-strati, fleecy clouds, and large masses of loose scud elsewhere. Cirro-stratus, cumulo-stratus and scud: several portions of blue sky N. of the zenith. | | | | •• | ,, | | | | •• | clear in the zenith, and in the eastern portion of the sky. | | | | Transit | A very thin stratus covers the greater part of the sky, through which the Moon is visible; and a few stars of the first Cloudless: hazy. [magnitude can also be seen. | | | | •• | ,, slight fog. | - | | | ••• | hazy chiefly around the horizon. | | | | | | | | | | Cirro-stratus, cumuli, and scud: small breaks of blue sky in the zenith and W. of it. [rays. Cirro-stratus, finely formed cumuli, and scud; the edges of the cumuli in the S. W. are beautifully tinged by the Sun's | | | | | Cirro-stratus, fleecy clouds, and scud: small breaks about and to the N. of the zenith. Overcast: cirro-stratus, fleecy clouds, and scud. | | | | • • | Cirro-stratus, fleecy clouds, and scud: Ciera about the zenith and N. of it. | | | | Full | 27 | | | | Transit | Cirro-stratus, cumulo-stratus, and masses of dark scud: the Moon visible, but occasionally obscured by passing clouds. Nearly the whole of the sky, except a portion in the W. S. W., is covered by a thin cloud of the cirro-stratus character. | | Henley's Electrometer. March 28^d . 1^h and 1^h . 30^m . The reading was 3° . March 31^d. 12^h. The amount collected during the month of March in the rain-gauge No. 4 was 0ⁱⁿ 77, and that collected by the Rev. G. Fisher in a rain-gauge of the same construction at Greenwich Hospital Schools during the same period was 0ⁱⁿ 62. | | | | | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICA | L IN | STR | UME | NTS. | |----------------------------|------------------|---------------|---------------|-----------------------------|--------|----------------------|--|---|---|---|------------|--|---|---|------------|----------|----------------------|--| | Day and Hour, | Baro- | | | Ther- | | Point | read at 22h. | Stand of
No. 1. | From (| | From Whe | | Sign | Re | ading | gs of | | Interva
of time | | Göttingen | meter | Dry | Wet | mom. | Dew | below | Free Therm. | (Osler's). | Anemo | meter. | Anemom | Descent of | Electricity, | Single | | ••• | | recovering | | Astronomical
Reckoning. | Cor-
rected. | Ther-
mom. | Ther-
mom. | below
Dry. | Point. | Dry
Ther-
mom. | Rad. Therm.
of Therm. in
Water of the
Thames. | Reading of No. 2. Stand of No. 3. (Crosley's). | Direction. | Pressure
in lbs. per
square
foot. | Direction. | the pencil
during the
continu-
ance of
eachWind. | as
shewn
by Dry
Pile Appa-
ratus. | Single
Gold Leaf
of Dry
Pile Appa-
ratus. | 51 | Straws o | Straws o
Volta 2. | degree
of tension
after
discharge | | d h | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | | from
lbs. to lbs. | | in. | | 0 | 0 | div. | div. | m | | Mar. 31.16 | 29.285 | | | , , | 28.5 | 3.0 | | | SW | •• | •• | •• | Pos. | 2 | $ \cdots $ | •• | • • | •• | | 18
20 | 29·278
29·281 | | 11 | | •• | •• | ••• | ••• | SSW
SSW | •• | ••• | ••• | Pos.
Pos. | 2
2 | • • | • • | : : | ••• | | 22 | 29.278 | 1 | 36.5 | 1 1 | 32.0 | 7.0 | •• | •• | ssw | •• | ssw | 0.60 | Pos. | 20 | | 30 | | ••• | | April 1. 0 | 29.265 | | 37.9 | 3.2 | | | • • | •• | S by W | • • | •• | | Pos. | 8 | | 10 | 1 1 | | | 2 | 29.251 | | 36.7 | 2.9 | 90.0 | 5.5 | C45.4 > | •• | SW
S by W | •• | •• | •• | Pos. | 20
25 | 85 | 20
30 | 1 | | | 4
6 | 29·209
29·189 | 1 1 | 39·4
38·4 | 3·1 | 36.0 | 5.5 | $\left[egin{pmatrix} 45\cdot 4 \\ 27\cdot 0 \end{array} ight]$ | | SBW | • • | | | Neg.
Pos. | 40 | 00 | 35 | 1 | | | 8 | 29.193 | 1 1 | 35.7 | 0.8 | | | | 0.88 | WSW | | | | Pos. | 40 | | 50 | 70 | 3. | | 10 | 29.187 | 1 | li . | 1 1 | 32.0 | 4.3 | ∫ 58·0 | 0.02 | $ $ \mathbf{s} | •• | ••• | ••• | Pos. | 40 | | 25
50 | | | | 12
14 | 29.162 | 1 1 | 33.6 | 1 | | | 18.5 | | $\begin{array}{c} \mathbf{s} \\ \mathbf{ssw} \end{array}$ | •• | •• | •• | Pos. | •• | | 50 | 70 | l | | 16 | | | | | | :: | 44.3 | 3.310 | SSW | •• | | | | | | • • | | | | 18 | | | | | | | 44.3 | ••• | WSW | | | | | | • • | • • • | | •• | | 20
22 | 29.121 | 33.8 | 32·5 | 1.3 | ••• | •• | | •• | WNW
N by E | •• | sśw | 2.25 | Pos. | 20 | | 20 | 30 |
13. | | April 2. 0 | | | | | | | | | NNW | | | | | | | | | | | 2 | | •• | | •• | • • | •• | | | NNW | •• | | | •• | •• | $ \cdots $ | • • | | | | 3. 45 | 29.102 | 40.7 | 36.7 | 4.0 | ٠. | | | | NNW | | | | Pos. | 2 | | | | | | 4 | 29.105 | 40.7 | 35.7 | 5.0 | | | (44.2) | | NNW | 0 to 1 | | | | | 0 | 0 | 0 | ٠. | | 6 | | •• | | | | | 31.7 | 0.88 | NNW | •• | | | | | | | | | | 8 | •• | ••• | •• | •• | •• | •• | 61.5 | 0.00 | NW | •• | •• | •• | •• | •• | ••• | • | •• | | | 10
12 | ••• | | •• | | •• | | 24 ·0 | 0.00 | NW
NW | • • | | | | | | | | | | 14 | 29.219 | 33.2 | 31.8 | 1.4 | | | 44.5 | 3.310 | NNW | •• | | | Pos. | 8 | | 8 | 15 | | | 11 | 29.225 | 33.5 | 32.0 | 1.2 | 30.0 | 3.2 | 44.0 | ••• | NNW | •• | • • | •• | Pos. | 20 | • • | 20 | | | | 18
20 | 29.237 29.250 | 32·5
33·5 | 31·1
31·6 | $\frac{1\cdot 4}{1\cdot 9}$ | •• | •• | | •• | WNW | 0 to $\frac{1}{2}$ | •• | | Pos. | 40 | | 60 | | 1 | | 22 | 29.254 | 38.7 | 34.4 | 4.3 | 28.0 | 10.7 | •• | | WNW | 0 to 1 | ŃW | 2 23 | Pos. | 20 | | 15 | 1 . 1 | | | April 3. 0 | 29.241 | 39.7 | 35.2 | 4.5 | | | •• | | NNW | ½ to 1 | | | Pos. | 2 | | | | | | 2 | 29.248 | 40.8 | 36.2 | 4.6 | 20.5 | | | | W | $\frac{1}{2}$ to 2 | *** | 0.70 | Pos. | 2 | ٠. | | | ••• | | | 29·238
29·256 | | | | 28.5 | | (42 ⋅6) | ••• | WNW
W | $\begin{array}{ccc} \frac{1}{2} & \text{to } 2 \\ 0 & \text{to } \frac{1}{2} \end{array}$ | WNW | 2.70 | Pos. | 8 | 0
10 | 0
5 | | | | | 29.287 | | | | | | 32.2 | 0.88 | $\dot{\mathbf{w}}$ | 2 | | | Pos. | 8 | 10 | 5 | | | | 10 | 29.326 | 36.0 | 35.2 | 0.8 | 34.0 | 2.0 | 51.0 | | NNW | | •• | •• | Pos. | 15 | •• | 10 | 20 | | | 12 | 29.362 | 26.5 | 35·6 | 0.9 | | | 25.5 | 0.01 | \mathbf{N} | | | | Pos. | 20 | | 20 | 30 | 7. | | 14 | 29 302 | 30 3 | 99 0 | | | | 10.0 | 3.350 | NNW | •• | | • • • | T US. | | • • | 20 | | | | 16 | •• | | | | | | $\begin{bmatrix} 43.8 \\ 43.5 \end{bmatrix}$ | ••• | N by W | 0 to $\frac{1}{2}$ | •• | | | | | | • • • | | | 18 | •• | •• | •• | •• | •• | •• | | | N by W
NNW | •• | •• | •• | •• | •• | •• | •• | | ∥ … | | 20
22 | 29.594 | 41.2 | 38.5 | 2.7 | •• | •• | • • | | NNW | •• | NNW | 0.65 | Pos. | 4 | 6 | 5 | | :: | | April 4. 0 | | | | | | | •• | | NNW | ., | | | | | | | | | | 2 | 29.621 | 47.0 | 20.5 | | • • | •• | • • | •• | W by S
W by S | •• | •• | •• | Pos. |
30 | | 40 | 50 | ∥ … | | 3 4 | 29.621 | 47.2 | 29.2 | 77 | ••• | | •• | :: | WSW | 0 to 1 | | | Pos. | | | 40 | 30 | ∥ ∷ | | 6 | | | | | | | | | wsw | 2 | | | | •• | | | | ∥ | | . 8 | | | | | | \ | | | SSW | | • • | 1 | | ••• | ١ | | | ∥ | Electricity. April 2^d . 18^h . There was a spark at the distance of $0^{\text{in}} \cdot 02$. Squall of Wind, Rain, and Snow. April 1. Before 4^b there was a heavy squall of wind, rain, and snow, during which the reading of the Dry Thermometer decreased from 45° 3 to 38° 0 within five minutes, while the reading of the Wet Bulb remained unchanged: no water fell upon the Dry Bulb. Within five minutes after the squall ceased the reading had increased to 41° 5. Between 6^b and 8^b there were three squalls, during which hail, sleet, and rain fell. (See the Section of Electrometer Observations.) G. | Amount of Clouds, | Phases of the Moon. | REMARKS. | Observer. | |-------------------------------|---------------------|---|-----------------| | 9
10
10
10 | •• | Nearly the whole of the sky, except a portion in the W.S.W., is covered by a thin cloud of the cirro-stratus character. The sky is covered with a thin cirro-stratus cloud of uniform density. Cirro-stratus and haze, through which the Sun is visible. Overcast with thin cirro-stratus, through which the Sun is dimly visible. | T II | | 8
10
4
9
10
10 | Transit | Cirro-stratus and scud about the horizon; a space about the zenith is clear. Overcast: cirro-stratus and scud. Detached masses of cumuli with scud about the horizon; there are also some very thin cirro-strati near the zenith, but Ill-formed cumuli around the horizon: there are a few portions of dull blue sky near the zenith; the remainder of the The sky is covered with cirro-stratus and dark scud, the latter in large masses. Overcast: cirro-stratus. Overcast: cirro-stratus. Overcast: cirro-stratus and scud. | G H
G
G H |
 10 | ••• | ,, , , the Sun's place is occasionally seen. | TD | | 7
2
 | | [time. Cirro-stratus and large masses of scud: the clouds became much broken at 23 ^h . 10 ^m , and have continued so since that A few detached cumuli: very cold. | T D | | 10
10
10
0 | Transit | Overcast: cirro-stratus and scud. ,, ,, ,, the Moon's place occasionally visible. Some light cirri, but of no numerical amount: hazy. | G H | | 10
10
10
10 | •• | Overcast: cirro-stratus and scud. Overcast: cirro-stratus and scud. | L
G H | | 10
10
10
8 | •• | there have been several squalls of snow, rain, and wind since the last observation, rain has just commenced falling. a break in the clouds towards the S: a heavy squall of rain commenced immediately after the last observation, which continued about twenty minutes, accompanied with strong electricity. The sky is covered with cirro-stratus and masses of dark scud: the Moon is visible at intervals through breaks in the clouds. | G H
T D | | 8 | Transit | Broken cirro-stratus aud scud in every direction. | G | | 4 | •• | Cirro-cumuli in different directions. | G | | •• | • • • | | 1 1 | | | | | 1 | Wet | li | _ | Max. and Min. | RAIN
GAUGES. | | WIN | D | | ELE | CTRICA | LIN | SIK | UME | .N15. | |---|------------------|--------------|--------------|------------|------------|-------------------|---|------------------------------------|--|--|---------------------|-----------------------------------|--------------------------------|--|-------|------------|-----------------|---------------------| | Day and Hour, | Baro- | | | Ther- | | Dew
Point | read at 22h. | Stand of
No. 1. | From C | | From Whe | | Sign
of | Rea | ading | s of | | Interval | | Göttingen | meter | Dry | Wet | mom. |)) | below | Free Therm. | (Osler's). Reading of | Allemo | meer. | Anemoni | Descentof | Electricity, | Single ' | ا ا | <u>.</u> . | 4. | recovering the same | | Astronomical | Cor- | Ther- | Ther- | below | 20 | Dry | Rad. Therm. | No. 2. | | Pressure | | the pencil | shewn | Gold Leaf | Lea | v8 0 | vs of | degree | | Reckoning. | rected. | mom. | mom. | Dry. | Point. | Ther-
mom. | of Therm. in
Water of the
Thames. | Stand of
No. 3.
(Crosley's). | Direction. | in lbs. per
square
foot. | Direction. | continu-
ance of
each Wind. | by Dry
Pile Appa-
ratus. | Single 'Gold Leaf of Dry Pile Apparatus. | Gold | Strav | Straws
Volta | after
discbarg | | d h | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | | from
lbs. to lbs. | | in. | | 0 | 0 | div. | div. | m i | | pril 4. 10 | | | | | ∥ | , | (48.5) | | \mathbf{SW} | 0 to 1 | •• | •• | •• | | | •• | •• | ••• | | 12 | | | | | | | 39.9 | 0.88 | SW | | •• | •• | D | • • | ••• | ••• | | | | 14 | 29.527 | 43.5 | 42.7 | 0.8 | | •• | $\overline{61.3}$ | | SW | $\frac{1}{2}$ to 2 | • • • | •• | Pos. | 2 | 0 | 0 | 0 | | | 16 | 29.501 | 43.7 | 42.8 | ŧ | 41.0 | 2.7 | 32.5 | 0.04 | SW
WSW | 1 40 1 | ••• |) | •• | ••• | 0 | 0 | o | | | 18 | 29.491 | 44.3 | ll . | l : | | ••• | 43.3 | 3.390 | wsw | $\frac{1}{2}$ to 1 | •• | | Pos. | 10 | | 8 | 10 | 5. | | 20
22 | 29·505
29·532 | 45·3
46·5 | ii | | 41.0 | 5·5 | 43.3 | | wsw | | sw | 4.37 | Pos. | 25 | | 20 | 20 | 13. | | pril 5. 0 | 29.551 | 50.5 | 45:0 | 5.2 | | | | | \mathbf{w} | 0 to $\frac{1}{2}$ | | | Pos. | 12 | | 12 | 10 | | | 2 | 29.565 | | H | | | | | | WNW | 1 to $1\frac{1}{2}$ | | •• | Pos. | 2 | •• | • • | | | | 4 | 29.572 | | | 8.7 | 35.0 | 17.8 | (55.2) | | WNW | $\frac{1}{2}$ to $1\frac{1}{2}$ | WNW | 2.13 | Pos. | 10 | •• | 8 | 10 | 10. | | 6 | 29.579 | 51.7 | 43.5 | 8.2 | • • | • • | 40.0 | | W | $\frac{1}{2}$ to $1\frac{1}{2}$ | | •• | Pos. | 15 | ••• | 10
50 | 12
60 | 14.
5. | | 8 | 29.607 | 47.4 | | i i | ••• | | 1 | 0.88 | W | | •• | •• | Pos.
Pos. | 40 | ••• | 40 | | J | | 10 | 29.621 | 45.5 | 40.9 | 4.6 | 26.0 | 19.5 | 65.0 | 0.00 | W | •• | •• | | | 40 | •• | | | | | 12 | 29.612 | 41.9 | 39.7 | 2.2 | | | 32.0 | | W by S | | • • | 1 | Pos. | 15 | •• | 10 | 12 | 22. | | 14 | 29.594 | 42.3 | 40.3 | 2.0 | | | 43.2 | 3.400 | \mathbf{W} | 1/2 to 1 | | | Pos. | 2 | • • | | • • | | | 16 | 29.588 | | | . 1 | 38.0 | 4.0 | 43.5 | | W | ••• | •• | •• | Pos. | 2 | | ••• | ••• | | | 18 | 29.586 | 1 1 | : 1 | 2.2 | •• | ••• | | | W by N | 1 4. 0 | \ · • | •• | Pos.
Pos. | 2 2 | ••• | | • | | | $\begin{array}{c} 20 \\ 22 \end{array}$ | 29.606
29.653 | 44·2
46·5 | | 3·9
5·6 | 34.0 | 12 [.] 5 | •• | | WNW
NNW | 1 to 2
1 to 2 | NNW | 2.32 | Pos. | 4 | 10 | 5 | | | | pril 6. 0 | 29.677 | 49.9 | 49.3 | 6.9 | | | | | NNW | 0 to 1 | | | Pos. | 2 | 4 | 3 | | | | 2 | 29.695 | , , | 1 1 | 8.8 | | | | | NNW | $\frac{1}{2}$ to 2 | NNW | 1.85 | Pos. | 3 | 4 | 5 | | | | 4 | 29.695 | | | 8.2 | 35.4 | 16.7 | (53.4) | | NW | 0 to 1 | | ••• | Pos. | 15 | •• | 12 | | | | 6 | 29.712 | | | 7.4 | | | 44.2 | 0.88 | $\mathbf{W}\mathbf{N}\mathbf{W}$ |] | •• | • • | Pos. | 20 | • • | 20 | 1 1 | 17. | | 8 | 29.742 | | 43.8 | 3.3 | | | | 0 00 | W | | •• | ••• | Neg. | 40 | | 70
30 | 100 | 20. | | 10 | 29.753 | | | 1.5 | 42.5 | 3.0 | 66.0 | 0.00 | SW | •• | ••• | •• | Neg.
Pos. | 40
26 | • • | 30 | 40
50 | H | | 12 | 29.726 | ! 1 | 1 . 1 | 0.9 | ••• | •• | 39.0 | | SW
SSW | •• | · · · | •• | Pos. | 30 | | 50 | 60 | 20. | | 14 | 29.719 | | 1 1 | 1.1 | 45.0 | 7.4 | 44.0 | 3.410 | SW | | | | Pos. | 26 | | 40 | 50 | | | 16 | 29.684
29.684 | 1 | 1 1 | 0·8
1·5 | 45.0 | 1 | 44.0 | | wsw | | | | Pos. | 15 | | 20 | | 10. | | 18
20 | 29.694 | | 46·9
46·4 | 1.9 | •• | | (44 0) | | $\widetilde{\mathbf{w}}\widetilde{\mathbf{s}}\widetilde{\mathbf{w}}$ | | | | Pos. | 2 | ١ | | | | | 20
22 | 29 703 | | | | 42.0 | 1 1 | | •• | wsw | 0 to ½ | wsw | 2.65 | Pos. | 2 | • • | •• | ••• | ••• | | April 7. 0 | 29.704 | 52.4 | 46.4 | 6.0 | | | •• | | W by S | | •• | | Pos. | 25 | •• | 20 | | | | 2 | 29.691 | 55.0 | 46.6 | 8.4 | • • | | | •• | W by S | $\frac{1}{2}$ to $1\frac{1}{2}$ | •• | •• | Pos. | 25
15 | • • | 20
10 | | • • • | | 4 | 29.680 | | | | 39.0 | 15.7 | (55.2) | | W by S | 1/2 to 2 | w | 2.20 | Pos. Pos. | 40 | 30 | | 10 | | | 6 | 29.701 | | | | • • | •• | 44.2 | 0.93 | W by S
WSW | | | | | ••• | 0 | 0 | | | | 8 | 29·709
29·731 | | | | 44:0 | 3.8 | 61.0 | | wsw | | | | Pos. | 20 | | 40 | 1 | 11 | | $\begin{array}{c} 10 \\ 12 \end{array}$ | 29.731 | | | | 44 0 | 3.0 | 38.5 | 0.02 | $\mathbf{s}\mathbf{w}$ | | :. | | Pos. | 20 | | 15 | 4 | if . | | 14 | 29.675 | | | | | | | 9,490 | SW | | | | | •• | 0 | 0 | 1 | 18 | | | 29.629 | | | | | | 44.5 | 3.430 | SSW | | | •• | | •• | 0 | 0 | 1 | 11 | | 18 | 29.564 | 48.8 | 48.2 | 0.6 | | | (44.5) | •• | SSW | | | •• | •• | •• | 0 | 1 | 1 | 1 | | 20
22 | 29·510
29·485 | 51·3
53·5 | 50·2
51·3 | 1·1
2·2 | 49·0 | 4·5 | •• | •• | SSW
SW | $\frac{1}{2}$ to $3\frac{1}{2}$ 1 to 4 | $\ddot{\mathbf{s}}$ | 2.77 | | | 0 | 0 | 4 | l) | | | | | | | | | | | sw | 4 to 11 | | | Pos. | 2 | | | | | | April 8. 0 | 29·456
29·440 | | | | | | | | wsw | 3 to 5 | 11 | 1 | Pos. | 2 | | | | ∥ | | 2)
A | 29.3440 | | | | 49.0 | 1 | | | wsw | 2 to 6 | | | Pos. | 2 | | | | | | 6 | 29 363 | 55.0 | 50.0 | 5.0 | 100 | 1 | | | wsw | 3 to 12 | | •• | Pos. | 2 | | | | ∥ | | 8 | 29.400 | | | | | | | l | WSW | $1\frac{1}{2}$ to 4 | •• | | | | 0 | 0 | 1 0 | | OSLER'S ANEMOMETER. April 8^d. 5^h. 50^m. There was a pressure of 15 lbs. on the square foot. ELECTRICITY. April 5^d. 8^h. There was a spark at the distance of 0ⁱⁿ·02. | 0-10. | Phases | | |-------|----------------------------|---| | 10 | of | | | Î | the | REMARKS. | | | Moon. | | | | | | | | | | | | :: | | | 0 | | Overcast: cirro-stratus and scud. | | 0 | Transit | ,, ,, | | 0 | •• | ,, ,, | |) | •• | y, | | 1 | •• | ,, , rain has been falling at intervals since the last observation. | |) | | Cirro-stratus and scud: about 23 ^h . 30 ^m a great gloom prevailed, and rain has been falling at intervals since the last | | 3 | •• | Cirro-stratus, cumulo-stratus, and scud: portions of blue sky are seen in the zenith, and N. of it. | |) | • • | Cirro-stratus, fleecy clouds, and scud: a few small breaks, but to no numerical extent. | | 2 | • • | A bank of cirro-stratus along the N. and N.W. horizon: a few light clouds in various directions. | | 3 | • • | A few light clouds are scattered about the sky. The appearance of the sky has been variable since 8h: at times a few stars only have been visible near the zenith, and | | 1 | • • | at other times the greater part of the sky has been clear, the stars shining brilliantly. | | ŀ | | Cirro-stratus and portions of scud principally N. of the zenith. | | | m · · | Overcast: cirro-stratus and scud. | | | Transit | ,, a slight shower of rain fell soon after the last observation. | | | •• | Cumulo-stratus, cirro-stratus, and scud. | | | • • | Cumuli and scud in different directions. | | | •• | ountil and soud in dinotone directions, | | 1 | • • | Masses of cumuli and scud, more particularly towards the S.W. and W. parts of the horizon. | | 1 | • • | Cumuli, scud, and fleecy clouds: a large space of clear sky towards the S. E. | | | • • | The sky is covered with cirro-stratus, cumulo-stratus, and scud: the Sun is occasionally visible. | | | • • | Overcast: cirro-stratus and scud: very gloomy. | | - [| Greatest
declination S. | ,, , a fine rain is falling. | | 1 | • • | ,, very dark. | | 1 | • • | Cirro-stratus and scud about the horizon. | | 1 | 70 | Thin cirro-stratus towards the S. horizon; the rest of the sky is clear. [was 25°.] | | | Transit | Overcast: cirro-stratus
and scud. At 16h. 30m a faintly-defined lunar halo was observed; the radius by measurement | | | •• | ", | | | •• | *** ********************************** | | | | Overcast: cirro-stratus and scud. | | | •• | . , , , , , , , , , , , , , , , , , , , | | | •• | ,, | | | ••• | , thin cirro-stratus of various densities: the Sun's place is visible, and occasionally a faint shadow is cast. A bank of thick scud towards the N. W. horizon. | | | | Overcast, with thin stratus. | | | | 5 9 | | | •• | Overcast: cirro-stratus and scud. | | | T | ,, | | | Transit | o clicht min is falling | | | | ,, a slight rain is falling. the rain ceased at 21^h . 45^m . | | | | | | | • | Overcast: cirro-stratus and scud: the Sun's place is visible. | | 1 | 3rd Qr. | Cirro-stratus, cumuli, and scud: in the N. E. large portions of blue sky are seen. | | | • • | Cumuli, fleecy clouds, and scud floating about. | | | • • | Cirro-stratus and fleecy clouds towards the N. | | | | | | Wet | | Dew | Max. and Min. | GAUGES. | | WIN | D. | | ELEC | CTRICAL | INS | TRU | JME | NTS. | |---------------------|---------|--------------|-------|-------|--------|-------|---|----------------------|--------------------------------|----------------------------|---|--------------------------|----------------------|---|-------------|-----------------------|----------|--------------------| | Day and Hour, | Baro- | | | Ther- | | Point | read at 22h. | Stand of
No. 1. | From (| | From Whe | | Sign | Rea | ding | s of | | Interva
of time | | Göttingen | meter | Dry | Wet | mom. | Dew | below | Free Therm. | (Osler's). | Anemo | meter. | Anemom | | Electricity, | Single | | | | recover | | Astronomical | Cor- | Ther- | Ther- | below | 1 | Dry | of
Rad. Therm. | Reading of
No. 2. | ŀ | Pressure | | Descent of
the pencil | as
shewn | Gold Leaf
of Dry
Pile Appa-
ratus. | le
eaf. | Straws of
Volta 1. | of
2. | the sar | | Reckoning. | rected. | mom. | mom. | | Point. | 1 | of Therm. in
Water of the | Stand of
No. 3. | Direction. | in lbs. per
square | Direction. | during the | by Dry
Pile Appa- | of Dry
Pile Appa- | onp
ld L | aws
olta | aws | of tensi | | | | | | Dry. | | mom. | Thames. | (Crosley's). | | foot. | | ance of
eachWind. | ratus. | ratus. | <u>იც</u> | S > | -St | dischar | | d b | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | | from
lbs. to lbs. | | in. | | ٥ | 0 | div. | div. | tu | | April 8. 10 | 29.401 | 49.0 | 44.0 | 5.0 | 39.0 | 10.0 | (58.2) | | WSW | 3 to 4½ | | | Pos. | 10 | | 8 | 10 | | | 12 | 29.417 | 46.4 | | 3.6 | | | 39.7 | 0.98 | WSW | 2 to $3\frac{1}{2}$ | •• | | Pos. | 2 | • • | | | | | 14 | 29.451 | 43.6 | 38.2 | 5.4 | | | 63.6 |] | WSW | 3 to $4\frac{1}{2}$ | •• | ا م. ا | Pos. | 2 | | | •• | | | 18 | 29.462 | | 37.2 | 4.7 | 31.0 | 10.9 | $\left \left\{\begin{array}{c} 32.0 \\ 32.0 \end{array}\right.\right\}$ | 0.00 | WSW | 2 to $3\frac{1}{2}$ | | | Pos. | 2 | • • | • • | | | | 18 | 29.498 | 1 | 36.2 | 3.9 | | • • |]] | | WSW | 1 to 2 | • • | | Pos. | 2 | • • | •• | • • | •,• | | 20 | 29.532 | 43.0 | ir i | 4.8 | | •• | 46.2 | 3.480 | WSW | 2 to $3\frac{1}{2}$ | | | Pos. | 30 | • • | 30 | 40 | 10. | | 22 | 29.568 | 47.0 | 39.7 | 7.3 | 32.0 | 15.0 | 〔45·2 〕 | • • | wsw | 2 to 5 | WSW | 10.25 | Pos. | 3 | 3 | ••• | •• | ••• | | April 9. 0 | 29.577 | 50.7 | 41.6 | 9.1 | | | | • • | ·W | 3 to $4\frac{1}{2}$ | | | | | 0 | 0 | 0 | | | 2 | 29.595 | 1 1 | | | | | | | W | 3 to $4\frac{1}{2}$ | | 1 | Pos. | 2 | 2 | | | | | 4 | 29.596 | | 41.7 | | 31.0 | | (56.2) | | W | $3\frac{1}{2}$ to 5^{2} | | | Pos. | 1 | 1 | | | | | 6 | 29.618 | | | 7.9 | | | 38.7 | | W by S | 1 to 3 | | | Pos. | 2 | | | | | | 8 | 29.631 | | | 4.4 | | | | 0.98 | WSW | 0 to $\frac{1}{2}$ | | | Pos. | 20 | | 20 | 30 | | | 10 | 29.652 | 45.0 | 42.2 | 2.8 | 40.0 | | 64.8 | 0.00 | WSW | | | 1 | Pos. | 20 | | 15 | 20 | 12. | | 12 | 29.655 | | 42.5 | 2.7 | | | 30.2 | 0.00 | WSW | 0 to $\frac{1}{2}$ | · | 1 | Pos. | 12 | | 7 | 10 | 11. | | 14 | 29.677 | 42.5 | 40.0 | 2.5 | • • | | | 2.400 | WSW | 0 to $\frac{\tilde{1}}{2}$ | | | | l] | 0 | 0 | 0 | | | 16 | 29.678 | 40.2 | 38.4 | 1.8 | 36.5 | 3.7 | 46.2 | 3.480 | wsw | ~ | | 1 | | | 0 | 0 | 0 | | | 18 | 29.708 | 39.4 | 37.8 | 1.6 | | | 45.5 | | wsw | ١ ١ | | 1 | | [| 0 | 0 | 0 | | | 20 | 29.741 | 42.3 | 39.7 | 2.6 | | | | | wsw | | | | | | 0 | 0 | 0 | | | 22 | 29.764 | 47.2 | 41.0 | 6.2 | 35.0 | 12.2 | •• | ••• | NNW | • • | \mathbf{W} | 5.23 | Pos. | 40 | •• | 70 | 80 | | | April 10. 0 | 29.755 | 53.2 | 43.6 | 9.6 | | | | | sw | | | 1 | Pos. | 15 | • • | 20 | 20 | | | 2 | | | 44.3 | 11 | | | | | $\tilde{\mathbf{s}}\mathbf{w}$ | | | | Pos. | 30 | | 30 | 35 | | | 4 | 29.734 | 1 | 43.3 | 9.2 | 33.5 | - 1 | (56.0) | | $\mathbf{s}\mathbf{w}$ | | • • | | Pos. | 25 | | 30 | 40 | | | 6 | 29.740 | 1 | 43.6 | 6.6 | | | 38.5 | | ssw | | | | Pos. | 20 | | 20 | 40 | | | 8 | 29.751 | 44.7 | 42.4 | 2.3 | | | | 0.98 | ssw | | | | Pos. | 15 | | 10 | 20 | | | 10 | 29.770 | 41.5 | 40.5 | 1.0 | 39.0 | 2.5 | 73.0 | 0.00 | ssw | | | | Pos. | 15 | | 10 | 20 | | | 12 | 29.775 | 41.0 | 40.3 | 0.7 | | | 31.7 | 0.00 | ssw | | | 1 | Pos. | 15 | | 10 | 15 | | | 14 | | | | | | | | 2:400 | S by W | 1 | • • | ·) | l | | | | | | | 16 | | | | | | | 46.5 | 3.480 | S by W | | | | | | | | | | | 18 | | | | | | | 45.5 | | Š | | •• | | | | | | | | | 20 | •• | | | | | | | | \mathbf{S} by \mathbf{W} | | •• | | •• | | | • • | • • | •• | | 22 | 29.820 | 49.2 | 44.9 | 4.3 | •• | •• | • • | •• | S by E | •• | SSW | 1:37 | Pos. | 10 | •• | 10 | 12 | 13. | | April 11. 0 | •• | | | | | | | ! | ssw | •• | •• | | | | | | | • • | | 2 | ••• | | | | | • • | | | S by W | | • • | •• | | | | •• | • • | | | 3. 45 | 29.761 | 47.0 | 44.3 | 2.7 | | | (50.00 | | S by W | | | | Pos. | 10 | | 5 | 7 | | | 4 | | | | | | | $\left[egin{pmatrix} 52.9 \ 45.1 \ \end{matrix} ight]$ | 0.98 | S by W | | | | | | | | | | | 6 | | | | | | | 1 | 0.99 | S by W | | | | | | | | | | | 11 | 29.720 | 47.0 | 46.3 | 0.7 | | | 57.0 | 0.06 | S by W | | | | | | | | | | | 10 | | | | | | | 42.3 | 0 00 | SŠW | | | | | | | | | | | 12 | | | | | | | | 3.575 | ssw | l | •• | | | | | | | | | | 29.618 | 48.5 | 47.7 | 0.8 | | | 47.8 | 0 010 | $\mathbf{s}\mathbf{w}$ | | • • | | Pos. | 10 | | 8 | 10 | | | 16 | 29.612 | 48.2 | 47.6 | 0.6 | 47.0 | | 46.0 | | $\mathbf{s}\mathbf{w}$ | | | | | | 0 | 0 | 0 | | | 18 | 29.605 | 48.0 | 47.5 | 0.5 | | [| | | $\mathbf{s}\mathbf{w}$ | | • • | 1 | | | 0 | 0 | 0 | | | | 29.599 | | | | •• | • • | | | SW | | ~ | | | | 0 | 0 | 0 | | | - 11 | 29.594 | 53.0 | 52.1 | 0.9 | 52.0 | 1.0 | •• | | $\mathbf{s}\mathbf{w}$ | •• | ssw | 2.10 | Pos. | 40 | •• | 30 | 50 | 9. | | April 12. 0 | 29.576 | 59 ·0 | 54.2 | 4.8 | •. | | •• | | wsw | | | | Pos. | 2 | 3 | | | | | | 29.563 | | | 7.6 | ••• | | •• | | WSW | | | | Pos. | 40 | • • | 50 | 70 | 17. | | | 29.554 | 50.9 | 53.4 | 5.9 | 48.0 | 11.2 | | | wsw | | | | Pos. | 30 | | 30 | 35 | 14. | | 4 | 40 004 | บฮาฮ | JJ 4 | UU | 40.0 | TIO | •• | •• | 11 10 11 | | •• | 1 | 1 500. | , v | • • | 1 | 100 | 1 | Maximum Free Thermometer. April 11^d . The reading was lower than that of the Dry Thermometer at 22^h . ELECTRICITY. April 9d. 22h. There was a spark at the distance of 0in.01. | Amount of Clouds, | Phases
of
the
Moon. | REMARKS. | | |--|------------------------------|--|--------| | 2
4
4
0
0 | | Cloudy along the horizon: in the N. and W. light clouds are floating about. ,, [very high, blowing in gusts to 2. Cirro-stratus in the W., extending to the N. at a low elevation: detached portions of scud here and there: the wind is A few light portions of cirri in the N., but to no numerical extent. Cloudless. | Т | | 5 | Transit | Cumuli and scud in every direction: the wind very high. | G | | 7
0
0
0
8
4
0
0 | | Masses of cumuli and scud in every direction: wind very high. Cumuli and scud: the clouds have been occasionally broken since the last observation. Cirro-stratus and broken scud. Cirro-stratus and masses of scud in every direction: a few drops of rain fell at about 5 ^h . 40 ^m . [blue sky are seen. Cirro-stratus, light detached portions of scud, and a few cumulo-strati W. of the zenith: in the N. some portions of Cirro-stratus extending from the W. to the N., at an elevation of 30°; every other part of the sky is clear. Overcast: cirro-stratus and scud. Cloudless. | G
T | | $\begin{bmatrix} 0 \\ \frac{1}{2} \\ 0 \\ 4 \end{bmatrix}$ | Transit | Cloudless, with the exception of a few small patches of scud around the horizon. | | | 5
0
0 | •• | | 0 | | 0 0 0 | •• | Overcast with thin cirro-stratus; there is also a bank of scud towards the S.W. and W. parts of the horizon. Cloudless. | • | | Ö | Transit | Overcast: cirro-stratus: a few drops of rain are falling. |] | | | •• | Overcast: cirro-stratus: a few drops of rain are falling. | | |) | •• | ,, ,, · ,, | 7 | | | • • | ,, cirro-stratus and scud. ,, ,, ,, fine rain is falling. | | | 0 | Transit | ,, | 7 | | 5 | •• | Masses of cumuli and scud, more particularly to the N.W. Masses of finely-formed cumuli W. and
S.W. of the zenith: in the N. an unbroken cirro-stratus, reaching nearly to the zenith: masses of scud in every direction. Overcast: cirro-stratus, fleecy clouds, and scud. | 7 | | rected. 29·551 29·561 29·572 29·589 29·609 29·625 29·673 29·704 29·741 29·745 29·743 29·743 | 50·6
48·7
44·4
42·5
43·0 | 53·2
52·1
51·6
51·1
49·4
47·9
43·8 | 0 6·3 3·1 2·1 1·3 1·2 0·8 0·6 0·9 | Dew Point. 0 49.0 47.8 | Dew Point below Dry Thermom. | read at 22h. of Free Therm. of Rad. Therm. of Therm. in Water of the Thames. 0 63.8 41.4 | GAUGES. Stand of No. 1. (Osler's). Reading of No. 2. Stand of No. 3. (Crosley's). | From C
Anemon
Direction. | Pressure in lbs. per square foot. | From Whe
Anemom | | Sign
of
Electricity,
as
shewn
by Dry
Pile Appa-
ratus. | | Double
Gold Leaf. | Straws of
Volta 1. | 1 | Interval of time in recovering the same degree of tension after discharge | |--|---|--|---|---|--|--|---|---|-----------------------------------|---|---|---|---|--|--|--|---| | Corrected. 29·551 29·561 29·572 29·589 29·609 29·625 29·704 29·741 29·745 29·743 29·743 | Thermom. 59.5 55.2 53.7 52.4 50.6 48.7 44.4 42.5 43.0 | Ther- mom. 53.2 52.1 51.6 51.1 49.4 47.9 43.8 41.6 | below Dry. 6:3 3:1 2:1 1:3 1:2 0:8 0:6 0:9 | Point. 0 49.0 | Dry Ther- mom. | of Rad. Therm. of Therm. in Water of the Thames. | Reading of No. 2. Stand of No. 3. (Crosley's). | Direction. | Pressure in lbs. per square foot. | | Descent of
the pencil
during the
continu-
ance of | as
shewn
by Dry
Pile Appa- | Single
Gold Leaf
of Dry
Pile Appa-
ratus. | Double
Gold Leaf. | | 1 | the same
degree
of tension
after | | rected. 29·551 29·561 29·572 29·589 29·609 29·625 29·673 29·704 29·741 29·745 29·743 29·743 | 59·5 55·2 53·7 52·4 50·6 48·7 44·4 42·5 43·0 | 53·2
52·1
51·6
51·1
49·4
47·9
43·8
41·6 | 0 6·3 3·1 2·1 1·3 1·2 0·8 0·6 0·9 | 0

49:0 | Ther- mom. o 4.7 | of Therm. in Water of the Thames. | Stand of
No. 3.
(Crosley's). | | in lbs. per square foot. from | Direction. | continu-
ance of | by Dry
Pile Appa- | of Dry
Pile Appa-
ratus. | Bold Le | | 1 | of tension
after | | 29·551
29·561
29·572
29·589
29·609
29·625
29·704
29·741
29·745
29·743
29·743 | 59·5
55·2
53·7
52·4
50·6
48·7
44·4
42·5
43·0 | 53·2
52·1
51·6
51·1
49·4
47·9
43·8
41·6 | 6·3
3·1
2·1
1·3
1·2
0·8
0·6
0·9 | 49·0 |
4·7 | ∫ 63 ·8 ┐ | | **** | from | | 1 | | | | 1 ì | 1 1 | | | 29·561
29·572
29·589
29·609
29·625
29·673
29·741
29·741
29·745
29·743 | 55·2
53·7
52·4
50·6
48·7
44·4
42·5
43·0 | 52·1
51·6
51·1
49·4
47·9
43·8
41·6 | 3·1
2·1
1·3
1·2
0·8
0·6
0·9 | 49·0 | 4.7 | 11) 1 1 | | | lbs. to lbs. |) | in. | _ | 0 | 0 | div. | div. | m s | | 29·572
29·589
29·609
29·625
29·673
29·704
29·741
29·745
29·745
29·743 | 53·7
52·4
50·6
48·7
44·4
42·5
43·0 | 51·6
51·1
49·4
47·9
43·8
41·6 | 2·1
1·3
1·2
0·8
0·6
0·9 | •• | 4.7 | 41.4 | 11 1 | WSW
W by N | •• | •• | ••• | Pos. Pos. | 40
 20 | •• | 40
20 | 50
25 | 10. 0 | | 29·589
29·609
29·625
29·673
29·704
29·741
29·745
29·745
29·743 | 52·4
50·6
48·7
44·4
42·5
43·0 | 51·1
49·4
47·9
43·8
41·6 | 1·3
1·2
0·8
0·6
0·9 | •• | 1 | 1 1 | 1.13 | WSW | | ••• | | Pos. | 20 | | 15 | 20 | 10. 0 | | 29·625
29·673
29·704
29·741
29·745
29·743
29·734 | 48·7
44·4
42·5
43·0 | 47·9
43·8
41·6 | 0.8
0.6
0.8 | 47.8 | | 82.0 | | WSW | | •• | | Pos. | •• | 12
0 | 7 | 5 | 20. 0 | | 29·673
29·704
29·741
29·745
29·743
29·734 | 44·4
42·5
43·0 | 43·8
41·6 | 0.8
0.9 | 410 | 0.9 | 38.0 | 0.16 | WNW
NNE | •• | • • • | | | | 0 | 0 | 0 | | | 29·741
29·745
29·743
29·734 | 43.0 | | | !! • • | | 47.5 | 3.795 | NNE | 0 to $\frac{1}{2}$ | | | Neg. | 40 | • • | 70 | 90 | 2. 0 | | 29·745
29·743
29·734 | | 40.7 | | •• | | 46.0 | | NE | 1 to $1\frac{1}{2}$ | NINI | 7.04 | Neg. | 35 | | 50 | 70 | 4. 0 | | 29·743
29·734 | 48.4 | 1 | 2.3 | 38.0 | 5.0 | | •• | NE | •• | NNE | 1.84 | Pos. | 4 | 5 | •• | | • • | | 29.734 | | | 4.6 | | | | | NNE | | •• | | Pos. Pos. | 4
6 | 6
8 | 4 5 | 1 1 | • • | | | | | 4·2
4·4 | 36.0 | 9.9 | (52.7) | | NNE
NNE | | | | Pos. | 10 | 10 | 7 | | | | 29.740 | 43.7 | 38.8 | 4.9 | | | 34.1 | 1.13 | NNE | | | | Pos. | 10 | 12 | 10 | | •• | | 29.763 | 40·5
39·5 | | 3.1 | | 0.5 | 60.3 | | NE
NNE | •• | •• | | Pos. Pos. | 10 2 | 10 | 7 | | | | | | | 2·8
2·2 | 33.0 | 6.2 | 27.0 | 0.00 | NNE | | :: | :: | Pos. | 15 | 10 | 1 1 | 1 | | | 29.811 | 37.4 | 35.8 | 1.6 | | | | 3.795 | NE | | | | Pos. | 8 | 20 | 10 | 1 1 | ∥ … | |
29·816
29·829 | | 35·9
34·1 | 1·6
0·9 | 34.0 | 3.2 | 47·5
46·2 | | NE
NNE | ••• | ••• | •• | Pos. | 10
10 | 15
 | 10
10 | 1 1 | | | | 40.1 | 38.2 | 1.9 | | | | | NNE | :: | | | Pos. | 12 | 25 | 10 | | | | 29.834 | 46.2 | 41.3 | 4.9 | 35.0 | 11.2 | | | NNE | ••• | NNE | 2.46 | Pos. | 10 | 12 | 10 | • • | ••• | | - 11 | 48·5
49·9 | 43·3
44·2 | 5·2
5·7 | | • • | | •• | NNE
NNE | 0 to 2
0 to 2 | •• | | Pos. | 5
20 | 12
 | 10
20 | 1 ' 1 | 10. 0 | | 29.779 | 46.0 | 40.9 | 5.1 | 35.0 | 11.0 | (50.7) | | N by E | 0 to 31 | | ۱ | Pos. | 10 | 20 | 10 | 7 | 3. 0 | | 29.790 | 43.5 | 38.8 | 4.7 | | • • | 35.1 | 1.13 | N by E | 0 to 3 | NE | 1.68 | Pos. | 20 | 12 | | 1 1 | 7. 0 | | | | | | 91.5 |
Q.5 | 65.7 | 0.00 | | | •• | ••• | | | | | , , | | | | | | 2.2 | | | 28.3 | | N by W | | NNE | 0.65 | Pos. | 5 | | 5 | | 7. 0 | | 29.767 | 37.5 | 34.1 | 3.4 | | | 47.0 | 3.795 | NNW | 0 to $\frac{1}{2}$ | •• | • • | | | •• | •• | $ \cdot\cdot $ | •• | | | | | | 1 | | 46.2 | | | 0 to 2 | • • | | | 2 | l | | :: | | | 29.764 | 38.2 | 35.5 | 2.7 | | | | | NNW | 0 to 3 | | | Pos. | 12 | | 10 | 8 | 15. 0 | | 29.787 | 41.9 | 38.2 | 3.7 | 32.0 | 9.9 | •• | •• | NNW | 0 to 3 | N | 2.85 | Pos. | 20 | ••• | 5 | 5 | 5. 0 | | | | | | | | | •• | N | 2 to $4\frac{1}{2}$ | | | Pos. | 5 | | 3 | | H | | | | | | 32.0 | 15:0 | (49:3) | | | . , | Ň | 2.25 | | • | | | | | | | | | 6.4 | | | 29.0 | i | N | 1 to $3\frac{1}{2}$ | | | Pos. | 2 | | | | •• | | | | | 4.3 | | •• | 05.5 | 1 10 | | 1 | • • | | | | • • | •• | | | | | | | | | | | 0.00 | N by E | 0 to 1 | NNE | 1.48 | Pos. | 2 | | | :: | | | 29.897 | 31.0 | 29.5 | 1.2 | | | | 3.795 | N by W | | • • | | Pos. | 2 | • • | •• | •• | | | | | | 1 | 1 1 | - 1 | 1 1 1 1 | | | | •• | | | | 12 | 7 | 10 | | | | | | 3.1 | | | (40.6) | | NNW | | | | Pos. | 10 | 20 | 12 | 15 | | | | | | | | | •• | •• | N | 0 to $\frac{1}{2}$ | N | 0.83 | •• | ••• | 0 | 0 | 0 | | | 0.967 | | | | | | •• | •• | N
N | 0 to ½ | • • | •• | Pos. | 10 | • • | 5 | , | 15. 0 | | | 44.8 | 38.81 | 6.0 | (! | 1 | \ \ | | | | ١ | | Pos. | 30 | 20 | 7 | | 7. O | | 222
222
222
222
222
222
222
222
222
22 | 9·811
9·788
9·779
9·829
9·827
9·801
9·764
9·749
9·746
9·789
9·789
9·827
9·857
9·857
9·898
9·899
9·896
9·896
9·896 | 9:811 48:5
9:788 49:9
9:779 46:0
9:829 39:4
9:827 38:0
9:801 37:7
9:749 37:2
9:746 38:2
9:782 41:9
9:782 41:9
9:782 43:3
9:857 40:0
9:898 36:0
9:898 36:0
9:898 30:5
9:902 30:5
9:908 30:5
9:908 43:2
9:886 43:2 | 0.811 48.5 43.3 44.2 0.778 46.0 40.9 0.790 43.5 38.8 0.829 39.4 35.4 0.779 37.5 34.1 0.749 37.2 34.9 0.764 38.2 35.5 0.787 41.9 38.2 0.789 43.3 36.9 0.827 43.3 36.9 0.828 36.0 0.829 30.5 29.1 0.898 30.5 29.1 0.898 30.5 29.1 0.886 43.2 37.9 | 0.811 48.5 43.3 5.2 0.788 49.9 44.2 5.7 0.779 46.0 40.9 5.1 0.829 39.4 36.4 3.0 0.827 38.0 35.4 2.6 0.801 37.7 35.5 2.2 0.801 37.7 34.1 3.4 0.749 37.2 34.9 2.3 0.764 38.2 35.5 2.7 0.789 43.3 38.5 4.8 0.789 43.3 36.9 6.6 0.827 43.3 36.9 6.4 0.827 43.3 36.9 6.4 0.886 38.0 34.9 3.1 0.898 36.0 32.6 3.4 0.898 36.0 32.6 3.4 0.902 30.5 29.1 1.4 0.909 35.2 32.1 3.1 0.886 43.2 37.9 5.3 0.867 47.4 39.5 7.9 0.867 47.4 39.5 7.9 | 0.811 48.5 43.3 5.2 0.778 49.9 44.2 5.7 0.779 46.0 40.9 5.1 35.0 0.790 43.5 38.8 4.7 0.829 39.4 36.4 3.0 0.827 38.0 35.4 2.6 31.5 0.837 37.5 34.1 3.4 0.749 37.2 34.9 2.3 31.0 0.749 37.0 34.8 2.2 0.764 38.2 35.5 2.7 0.769 43.3 38.9 3.6 0.789 43.3 38.5 4.8 0.789 43.3 36.9 6.4 0.857 40.0 35.7 4.3 0.898 36.0 32.6 34.9 3.1 0.897 31.0 29.5 1.5 0.898 36.0 32.6 3.1 < | 0.811 48.5 43.3 5.2 0.778 46.0 40.9 5.1 35.0 11.0 0.779 46.0 40.9 5.1 35.0 11.0 0.7829 39.4 36.4 3.0 0.827 38.0 35.4 2.6 31.5 6.5 0.761 37.5 34.1 3.4 0.749 37.2 34.9 2.3 31.0 6.2 0.749 37.0 34.8 2.2 0.764 38.2 35.5 2.7 0.764 38.2 35.5 2.7 0.789 43.3 38.2 3.7 32.0 9.9 0.789 43.3 36.9 6.6 0.887 40.0 39.5 7.5 32.0 15.0 0.898 36.0 32.6 34.9 3.1 0.897 31.0 29.5 1.4 <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td> 0.811</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 0.811 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ DEW POINT THERMOMETER. April 15^d. 10^h. The observation was inadvertently omitted. Electricity. April 12^d . 18^h and 20^h . There were sparks at the distance of 0^{in} .03. | Amount of Clouds,
0-10. | of
the
Moon. | REMARKS. | | |----------------------------|--------------------|---|---| | 10 | | Overcast: cirro-stratus, fleecy clouds, and scud. | | | 10 | •• | ** ** ** ** ** ** ** ** ** ** ** ** ** | | | 0.0 | •• | " | | | 0 | • • |))
)) | ١ | | 0 | •• | ,, cirro-stratus: a thick rain has commenced falling. | 1 | | 0 | In Equator | ,, ,, the rain is falling heavily. | | | 0 | •• | ,, the rain ceased at 19 ^h . 40 ^m . | | | 0 | •• | ,, cirro-stratus and scud. | 1 | | 0 | Transit | Overcast: cirro-stratus and broken scud. | | | 0 | |), · · · · · · · · · · · · · · · · · · · | 1 | | 0 | | ,, | | | 0.0 | •• | , , cirro-stratus and scud. | - | | 0 | ••• |) | 1 | | 0 | Perigee | 99
99 | 1 | | 0 | | Overcast with thin cirro-stratus: the places of the principal stars about the zenith are visible. | 1 | | 0 | •• | Overcast: cirro-stratus and scud. [soon after the last observation. | ١ | | 3 | ••• | A bank of stratus cloud towards the S.W. horizon, with some light scud moving from the S.E.: the sky began to clear Cloudless. | | | 8 | | Cumuli, cumulo-stratus, cirro-stratus, and scud: breaks, through which the clear sky is seen in every direction. | 1 | | _ | m . | | 1 | | 7
8 | Transit | Cirro-stratus, cumulo-stratus, and scud in every direction. Cumuli and cumulo-strati in the N. to a considerable altitude: masses of scud, with detached cumuli, are scattered | | | 0 | | over the sky: E. of the zenith a large portion of clear sky is seen. Overcast: cirro-stratus and scud. | 1 | | 0 | | Cumulo-stratus and scud: a few patches of blue sky are to be seen, but to no numerical amount: there is no upper cloud. | 1 | | 0 | •• | Cloudless, with the exception of a low bank of slate-coloured cloud in the N., of no numerical amount. | 1 | | 0 | •• | Overcast: cirro-stratus: the clouds are high. | | | 0 | •• | cirro-stratus and scud. | 1 | | 0 | • | | | | 0 | | ,, | l | | 2 | New | Cirri and light clouds are scattered about. | I | | 7 | ··· | Rocky cumuli around the N.W. horizon; cirro-cumuli and undefined clouds in other directions: the clouds are [extensively broken S. of the zenith. | | | | Transit | Cumuli, cirro-strati, fleecy clouds, and scud: a shower of hail and sleet fell at 22 ^h . 40 ^m . Cirro-strati, cumulo-strati, and scud: a shower of hail and sleet fell at 1 ^h . 45 ^m . | | | 9 | :: | Cirro-strati, fleecy clouds, and scud cover the greater portion of the sky. | - | | 3 | | Cirro-strati, detached cumuli, and scud. | | | | •• | Cirro-strati and scud: a small break towards the W. horizon. | Ì | | 1 | •• | Overcast: cirro-stratus and scud.
Cirro-stratus around the horizon; every other part of the sky is clear. | - | | | | Cirro-stratus around the horizon, chiefly in the W. and S.W. | | | 5 | :. | Cirro-stratus in detached portions, and masses of dark scud are scattered over the sky. | 1 | | 3 | | Cirro-stratus, fleecy clouds, and scud: clear breaks in the N. and N. E. | 1 | | | | Cloudless. | 1 | | ' | •• | Cirro-stratus, cumuli, and scud: breaks of small extent S. of the zenith, but of no numerical amount. | | | | | Cirro-stratus and dark scud. | | | | Transit | Cumulo-strati scattered generally over the sky with dark scud. | 1 | | 7 | •• | Cumulo-strati all around the zenith; portions of dark scud in the N. and N. E. horizon, | 1 | | | | | | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICA | L IN | STR | UME | NTS. | |-------------------------|------------------|---|---------------|-------------------------|--------|----------------------|--|---|------------------|--|------------|--|--------------------|---|----------------------|-----------------------|----------------------|--| | Day and Hour, | Baro- | D | Wet | Ther- | | Point | read at 22h. | Stand of
No. 1. | From C | | From Whe | | Sign | ļ | ading | s of | | Interval
of time in | | Göttingen | meter | Dry | 1 | mom. | Dew | below | Free Therm. | (Osler's). Reading of | Anemo | meter. | Michon | Descent of | Electricity,
as | Single | | | | recovering
the same | | Astronomical Reckoning. | Cor-
rected. | Ther- | Ther-
mom. | below
Dry. | Point. | Dry
Ther-
mom. | Rad. Therm. in Water of the Thames. | Reading of No. 2. Stand of No. 3. (Crosley's). | Direction. | Pressure
in lbs. per
square
foot. | Direction. | the pencil
during the
continu-
ance of
eachWind. |
shewn
by Dry | Gold Leaf
of Dry
Pile Appa-
ratus. | Double
Gold Leaf. | Straws of
Volta 1. | Straws of
Volta 2 | degree
of tension
after
discharge | | d h | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | | from
lbs. to lbs. | | in- | | 0 | 0 | div. | div. | m 6 | | April 16. 6 | 29.808 | | 36.9 | 1 | •• | • • | ۲٦ | ••• | N | •• | • • | •• | -:· | ••• | 0 | 0 | 0 | | | 8 | 29·808
29·807 | | 1 | t | 31·0 | 1.9 | 23.0 | 1·13 | NNE
E by S | •• | •• | •• | Pos.
Pos. | 12
35 | 20 | 10
50 | 5
70 | 7. 0 | | 10
12 | 29.797 | 1 | 11 | | 310 | | | 1 10 | Calm | •• | | | Pos. | 2 | | | | 1 | | 14 | 29.766 | 30.6 | 30.6 | 1 | | | 68·6
 17·0 | 0.00 | Calm | | •• | • • • | Pos. | 2 | | • • | • • | • • | | 16 | 29.729 | | | | 27.0 | 0.3 | | 2 000 | Calm | •• | •• | •• | Pos. | 2 | •• | | 100 | | | 18 | 29·717
29·705 | 11 | i I | | •• | ••• | 45.8 | 3.800 | ESE
ESE | • • | •• | •• | Pos. | ••• | | 60 | 100
70 | 0. 32
6. 0 | | 20
22 | 29.695 | 11 | | l . | 29.0 | 12· 7 | (45·5 J | ••• | ESE | •• | Ň | 0.56 | Pos. | ••• | | 70 | | 30. 0 | | April 17. 0 | 29.674 | 43.8 | 37.0 | 6.8 | | | | | SSE | | •• | | Pos. | | | 40 | 50 | 20. 0 | | 2 | 29.650 | | 11 | | •• | •• | | •• | SSE | •• | •• | | Pos. | • • | •• | 30 | 40 | | | 4 | 29.629 | H | M | F | 21.0 | | 00.0 | •• | SSE | •• | •• | •• | Pos. | 30 | ••• | 20
20 | 20 | 10. 0 | | 6
8 | 29·631
29·661 | | 38·7
36·9 | | • • | • • | 26.2 | 1.13 | SSE
SSE | •• | • • | • • | Pos. | 20 | | 20 | 30 | 10. 0 | | 10 | 29.684 | | | | 28.0 | 9.0 | 75.0 | 0.00 | SSE | | | | | • | | | | | | 12 | 29.704 | 1 | 31.4 | 2.1 | | | 15·3 | 0.00 | SSE | •• | •• | | •• | •• | | | | | | 14 | •• | •• | •• | •• | •• | • • • | 45.0 | 3.800 | SSE | •• | • • | •• | •• | • • | ••• | • • | ••• | • • • | | 16
18 | ••• | ••• | •• | | | •• | 45·8
45·8 | | SSE
W by S | •• | •• | •• | •• | • | | | | • • | | 20 | | | | | | | | •• | W by N | •• | | | | :: | | | | | | 22 | | | ••• | | | | • • | | W by N | •• | • • |] | | •• | · • . | | | | | 22. 30 | 29.744 | 48.0 | 41.5 | 6.2 | | | | | W by N | •• | SE | 0.33 | | | | | | •• | | April 18. 0 | 29.742 | 49.2 | 42.0 | 7.2 | | | | | NNW | 0 to 1 | •• | | | | | | | | | 2 | •• | • • | • • • | •• | •• | | Cra.o. | •• | NNW | $\frac{1}{2}$ to 2 | •• | •• | ••• | ••• | ••• | •• | •• | •• | | 4
6 | 29.688 | 47.7 | 40.8 | 6.9 | | • • | $\begin{bmatrix} 56 \cdot 2 \\ 36 \cdot 5 \end{bmatrix}$ | ••• | NNW
NNW | 0 to 2 | •• |] | •• | • • | | | | :: | | 8 | 20 000 | | | | | | | 1.13 | NNW | •• | • • | | | | | | | | | 10 | | •• | | | | | 74.0 | 0.00 | NW | •• | | | | | | | • • • | | | 12 | 20.000 | | 00.7 | | •• | •• | 27.5 | | WNW | •• | •• | •• | •• | • • | •• | • • | ••• | ••• | | 14
16 | 29·633
29·623 | $\begin{array}{c} 39.7 \\ 38.2 \end{array}$ | 36.0 | $3 \cdot 2$ $2 \cdot 2$ | 33.0 | $5 \cdot 2$ | 45.8 | 3.800 | NNW
NNW | •• | •• | | •• | | :: | | | •• | | 18 | 29.614 | 37.5 | 35.4 | | | | 45.8 | | WNW | | | | ••• | | | | | | | 20 | 29.622 | | | | | | •• | •• | WNW | | •• | | | • • | | • • | • • | ∥ | | 22 | 29.621 | 45.0 | 39.4 | 5.6 | 30.0 | 15.0 | •• | •• | NNW | •• | NNW | 1.90 | •• | •• | | • • | | •• | | | 29.607 | | | | | • • | •• | •• | NW | •• | •• | | ••• | •• | | • • | •• | •• | | 2 | 29.605 | | | | 24.0 | 16.0 | (50.0 | ••• | NW | •• | •• | •• | •• | | | • • | ••• | •• | | 4
6 | 29·591
29·605 | | | 7·2
6·9 | 34.0 | 10.2 | $\begin{bmatrix} 52 \cdot 2 \\ 36 \cdot 6 \end{bmatrix}$ | 1.13 | W by N
S by W | | | | | | | | | | | 8 | 29.631 | | | | | | | | S | | | | | | | | | | | 10 | 29.652 | | 39.2 | | 32.0 | 14.7 | 72.0 | 0.00 | Calm | •• | • • | •• | | •• | | • • | • • | | | 12
14 | 29.671
29.680 | | 30.3 | 1·4
1·3 | •• | • • | 27.0 | | Calm
Calm | •• | •• | | •• | • • | ••• | •• | ••• | •• | | 14
16 | 29.690 | | | | 37.0 | 0.5 | 46.0 | 3.800 | SSW | • • | | | •• | | | | | | | 18 | 29.696 | 38.4 | 38.2 | 0.2 | | | 46.0 | | SSW | | | | | | | | | | | 20 | 29.750 | | | | 41.0 | 5.0 | •• | | ssw | •• | e W | 0.10 | •• | | •• | ••• | • • | | | 22 | 29.760 | | | | 41.0 | 5.2 | •• | •• | S | • • | sw | 0.10 | •• | •• | | | | •• | | | 29.773 | | | | | • • | •• | •• | SW | •• | | •• | •• | | ••• | • • | ••• | • • | | 2
4 | 29·773
29·766 | | | | 40.0 | 16:5 | •• | •• | SSW
SE | • • | • • | | • • | | | | | • • | | 4 | 40 100 | 00 0 | 710 | 30 | 1200 | 10.0 | •• | ••• | | •• | •• | ••• | ••• | | ••• | · · · | | | DRY THERMOMETER. April 16^d. 16^h and 18^h. The readings were lower than those of the Wet Thermometer. April 16^d. The increase in the reading between 20^h and 22^h was 11° 5. MAXIMUM FREE THERMOMETER. April 16^d and 17^d. This instrument was out of order. ELECTRICITY. April 16^d. 10^h, 18^h, 20^h, and 22^h. There were sparks at the distances of 0ⁱⁿ·02, 0ⁱⁿ·04, 0ⁱⁿ·04, and 0ⁱⁿ·02 respectively. April 17^d. 8^h. The apparatus was found broken. | .0. | Phases
of | | | |-----|-----------------------------|--|---| | 7 | the | REMARKS. | | | ٦ | | IV II II II II IV IV II. | | | | Moon. | | | | | | | | | 9 | • • | Cumulo-stratus, cirro-stratus, and scud in every direction: the clouds are slightly broken in the zenith. | | | 2 | • • | Cumulo-stratus, cirro-stratus, scud, and fleecy clouds. Some stratus clouds prevail in the N. horizon; every other part of the sky is clear. | | | 1 | • | Cloudless, with the exception of fragments of dark scud near the S. horizon: the stars appear unusually large. | | |) | • • | Cloudless: hazy. | | |) | • • | Cirro-stratus and vapour: hoar frost. | | | 7 | • • | , , very foggy. Cloudless: fog is still prevalent. | | | | •• | Cirro-strati, detached cumuli, and scud. | | | | - • | | | | | m · · · | Detached cumuli, cirro-strati, and large masses of white scud. | | | | Transit | Detached cumuli, cirro-strati, and large masses of white scud are still prevalent. | | | , | •• | Cumulo-stratus, cirro-stratus, and scud: the zenith and the portions of sky E. and S. E. of it are very clear. | | | 1 | • • | Overcast: cirro-stratus and scud. [bright. | | | | • • | Cirro-stratus and haze extending from the horizon to a considerable elevation: the stars in the zenith are occasionally | | | | • • | Cloudless. | | | | •• | | | | | • • | | | | | • • | | | | | • • | | | | | •• | Loose cumuli, fleecy clouds, and scud are scattered about. | | | | •• | Loose cumuli, fleecy clouds, and scud are scattered about. | | | | Transit | | | | | •• | | | | | •• | | | | | • • | | | | | | Cloudlesss. | | | | •• | Cloudy: a long clear break extending along the E, horizon. | | | | ••• | Fleecy clouds and cirro-strati are scattered over the greater part of the sky. Cirro-stratus towards the horizon in the N. and S.; clear elsewhere. | | | | • • • | Cirro-stratus of a thin character, and haze in the S.W. horizon; the remainder of the sky is clear. | | | 1 | lanatas i 1 " | | | | G | reatest decli-
nation N. | Cirro-stratus, cumulo-stratus, and haze: the only portion of clear sky is W. and N.W. of the zenith. | | | | Transit | Overcast: cirro-stratus and scud. | | | | •• | , , , , , a small break towards the W. horizon. The sky is clear in the N.: cirro-stratus and fleecy clouds elsewhere. | - | | | ••• | Cirro-stratus and scud cover the sky, through which a few stars are visible. | | | | | • | | | | | Cirro-stratus and haze in the horizon; light clouds occasionally pass over the zenith and obscure the stars. | | | | •• | Cirro-stratus and haze: clear sky W. and N.W. of the zenith. Overcast: cirro-stratus: a thick fog prevails; it began to gather at about 17 ^h . | | | | :: | ,, the fog still prevails. | - | | | | Cloudless, but hazy. | | | | ., | Cumuli in various directions. | | | | | Cirro-cumuli and scud: two breaks in the clouds, one towards the S. E. and the other towards the S.W. | | | | | Cirro-stratus, cumulo-stratus, and scud. | ١ | | | | | | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICA | L IN | STR | UME | NTS. | |-------------------------------------|------------------|--------------|--|---------------|--------|---------------|--|------------------------------------|------------------|--|------------|--|---|---|--------------------|----------|----------|---| | Day and Hour,
Göttingen | 1 1 | Dry | Wet | Ther- | | Point | read at 22h. | Stand of
No. 1. | From (| | From Whe | | Sign | Rea | ding | s of | | Interval | | Astronomical | meter
Cor- | Ther- | Ther- | mom. | Dew | below
Dry | Free Therm. of Rad. Therm. | (Osler's). Reading of No. 2. | Anemo | | Allemon | Descent of | Electricity, | Single | - | ا.
ا. | of
2. | recovering the same | | Reckoning. | rected. | mom. | mom. | below
Dry. | Point. | Ther-
mom. | of Therm. in
Water of the
Thames. | Stand of
No. 3.
(Crosley's). | Direction. | Pressure
in lbs. per
square
foot. | Direction. | the pencil
during the
continu-
ance of
eachWind. | shewn
by Dry
Pile Appa-
ratus. | Single
Gold Leaf
of Dry
Pile Appa-
ratus. | Double
Gold Lea | Straws o | Straws o | degree
of tensio
after
discharge | | d h | in. | ٥ | 0 | 0 | ٥ | 0 | 0 | in. | | from
lbs. to lbs. | | in. | | 0 | ٥ | div. | div. | m 6 | | April 20. 6 | 29·782
29·791 | 53·5
47·2 | 13 | | •• | •• | •• | •• | SSW | •• | •• | | •• | •• | •• | •• | •• | •• | | 8 | 29 191 | 412 | 42 4 | 40 | ••• | •• | •• | •• | 3 | •• | •• | 1 |] ••] | •• | •• | | | •• | | 10 | 29.814 | i i | II | | 36.0 | 8.0 |
57.2 | •• | S | •• | •• | | | •• | •• | •• | •• | • • | | 12
14 | 29·821
29·820 | 42·9
41·6 | 39·6
38·4 | | | ••• | 37.9 | 1.13 | SSW
SSW | •• | •• | •• | •• | •• | •• | ••• | •• | ••• | | 16 | 29.822 | | | f I | 37.0 | | 77.8 | 0.00 | SW | | | :: | | | | | ••• | | | 18 | 29.827 | 38.9 | | | •• | •• | 28.3 | 0.00 | SW | •• | | | | •• | •• | • • | •• | ••• | | 19 | 29·846
29·846 | | | | •• | •• | 15.0 | 3.800 | SSW
SW | •• | •• | | •• | •• | •• | •• | •• | • • | | 20
21 | 29.840 | 43.9 | 40.9 | 2.0 | | •• | 47·0
46·5 | | SW. | •• | •• | | | •• | :: | | | | | 22 | 29.851 | 51.0 | 45.7 | _ ! | | 12.5 | | | SW | •• | ssw | 0.65 | | | | | • • | | | 23 | 29.851 | 58.2 | 48.7 | 9.5 | • • | ••• | •• | •• | WNW | •• | •• | | | •• | •• | | • • | •• | | April 21. 0 | 29·84 8 | 58.0 | 48.6 | 9.4 | • • | | | •. | WNW | | | | | | •• | • • | | | | 1 | 29.847 | 57.2 | 47.1 | 10.1 | ••• | ••• | | •• | WNW | | | | | •• | • • | | •• | | | 2 | 29.851 | 1 - 1 | 47.8 | | ••• | •• | | •• | WNW | •• | •• | | •• | •• | •• | • • | ••• | •• | | 3
4 | 29·844
29·842 | 55.8
54.5 | | | 41.0 | 13·5 | •• | •• | WNW
NNE | •• | ••• | | •• | •• | •• | ••• | :: | ••• | | 5 | 29.842 | 54.3 | | | | | | :: | NNE | | | :: | | | •• | | | | | 6 | 29.843 | 54.0 | 47.0 | 7.0 | • • | •• | | •• | NNE | | | | | | | | | | | 7 | | 54.0 | | | •• | •• | 607.53 | •• | NNE | | •• | •• | •• | ••• | •• | •• | • • | ••• | | 8
9 | 29·858
29·882 | 51·3
48·7 | 45.6
44.8 | 5·7
3·9 | | | $\begin{bmatrix} 61.5 \\ 37.9 \end{bmatrix}$ | •• | NNE
NNE | •• | ••• | •• | •• | ••• | •• | •• | | •• | | 10 | 29.877 | 48.0 | 44.0 | | 40.0 | 8.0 | | 1.13 | NNE | | | | | | • • | | | | | 11 | 29.894 | 46.4 | 44.7 | 1.7 | | •• | 87.0 | 0.00 | NNE | •• | •• | | | | | | • • | | | 12 | | 45.7 | 43·8
41·2 | | •• | •• | 31.0 | | NNE
NE | •• | •• | | •• | •• | • • | •• | • • | ••• | | 13
14 | 29.904 | 42·3
41·0 | 39.2 | 1·1
1·8 | | | 47.0 | 3.800 | NE
NE | • • | •• | :: | :: | | •• | ••• | | | | 15 | | 39.7 | 38.2 | | | | 47.0 | | NE | | | :: | | :: | • • | | | | | 16 | 29.899 | 40.0 | | !! | 37.0 | 3.0 | ••• | ••• | NE | • • • | •• |) | | •• | | | • • | • • • | | 17 | 29.906 | 39.0 | | 0.9 | •• | ••• | •• | ••• | NE
NE | •• | •• | •• | | •• | •• | ••• | •• | ••• | | 18
19 | 29·920
29·928 | 39·8
40·7 | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 1.2 | | | • • • | | NE
NE | : | • • | •• | | •• | • • | | | •• | | 20 | 29.936 | 42.5 | 40.9 | | | | | | NE | ., | | | | | | | | | | 21 | 29.939 | 45.5 | 1 1 | | | | | | NE | | :- | | | •• | • • | | • • | | | 22
23 | 29.954 | 49.5 | 44.8 | 4.7 | 36.5 | 13.0 | •• | •• | NNE
NNE | •• | NNE | 0.30 | •• | •• | •• | •• | ••• | ••• | | | •• | •• | . | •• | •• | • | ••• | •• | | •• | •• | | •• | •• | • • | | | •• | | - : | 29.945 | 55 ·5 | 48.0 | 7.5 | • • | •• | •• | | NNE | •• | •• | •• | | •• | • • | • • | • • | | | 1 | 29:941
29:930 | 54.5 | 47.6 | | •• | •• | •• | •• | NE
NE | •• | •• | ••• | | •• | •• | • • | • • | •• | | $egin{array}{c} 2 \\ 3 \end{array}$ | 29.921 | | | 7.7 | | | (57.7) | | NE
NE | | :: | | | | :: | | | | | 4 | 29.916 | | | 6.3 | 1 1 | | 31.3 | 1.13 | ENE | | •• | | | | | | | | | 5 | 29.916 | | | 6.3 | •• | •• | | 1 10 | ENE | | • • | •• | •• | • • | •• | •• | •• | • • • | | 6
7 | 29·917
29·925 | | | 5·7
3·8 | •• | •• | $\left\{egin{array}{c} 82\cdot0 \\ 21\cdot7 \end{array}\right\}$ | 0.00 | E by S
E by S | • • | •• | | | ••• | •• | | • | •• | | | 29·923
29·929 | | | 2.9 | | | 211 | 0.353 | E by S | | :: | | | | | | | | | 9 | 29.951 | 39.5 | 36.7 | 2.8 | | | 48.5 | 3.800 | E by S | | | | | | • • | | | | | 10 | 29.949 | 38.8 | 36.4 | 2.4 | 33.5 | 5.6 | 47.5 | •• | ESE | ••• | •• | ••• | | •• | •• | •• | •• | •• | | 12 | 29·933
29·926 | | | 1·2
0·5 | •• | • • | •• | | ESE
ESE | •• | ••• | | ••• | ••• | ••• | | •• | •• | | 14
16 | 29.926 | | | | 31.0 | 2.5 | •• | | ESE | •• | • | :: | | | ••• | | | | | | | | " | | | | '' | '• | | | | 1 | | | • | | | | | ١٥. | Phases | | | |-------------|---------|--|------| | : | of | | | | Ī | the | DDAADZC | | | <u>֚֡֟</u> | Moon. | REMARKS. | | | -
5
1 | Transit | Cirro-stratus, cumulo-stratus, fleecy clouds, and scud: the zenith and the parts for a considerable distance around it is clear. A bank of slate-coloured clouds near the horizon, extending from the S.W. to N.W.; those parts near the Sun are tinged | - - | | 0 | •• | yellow, with gold-coloured edges. A well-defined parhelion was visible vertically above the Sun at 7 ^h . 20 ^m . Cloudless. | | | 0
5 | • • | Cloudless, with the exception of a few lines of cirri about the Moon's place. The N. and W. portions of the sky are overcast. | 1 | | 4 | •• | Cloudy towards the horizon generally. | | | 1 | •• | A bank of stratus towards the E. horizon. | | | 0 | •• | Cloudless. | | | | • • | ,, | ١ | | 3 2 | • • | The principal part of the sky is covered with thin cirro-stratus, through which the Sun's place is visible. Cumuli around the horizon. | | | 3 | | Cumuli, loose scud, and fleecy clouds. | | | | •• | Cirro-stratus, loose scud, and fleecy clouds cover the sky. | 1 | | | •• | Overcast: cirro-stratus and scud. | I | | | | rain commenced falling at 3h. 50m, and still continues. | 1 | | | | ,, | I | | | Transit | ,, cirro-stratus of a thin character. | 1 | | 1 | •• | ,, cirro-stratus, fleecy clouds, and scud. | 1 | | 1 | •• | give stratus flagger glands and good of different densities | ١ | | | | ,, cirro-stratus, neecy clouds, and send of different densities. | ١ | | | | 1,), | ١ | | |] | 97 7) | 1 | | | | ", | 1 | | | | 1))) | ١ | | | | A small portion of clear sky in the S.; every other part of the sky is covered. | 1 | | | | Cirro-stratus, fleecy clouds, and scud: a few breaks in the zenith. | 1 | | 1 | | Fleecy clouds in the zenith, and for a considerable distance around it: cirro-stratus in the horizon. | 1 | | | | A few light clouds towards the S.W. | 1 | | | •• | Cumuli in every direction. | 1 | | | 1st On | Small portions of cumuli about the horizon. Cirri and cumuli in various directions, more particularly about the horizon. | | | | 1st Qr. | onti and ountil in various disocious, more particularly about the normali. | | | | | Cirro-stratus, cumulo-stratus, and fleecy clouds. | | | | | Several portions of cumuli about the zenith. | | | | | Overcast: cirro-stratus, fleecy clouds, and scud. | 1 | | | | | | | { | •• | Light fleecy clouds and scud: a large break towards the S. E. [no numerical amount. | 1 | | 1 | ••• | A heavy bank of cirro-stratus, with light fleecy clouds and scud near the W. and S.W.; a few cirri elsewhere, but of Cirro-stratus in the S. horizon: cumulo-strati and fleecy clouds in the W. and N.W. | L | | | Transit | A bank of cumulo-stratus in the W.; every other part of the sky is clear. | 1 | | | ··· | Cloudless. | | | 1 | | 99 | 1 | | | | " | - | | | | Cirro-stratus and loose masses of scud. | 1 | | 1 | | Ciffo-stratus and loose masses of scud. | 1 | | | | | | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICAL | IN | STR | UME | NTS. | |--|---------------------|---------------|---------------|---------------------------|-------|----------------------|--|--------------------------------------|------------------------|--|---|---|---|---|----------------------|-----------------------|-----------------------|---| | Day and Hour, | Baro- | D- | T 27 . | Ther- | | Point | read at 22h. | Stand of
No. 1. | From C | | From Whe | | Sign
of | Rea | ding | s of | | Interva
of time i | | Göttingen | meter | Dry | Wet | mom. | Dew | below | Free Therm. | (Osler's). Reading of | Allemon | netti. | Allemon | Descentof | Electricity, | Single
Gold Leaf | | L | l | recovering
the same | | Astronomical Reckoning. | rected. | Ther-
mom. | Ther-
mom. | below
Dry. | i i | Dry
Ther-
mom. | Rad. Therm. of Therm. in Water of the Thames. | No. 2. Stand of No. 3. (Crosley's). | Direction. | Pressure
in lbs. per
square
foot. | Direction. | the pencil
during the
continu-
ance of
each Wind. | shewn
by Dry
Pile Appa-
ratus. | Gold Leaf
of Dry
Pile Appa-
ratus. | Double
Gold Leaf. | Straws of
Volta 1. | Straws of
Volta 2. | degree
of tensio
after
discharge | | d h | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | | from
lbs. to lbs. | | in. | | o | 0 | div. | div. | m s | | April 22.18 | 29.908 | 34.8 | 33.6 | 1.2 | | | •• | | ESE | •• | · · · | | •• | •• | • • | • • | ••• | •• | | 20 | 29.910 | | | 1.9 | • • | | •• | ••• | ESE | •• | | 1 | ••• | •• | | • • | ••• | • • | | 22 | 29.906 | 48.4 | 44.1 | 4.3 | 39.0 | 9.4 | •• | •• | ESE | •• | ESE | 0.20 | •• | •• | •• | | ••• | • • | | April 23. 0 | 29.897 | 52.5 | 46.0 | 6.2 | | | •• | | NNE | | | | | •• | • • | | | •• | | 2 | 29.873 | | | 8.0 | | | - • • | •• | NNE | •• | | •• | | •• | • • | | • • | . • | | 4 | 29.855 | | | 8.1 | 33.2 | 21.7 | $\lfloor 61.3 \rfloor$ | •• | NNE | •• | •• | •• | •• | ••• | • • | ••• | | | | 6 | 29.853 | | | 7.1 | •• | •• | 32.7 | 1.13 | ENE | •• | • • | •• | . •• | •• | • • | ••• | ••• |)) | | 8 | 29.864 | | 38.9 | 4.3 | | 2.0 | 96.0 | | E | •• | | | •• | •• | • • | •• | | | | 10 | 29.868 | | | 1.5 | 1 | 1 1 | $ig egin{array}{c} 86.0 \ 21.5 \
\end{matrix}$ | 0.00 | S by E | •• | •• | [] | •• | •• | | | | | | 12 | 29.869 | | | 1.6 | ••• | ••• | 21 3 | | S by E | •• | •• | ' | | | ••• | | | ∥ | | 14
16 | 29.862
29.855 | | 1 | 1·7
0·9 | 31.0 | 2.0 | 49.0 | 3.800 | S by E | •• | •• | | | • | • • | | : ; | | | 18 | 29.855 | 11 1 | 1 | 0.3 | 1 | 1 | $\begin{bmatrix} 490 \\ 47.8 \end{bmatrix}$ | | SSE | ••• | • | 1 :: } | | | | | | | | 20 | 29.864 | | 1 | 2.4 | | | - | | SSE | | | | | | | | | | | $egin{array}{c} oldsymbol{20} \ oldsymbol{22} \end{array}$ | 29.871 | | 43.4 | 3.7 | 1 | 1 1 | •• | •• | W | | E | 0.26 | •• | •• | • • | • • | • • | | | April 24. 0 | 29.860 | 54.4 | 46.9 | 7.5 | | | •• | | $\mathbf{s}\mathbf{w}$ | | • • | | | • • | | | | | | 2 | 29.858 | | | 10.1 | | | •• | | NNE | | ••• | ••• | | •• | ٠. | • • | • • | | | 4 | 29.828 | | 46.5 | 10.5 | 35.0 | 22.0 | 62.7 ↑ | | NNE | | | | •• | • • | • • | • • | • • | ••• | | 6 | 29.819 | 53.0 | 44.3 | 8.7 | | | 36.5 | 1.13 | NE | •• | | •• | | • • | •• | •• | ••• | | | 8 | 29.845 | 46.0 | 1 1 | 3.2 | | | | 1 10 | NE | • • | •• | | Pos. | 25 | • • | 50 | 70 | 9. | | 10 | 29.859 | 42.2 | | 1.9 | 37.5 | 4.7 | J 81·0 (| 0.00 | SSW | •• | •• | •• | Pos. | 40 | • • | 20 | 20 | •• | | 12 | 29.847 | 40.6 | 39.2 | 1.4 | • • | •• | 30.0 | | SSW | •• | •• | •• | Pos. | 8 | ٠. | 10 | 20 | •• | | 14 | •• | •• | • • | •• | | | | 3.800 | SSW | •• | •• | 1 | •• | • • | •• | ••• | ••• | •• | | 16 | ••• | •• | •• | •• | •• | •• | 48.5 | | SSW | •• | •• | | •• | •• | ••• | | ••• | •• | | 18 | •• | •• | •• | •• | •• | ••• | [48.5] | •• | SSW | •• | •• | •• | | •• | • • | | ••• | •• | | $egin{array}{c} 20 \ 22 \ \end{array}$ | 29 [.] 885 | 46.7 | 44.3 | 2·4 | | •• | •• | | SW
SW | •• | wśw | 0.20 | Pos. | 4 | 5 | 8 | | | | April 25. 0 | | | | | | | | | sw | | | | •• | | | | | | | 2 | | | | | | | | | \mathbf{sw} | | | | | •• | • • | | ••• | •• | | 4 | | | | | •• | | ., | | SW | | •• | •• | | •• | • • | | •• | • • | | 4. 40 | 29.834 | 60.2 | 50.1 | 10.1 | | | $\left[egin{pmatrix} 62.8 \ 37.3 \end{matrix} ight]$ | •• | sw | 0 to $\frac{1}{2}$ | •• | | Pos. | 5 | 12 | 10 | •• | •• | | 6 h | | | | | | | | 1.13 | wsw | 0 to $\frac{1}{2}$ | •• | | •• | •• | | | | | | 8 | | | •• | | • • • | | 80.0 | 0.00 | SSW | | •• | | •• | • • • | • • | •• | • • | ••• | | 10 | | •• | •• | | | | 33.0 | 0 00 | S | •• | •• | •• | •• | •• | • • | | •• | • • | | 12 | | | | | | | | 3.800 | \mathbf{s} | •• | •• | •• | -:· | • • • | •• | ٠٠. | • • | •• | | 14 | 29.826 | 40.0 | 39.4 | 0.6 | ••• | •• | 49.8 | 5 500 | S | •• | •• | •• | Pos. | 4 | 10 | 15 | ••• | ••• | | 16 | 29.793 | | 40.5 | 0.2 | 40.0 | 0.7 | 49.2 | •• | S by W | 0 4- 1 | •• | ••• | Pos. | 8 | 30 | 15 | | ••• | | 18 | 29.734 | 44.4 | 42.8 | 1.6 | •• | •• | •• | •• | S by W | 0 to 1 | •• | •• | Pos. | 2 | 0
3 | 0 | ŀ | •• | | $egin{array}{c} 20 \ 22 \end{array}$ | 29.697
29.651 | 47.0
49.0 | 43.7 | $\frac{3\cdot3}{2\cdot3}$ | 44.0 | 5.0 | •• | :: | S by W
SSW | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | sśw | 3.90 | Pos. | 2 | | | • • | | | d h | į | | | | 12.0 | | | | | _ ,,,, | | | | , | | _ | | | | April 26. 0 | 29.666 | 49.2 | 46.9 | $2\cdot3$ | •• | •• | 66.9 | | SW | •• - | •• | •• | -:· | ••• | 0 | 0 | i | ••• | | | 29.673 | | | 8.0 | ••• | | 43.6 | 1.17 | SW | 0 to $3\frac{1}{2}$ | •• | •• | Pos. | 10 | 1.5 | 8 | 10 | ••• | | 4 | 29.662 | 55.5 | 45.4 | 10.1 | 33.2 | 22.0 | | | SW | 0 to 3 | •• | •• | Pos. | 4 | 15 | 10 | | •• | | 11 | 29.666 | | | 9.1 | | • • | J [| 0.11 | wsw | $\frac{1}{2}$ to 1 | •• | •• | Pos. | 3 | 5 | 6 | ł. | •• | | 8 | 29.679 | 50.5 | 43.3 | 7.2 | •• | •• | 39.8 | | SW | •• | •• | •• | Pos. | 2 | 3 | 15 | 20 | ••• | | | 29.672 | | | | | 12.7 | | 3.950 | SSW | •• | •• | •• | Pos. | 12 | • • | 15 | | •• | | 12 | 29.630 | | | 3.7 | | •• | 49.8 | | S | •• | •• | •• | Pos. | 10 | •• | 8 | 10 | •• | | 14 | 29.592 | 46.5 | 45.1 | 1.4 | | | [49·2] | 1 | \mathbf{s} | | • • | | Pos. | 2 | | • • | • • | • • | ELECTRICITY. April 24^d. 8^h. Previously to this time the electrical apparatus was repaired and put in action. There was a spark at the distance of 0ⁱⁿ·02. MAXIMUM RADIATION THERMOMETER. April 26d. The instrument was out of order. | 0-10. | Phases of the Moon. | REMARKS. | | |---------------------|---------------------|--|--| | 2
6
5 | | A bank of cirro-stratus in the N. and W.: a few light clouds are scattered about the sky. Cirro-stratus, fleecy clouds, and scud. Cumuli all around the horizon, and small detached portions are scattered over the zenith. | | | 7 3 0 | •• | [of the sky. Cirro-stratus in the S. and S.W., extending to the zenith; detached portions of cumuli are scattered over the remainder Cumuli are scattered over the sky in every direction. A few detached portions of cumuli towards the S. horizon, but to no numerical amount. Cloudless. | | | 0 | Transit | ,, ,, A bank of cirro-stratus in the W.; otherwise cloudless. | | | 3 3 | •• | Cirro-stratus in the N., horizon, extending to the W.S.W. Cirro-stratus and light portions of scud are scattered around. Cirri, light scud, and fleecy clouds. Cirro-stratus, light fleecy clouds, and scud. | | |) | ••• | Cloudless, but hazy. Cloudless, except a few small cumuli to the S., to no numerical amount: hazy. Some large masses of cumuli in the S. S.W are the only prevailing clouds. A bank of cumuli extending along the S. S.W.: cirro-stratus in the W. and N.W. horizon. | | | <u>l</u>
).
) | Transit | Cirro-stratus all around the horizon, more especially in the N., where the clouds extend to a considerable elevation. Cloudless. | | | , | •• | Cloudless, but hazy. | | | | •• | Massive and finely formed cumuli S. and S.W. of the zenith: cirro-stratus in the horizon, extending from the N. to | | | | Transit | the S. S. E.: light clouds here and there. | | | |
Apogee | Cloudless: a few light cirri towards the S.W., but to numerical amount. Cirro-stratus and scud: since the last observation the sky has been overcast; at present the part that is free from cloud Overcast: cirro-stratus and scud. | | | | •• | ,,, ,, rain in squalls. [electricity was then shown. Overcast: cirro-stratus and scud: rain has been falling very heavily since the last observation, and strong negative | | | | In Equator | Overcast, with very thin cirro-stratus and detached masses of scud, principally about the horizon. Overcast, with cirri, cymoid cirri, and very thin cirro-stratus, and a few tached portions of scud about the horizon. Cirro-stratus: a small break towards the western part of the horizon. | | | | Transit | Overcast: cirro-stratus and scud. | | | | | | | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICA | L IN | STR | UME | NTS. | |---|------------------|--------------|---------------|-------|------|--------------|--|------------------------|-----------------|---|------------|--------------------------------------|----------------------|---|----------------|------------|--------------|----------------------| | Day and Hour, | | | | Ther- | | Point | read at 22h. | Stand of
No. I. | From C
Anemo | | From Whe | | Sign | Re | ading | s of | | Interva
of time i | | Göttingen | meter | 1 | Wet | mom. | Dew | below | Free Therm. | (Osler's). Reading of | Anemo | meter. | Anemoni | Descent of | Electricity
as | Single | ا | ₩. | 2, of | recovering the sam | | Astronomical Reckoning. | Cor-
rected. | } | Ther-
mom. | below | W | Dry
Ther- | Rad. Therm. | No. 2.
Stand of | Direction. | Pressure
in lbs. per | Direction. | the pencil
during the
continu- | shewn
by Dry | Single
Gold Leaf
of Dry
Pile Appa-
ratus. | uble
I Lead | Straws C | Straws o | degree
of tension | | Neckoning. | recteu. | шош. | mom. | Dry. | | mom. | Water of the
Thames. | No. 3.
(Crosley's). | | square
foot. | | ance of
each Wind. | Pile Appa-
ratus. | Pile Appa-
ratus. | ಗಿತ್ರ | <u>z</u> > | 50 | after
discharg | | d h | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | | from
lbs. to lbs. | | in. | | ۰ | 0 | diø | div. | m 8 | | April 26. 16 | 29.534 | | 45.0 | f | 43.0 | 3.3 | •• | | 8 | 0 to $\frac{1}{2}$ | •• | | 4. | •• | 0 | 0 | | 1 | | 18 | 29.492 | | | | •• | ••• | •• | •• | ssw | $\begin{array}{c cccc} 0 & to & \frac{1}{2} \\ 0 & to & 3\frac{1}{5} \end{array}$ | •• | •• | Pos. | 2 | 0 | U | U | 1 | | $\begin{array}{c} 20 \\ 22 \end{array}$ | 29·483
29·500 | | 51·6
48·5 | 1 | 41.5 | 14.2 | •• | • • | sw
sw | 1 to 5 | wsw | 6.32 | Pos. | 2 | :: | :: | :: | :: | | April 27. 0 | 29.523 | 59.5 | 48.8 | 10.7 | | | •• | •• | wsw | 2 to 5½ | • • | | Neg. | 2 | | | | | | 2 | 29.538 | 59.4 | 48.9 | 10.5 | • • | | 500.13 | | wsw | 0 to 6 | •• | | Pos. | 20 | | 20 | 30 | | | 4 | 29.547 | 1 | | 11.6 | 11 | 24.3 | $\begin{bmatrix} 60.1 \\ 42.4 \end{bmatrix}$ | | WSW | 3 to 8 | | | Pos. | 2 | | | | | | 6 | 29.563 | 55.2 | 45.7 | 9.5 | | | 424 | 1.17 | WSW | 3½ to 6 | •• | | Pos. | 2 | | • • | • • | •• | | 8 | 29.592 | | | | | | 750 | | WSW | $\frac{1}{2}$ to 6 | •• | •• | Pos. | 2 | •• | :: | | •• | | 10 | 29.602 | 47.4 | il | | 37.0 | 10.4 | 38.5 | 0.00 | SW | 1 constant | • • | •• | Pos. | 15 | • • | 10 | i | | | 12 | 29.584 | 1 | 43.3 | | | • • | | 0.000 | SW
SW | 2 to 4 | •• | •• | Pos. | 10
15 | | 10
 12 | 1 | 11 | | 14
16 | 29·565
29·561 | 1 | !! | 1 | 47.0 | 1 | 50.8 | 3.960 | WSW | 2 to 4
1 to 3½ | • • | | Pos. | 30 | :: | 20 |
1 | K | | 18 | 29.559 | 45.9 | 44·5
44·7 | 1 | 41.8 | 1 | [49·5] | •• | sw | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | •• | | Pos. | 10 | | 10 | 1 | 11 | | 20 | 29.568 | 49.2 | | 1 . | | :: | | •• | wsw | 2 to 4 | | | | | 0 | 0 | 1 | 1 | | 22 | 29.569 | ł. | 11 | 1 | l l | 15.5 | •• | •• | wsw | 3 to 4½ | wsw | 10.35 | •• | •• | 0 | 0 | 0 | H | | April 28. 0 | 29.548 | 55.7 | 47.0 | 8.7 | | | | | sw | 2½ to 5 | •• | | Neg. | 2 | | | ۱ | | | 2 | 29.533 | 56.1 | 50.1 | 6.0 | | ••• | •• | •• | sw | 1 to 5 | .•• | •• | Neg. | •• | •• | 100 | 110 | •• | | 4 | 29.498 | | 49.4 | | 43.5 | 14.2 | (60.1) | | ssw | 2 to 7 | •• | | Pos. | 12 | | 10 | | 0 | | 6 | 29.507 | 46.2 | 44.6 | 1.6 | •• | •• | 41.4 | 1·19 | WSW | ½ to 2 | • • | ••• | Pos. | 30 | | 70 | 100 | 3. 30 | | 8 | 29.480 | | 44.0 | | | | 72.5 | ļ | SW | 0 to 1 | •• | ••• | Pos. | 25 | ••• | 30 | 4 | 11 | | 10
12 | 29.462 | 1 | 43.5 | 1 | 42.0 | 3.6 | 34.5 | 0.08 | SSW
SSW | 0 to $1\frac{1}{2}$ | •• | | Pos. | 12 | | 12 | | II. | | 14 | 29·425
29·395 | 45·5
44·3 | 1.1 | 1 | | •• | 50.5 | 4.060 | ssw | | • • | :: | Pos. | 3 | 4 | | [*] | :: | | 16 | 29.366 | 43.4 | 42.1 | 1.3 | 41.0 | 2.4 | 49.5 | | ssw | | | | Pos. | 5 | 8 | 10 | | | | 18 | 29.360 | 42.4 | 41.5 | | | | | •• | sw | 0 to 1 | •• | | Pos. | 12 | | 10 | ł . | | | 20 | 29.395 | 45.5 | 43.3 | | | | | | WSW | 2 | | | Pos. | 2 | 3 | | | | | 22 | 29.422 | 52.2 | 47.4 | 4.8 | 42.0 | 10.2 | •• | •• | wsw | | •• | •• | Pos. | •• | 5 | ••• | •• | •• | | April 29. 0 | 29.417 | 56.4 | 50.2 | 6.2 | | | | •• | wsw | 0 to 3 | •• | | | ••• | 0 | o | | | | 2 | 29.430 | 51.0 | 47.9 | 3.1 | •• | •• | ••• | •• | SW | 1 to 2½ | • • | •• | •• | ••• | 0 | 0 | 0 | •• | | 4 | 29.440 | 48.1 | 45.4 | 2.7 | 42.0 | 6.1 | (58.7) | | ssw | | ., | | Neg. | 40 | •• | | 280 | | | 6 | 29.447 | | | | | | 40.6 | 1.19 | SW | | • • | | Neg. | • • | • • | | •• | •• | | 8 | 29.460 | 45.5 | 44.7 | 0.8 | •• | | 67.7 | | sw | | •• | •• | Pos. | •• | ••• | 60 | 80 | 10. 0 | | 10 | 29.471 | 43.8 | 42.8 | 1.0 | 41.5 | 2.3 | 34.3 | 0.12 | sw | | | | Pos. | | | 40 | | 10. 0 | | 12 | 29.488 | 42.3 | 41.4 | 0.9 | | | | 4.190 | SW | | | •• | Pos. | 30 | | 25 | | 11 | | 14 | 29.489 | | | | • • | | 50.8 | 4 190 | SW | | •• | •• | Pos. | 20 | | 20 | 1 . | 10. 0 | | 16 | 29.505 | | | | 40.5 | 1.2 | [49.8] | •• | SW | | •• | | Pos. | 10 | • • | 10 | | 11 | | 18 | 29.522 | | | | •• | •• | •• | •• | SW | •• | •• | | Pos. | 7
15 | | 8
10 | • | 12. 0 | | 20
22 | 29·535
29·546 | | | | 38.0 | 12·3 | •• | •• | SW
SW | •• | •• | | Pos. | 15
2 | | 10 | | 12. 0 | | April 30. 0 | 29.554 | l | | | | | | | sw | | •• | | Pos. | 15 | | 10 | 12 | | | April 50. 0 | 29.537 | 55.6 | 46.9 | 8.7 | | | | | NNW | :. | | | Pos. | 25 | | 20 | | 10. 0 | DRY THERMOMETER. April 28^d. The decrease in the reading between 4^h and 6^h was 11°·5. April 30^d. The decrease in the reading between 2^h and 4^h was 10°·9. Whewell's Anemometer. April 28^d. 0^h. The instrument was sent to the maker to be repaired. Henley's Electrometer. April 29^d. 4^h and 6^h. The readings were 7° and 20° respectively. | Amount of Clouds, | Phases
of
the | REMARKS. | Observer. | |-------------------|---------------------|--|-----------| | A mo | Moon. | | c c | | 10 | | Overcast: cirro-stratus and scud: a slight rain is now falling. | I | | 10 | •• | ,, the rain has ceased. | ١. | | 10
9 | :: | thin rain has just begun to fall. Cirro-stratus, cumulo-stratus, and masses of scud: a portion of blue sky is seen to the N.W. of the zenith. | T | | 9 | •• | The whole of the sky, with the exception of a few small breaks in the zenith, is covered with cirro-stratus, cumulo-stratus, and masses of quickly moving scud. Massive and rocky cumuli in the S. and S.W.: cirro-stratus reaching from the N. to the zenith, and masses of dark | T | | 3 | •• | Loose cumuli and large masses of scud floating about the sky. | L | | 3
2 | | Cirro-stratus towards the N.; clear elsewhere. | | | 3 | Transit | و المنظم الم | 1 | | 2
0 | •• | Cumulo-stratus and masses of scud in the S. E. Cloudless. | T | | Ö | | 19 | 1 | | 2 | | A bank of cirro-stratus in the S.W.; otherwise clear. | | | 3
7 | •• | Detached portions of cirri and scud are scattered over the sky. Detached masses of cumuli and scud are in every direction. | T
G | | • | •• | Detached masses of cumun and sedd are in every direction. | ľ | | 9 | | Detached masses of cumuli and scud cover the greater part of the sky. | I | | 6 | •• | Heavy masses of scud about the horizon: a light rain is falling: the electricity has been very variable both in amount and kind during the morning: since the last observation there has been a squall of rain, which lasted about 20 ^m . | G | | 6 | •• | Cumuli, cirro-stratus, and masses of quick moving scud in every direction. | T | | 10 | •• | The sky is covered with cirro-stratus, cumulo-stratus, and scud: at about 4h. 45m a shower of rain and hail com- | | | 5 | | menced, and has continued to the present time; occasionally violent. Cirro-stratus, cumulo-stratus, and scud: the clouds in the W. and S.W. look very dark and threatening. | | | 0 | •• | Cloudless, with the exception of a few cirri in the S. S.W., of no numerical amount. | T | | 7 | Transit | Very thin cirro-stratus towards the S.W. portion of the sky, and about the horizon generally. | G | | 10 | • • • | Large masses of cumuli and scud near the S.E. portion of the sky; the remainder is covered with a very thin cirro- | | | 6 | | stratus and fleecy clouds: rain has fallen since the last observation. A large mass of scud and fleecy clouds towards the W.; scud about the horizon generally. | | | 2 | •• | Scud towards the horizon, more particularly in the S.W.: a few light cirri scattered about the sky. | | | 5 | •• | Scud and light fleecy clouds in various directions. | G | | 10 | •• | Cumulo-strati, cirro-stratus, and large masses of dark scud cover the sky; occasionally there are a few small breaks. [are breaks towards the S.] | I | | 8 | | Cumuli, fleecy clouds, and large masses of loose scud; at about 23h, 10m hail fell; it lasted about three minutes: there | | | 8 | •• | Cumuli, cirro-stratus, and large masses of scud: hail has been falling since the last observation, and several peals of | | | 6 | | thunder were heard in the S.W. [ceased falling. Cirro-cumuli, cirro-stratus, and large masses of scud: a clear space of blue sky towards the N.W.: heavy rain has just | G | | 10 | • • • | Cirro-stratus and large masses of scud: a clear space of blue sky towards the 14.77. Incavy fain has just Cirro-stratus and large masses of scud: a very dark mass of cloud towards the E.: a heavy squall of rain has nearly passed. | G | | 6 | •• | Cirro-cumuli, fleecy clouds, and scud scattered about the sky: a large space clear towards the S. E.: about fifteen minutes after the last observation the rain ceased: a rainbow was observed in the S. E. at about 6 ^h . 45 ^m . | | | 5 | | Fragments of fleecy clouds and scud scattered over the sky. | G: | | 10 | Transit | Overcast: fleecy clouds and scud. | L | | 6
10 | • • | Mostly clear N. of the zenith; the rest of the sky is covered with cirro-stratus and fleecy clouds. Overcast: cirro-stratus, fleecy clouds, and scud. | | | 8 | | Cirro-stratus and scud, very thin in some parts, cover the greater part of the sky: breaks towards the N. and E. horizon. | . | | 8 | •• | Thin cirro-stratus, fleecy clouds, and scud. | I | | 10 | •• | The sky is covered with thin cirro stratus, through which the Sun is visible: hazy. | T | | 10 |] | Cirro stratus, cumulo-stratus, and dark scud prevail in every direction: from 23h. 10m to 23h. 40m a great gloom prevailed. | Т. | | 9 | Full | A dark and threatening cumulo-stratus cloud extending from the N. horizon to within 5° of the zenith; every other portion of the sky is nearly covered with cirro-stratus and dark scud. | T | ELECTRICITY. April 28^d. 6^h and 8^h, and 29^d at 4^h. There were sparks at the distances of 0ⁱⁿ·03, 0ⁱⁿ·02, 0ⁱⁿ·02 respectively; and at April 29^d. 6^h there were three sparks in one second at the distance of 0ⁱⁿ·11. | | | | | Wet | | Dew | Max. and Min.
as | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICAL | LIN | STR | UME | NTS. | |--|------------------|-------|-------|---------------|--------|---------------|--|------------------------------------|------------------------|---------------------------------|------------|--|--------------------------------|--------------------------------|----------------------|-----------------------|-----------------------|---| | Day and Hour, | Baro- | | | Ther- | | Point | read at 22h. | Stand of
No. 1. | From | | From Whe | | Sign | Re | ading | s of | | Interva | | Göttingen | meter | Dry | Wet | mom. | Dew | below | Free Therm. | (Osler's). | Anemo | meter. | Anemome | | of
Electricity, | Cin alo | | | | of time i | | Astronomical | Cor- | Ther- | Ther- | | l | Dry | Rad. Therm. | Reading of
No. 2. | | Pressure | | Descent of
the pencil | as
shewn | Single
Gold Leaf | le
eaf. | 78 of
a 1. | rs of
a 2. | the sam | | Reckoning. | rected. | mom. | mom. | below
Dry. | Point. | Ther-
mom. | of Therm. in
Water of the
Thames. | Stand of
No. 3.
(Crosley's). | Direction. | in lbs. per
square
foot. | Direction. | during the
continu-
ance of
eachWind, | by Dry
Pile Appa-
ratus. | of Dry
Pile Appa-
ratus. | Double
Gold Leaf. | Straws of
Volta 1. |
Straws of
Volta 2. | of tension
after
dischar | | d h | in. | 0 | 0 | 0 | 0 | 0 | O O | in. | | from | | in. | | | 0 | div. | div. | m s | | April 30. 4 | 29.582 | 44.7 | 43.5 | 1.2 | 42.0 | 2.7 | | | SSW | lbs. to lbs. | | | Neg. | | | 5 0 | 70 | Instant | | 6 | 29.589 | 44.7 | 43.1 | 1.6 | | | (58.7) | | SSW | • • | | | Neg. | | | 40 | 50 | 2. 0 | | 8 | 29.622 | 1 | 11 | 1.9 | | | 34.6 | 1.19 | WNW | | •• | •• | Pos. | 15 | | 10 | 15 | 5 0 | | 10 | 29.662 | | | 1.3 | 38.0 | 3.0 | | 1 10 | wsw * | •• | • • • | •• | Pos. | 12 | •• | 10 | 12 | 10. (| | 12 | 29.675 | | | 0.2 | •• | • • | 76.5 | 0.00 | SW | • • | •• | ••• | Pos. | 12 | | 7 | 12 | 13. (| | 14 | 29.687 | | | 0.8 | 95.0 | 0.0 | 28.5 | | SW
SSW | •• | • • | ••• | Pos. | 10 | 0 | 0 | 0 | • • • | | 16 | 29·697
29·719 | | 36·8 | 0.9
1.0 | 35.0 | l í | 50.5 | 4.190 | SSW | • • | • • | •• | Pos. | 10
10 | 20 | 5
10 | 7
12 | 17. (| | $\begin{array}{c} 18 \\ 20 \end{array}$ | 29.719 | 1 1 | | 2.4 | •• | ••• | 49.5 | | SW | • • | • • | ••• | Pos. | 25 | ••• | 20 | 25 | 7. | | 22 | 29.719 | | | | 37·5 | 13.0 | | | SSW | | ••• | | Pos. | 15 | | 10 | 20 | . ` | | May 1. 0 | 29·696 | 56.7 | 48.1 | 8.6 | •• | | • • | | $\mathbf{s}\mathbf{w}$ | 0 to $\frac{1}{2}$ | | | Pos. | 15 | | 20 | 40 | | | 2 | 29.680 | 51.7 | 47.0 | 4.7 | | | • • | •• | SSW | $\frac{1}{2}$ to $1\frac{1}{2}$ | | | Neg. | | | 40 | 6 0 | | | 4 | 29.649 | 1 -1 | , , | | 38.0 | | (57.7) | | SSW | 1 to $1\frac{1}{2}$ | | | Pos. | 20 | | 20 | 25 | 7. (| | 6 | 29.632 | | 43.3 | 4.7 | ., | | 43.7 | 1 | \mathbf{s} | 2 | | | Pos. | 35 | | 20 | 30 | 11. (| | 8 | 29.590 | 45.7 | 43.7 | 2.0 | | | | 1.19 | S by E | | | | Pos. | 5 | 12 | 5 | | | | 10 | 29.560 | 46.5 | 43.9 | 2.6 | 42.0 | 4.5 | 73.0 | 0.00 | S by E | •• | | | Pos. | 35 | | 30 | 40 | 3. (| | 12 | 29.533 | 46.1 | 45.4 | 0.7 | | | 37.3 | 0 00 | S by E | | •• | | Pos. | 2 | 3 | | | •• | | 14 | | •• | •• | | •• | | | 4.335 | S by E | •• | •• | •• | | | | • • | | •• | | 16 | | •• | •• | •• | • • | | 50.5 | 1 000 | SSE | •• | • • | ••• | •• | •• | | • • | •• | •• | | 18 | •• | •• | •• | ••• | •• | • • • | 〔50·0 〕 | ••• | SSE
SSE | •• | •• | •• | | •• | • • | • • | • • | •• | | $egin{array}{c} 20 \ 22 \ \end{array}$ | ••• | •• | | | •• | ••• | •• | | SSE | • • | · · · | • • • | | •• | ••• | • • | • • • | ••• | | h m | •• | ••• | | | ••• | •• | •• | •• | | •• | •• | ••• | ••• | •• | | • • | | ••• | | 22. 30 | 29.485 | 51.0 | 47.7 | 3.3 | •• | ••• | •• | •• | •• | •• | •• | | •• | •• | 0 | 0 | 0 | •• | | $\mathbf{May} \ \mathbf{\overset{d}{2}.} \ \mathbf{\overset{h}{0}} \ $ | [| | | | •• | | | | S by W | •• | | | | •• | | | | | | 2 | | •• | •• | •• | • • • | •• | •• | | SSW | •• | • • • | ••• | •• | | •• | • • | | • • • | | 4 h | •• | •• | ••• | •• | • • • | ••• | 600.00 | •• | ssw | •• | •• | •• | ・・ | •• | •• | • • | ••• | •• | | 4. 20 | 29.504 | 55.8 | 51.2 | 4.6 | •• | | $\begin{bmatrix} 60.2 \\ 36.1 \end{bmatrix}$ | 1.10 | ssw | •• | •• | | Pos. | 15 | ••• | 10 | 12 | 7. (| | 6 | | •• | ••• | | •• | | | 1.19 | SSW | 1.4- 01 | •• | ••• | | •• | | • • | • • | •• | | 8 | •• | •• | ••• | •• | •• | •• | 73.4 | 0.08 | N by W
N by W | $\frac{1}{2}$ to $2\frac{1}{2}$ | | • • | ••• | ••• | •• | • • | • • | • • • | | 10
12 | •• | ••• | | •• | •• | ••• | 28.0 | i | N by W | •• | ••• | • • • | ••• | •• | ••• | • • | | • • • | | | 29.632 | 40.7 | 38.9 | 2.5 | • • | •• | 51.0 | 4.435 | NNW | 0 to 1 | •• | | Pos. | 6 | 8 | • • | •• | • | | | 29.648 | | | | 35.0 | 5.7 | 50.2 | | NW | | | | Pos. | 2 | 2 | | | | | | 29.677 | | | | • • | | | | W by S | | | | Pos. | 2 | 2 | | | | | | 29.695 | | | | | | •• | | W by S | | | | Pos. | | | 40 | 60 | | | 22 | 29.698 | | | | 38.0 | | •• | •• | W by S | | •• | •• | Pos. | 20 | •• | 15 | | 30. (| | May 3. 0 | | | | | | | •• | | \mathbf{W} | 0 to $\frac{1}{2}$ | | | Neg. | | | | 80 | 1. (| | 2 | 29.678 | 48.3 | 44.6 | 3.7 | •• | •• | (52.8) | | WNW | 0 to $3\frac{1}{2}$ | •• | •• | Neg. | 2 | 2 | • • | | | | | | | | | | | 39.5 | | OTT | | | | | | | | | | | 4 | 29.675 | | | | 40.0 | 2.7 | | 1.24 | SW | •• | •• | •• | Neg. | | $ \cdot $ | •• | • • | ••• | | 6 | 29.680 | 46.0 | 43.3 | 2.7 | • • | •• | 64.7 | 0.16 | WNW | • • | •• | •• | Pos. | 2 | 2 | • • | • • | • • • | | 8 | 29·681
29·695 | 40.5 | 45.2 | 1.0 | 41:0 | 1.5 | 34 0 | 0.16 | WSW | • • | •• | ••• | Pos. Pos. | 2 | 2 | •• | 200 | 5. (| | 10 | 29.703 | 43.4 | 49.1 | 1.0 | 41.0 | . 1 | [| 4.630 | WNW | •• | | | | ••• | 0 | | 200 | ll | | | 29.712 | | | | • | | 50.8 | 4 000 | WNW | • • | | :: | | • • • | 0 | 0 | 0 | | | | 29.716 | | | | 35.0 | 8.5 | (50·0) | | NNE | | | | | | a | 0 | 0 | | | | 29.714 | | | | | | | | NNE | • • | | | | | õ | 0 | 0 | | | a | - 1 | - 1 | | - | | | | 1 | | | l . | 1 | ì | 1 | 1 1 | | | 11 | OSLER'S ANEMOMETER. May 3^d. 2^h. 5^m. A gust recording a pressure of 1½ lbs.; at 2^h. 10^m the pressure increased to 4½ lbs.; at 2^h. 15^m the force had decreased to ½ lb. May 3^d. 2^h. 5^m. A sudden change in the direction of the wind from W. by N. to N. by W.; at 2^h. 15^m the direction was S. W. ELECTRICITY. April 30^d. 4^h and May 1^d. 10^h. There were sparks at the distance of 0ⁱⁿ 02 at each time. May 3^d. 0^h, 2^h, 4^h, and 10^h. There were sparks at the distances of 0ⁱⁿ 03, 0ⁱⁿ 16, 0ⁱⁿ 12, and 0ⁱⁿ 08 respectively. Henley's Electrometer. May 3^d . 2^h . 20^m . The reading was 35° . | Phases of the Moon. Overcast: cirro-stratus and scud: rain is now falling. Transit Cirro-stratus and fleecy clouds: hazy around the horizon. Cumuli, cumulo-strati, and scud: clear towards the S. E.: since the last observation two on thunder have been heard, and at about 0 ^h , 45 ^m there was a squall of hail and rain. Cumulo-stratus and scud: the sky E. N. E. of the zenith is clear, but every other portion is cover Overcast: cirro-stratus and scud: a slight rain is falling. Transit Transit Transit Cirro-stratus and scud: a slight rain is falling. Cirro-stratus and scud: clear towards the S. E.: since the last observation two on thunder have been heard, and at about 0 ^h , 45 ^m there was a squall of hail and rain. Cirro-stratus and scud: the sky E. N. E. of the zenith is clear, but every other portion is cover Overcast: cirro-stratus: rain is falling; it commenced at 5 ^h , 45 ^m . Transit Transit Cirro-stratus and scud: a slight rain is falling. Cirro-stratus and scud: a slight rain is falling. | L L T I | |--|----------------------------| | Overcast: cirro-stratus and scud: rain is now falling. ''', '', rain is falling slightly. ''', '', rain is falling slightly. ''', '', rain is falling slightly. ''', '', rain is falling slightly. ''', '', rain is falling slightly. ''', '', rain is falling slightly. ''', '', '', rain is falling slightly. ''', '', '', '', '', '', '', '', '', ' | L
T I
G I | | Overcast: cirro-stratus and scud: rain is now falling. ''', '', rain is falling slightly. Thin cirro-stratus towards the N.; clear elsewhere. Cloudless. Transit Cirro-stratus and fleecy clouds: hazy around the horizon. Masses of cumuli piled upon each other about the W. horizon. Cumuli, cumulo-strati, and scud: clear towards the S. E.: since the last observation two or thunder have been heard, and at about 0h. 45m there was a squall of hail and rain. Cumulo-stratus and scud: the sky E. N. E. of the zenith is clear, but every other portion is cover overcast: cirro-stratus: rain is falling; it commenced at 5h. 45m. Overcast: cirro-stratus and scud: a slight rain is falling. Transit | L
T I
G I | | Overcast: cirro-stratus and scud: rain is now falling. ''', '', rain is falling slightly. Thin cirro-stratus towards the N.; clear elsewhere. Cloudless. Transit Cirro-stratus and fleecy clouds: hazy around the horizon. Masses of cumuli piled upon each other about the W. horizon. Cumuli, cumulo-strati, and scud: clear
towards the S. E.: since the last observation two or thunder have been heard, and at about 0h. 45m there was a squall of hail and rain. Cumulo-stratus and scud: the sky E. N. E. of the zenith is clear, but every other portion is cover overcast: cirro-stratus: rain is falling; it commenced at 5h. 45m. Overcast: cirro-stratus and scud: a slight rain is falling. Transit | L
T I
G I | | Overcast: cirro-stratus and scud: rain is now falling. '', ', 'rain is falling slightly. '', | L
T I
G I | | 10 | L
T 1
G 1 | | 10 | L
T 1
G 1 | | Thin cirro-stratus towards the N.; clear elsewhere. Cloudless. Transit Transit Cirro-stratus and fleecy clouds: hazy around the horizon. Masses of cumuli piled upon each other about the W. horizon. Cumuli, cumulo-strati, and scud: clear towards the S. E.: since the last observation two or thunder have been heard, and at about 0h. 45m there was a squall of hail and rain. Cumulo-stratus and scud. Cirro-stratus and scud: the sky E. N. E. of the zenith is clear, but every other portion is cover Overcast: cirro-stratus: rain is falling; it commenced at 5h. 45m. Overcast: cirro-stratus: rain is falling; it commenced at 5h. 45m. Transit | T I
G I | | Thin cirro-stratus towards the N.; clear elsewhere. Cloudless. Transit T | T I
G I | | Cloudless. Transit Cloudless. Cirro-stratus and fleecy clouds: hazy around the horizon. Masses of cumuli piled upon each other about the W. horizon. Cumuli, cumulo-strati, and scud: clear towards the S. E.: since the last observation two or thunder have been heard, and at about 0h. 45m there was a squall of hail and rain. Cumulo-stratus and scud. Cirro-stratus and scud: the sky E. N. E. of the zenith is clear, but every other portion is cover Overcast: cirro-stratus: rain is falling; it commenced at 5h. 45m. Overcast: cirro-stratus: rain is falling; it commenced at 5h. 45m. Transit | T I
G I | | Transit Tra | G I | | Some cirri in the S.W.; every other part of the sky is clear. Cirro-stratus and fleecy clouds: hazy around the horizon. Masses of cumuli piled upon each other about the W. horizon. Cumuli, cumulo-strati, and scud: clear towards the S. E.: since the last observation two or thunder have been heard, and at about 0h. 45m there was a squall of hail and rain. Cumulo-stratus and scud. Cirro-stratus and scud: the sky E. N. E. of the zenith is clear, but every other portion is cover Overcast: cirro-stratus: rain is falling; it commenced at 5h. 45m. Overcast: cirro-stratus: rain is falling; it has not ceased falling since 6h. Transit | G I | | Cirro-stratus and fleecy clouds: hazy around the horizon. Masses of cumuli piled upon each other about the W. horizon. Cumuli, cumulo-strati, and scud: clear towards the S. E.: since the last observation two or thunder have been heard, and at about 0h. 45m there was a squall of hail and rain. Cumulo-stratus and scud. Cirro-stratus and scud: the sky E. N. E. of the zenith is clear, but every other portion is cover Overcast: cirro-stratus: rain is falling; it commenced at 5h. 45m. Overcast: cirro-stratus: rain is falling; it commenced at 5h. 45m. Transit | G I | | Masses of cumuli piled upon each other about the W. horizon. Cumuli, cumulo-strati, and scud: clear towards the S. E.: since the last observation two or thunder have been heard, and at about 0h. 45m there was a squall of hail and rain. Cumulo-stratus and scud. Cirro-stratus and scud: the sky E. N. E. of the zenith is clear, but every other portion is cover overcast: cirro-stratus: rain is falling; it commenced at 5h. 45m. Overcast: cirro-stratus: rain is falling; it has not ceased falling since 6h. Transit | G I | | Cumuli, cumulo-strati, and scud: clear towards the S. E.: since the last observation two or thunder have been heard, and at about 0h. 45m there was a squall of hail and rain. Cumulo-stratus and scud: Cirro-stratus and scud: the sky E. N. E. of the zenith is clear, but every other portion is cover overcast: cirro-stratus: rain is falling; it commenced at 5h. 45m. Overcast: cirro-stratus: rain is falling; it commenced at 5h. 45m. ,, the rain continues; it has not ceased falling since 6h. ,, at about 9h. 35m the rain ceased. ,, cirro-stratus and scud: a slight rain is falling. | three distant claps of | | thunder have been heard, and at about 0 ^h . 45 ^m there was a squall of hail and rain. Cumulo-stratus and scud. Cirro-stratus and scud: the sky E. N. E. of the zenith is clear, but every other portion is cover Overcast: cirro-stratus: rain is falling; it commenced at 5 ^h . 45 ^m . Overcast: cirro-stratus: rain is falling; it commenced at 5 ^h . 45 ^m . the rain continues; it has not ceased falling since 6 ^h . overcast: cirro-stratus and scud: a slight rain is falling. Transit overcast: cirro-stratus and scud: a slight rain is falling. | · three distant claps of ! | | Cumulo-stratus and scud. Cirro-stratus and scud: the sky E. N. E. of the zenith is clear, but every other portion is cover Overcast: cirro-stratus: rain is falling; it commenced at 5 ^h . 45 ^m . Overcast: cirro-stratus: rain is falling; it commenced at 5 ^h . 45 ^m . the rain continues; it has not ceased falling since 6 ^h . the rain ceased. the sky E. N. E. of the zenith is clear, but every other portion is cover over over over over over over over | | | Cirro-stratus and scud: the sky E. N. E. of the zenith is clear, but every other portion is cover Overcast: cirro-stratus: rain is falling; it commenced at 5 ^h . 45 ^m . Overcast: cirro-stratus: rain is falling; it commenced at 5 ^h . 45 ^m . Transit | G 1 | | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | | | 10 10 Transit 10 10 Transit 10 | | | 10 Transit | T | | Transit | Gi | | | | | | | | | | | | | | | L | | | | | | | | | | | 6 Cirro-stratus, fleecy clouds, and scud: there are small breaks in various directions. | į. | | | L | | | Ì | | | | | | | | 10 Transit Overcast: cirro-stratus and scud. | . G I | | 10 . , , , , , , , , , , , , , , , , , , | | | 1 1 A 1 1 - C - 1 | G I | | 10 Overcast: cirro-stratus and dark scud. | L | | | | | Overcast: cirro-stratus and dark scud: a few drops of rain are falling. or cirro-stratus and scud: very dark and gloomy: rain was falling heavily from 2 ^h . | 20m to 2h 20m during | | which time strong negative electricity was shown: the Dry Thermometer read 42° 5 at 2 | | | 10 Overcast: cirro-stratus and scud: rain is falling. | G H | | 10 . , very thin cirro-stratus and scud: the rain has ceased. | į | | 10 . ,, cirro-stratus and scud: very dark and gloomy. | | | | 0.7 | | 10 | G I | | 10 Transit Greatest dec. S. ,, cirro-stratus. | Į | | ,, ,, | Į | ## GALVANOMETER. May 3^d. 4^h. There was a current of 6° towards A. May 3^d. 10^h. There was a current of 3° towards B. April 30^d. 12^h. The amount collected during the month of April in the rain-gauge No. 4 was 0ⁱⁿ.99, and that collected by the Rev. G. Fisher in a rain-gauge of the same construction at Greenwich Hospital Schools during the same period was 0ⁱⁿ.91. | | | | | Wet | | Dorr | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICA | L IN | STR | UME | NTS. | |---------------------------|------------------|---------------|---------------|---------------|----------|---------------|--|-------------------------------------|--|--|------------|---|---|-------------------------------|----------------------|-----------------------|----------------|--| | Dayand Hour,
Göttingen | Baro-
meter | Dry | Wet | Ther- | | Dew
Point | read at 22h. | Stand of
No. 1.
(Osler s). | From C | | From Whe | 1 | Sign
of | | ading | s of | | Interval | | ~ | | 1 | | mom. | Dew | below
Dry | Free Therm. | Reading of | | 1 | | Descentof | Electricity,
as | Single
Gold Leaf | ان | of
1. | of
2. | the sam | | Astronomical Reckoning. | Cor-
rected. | Ther-
mom. | Ther-
mom. | below
Dry. | Point. | Ther-
mom. | Rad. Therm. in Water of the Thames. | No. 2. Stand of No. 3. (Crosley's). | Direction. | Pressure
in lbs. per
square
foot. | Direction. | the pencil
during the
continu-
ance of
each Wind. | shewn
by Dry
Pile Appa-
ratus. | of Dry
Pile Appa
ratus. | Double
Gold Leaf, | Straws of
Volta 1. | Straws Volta 2 | degree
of tension
after
discharge | | d h | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | | from
lbs. to lbs. | | in. | | 0 | ٥ | div. | div. | m 8 | | May 3. 20
22 | 29·743
29·756 | : 1 | 45·0
44·3 | |
42·0 |
4·5 | •• | •• | NNE
NNE | •• | •• | • • • | Pos.
Pos. | 10
12 | •• | 8 | 10
10 | •• | | May 4. 0 | 29.760 | 46.3 | 44.8 | 1.5 | | | | | ESE | •• | • 1 • • | | Neg. | 30 | | 20 | 30 | •• | | 2 | 29.758 | 1 1 | | ! | | •• | | •• | ESE | 0 to $\frac{1}{2}$ | •• | •• | Neg.
Pos. | 20 | ••• | 12
8 | 10
10 | 1. | | 4 |
29.753 | \$ I | 1 | | 42:0 | 1 1 | $\binom{52\cdot2}{20\cdot5}$ | •• | ESE
E | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | ••• | Pos. | 10
15 | | 12 | 15 | | | 6
8 | 29·743
29·748 | 1 1 | 1 1 | 3·1
2·6 | ••• | ••• | 39.5 | 1.24 | ESE | 0 10 2 | | | Pos. | 20 | | 15 | 20 | | | 10 | 29.744 | 44.3 | | 1.2 | 40.0 | 4.3 | 67.5 | | E by S | | | | Pos. | 10 | | 8 | 10 | | | 12 | 29.722 | 42.0 | | 0.3 | | •• | 32.5 | 0.01 | E by S | | | | Pos. | 12 | | 7 | 10 | •• | | 14 | 29.687 | | 1 | 0.2 | | | | 4.680 | E by S | | •• | | Pos. | 12 | •• | 10 | 12 | | | 16 | 29.676 | 41.0 | 40.8 | 0.2 | 41.0 | 0.0 | 50.5 | 4 000 | E by S | | | •• | •• | •• | 0 | 0 | .0 | • • | | . 18 | 29.653 | 1 | 1 . 1 | | •• | •• | (50·0 J | •• | ESE | •• | •• | •• | D | ••• | 0 | 0 | 15 | ••• | | 20 | 29.645 | 46.2 | 44.7 | 1.5 | 49.0 | 0.0 | •• | •• | ESE
SE | | •• | ••• | Pos.
Pos. | 20
10 | | 12
8 | 10 | ••• | | 22 | 29.633 | 92.0 | 48.0 | 4.0 | 43.0 | 9.0 | •• | •• | SE | '' | ••• | ••• | I Us. | 10 | | | | ••• | | May 5. 0 | 29.619 | 53.4 | 48.6 | 4.8 | | | | | E by N | | | | Pos. | 10 | • • | 8 | 10 | • • • | | 2 | 29.606 | 11 | !! | 6.1 | | | | | S by E | | | | Pos. | 5 | 10 | • • | | • • | | 4 | 29.594 | 56.6 | 50.1 | 6.2 | 45.0 | 11.6 | (60.5) | | S by E | | | •• | Pos. | 15 | | 12 | 15 | ••• | | 6 | 29.593 | - 11 | | 4.6 | •• | •• | 40.1 | 1.24 | S by E | | • • | •• | -:· | | 0 | 0 | 0 | ••• | | 8 | 29.603 | | | 2.1 | ••• | | | | S by E | | •• | •• | Pos. | 30 | | 20
20 | 25
25 | 8.
12. | | 10 | 11 | 11 | | 1.6 | 44.0 | 3.2 | 75.7 | 0.00 | S by E
SW | ••• | •• | •• | Pos. | 20 | | 0 | 0 | 1 | | 12 | 29.616 | 47·5
46·2 | | 1.4 | ••• | •• | $\mid \; angle$ 34·5 | | SW
SW | •• | •• | •• | ••• | • • | o | 0 | o | | | 14
16 | 29.616
29.614 | 40 2 | 44·7
41·3 | 0·0 | 41.0 | 0.3 | 50.7 | 4.680 | SSW | | | :: | | | o | 0 | 0 | | | 18 | 29.624 | 41.1 | 41.0 | 0.1 | | | 50.7 | | $\widetilde{\mathbf{w}}\widetilde{\mathbf{s}}\widetilde{\mathbf{w}}$ | | | | Pos. | 8 | 10 | | | | | 20 | 29.625 | 44.1 | 43.8 | 0.3 | | | | | S by W | | •• | | Pos. | | | | 100 | 5. | | - 11 | 29.619 | 53.5 | | 4.1 | 45.8 | 7.7 | •• | •• | SŠW | •• | •• | •• | Pos. | 40 | ••• | 100 | 120 | 4. | | May 6. 0 | | | 49.8 | - 11 | ••• | | •• | •• | SW | •• 1 | | | Pos. | 20 | | 30 | 40
25 | | | 2 | 29.603 | - 11 | . 1 | 7.0 | 47.0 | 1784.0 | 600.00 | •• | SSW | 0 to 1 | •• | ••• | Pos. Pos. | 20
12 | • • | 20
8 | 10 | 10. | | 4 | i l | 58.0 | | 7.3 | 41.0 | l | $\left[egin{pmatrix} 62\cdot0 \ 43\cdot7 \end{matrix} ight]$ | ••• | SSW
SSW | $\begin{array}{c cccc} 0 & to & \frac{1}{2} \\ 0 & to & \frac{1}{6} \end{array}$ | •• | •• | | 1 | | 0 | 1 - | • | | 6
8 | - 11 | 55·0
51·8 | | 6·4
5·1 | ••• | •• | 40 / | 1.24 | S by W | 0 10 2 | • • | | •• | | o | 0 | 0 | • • | | 10 | - 11 | 48.0 | | 2.9 | 42.0 | 6.0 | 80.0 | | S | | | | Pos. | 10 | 20 | 10 | | 10. | | | 29.591 | | | 2.5 | | | 32.0 | 0.00 | S by E | | | | Pos. | 10 | | 8 | 10 | 10. | | 14 | 29.572 | 46.2 | 44.1 | 2.1 | | | | 4.680 | S by E | | •• | | Pos. | 5 | • • | 5 | 5 | 4. | | | 29.570 | | | 1.2 | •• | •• | 51.5 | 4 000 | S by E | | •• | • • 3 | •• | •• | 0 | 0 | ł | •• | | | 29.573 | | | 1.2 | •• | •• | [51·2] | •• | S by E | ••• | •• | •• | TO:- | ••• | 0 | 0 | | 10 | | | 29.578 | | | 5.1 | 44.0 | 15.0 | •• | •• | SSE | •• | •• | •• | Pos. | 30
12 | ••• | 20
10 | 25
20 | 12. | | 22 | 29.560 | 99.0 | 93.1 | 5.9 | 44.0 | 19.0 | •• | •• | SE | •• | •• | ••• | ros. | 12 | ••• | 10 | 20 | ••• | | | 29.536 | | | 9.6 | | | | | SSE | 1 to 4 | • • | | Pos. | 2 | 2 | •• | • • | ••• | | | 29.523 | | | 9.6 | •• | ••• | • • | •• | SSE | $\frac{1}{2}$ to 3 | •• | •• | Pos. | 8 | 8 | | | • • | | 4 | 29.519 | 56.8 | 51.7 | 5.1 | 47.0 | 9.8 | 65.0 | •• | S by E | 0 to $\frac{1}{2}$ | •• | •• | Pos. | 8 | ••• | 5 | 7 | 19 | | | 29.493 | | | 3.8 | •• | •• | 49.8 | 1.29 | S by E | 0 to ½ | •• | •• | Pos. Pos. | 10
10 | • • | 8 8 | 10 | 12. | | | 29·486
29·482 | | | 3·3
2·4 | 18:0 | 5.0 | 80.0 | | S by E
S by E | 0 to ½ 0 to ½ | •• | | Pos. | 15 | | 10 | 12 | 6. | | | 29.464 | | | 0.8 | 48.0 | - 1 | \$80·0
46·0 | 0.06 | S by E | 0 to $\frac{1}{5}$ | | | Pos. | 12 | | 10 | | 11. | | | 29 404 | | | 1.1 | | | 100 | | S by E | 0 to $\frac{3}{5}$ | | | Pos. | 25 | | 20 | | 5. | | | 29.367 | | | 0.4 | 49.0 | 1.3 | 52.0 | 4.765 | S by E | 0 to $\frac{1}{2}$ | | | Pos. | 10 | | 7 | | •• | | | 29.301 | | | 0.6 | | | 52.0 | | EŇE | 0 to $\frac{1}{2}$ | | | | •• | 0 | 0 | 1 | •• | | 20 | 29.255 | 51.3 | 50.9 | 0.4 | | | ••• | | ENE | ~ | •• | •• | | | 0 | 0 | 0 | • • | | | | ! | 1 | 1.6 | | 3.2 | | . 1 | \mathbf{s} | | | | Pos. | 6 | 10 | | • • | 11 | DRY THERMOMETER. May 6^d . The increase in the reading between 18^h and 20^h was 10^o 5. DEW POINT THERMOMETER. May 6^d. 16^h. The observation was inadvertently omitted. ELECTRICITY. May 5^d. 20^h and 22^h. There were sparks at the distance of 0ⁱⁿ 02. | 0-10. | Phases of the Moon. | REMARKS. | | |--------|---------------------|--|---| | 7 | •• | Cirro-stratus and fleecy clouds. | | | 0 | ••• | Overcast: cirro-stratus and scud. | T | | 0 | •• | [instruments have been considerably affected. Overcast: cirro-stratus and scud: frequent showers of rain have fallen since the last observation, and the electrical | | | 9 | •• | Cirro-stratus and masses of scud: the only portion of clear sky is N. N. E. of the zenith. | 7 | | 0 | •• | Cirro-strati, cumulo-strati, and large masses of scud cover the sky: a few small breaks, but to no numerical extent. | | | 7 | •• | Cirro-stratus and large masses of scud. A bank of cirro-stratus along the N. and S. horizon; clear elsewhere. | | | ō | •• | Overcast: cirro-stratus and scud: at 9 ^h the sky was almost cloudless, and before 9 ^h . 10 ^m it was overcast. | | | 5 | •• | Cirro-stratus all around the horizon: detached masses of scud are scattered in every direction: the amount of cloud is | 1 | | 8
5 | Transit | Cirro-stratus, fleecy clouds, and scud. [variable. Thin cirro-stratus near the horizon: hazy. | | | 0 | | Overcast: cirro-stratus: a thick fog prevails. | | | 0 | • • | Cloudless. | 1 | | 2 | • • * | Small patches of cumuli in various directions. | 1 | | 0 | | Broken masses of cumuli and scud: a few drops of rain are falling. | ١ | | 0 | • • | Cirro-stratus, with masses of scud in every direction. | | | 9 8 | • • | Cirro-stratus, cumulo-stratus, scud, and fleecy clouds. | | | 71/2 | •• | the sky is clear in the S. S.W. only. | | | 0 | •• | Cirro-stratus and scud: a few stars are occasionally visible through the clouds. | 1 | | 8 | •• | Overcast: very dark: a slight damp is falling.
Cirro-stratus and scud: a large space clear towards the S.W. horizon. | | | 0 | •• | Cloudless: very foggy. | ľ | | 0 | Transit | Very foggy. | - | | 8 | •• | Very thin cirro-stratus of different densities, principally about the horizon.
Cirro-stratus, cumulo-stratus, and masses of scud: the Sun is frequently obscured by clouds. | 1 | | 8 | | Cumuli in large masses in the S. and S.W.: cirro-stratus and scud are scattered in every other direction. | | | 3 | •• | Cumuli in large masses, and scud are scattered over the sky: at 0 ^h . 55 ^m a shower of rain fell. | | | 3 | • • | Cumuli in various directions. | 1 | | 3 | •• | Cirro-stratus and reticulated cirri. | 1 | | ś | •• | A thin cirro-stratus nearly covers the sky: many stars are visible: several flashes of lightning have been seen in the | 1 | | 7 | •• | Clear in and around the zenith. | | | 3 | •• | Cloudy around the horizon for some extent; clear elsewhere. The western half of the sky is covered with a thin cirro-stratus: cloudy around the horizon. | | | 3 | Transit | Cirro-stratus and fleecy clouds scattered about. | | | 3 | • • | Cirro-strati, cirri, and fleecy clouds: at 20 ^h . 25 ^m some very fine mottled cirri and cirro-cumuli about the zenith. | | | 3 | •• | Thin cirro-stratus and scud: breaks in the S.W. and E. | | | | | Overcast, with thin cirro-stratus of different densities and scud. | 1 | |) | • • | Overcast, with thin cirro-stratus and scud. | 1 | | | •• | overcast: cirro-stratus and scud. | | | 5 | • • • | yercast. onro-suatus and soud. | | | | • • | ,, ,, | | | | 3rd Qr. | ,, cirro-stratus: rain is now falling. | | | | • • | | | |) | | و و و و و و | | |) | Transit | ,, , , the rain has ceased. Cirro-stratus and scud: a large space clear towards the N. | 1 | | | _ | | | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELEC | CTRICAL | IN | STRU | UME | NTS. | |--|------------------|--------------|--------------|-------------|----------|--------------|---|------------------------|----------------------------|--|------------|----------------------------------|----------------------|----------------------|----------------------|---|-------------------|---| | Day and Hour, | 1 | _ | 137 A | Ther- | | Point | 11 01 | Stand of
No. 1. | From C | | From Whe | | Sign
of | Re | ading | s of | | Interva | | Göttingen | meter | Dry | 11 . | mom. | Dew | below | Free Therm. | (Osler's). Reading of | Anemo | meter. | Anemom | Descent of | Electricity,
as | Single | ٠ | | _ | recover | | Astronomical | Cor- | Ther- | lf i | below | Point. | Dry
Ther- | Rad. Therm. | No. 2.
Stand of | | Pressure
in lbs. per | | the pencil | shewn
by Dry | Gold Leaf
of Dry | ble | rs of | vs of | degre
of tens | | Reckoning. | rected. | mom. | mom. | Dry. | | mom. | Water of the
Thames. | No. 3.
(Crosley's). | Direction. | square
foot. | Direction. | continu-
ance of
eachWind. | Pile
Appa-
ratus. | Pile Appa-
ratus. | Double
Gold Leaf. | Straws
Volta 1 | Straws
Volta 2 | after
dischar | | d b | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | ~ | from
lbs. to lbs. | | in. | | 0 | 0 | div. | div. | m | | May 8. 0 | 29·233
29·218 | | 54.5 | 1·5
·2·4 | • • | • • | •• | •• | S by W | 0 to $\frac{1}{2}$ | •• | | Pos. | 10 | 0
12 | 0 | 0 | 1 | | 2
4 | 29.218 | | | 3.3 | 49.0 | 5.7 | •• | ••• | WSW | 0 to $1\frac{1}{2}$ | | | Pos. | 30 | | 30 | 40 | 4. | | 6 | 29.319 | 1 . | | 1.6 | 100 | | (59.2) | ••• | $\widetilde{\mathbf{ssw}}$ | $1\frac{1}{2}$ to $4\frac{1}{2}$ | | | Neg. | 40 | | 40 | 50 | | | 8 | 29.381 | | 48.2 | 3.3 | | | 47.7 | 1.30 | ssw | 1 to $3\frac{1}{2}$ | | | Neg. | •• | 5 | | | ٠. | | 10 | 29.428 | 50.6 | 47.9 | 2.7 | 45.0 | 5.6 | | 1.90 | SSW | $1\frac{1}{2}$ to $3\frac{1}{2}$ | •• | | •• | •• | 0 | 0 | 0 | • • | | 12 | 29.472 | 51.0 | 48.8 | 2.2 | | | | 0.02 | ssw | 1 to 1½ | | | | | 0 | 0 | 0 | | | 14 | •• | | | | | | | 4.860 | ssw | 1 to 3 | | | | | | | | | | 16 | | | | •• | •• | | 52.5 | - 3000 | SSW | $\frac{1}{2}$ to 1 | •• | | ••• | • • | •• | •• | | ٠. | | 18 | ••• | | •• | •• | ••• | ••• | [52·5] | | SSW | 0 to $\frac{1}{2}$ | •• | •• | •• | •• | •• | • • | | ••• | | $egin{array}{c} 20 \\ 22 \\ \end{array}$ | •• | •• | ••• | ••• | •• | •• | •• | •• | ${f ssw} \ {f ssw}$ | 0 to $\frac{1}{2}$ 0 to $1\frac{1}{2}$ | •• | •• | •• | •• | • • | | | • • | | h m | 00.025 | | | | ••• | ••• | •• | •• | | -1 | • • | '' | D | 10 | •• | 70 | 10 | • | | 22. 10 | 29.652 | 55.2 | $52\cdot3$ | 3.2 | | •• | •• | •• | SSW | 0 to 2 | •• | | Pos. | 10 | •• | 10 | 12 | •• | | May 9. 0 | | | | | | | •• | | ssw | ½ to 1 | | | | | •• | | | | | 2
h m | •• | • • | •• | | ••• | | •• | | SSW | 1 to $2\frac{1}{2}$ | •• | •• | ••• | •• | •• | • • | • • | | | 3. 40 | 29.672 | 62.6 | 56 ·0 | 6.6 | | | (65.7) | •• | ssw | 1 to 3 | •• | | Pos. | 10 | • • | 7 | 10 | ١., | | 4 | | | | | | | 43.0 | 1.33 | ssw | 1 to 2 | •• | | •• | | | | | ١., | | 6 | •• | • • • | •• | •• | •• | •• | <u> </u> | 1 00 | SSW | •• | •• | •• | •• | •• | • • | ••• | ••• | •• | | 8
10 | •• | •• | ••• | •• | • • | •• | $egin{bmatrix} 80.0 & 0.39.2 & 0.5 \end{bmatrix}$ | 0.08 | S by W
S by W | •• | •• | •• | • • | •• | • • | | | •• | | 12 | • • | | | | | | | 4.000 | SSW | | • • | | | | | | | | | 14 | 29.692 | 50.5 | 49.9 | 0.6 | | | 53.5 | 4.980 | \mathbf{s} | | | | | | 0 | 0 | 0 | | | 16 | 29.676 | 48.4 | 47.9 | 0.2 | 47.0 | 1.4 | 52.5 | •• | S by E | | •• | •• | n. | | 0 | 0 | 0 | • • | | 18
20 | 29.682
29.692 | 48·4
53·5 | 48·4
51·1 | 0·0
2·4 | •• | •• | •• | •• | S by E
S by E | •• | •• | •• | Pos. | 10
40 | 12 | 80 | 100 | 15. | | $\begin{bmatrix} 20 \\ 22 \end{bmatrix}$ | 29.689 | 1 | 54.6 | 5.9 | 48.0 | 12·5 | | •• | WSW | •• | •• | | Pos. | 15 | • • | 10 | | 20, | | May 10. 0 | 29.692 | 65.7 | 55.3 | 10.4 | | | | | \mathbf{w} | •• | | | Pos. | 10 | | 8 | 10 | ٠. | | 2 | 29.694 | 68.0 | 60.0 | 1 | | | •• | | ssw | | | | Pos. | 10 | • • | 20 | 30 | | | - 11 | 29.675 | 66.2 | 56.1 | | 48.0 | 18.2 | 70.0 | | SSW | •• | •• | •• | | | 0 | 0 | 0 | • • | | 6 | 29.649
29.643 | 62.6 | 56.1 | 6.5 | •• | •• | 50.6 | 1.36 | SSW
SSW | •• | •• | •• | Pos. Pos. | 2
30 | 2 | $\begin{vmatrix} 0 \\ 20 \end{vmatrix}$ | 0
40 | •• | | - 11 | 29.639 | | 54·5
53·9 | | 52·5 | 4.0 | 97.3 | | SSW | • • | •• | | Neg. | 40 | • • | 60 | 80 | | | | 29.594 | | | 2.6 | | | 46.8 | 0.02 | S | | • • | | 110g. | •• | 0 | 0 | o | | | 14 | 29.560 | 53.5 | 51.8 | 1.7 | | | | 5.050 | S | • • | • • | | | | 0 | 0 | 0 | | | | 29.524 | | | | 50.0 | 2.7 | 55.0 | 5.050 | S by E | •• | •• | | Neg. | 30 | •• | 20 | 25 | 1 | | | 29.479 | | | | • • | | 54.2 | •• | NNE | •• | • • | •• | Pos. | 2 | 2 | 0 | 0 | | | | 29·458
29·461 | | | | 51·0 | 1.0 | •• | •• | NNE
NNE | •• | •• | | Pos. Pos. | 10
20 | • • | 8
20 | 10
30 | 7.
11. | | | | | | | | 10 | •• | •• | | , | • | •• | | † | • | | | | | | 29.484 | | | | •• | | (65.2) | •• | NW | •• | •• | | Pos. Pos. | 20
30 | • • | 20
20 | 30 | 7.
12. | | | 29·501
29·501 | | | | 50.0 | 11.5 | 44.1 | 1·36 | SW
SW | | • • | | Pos. | 40 | • • | 40 | | 12.
15. | | | 29.499 | | | 5.0 | | | | | ssw | | •• | | Pos. | 30 | | 25 | 30 | | | 8 | 29.524 | 57.4 | 54.1 | 3.3 | | | 36.0 | 0.00 | ssw | | | | Pos. | 20 | | 15 | 20 | 7. | | 10 | 29.539 | 52·6 | 50.6 | 2.0 | 48.0 | | 36.0 | | S | | | | Pos. | 20 | | 15 | | 12. | | 12 | 29.556 | 50.0 | 48.8 | | •• | •• | 56.0 | 5.050 | S | •• | •• | | Pos. | 10 | 20 | 7 | 10 | 13. | | | 29·561
29·564 | | | 1·3
0·5 |
46·0 | 0·4 | 54.2 | •• | S by E | •• | •• | | | •• | 0 | | 0 | 1 | | 10 | -004 | TU 4 | 70 8 | 00 | *0.0 | U 4 | | •• | L D D y .E | ••• | • • | 1 | •• | • • | ľ | ľ | ١ | • • | Osler's Anemometer. May 8^d. 5^h. 15^m. A pressure of 8 lbs. was recorded. ELECTRICITY. May 8^d. 4^h, 6^h, and May 9^d. 20^h. There were sparks at the distances of 0ⁱⁿ.02, 0ⁱⁿ.03, and 0ⁱⁿ.03, respectively. Henley's Electrometer. May 8^d. 20^h. The reading was 1°. | 0-10. | Phases of the Moon. | REMARKS. | | |----------|---------------------|--|----| | 10 | | Overcast: cirro-stratus and broken scud. | G | | 9 | | Cirro-stratus and broken scud: a break S. E. of the zenith: rain has fallen since the last observation. | G | | 10 | • • | Overcast: cirro-stratus, | T | | 10
10 | •• | ,, at 4^h . 50^m rain commenced falling, and the wind blew in gusts.
Cirro-stratus and scud: since 6^h there has been but little rain, and the wind has become somewhat lulled. | 1 | | 8 | •• | Clear for a small space in the zenith; every other part of the sky is covered with a thin cirro-stratus cloud, through | 1 | | | | which several of the larger stars are visible: the wind is blowing in gusts to $1\frac{1}{2}$. | | | 0 | •• | Overcast; very dark. | | | • | • • | | | | : | •• | | | | | Transit | | 1 | | . | •• | | | | 0 | •• | Cirro-stratus and masses of scud are scattered over the sky. | 1 | | | • • | The second of | | | . | •• | | Ì | | . | | | | | 4 | | Cirro-stratus and masses of scud are scattered over the sky, principally in the S. S.W. | | | • | •• | onto-stratus and masses of sold are seattered over the sky, principally in the S. S. W. | | | | • • | | 1 | | | •• | | | | | | | 1 | | . | | | | | 0 | | Overcast: heavy rain is falling. | 1 | | 6 | • • • | thin cirro-stratus and scud: the rain ceased at about 15 ^h . Cirri and light fleecy clouds are scattered about the sky: there is a large mass of scud towards the E. | | | 0 | Transit | Cloudless, but very hazy. | | | 5 | | Cirro-stratus, cumulo-stratus, and haze. | | | . | | Consider the second of the self-second second secon | | | 6 | | Cirro-stratus, cumulo-stratus, and haze. [N. and N. E. Massive cumuli are scattered over the sky; those in the S. and S. S.W. are very fine specimens: cirro-stratus in the | | | ~ I | In Equator | Thin cirro-strati, cumuli, and scud. | 1 | |) | ·• | Overcast, with very thin cirro-stratus. | | |) | | Overcast: cirro-stratus. | | | | ••• | ,, rain is now falling. ,, a few drops of rain are falling occasionally. | 1 | | | | • | | |) | | ,, cirro-stratus and scud: rain is falling. | | | | •• | ,, cirro-stratus. | | | | Troposit | oing attenting and good from 20th 50m to 20th a great alcom provided accompanied with a thin mistry rain | 1. | | ' | Transit | ,, cirro-stratus and scud: from 20 ^h . 50 ^m to 22 ^h a great gloom prevailed, accompanied with a thin misty rain. | 17 | | , [| | Overcast: cirro-stratus. | | | | | Cirro-stratus slightly broken in the zenith: there are small portions of blue sky visible. | 1 | | 3 | | Cirro-stratus, fleecy clouds, and detached cumuli. | 1 | | 3 | • • | Cumuli, fleecy clouds, and scud. Cirro-stratus, fleecy clouds, and scud. | | | 5 | : | Cirro-stratus, fleecy clouds, and scud cover the sky. | | |
 Perigee | A large bank of cirro-stratus in the N. to a considerable elevation: the appearance of the sky is variable. | 1 | | 3 | | Cirro-stratus and vapour around the horizon. | | |) | } | Cloudless. | 1 | | | | | | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELEC | CTRICAL | INS | STRU | JME | NTS. | |---|------------------|---------------|--------------|-----------------------|---------------|-------------------------------|---|---|--------------------------------|---|------------|--|---|---|----------------------|-----------------------|-----------------------|---| | Day and Hour,
Göttingen | Baro-
meter | Dry | Wet | Ther- | | Point | read at 22h.
of
Free Therm. | Stand of
No. 1.
(Osler's). | From (| | From Whe | | Sign
of | Rea | ding | s of | | Interval
of time in | | Astronomical Reckoning. | Cor-
rected. | Ther-
mom. | Ther- | mom.
below
Dry. | Dew
Point. | below
Dry
Ther-
mom. | of Rad. Therm. of Therm. in Water of the Thames. | Reading of No. 2. Stand of No. 3. (Crosley's). | Direction. | Pressure
in lbs. per
square
foot. | Direction. | Descent of
the pencil
during the
continu-
ance of
eachWind, | Electricity,
as
shewn
by Dry
Pile Appa-
ratus. | Single
Gold Leaf
of Dry
Pile Appa-
ratus. | Double
Gold Leaf. | Straws of
Volta 1. | Straws of
Volta 2. | recoverin
the same
degree
of tension
after
discharge | | d b | in. | 0 | 0 | 0 | 0 | ٥ | 0 | iu. | | from
lbs. to lbs. | | in. | _ | 0 | 0 | div. | div. | m s | | May 11. 18 | 29·574
29·582 | | 52.9 | 1·3
3·6 | 40.5 | 10:5 | •• | •• | S by E
S by E
S by E | •• | •• | | Pos. | 3

15 | 10
0 | 7
0
20 | 0
40 | •• | | 22
May 12. 0 | 29·609
29·603 | | 54·7
56·2 | 5·3
4·4 | 49.9 | 10.5 | •• | | SbyE | •• | •• | | Pos. | 12 | | 20 | 30 | | | 2 | 29.590 | 60.5 | 56.1 | 4.4 | •• | | | | ssw | | | | Pos. | 10 | • • | 10 | 20 | •• | | 4 | 29.567 | 1 ! | 1 | 6·3
5·4 | 51.0 | 11.0 | $\left \left\{ egin{matrix} 63.0 \\ 44.7 \end{array} ight] \right $ | ••• | SSW | | •• | ••• | Pos. | 10
30 | •• | 10
30 | 12
40 | 6. | | 6
8 | 29·557
29·586 | 1 | 1 1 | 3.6 | | | 447 | 1.36 | SSW | | •• | | Pos. | 30 | • • | 50 | 60 | 4. (| | 10 | 29.615 | | 50.6 | | 50.0 | , , | 77.0 | 0.00 | SSW | | | | Pos. | 30 | | 40 | 50 | 6. 0 | | 12 | 29.661 | 48.5 | 47.6 | 0.9 | ••• | | 37.2 | 0.00 | SSW | | | | Pos. | 8 | •• | 8 | 10 | • • • | | 14 | 29.670 | 1 1 | , -, | 0.6 | ••• | | | 5.072 | SW | | •• | •• | Pos. | 8
6 | 10
8 | ••• | •• | ••• | | 16
18 | 29.688
29.700 | | | 0·3 | 44.5 | | 56.5 | | S by W | | •• | ••• | Pos. | 4 | 6 | | •• | | | 20 | 29.720 | | | 2.5 | | | (000) | •• | S by W | | :: | | Pos. | 6 | • • | 8 | 10 | | | 22 | 29.720 | | | 4.9 | 50.0 | 10.0 | | •• | S by W | 0 to $\frac{1}{2}$ | •• | | Pos. | 15 | • • | 10 | 12 | 7. (| | May 13. 0 | 29.717 | 1 | 1 | 6.3 | | | •• | | SW | ½ to 1 | •• | | Pos. | 10 | •• | 8 | 10 | 10. | | 2 | 29.705 | 1 - 1 | | 7.5 | 470 | 17.0 | (67.0) | ••• | SW
SW | $\frac{1}{2}$ to 2 | •• | | Pos.
Pos. | 10
5 | • • | 8
.5 | 10
10 | | | 4
6 | 29·701
29·698 | | - | 7·5
6·6 | 47.0 | 1 | $\begin{bmatrix} 67.2 \\ 47.7 \end{bmatrix}$ | | SSW | $\begin{array}{c c} 0 & \text{to } 2 \\ \frac{1}{2} & \text{to } 1 \end{array}$ | •• | •• | Pos. | 10 | 20 | | | | | 8 | 29.693 | ì | ı – ı | 2.6 | | | | 1.39 | SSW | 2 | | :: | Pos. | 10 | 20 | • • | | | | 10 | 29.710 | | | | 50.0 | | 84.0 | 0.04 | SSW | | | | Pos. | 10 | ٠. | 10 | 20 | | | 12 | 29.705 | | 49.3 | 1.4 | | | 41.3 | 0 04 | S by W | | •• | | Pos. | 20 | • • | 10 | :: | 10. | | 14 | 29.701 | 1 | 48.6 | 0.6 | | ••• | | 5.125 | SSW | •• | • • | 1 | Pos. | 15
10 | • • | 10 | 15
10 | 8.
14. | | 16 | 29·714
29·723 | 51·2
51·7 | 49.7 | 1.5 | 48.0 | 3.2 | 57·0
56·0 | | SSW
SSW | ••• | • • | | Pos.
Pos. | 5 | • • | | 10 | 14. | | $\begin{array}{c} 18 \\ 20 \end{array}$ | 29 728 | | 50·7
54·1 | 1·0
4·1 | •• | ••• | (300) | | SW | | | | Pos. | 20 | | 15 | 20 | 10. | | 22 | 29.746 |) '3 | - 1 | | 49.0 | 10.6 | •• | •• | šw | 0 to $\frac{1}{2}$ | | | Pos. | 20 | • • | 20 | 30 | • | | May 14. 0 | 29.740 | 1 | | 6.8 | | | •• | •• | sw | 0 to ½ | •• | | Pos. | 12 | ••• | 12 | 15 | •• | | 2 | 29.738 | 1 - | - 1 | 6.2 | 40.0 | 10.0 | (05.5) | •• | SW
SW | 0 to 2 | •• | •• | Pos. | 30
10 | 20 | 14
8 | 10 | •• | | 4
6 | 29·729
29·723 | 2 | | 6·8
5·7 | 49.0 | 1 | $egin{bmatrix} 65.5 \\ 49.2 \end{bmatrix}$ | | SW | $\begin{array}{c c} \frac{1}{2} & \text{to } 2 \\ \frac{1}{2} & \text{to } 1 \end{array}$ | • • | | Pos. | 7 | • • | | 5 | 5. | | 8 | 29.739 | 1 1 | 1 1 | 3.7 | | • | | 1.39 | $\tilde{\mathbf{s}}\mathbf{w}$ | 2 | | :: | Pos. | 10 | • • | 8 | 1.0 | 7. | | 10 | 29.762 | 51.2 | 49.2 | | 1 1 | | 83.5 | 0.00 | SSW | | | | Pos. | 10 | • • | 8 | 10 | 10. | | 12 | 29.765 | | | 1.6 | | • • | 11.5 | 0 00 | SSW | | •• | | Pos. | 20 | • • | 10 | 12 | 11. | | 14 | 29.777 | | | 2.0 | 477.0 | 0.5 | 57.0 | 5.135 | SW
SW | •• | •• | | Pos. | 20 | 0 | 12 | 10 | 10. | | 16
18 | 29·789
29·815 | | | 2·1
1·4 | 47.0 | i 1 | $\begin{bmatrix} 57.2 \\ 56.2 \end{bmatrix}$ | | SSW | •• | | | | | 0 | o | ŏ | | | | 29.817 | | | | | • • | () | • • | SW . | | | | Pos. | 12 | | 7 | 10 | | | | 29.835 | | | | | | •• | •• | wsw | . • | | | Pos. | 20 | • • | 40 | 5 0 | •• | | May 15. 0 | 29.830 | 62.8 | 55.2 | 7.6 | | | | •• | WSW | 0 to $\frac{1}{2}$ | | | Pos. | 5 | 7 | 10 |
20 | | | $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$ | 29·828
29·804 | 60.5 | 57.0 | 6.2 | 51.0 | 10.5 | $\begin{bmatrix} 66.2 \\ 51.7 \end{bmatrix}$ | •• | WSW
SSW | •• | •• | ••• | Pos. Pos. | 10
20 | • • | 20 | 30 | 12. | | 6 | 29.793 | 60·5 | 54.0 | 5.6 | 51.0 | 12.9 | | 1.61 | SSW. | | | :: | Pos. | 30 | • • | 30 | 40 | 17. | | 8 | 29.780 | | | 4.0 | | | 85.5 | 0.04 | S by W | | | | Pos. | 30 | | 40 | 50 | 8. | | 10 | 29.768 | 54.7 | | 2.3 | 50 0 | 1 | 46.5 | 0.54 | S by W | | •• | | Neg. | 30 | • • | 30 | 40 | 4. (| | 12 | 29.743 | | 51.9 | 1.1 | | •• | | 5.405 | S by W | | •• | | Pos. | 10 | • • | 20 | 30 | •• | | 14 | •• | • • | •• | •• | ••• | •• | 58.0 | - 250 | S by E | ••• | • • | •• | . •• | •• | •• | • • | ••• | | | 16 | •• | •• | | •• | •• | •• | (56·5) | •• | SSE
SSE | •• | •• | ••• | | ••• | | | • • | | | 18 | •• | ••• | ••• | ••• | •• | •• | •• | •• | 10015 | •• | •• | ••• | •• | | ٠. | • | | | ELECTRICITY. May 12^d. 6^h, 8^h, and 10^h. There were sparks at the distances of 0ⁱⁿ·02, 0ⁱⁿ·03, and 0ⁱⁿ·02 respectively. May 15^d, 6^h, 8^h, and 10^h. There were sparks at the distance of 0ⁱⁿ·02 at each time. | Amount of Clouds, | Phases
of
the | REMARKS. | yer. | |-------------------|---------------------|---|------------| | Amoun | Moon. | | Observer. | | 0 | | Cloudless. | т | | 6 | Transit | Thin cirro-strati and light clouds in several directions.
Cirri, cirro-strati, cumuli, and scud. | G I | | 10
10 | • : | Overcast: cirro-stratus and scud: rain has fallen since the last observation. Overcast, with cirro-stratus of different densities, and scud. | G I | | 10
7 | •• | Thin cirro-stratus and scud cover the sky: the Sun is visible through the clouds. Cirro-stratus of various densities, cumulo-stratus, and scud: the sky is clear in the W. N.W. | Ti | | 3 7 | ••• | Detached portions of cumuli are scattered in the W. and N.W. horizon, and some light cirri in the S. | | | 0 0 | •• | Cirro-stratus and detached portions of scud.
Cloudless. | T I | | 1
6 | •• | A bank of heavy cloud towards the N. and E. parts of the horizon; otherwise clear. Thin cirri and light scud about the zenith: a heavy bank of scud about the horizon generally. | | | 10
8 | •• | Overcast with cirro-stratus of different densities and scud. Cumulo-strati, cirro-strati, and scud. | G F | | 7 |
Transit | Cumulo-strati, cirro-strati, and scud. | " | | 4 | | Detached cumuli, thin cirro-stratus, and loose masses of scud: the arc of a solar halo is visible. Cirri and thin cirro-stratus, with detached masses of cumuli about the horizon. | L | | 10 | •• | Cirri and cirro-strati of different densities, and scud. | G F | | 10
9 | •• | Light clouds of the cirrus and cirro-stratus character, with patches of scud principally about the horizon. Overcast: cirro-stratus and scud: rain commenced falling at about 9 ^h . 15 ^m . Since 10 ^h the above has been partially closer it is now peoply asymptotic size at rates and scud: a few stars are visible. | G H | | 1 6 | •• | Since 10 ^h the sky has been partially clear; it is now nearly covered with cirro-stratus and scud: a few stars are visible Cirro-stratus along the eastern horizon: there are a few light clouds scattered about the sky. [here and there. Cirro-stratus and fleecy clouds in various directions.] | G | | 10
10 | •• | Overcast: cirro-stratus and fleecy clouds. overcast: cirro-stratus and fleecy clouds. overcast: cirro-stratus and fleecy clouds. overcast: cirro-stratus and fleecy clouds. overcast: cirro-stratus and fleecy clouds. | G | | 7 | •• |
Cirro-stratus and light fleecy clouds. | TE | | 4
9 | Transit | Cirro-stratus and cumulo-stratus low down in the S. horizon: light cirri and particles of scud E. and S.E. of the zenith. The sky is very nearly covered with clouds of no particular modification, except near the horizon where cumuli are | T I | | 6 7 | New | Cumuli, fleecy clouds, and scud. [numerous. Cumuli, fleecy clouds, and large masses of white scud. | L | | 1 0 | | A bank of cirro-stratus along the N. horizon, and a few light clouds scattered about the sky. Cloudless. | L | | 0
4 | | Cirro-stratus all around the S. horizon, and some detached portions W. of the zenith. | ТІ | | 10
3 | | Overcast: cirro-stratus. Cirri, light particles of scud, and fleecy clouds. | | | 8 9 | •• | Cirro-stratus and scud: blue sky is visible in the W. and N.W. Cumulo-stratus and scud: there are breaks towards the E. | T D
G H | | 6 | | Cumuli, cumulo-strati, and large masses of scud | L | | 10
7 | Transit | Overcast: cumulo-strati and large masses of scud. Cirro-stratus, cumulo-stratus, and scud. [its radius is 22°. | G H | | 8 | • | Thin cirro-stratus, and loose fragments of scud: the upper arc of a solar halo is visible; it is slightly tinged with red, Thin cirro-stratus, light scud, and fleecy clouds: in the W. and S.W. a heavy bank of dense cirro-stratus is exhibited. | TI | | 10
10 | •• | Overcast: cirro-stratus: a steady rain is falling; it commenced at about 9 ^h . 35 ^m . ,, rain is falling. | T D
G H | | :: | •• | | | | | | | | Parhelion. May 13^d. 7^h. 15^m. Mr. Main observed a well-defined parhelion at the estimated distance of 25° to the left of the Sun; the inside edge was red, and the outside edge was straw-coloured. | | | | | Wet | | Dew | Max. and Min. | GAUGES. | | WIN | D | | ELE | CTRICAL | IN | STR | UME | NTS. | |--|------------------|-------|--------------|--------------|--------|-------|---|------------------------------------|------------------------------------|--|------------|--|-----------------|-------------------------------|----------|-----------------------|----------------|--------------------| | Day and Hour, | Baro- | | | Ther- | | Point | read at 22h. | Stand of
No. 1. | From (| | From Whe | | Bign
of | Rea | ading | s of | | Interva
of time | | Göttingen | meter | Dry | Wet | mom. | Dew | below | Free Therm. | (Osler's). Reading of | Anemo | meter. | Anemom | , 1 | Electricity, | Single | | | . 1 | recoveri | | Astronomical | cor- | Ther- | Ther- | below | Point. | Dry | Rad. Therm. | No. 2. | | Pressure
in lbs. per | | Descent of
the pencil
during the | shewn
by Dry | Single
Gold Leaf
of Dry | Leaf | vs of | vs of
ta 2. | degree
of tensi | | Reckoning. | rected. | rom. | mom. | Dry. | | mom. | of Therm. in
Water of the
Thames. | Stand of
No. 3.
(Crosley s). | Direction. | square
foot. | Direction. | continu-
ance of
each Wind. | Pile Appa- | Pile Apparatus. | Gold | Straws of
Volta 1. | Straws | after
discharg | | d h | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | 707 | from
lbs. to lbs. | | in. | | 0 | ٥ | di▼. | div. | m | | May 15. 20
22 | 29·452 | 55·9 | 55·3 | 0.6 | ••• | •• | •• | | ESE
SE | •• | • | | •• | | 0 | o | 0 | ••• | | May 16. 0 | •• | • • | | | | | •• | •• | SSW
SW | 1 to 2 | | | •• | | | | | •• | | 2
h m | • • | ••• | •• | | ••• | •• | •• | •• | | | • • • | | Don | | | | | | | 2. 30 | 29.445 | 1 | 59·1 | 6.9 | •• | •• | 67.6 | 1.61 | SW | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | Pos. | 10 | 15 | | | | | 16.4
6 | | • • • | | | | •• | 50.4 | 1.01 | SW | 1 to 2 | | | | • • | •• | | | | | 8 | | | | | | | 80.5 | 0.00 | $\tilde{\mathbf{s}}\mathbf{w}$ | $\frac{2}{2}$ to 1 | | | | | | | | | | 10 | •• | | | | | | 43.5 | 0.00 | WSW | 0 to $\frac{1}{2}$ | | | | •• | • • | ••• | | •• | | 12 | | | | | •• | •• | 50.0 | 5.415 | SW | 1 40 9 | •• | •• | Pos. | 7 | • • | 8 | 10 | | | 14
16 | 29.662
29.682 | 11 | 51·3
50·8 | | 49.0 | 4.0 | 58·0
57·0 | | WSW
WSW | $\begin{array}{ c c c c c } 1 & to & 3 \\ 2 & to & 2\frac{1}{5} \end{array}$ | | | Pos. | 5 | 8 | | | | | 18 | 29.710 | | | 2.3 | 100 | | (0,0) | | $\widetilde{\mathbf{s}}\mathbf{w}$ | 1 to 2 | | | Pos. | 5 | 8 | | | | | 20 | 29.740 | 55.0 | 51.7 | 3.3 | | | | | \mathbf{sw} | $\frac{1}{2}$ to $1\frac{1}{2}$ | ļ | | Pos. | 2 | 2 | 0 | 0 | • • | | 22 | 29.773 | 58.7 | 53.1 | 5.6 | 48.0 | 10.7 | •• | •• | wsw | 1 to 2½ | •• | •• | Pos. | 2 | 2 | 0 | 0 | •• | | | 29.806 | | | 7.0 | •• | •• | i • •. | •• | SW | 2 to 3 | •• | | Pos. | 2
7 | 2 | 0
10 | 0 | •• | | $egin{array}{c c} 2 & \\ 4 & \\ \end{array}$ | 29·820
29·826 | | | 8·8
7·9 | 48.5 | 16.3 | (67.2) | ••• | SW
SW | 1 to 5
1 to 3 | ••• | • | Pos. | 5 | 8 | 10 | • • | | | 6 | 29.828 | | | 6.6 | 40 0 | 10.5 | 48.7 | | SSW | $\frac{1}{2}$ to 1 | | | | | 0 | 0 | 1 | | | | 29.856 | | 53.1 | 4.4 | | | | 1.61 | SSW | " | | | Pos. | 8 | 12 | • • | | | | | 29.881 | | 50.4 | 3.7 | 47.0 | 7.1 | j 86·3 〔 | 0.00 | S by W | | • •: | •• | Pos. | 20 | •• | 30 | 40 | | | | 29.883 | , | 50.0 | 2.3 | : | •• | 40.3 | | S by W | •• | •• | | Pos. Pos. | 10 | 5 | 8 | 10 | 7. | | (1 | 29·881
29·878 | | 48·9
48·4 | 1·3
1·3 | 47·0 | 2.4 | 58.5 | 5.415 | S by W | • • • • | | | Pos. | 2 | 2 | | i | | | | 29.871 | | 51.4 | 1.6 | | | 57.2 | | S by W | | | | Pos. | 2 | 2 | 0 | 0 | | | 20 | 29.882 | 54.8 | 52.9 | 1.9 | •• | | ••• | | S by W | | | | Pos. | 2 | 2 | 0 | 1 | | | 22 | 29.870 | 59.3 | 55:7 | 3.6 | 50.0 | 9.3 | •• | •• | S by W | •• | •• | •• | Pos. | 40 | •• | 50 | 1 | 7. | | May 18. 0 | 29.834 | 1 1 | | 6.6 | •• | | •• | | SSE | | • • | •• | Pos. | 15 | • • | 20 | | •• | | 2 | 12 | 67.7 | 59.5 | 8.2 | 40.0 | | 600.00 | | S | 0 4- 1 | ••• | •• | Pos.
Pos. | 7
10 | • • | 8 8 | 10 | 10. | | - 11 | - 11 | 66·3 | 57·9
57·0 | 8·4
3·3 | 48.0 | - 1 | $\left[egin{matrix} 69\cdot0 \ 46\cdot2 \end{matrix} ight]$ | •• | S | 0 to $\frac{1}{2}$ | • • | | Pos. | 10 | • • | 10 | | 4. | | | 29.692 | | | 0.8 | | | | 1.68 | Š | | :: | | Pos. | 25 | | 20 | 25 | 6. | | 10 | 29.676 | 56.2 | 55.5 | 0.7 | 54.0 | 1 | J 88·3 [| 0.09 | S | | | | Pos. | 10 | •• | 8 | | •• | | | 29.673 | | | 1.8 | •• | •• | 39.5 | | WSW | 0 4- 1 | •• | ••• | Pos. | | 10 | I | 1 | • • | | | 29·693
29·710 | | | 1·5
1·5 | 48.0 | 2.6 | 58.5 | 5.232 | WSW
 SW | 0 to $\frac{1}{2}$ | •• | •• | Pos. | 5 | 15
0 | 0 | 1 - | | | | 29.710 | | | 0.6 | 45 0 | 2.0 | 58.0 | | SSW | | :: | | | | o | 0 | | | | 20 | 29.776 | 54.9 | 51.7 | 3.2 | | | •• | | WSW | 0 to $\frac{1}{2}$ | | ••• | | •• | | | | •• | | | 29.786 | | | 4.1 | 48.5 | 8.2 | •• | •• | SW | 0 to 2 | | •• | •• | •• | 0 | 0 | 0 | •• | | | 29·795
29·792 | | | 6·5
5·7 | •• | •• |
(66·0) | •• | WSW
SW | $\frac{1}{2}$ to $2\frac{1}{2}$ 1 to $1\frac{1}{2}$ | ••• | | Pos.
Pos. | 10
8 | 20
15 | | | •• | | | 29.789 | | | | 51.0 | 13.2 | 50.2 | 1.00 | sw | 0 to $2\frac{1}{2}$ | | | Pos. | 40 | 30 | 10 | | 4. | | 6 | 29.782 | 61.9 | 55.5 | 6.4 | | •• | | 1.68 | SW | 0 to 1 | | ••• | Pos. | 20 | •• | 20 | | 6. | | | 29.769 | | | 3.6 | | | ∫ 80.0 ∫ | 0.00 | SSW | •• | ••• | ••• | Pos. | 30 | •• | 40 | | 10. | | | 29.769 | | | | 49.0 | 1 | 43.0 | | SSW | | ••• | ••• | Pos.
Pos. | 12
8 | 12 | 20 | 25 | 12. | | | 29·752
29·727 | | | $2.1 \\ 2.3$ | | | 59.0 | 5.240 | SSW
SSW | 0 to 2 | | | Pos. | 4 | 5 | | | | | | 29.696 | | | - ((| 46.5 | 6.5 | 58.2 | 1 | sw | 0 to 2 | | | Pos. | 8 | 15 | | | | ELECTRICITY. May 18^d. 20^b. The instruments were detached for the purpose of cleaning them. May 19^d. 8^b. There was a spark at the distance of 0ⁱⁿ·02. | Amount of Clouds,
0-10. | | | |--
---------------------|---| | _ | of | | | ļ | the | REMARKS. | | | | | | ٠. | Moon. | | | _ | | | | | •• | | |) | •• | Overcast: cirro-stratus and scud: rain is falling. | | | | | | | Transit | | | ' | •• | Cumuli, cumulo-strati, and scud: rain ceased falling at about 22 ^h . 30 ^m : the amount and kind of cloud have been continually varying during the morning: there have been several squalls of rain. | | | • • | obtained your fine the morning. there have been several squares of rain. | | | •• | | | | Greatest | | | Ì | declination M. | | | | • • | | | | • • | Overcast. Overcast with light fleecy clouds and masses of dark scud. Thorizon. | | | • • | Overcast with light fleecy clouds and masses of dark scud. [horizon.] Overcast with thin cirri, through which the blue sky is discernible: several masses of dark scud towards the S.W. | | | •• | Light fleecy clouds and scud, principally about the horizon. | | | • • | Overcast: cirro-stratus, fleecy clouds, and scud. | | | •• | [23 ^h . 55 ^m , radius 23° by measurement. | | 1 | | Cirro-stratus, fleecy clouds, and masses of scud. The lower part of a solar halo was visible for a few minutes at about | | | | Cirro-stratus, fleecy clouds, and scud. | | - | Transit | Detached masses of cumuli about the horizon: the amount of cloud is constantly varying. | | | •• | Cirri, light fleecy clouds, and scud are scattered over the sky. | | | | Cirri, cirro-cumuli, cirro-strati, and scud: a small portion of clear sky towards the S. E. | | | •• | Cirri, thin cirro-strati, and scud: the zenith and the parts around it are clear. | | | •• | Overcast: cirro-stratus and scud: a few stars occasionally visible. | | 1 | •• | For a small distance S. of the zenith the sky is clear; cloudy elsewhere. | | | •• | Overcast: cirro-stratus and scud. | | | •• | ,, | | | | | | j | •• | ,, the Companies with | | | •• | the Sun's place is visible. | | | | the Sunia place is wisible | | | •• | Overcast: cirro-stratus and scud. | | | •• | Overcast: cirro-stratus and scud. | | | •• | Overcast: cirro-stratus and scud. ', ', ', ', ', ', ', ', ', ' | | | Transit | Overcast: cirro-stratus and seud. ''' ''' ''' ''' ''' ''' ''' | | The state of s | Transit | Overcast: cirro-stratus and seud. ''' ''' ''' ''' ''' ''' ''' | | | Transit | Overcast: cirro-stratus and scud. ''' ''' ''' ''' ''' ''' ''' | | | Transit | Overcast: cirro-stratus and seud. ''' ''' ''' ''' ''' ''' ''' | | | Transit | Overcast: cirro-stratus and scud. ''' ''' ''' ''' ''' ''' ''' | | |
Transit

 | Overcast: cirro-stratus and seud. ''' ''' ''' ''' ''' ''' ''' | | |
Transit

 | Overcast: cirro-stratus and seud. ''' ''' ''' ''' ''' ''' ''' | | | | Overcast: cirro-stratus and seud. ''' ''' ''' ''' ''' ''' ''' | | | Transit | Overcast: cirro-stratus and seud. ''' ''' ''' ''' ''' ''' ''' | | | | Overcast: cirro-stratus and scud. ''' ''' ''' ''' ''' ''' ''' | | | | Overcast: cirro-stratus and scud. ''' ''' ''' ''' ''' ''' ''' | | | Transit | Overcast: cirro-stratus and scud. ''' ''' ''' ''' ''' ''' ''' | | | Transit | Overcast: cirro-stratus and scud. ''' ''' ''' ''' ''' ''' ''' | | | Transit | Overcast: cirro-stratus and scud. ''' ''' ''' ''' ''' ''' ''' | | | Transit | Overcast: cirro-stratus and scud. ''' ''' ''' ''' ''' ''' ''' | | | | | | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICA | L IN | STR | UME | NTS. | |----------------------------|------------------|-------|---------------|-------|--------|-------|------------------------------|-----------------------|------------------------|---------------------------------|------------|----------------------|----------------------|----------------------|----------------------|-----------|-----------------|---------| | Day and Hour,
Göttingen | Baro- | D | 717. 4 | Ther- | | Point | read at 22h. | Stand of
No. 1. | From (| | From Whe | | Sign | Rea | ading | s of | | Interv | | · | meter | Dry | Wet | mom. | Dew | below | Free Therm. | (Osler's). Reading of | Anemo | meter. | Anemoni | | Electricity, | Single | ١ | | | recover | | Astronomical | Cor- | Ther- | Ther- | below | 1 | Dry | Rad. Therm. | No. 2. | | Pressure | - | Descent of | as
shewn | Gold Leaf | Double
Gold Leaf. | s of | s of | the san | | Reckoning. | rected. | mom. | mom. | 1 | Point. | Ther- | of Therm. in
Water of the | Stand of
No. 3. | Direction. | in lbs. per
square | Direction. | during the | by Dry
Pile Appa- | of Dry
Pile Appa- | D P | Straws | Straws
Volta | of tens | | | | | | Dry. | | mom. | Thames. | (Crosley's). | | foot. | | ance of
eachWind, | ratus. | ratus. | 75 | <u>50</u> | <u>5</u> | dischar | | d h | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | | from | | in. | | 0 | 0 | div. | div. | m | | May 19.18 | 29.700 | 52.4 | 49.8 | 2.6 | | | | | SSW | 1bs. to lbs. 0 to 1 1/5 | | | | | 0 | 0 | 0 | | | 20 | 29.722 | | 51.1 | 4.2 | •• | | •• | | SW | 0 to 21 | • • | | Pos. | 3 | 5 | | l | | | 22 | 29.716 | | | , , | 48.0 | 10.5 | •• | •• | $\tilde{\mathbf{s}}$ | $\frac{1}{2}$ to $2\frac{1}{2}$ | • • | | Pos. | 2 | 2 | 0 | 0 | | | | 20 .10 | 000 | 32 0 | | 400 | | •• | ••• | 5 " | 2 40 22 | •• | ' | 1 05. | | - | ľ | " | | | May 20. 0 | 29.717 | 59.0 | 53.2 | 5.8 | | | | | sw | 0 to 3 | | | Pos. | 2 | 2 | 0 | 0 | | | 2 | 29.723 | | | | | | | | š w | 0 to 2 | | | Pos. | 25 | | 20 | 25 | | | 4 | 29.739 | | | | 54.0 | 10.2 | | | wsw | 0 to $2\frac{1}{2}$ | | | Pos. | 8 | | 8 | 10 | | | 6 | 29.758 | 63.2 | | 7.1 | | | 1 1 | | wsw | * | | | Pos. | 10 | | 10 | 20 | | | 8 | 29.813 | | | 6.2 | | | 65.6 | | W by S | | | | Pos. | 15 | 45 | 10 | 30 | ∥ | | 10 | 29.865 | 53.2 | 49.9 | 3.6 | 47.0 | 6.2 | 47.4 | 1.68 | SW | | | | Pos. | | •• | 80 | 100 | | | 12 | 29.908 | | 47.8 | 2.4 | | | 78.8 | · | SW | | | | Pos. | 25 | •• | 20 | 25 | | | 14 | 29.917 | 50.0 | 48.4 | 1.6 | | | 38.5 | 0.00 | sw | | | | Pos. | 12 | • • | 12 | 15 | ∥ | | 16 | 29.925 | | 48.1 | 0.6 | 47.0 | 1.7 | 000 | | sw | | •• | •• | Pos. | 10 | • • | 8 | 10 | 12. | | 18 | 29.966 | | 48.4 | | | | 59.0 | 5 550 | SW | | •• | | Pos. | 2 | 2 | 0 | 0 | | | 19 | 29.975 | F I | 49.4 | | | | 58.8 | ••• | $\mathbf{s}\mathbf{w}$ | | • • • | •• | | | • • | | | | | 20 | 29.992 | | 11 1 | | | •• | (0000) | | wsw | | •• | | Pos. | 30 | • • | 20 | 25 | 8. | | 21 | 29.998 | | 1 | 5.4 | | •• | | •• | wsw | •• | | •• | | • • | | | • • | • | | 22 | 30.013 | 56.9 |) ; | 5.8 | 47.0 | 9.9 | ••• | •• | wsw | •• | •• | | Pos. | 10 | 12 | 5 | • • | | | 23 | 30.013 | 62.9 | 59.9 | 3.0 | •• | ••• | •• | | WSW | ••• | • • | •• | •• | •• | | ••• | •• | ∥ •• | | | | | | | | | | | | | | | _ | | | | | _ | | Iay 21. 0 | 30.015 | | , , | 9.0 | ••• | • • • | •• | | SW | •• | •• | •• | Pos. | 30 | • • • | 30 | 40 | 7. | | 1 | 30.013 | | 55 8 | - 1 | •• | | •• | •• | SW | | •• | •• | n | 40 | ••• | | 50 | | | 2 | 30.014 | | 57·6
58·0 | | • • | • • | ••• | ••• | WSW | •• | •• | | Pos. | 40 | • • | 50 | 70 | 8. | | 3 | 30·012
29·995 | | | | 15.0 | 23.7 | •• | ••• | WSW
SW | •• | • • • | •• | Dor | | | 05 | 30 | 20 | | 4 | | 62.6 | 52.9 | | 45.0 | 1 | ••• | •• | SW
SW | •• | •• | | Pos.
Pos. | 30
10 | | 25
20 | 40 | 20. | | 6 | 29.993 | | 57.5 | | ••• | ••• | ••• | ••• | SW
SW | | • • | | Pos. | 20 | | 15 | 20 | 9. | | 7 | 29.995 | 63.0 | | 6.3 | | | (69.2) | | sw | •• | •• | ••• | | ĺ | | 10 | | 9. | | 8 | 30.002 | 58.8 | 54.1 | 4.7 | | | 49.7 | | S | ••• | •• | ••• | Pos. | 5 | | | 7 | 1 | | $\tilde{\mathbf{g}}$ | 30.007 | | 52.2 | 3.8 | | | | 1.68 | Š | | •• | | 103. | | | | | | | 10 | 30.006 | 54.6 | 51.1 | 3.2 | 48.0 | 6.6 | 92.0 | | Š | | | •• | Pos. | 7 | | 10 | | | | 12 | 1 | 53.5 | 50.4 | 3.1 | | | 41.3 } | 0.00 | $\tilde{\mathbf{s}}$ | | | | Pos. | 3 | 12 | 5 | | | | 13 | 1 1 | 53.5 | 50.7 | 2.8 | | | | | $\tilde{\mathbf{s}}$ | | | | | 1 | | | | | | 14 | 29.976 | 53·5 | 50.9 | | | | 62.0 | 5.922 | s | | l :: | | Pos. | 3 | 10 | 5 | | | | 15 | 29.966 | 53.0 | 50.5 | | | | 59.0 | | SSE | | | | | | | | | | | 16 | 29.967 | 53.0 | 50.5 | 2.5 | 48.5 | 4.5 |] | | S by E | | | | Pos. | 2 | 5 | | | | | 17 | 29.962 | 52.5 | 50.2 | 2.3 | | | | | S by E | | | | | •• | | | | | | | 29.954 | 51.9 | 50.1 | 1.8 | | | •• | | S by E | • • | | | Pos. | 3 | 12 | 5 | | | | | 29.952 | | | | | | • • • | | Š | | ••• | | | ••, | | | ٠. | | | 20 | 29.948 | 58.5 | 54.7 | 3.8 | •• | ••• | •• | | S | | •• | | Pos. | 15 | • • | 20 | 25 | 10. | | 22 | 29.937 | 64.8 | 58·2 | 6.6 | 49.0 | 15.8 | | | SSW | •• | •• | | Pos. | 5 | 7 | • • | ••• | | | 23 | 29.932 | 67.7 | 58.9 | 8.8 | ••• | | •• | ••• | SW | | •• | ••• | • • • | •• | ••• | •• | •• | • | | - 90 0 | 20.025 | 20.0 | | | | | | | CITT |] . | | | . | _ | 10 | | | | | | 29.925 | | | | • • • | •• | Caro | ••• | SW | | •• | •• | Pos. | 7 | 10 | •• | •• | | | | 29.913 | | | | •• | •• | 75.2 | •• | SW | 0 to 1 | •• | •• | D. | • • | • | ••• | | • | | | 29.905 | | | | • • • | ••• | 53.4 | 1.68 | WSW | $\frac{1}{2}$ to $2\frac{1}{2}$ | •• | •• | Pos. | 5 | 8 | ••• | | • | | | 29.897 | | | | 55.0 | 10.0 | 00:0 | <u> </u> | SW | ½constant | ٠. | •• | Dog | | 10 | ••• | ••• | • | | | 29.890 | | | | 55.0 | - 1 | 99.0 | 0.00 | $\frac{sw}{wsw}$ | 1 to 1 | •• | •• | Pos. | 4 | 12 | ••• | | | | 5
6 | 29.883 | | | | ••• | ••• | 44.8 | | | 1 to 1 ½ | •• | •• | Dog. | 5 | 20 | | | • | | 7 | 29·877
29·879 | | | | ••• | ••• | 60.5 | 5.555 | WSW
SW | $\frac{1}{2}$ constant | •• | | Pos. | 5 | | 5 | | • | | - 11 | 29.888 | 66.0 | 50.4 | 8.0 | ••• | ••• | | 1 | WSW | | •• | | Pos | 20 | ••• | 20 | 30 | 5 | | 8 | 29.888 | | | | | ••• | [60·0] | •• | WSW | •• | •• | •• | Pos. | l | | 1 | | 5. | | | -0 0UUI | U4 0 | עט ט | U + | | • • 1 | •• | | 17 13 77 | | • • | 1] | | | | | | | | 0-10. | Phases | | | |----------|-------------
--|-----| | | of | | | | Ī | the | REMARKS. | ١ | | | Moon. | | - | | | moon. | | 1 | | . | | | - | | 2 | •, • | A bank of cirro-stratus towards the W. part of the horizon, with a few scattered light clouds. | | | 3 | • • | Cumuli near the horizon; also a few patches of light coloured cloud scattered over the sky. | 1 | | 9 | •.•. | Cirro-stratus, fleecy clouds, and large masses of scud: there are small breaks in various directions. | ١ | | , | • • | Overcast: cirro-stratus and scud: slight rain is falling. | 1 | | 7 | • • | Detached cumuli, cirro-strati, and large masses of loose scud. | | | 2 | • • | Detached cumuli, light fleecy clouds, and scud about the horizon. | | | 3 | Transit | Masses of cumuli and scud in various directions. | | | 5 | • • | Cloudless: the sky is hazy. | | |) | • • | | | | 2 | * • • | Clouds are coming up from the W.N.W. | | | 3 | •• | Cirro-strati and fleecy clouds cover the greater part of the sky: a few small breaks. | | | | •• | Cloudless. | | | 1 | • • | | | | | •• | | | | | • • | Champli about the Sun's along and around the harizon | | | 3 | •. • | Cumuli about the Sun's place and around the horizon. Cumuli and cumulo-strati are scattered over the sky in every direction. [over the remainder of the sky.] | | | 3 | •• | Masses of finely-formed cumuli are exhibited in the S. and S.W.: cumulo-strati, cirro-strati, and scud are scattered | | | | | | | | 1 | • • | Light portions of cumuli scattered W. and S.W. of the zenith: cirro-stratus in the horizon. | | | 2 | •• | Some small portions of cumuli in the S. are the only prevailing clouds. | | | 1 | • • | Cumuli all around the zenith, also in the N. and N.W. horizon: light portions of scud scattered here and there. | - [| | | •• | Cloudless. | | | | •• | | | | | Transit | Cloudless, with the exception of some loose scud, but to no numerical extent. | | | | • • | Cirro-stratus and haze towards the N. horizon: a few light clouds are scattered over the sky. | | | 3 | •• | kan kanangan katalan dalam kanangan kanangan kanangan kanangan kanangan kanangan kanangan kanangan kanangan ka | | | : | • • | Cirro-stratus towards the N. horizon: a few light clouds are scattered over the sky. | | | 1 | •• | | | | 3 | • • | Cirro-stratus and portions of scud in every direction: the Moon is visible through a break in the clouds, and also some | | | |
1st Qr. | Overcast: cirro-stratus and scud. [stars E. of the zenith. | | | | ist gr. | ,, a few stars are occasionally visible in the zenith. | - | | | •• | | | | | | en egypte en de la gegen de la companya de la companya de la general de la companya de la companya de la compa
La companya de la co | | | | | Cirro-stratus, soud, and fleecy clouds: large portions of blue sky in the zenith. | 1 | | | | Fleecy clouds in the zenith: cirro-stratus low in the W. horizon; the remainder of the sky is clear. | 1 | | | · · · · | Cloudless. | 1 | | 1 | •• | There are a few light clouds, but to no numerical extent. | | | | •• | and the control of th | | | 1 | | A bank of cirro-stratus along the S. horizon: a few cirri and light clouds are scattered about the zenith. | | | 12121212 | | A bank of chro-stratus along the of normali. a few chri and light clouds are scattered about the zonith. | 1 | | 12 | | | ļ | | 12 | | ,, | | | | | Light portions of cirri are scattered over the sky, but to no numerical extent. | | | | ••• | Light portions of cirri are scattered in the N.: a bank of thin cirro-stratus prevails. | | | | •• [| Light portions of cirri in every direction. | 1 | | | Tr. | other direction. | 1 | | | Transit | Cirro-stratus, light cirri, and portions of scud in every direction: the clouds are more dense in the N. than in any | | | - 1 | •• | Light cirri and vapour. | 1 | | Day and Hou | | 11 | 11 | Wet | ii | Dew | Max. and Min.
as | RAIN
GAUGES. | ĺ | WIN | N D. | | ELE | CTRICAL | LIN | STR | UME | NTS. | |-------------|------------------|--------------|------|------------|--------------|--------------|--|----------------------------------|--|--|------------|--|----------------------|-------------------------------|----------------------|-----------------|-----------------|----------------------------------| | | r, Baro- | | | Ther- | | Point | read at 22h. | Stand of
No. 1. | From | | From Whe | | Sign | Re | ading | s of | | Interval | | Göttingen | meter | Dry | Wet | mom. | Dew | below | Free Therm. | (Osler's). | Anemo | meter. | Anemom | | Electricity | Gingle | 1 | · · | | of time in
recovering | | Astronomica | ll | Ther- | | below | Point. | Dry
Ther- | Rad. Therm. | Reading of
No. 2.
Stand of | Direction. | Pressure
in lbs. per | Direction. | Descent of
the pencil
during the | shewn
by Dry | Single
Gold Leaf
of Dry | Leaf | tws of | ws of | the same
degree
of tension | | Reckoning. | rected. | mom. | mom. | Dry. | | mom. | Water of the
Thames. | No. 3.
(Crosley's). | Direction. | square
foot. | Direction. | continu-
ance of
each Wind. | Pile Appa-
ratus. | Pile Appa-
ratus. | Double
Gold Leaf. | Straws
Volta | Straws
Volta | after
discharge. | | d 1 | 11 | ٥ | 0 | 0 | 0 | 0 | 0 | in. | | from
lbs. to lbs. | | in. | _ | 0 | 0 | div. | div. | m s | | May 22.10 | | | f I | 1 | 53.0 | 8.9 | •• | | SSW | | ••• | ••• | Pos. | 10 | 30 | 10 | -5 | •• | | 11 | | 61·5 |) | | ••• | •• | | ••• | SSW
SSW | •• | •• | •• | Pos. | 40 | | 40 | 40 | 16. 0 | | 14 | | 00 3 | 30 / | 4.2 | | | :: | | S | | | | | | | | •• | 10. 0 | | 16 | 3∥ | | | | | | ., | | S | | • | 1 | •• | •• | | • • | • • | | | 18 | | | | •• | • • | •• | | | SSE | •• | •• | •• | •• | •• | ••• | ٠. | • • | ••• | | 20
22 | | ••• | | • • | •• | • • | •• | •• | SE
ESE | •• | •• | •• | •• | •• | •• | •• | • • | •• | | h r | n | ∥ … | | | •• | | | • • | | •• | ••• | '' | | •• | •• | •• | | •• | | 22. 15 | 5 29·842 | 74.0 | 64.0 | 10.0 | •• | •• | •• | | ESE | •• | •• | •• | Pos. | 10 | •• | 8 | 10 | •• | | May 23. (| 0∥ | | | | | | •• | •• | SSE | | : •• | | •• | . •• | | • • | •• | • • | | | 1 | •• | | •• | • • • | •• | | •• | Calm
Calm | •• | •• | •• | •• | •• | ••• | •• | •• | •• | | | 3 | | | | | • • | •• | •• | Calm | : | | :: | • • | • • • | | ••• | | | | | 3 | | | | | | 83.8 | | Calm | | | | | •• | | | | | | 8. 30 | 29.663 | 71.8 | 66.5 | 5.3 | l l | | 61.3 | 1.68 | Calm | | | . . | Pos. | | | 50 | 50 | 3. 0 | | 23. 10 | h | | | | | ••• | 103'5 | 0.00 | SSE | [| •• | ' | | | | | | | | 20. 10 | ' ∥ · · ∣ | | | ••• | •• | •• | 54.8 | 0.00 | 38.E | | •• | | ,•• | •• | • • | •• | •• | •• | | 12 | 11 | • • | | | ••• | | 62.5 | 5.555 | $\mathbf{S}\mathbf{W}$ | •• | • • • | | | •• | | •• | ••• | ••• | | 14 | | 1 | 61.1 | 3.1 | | ••• | 60.8 | •• | SW | | • • | •• | Pos.
Pos. | 40
20 | 30
15 | 20
10 | 20
10 | 60. 0 | | 16
18 | 11 4 | 64·6
63·5 | | 4·6
4·6 | 55.8 | 8.8 | | •• | WSW
SW | • | * •• | | Pos. | 3 | 5 | | | | | 20 | | | | 3.2 | | | | | wsw | | | | | | 0 | 0 | 0 | | | 22 | | 63.4 | 59.2 | 4.2 | 55 ·0 | 8.4 | | •• | $\mathbf{s}\mathbf{w}$ | | •• | • | Pos. | 2 | 2 | 0 | 0 | | | May 24. 0 | 29.783 | 66.3 | 59.8 | 6.5 | | | | | wsw | | | | Pos. | 5 | 8 | | | | | 2 | 1 | | • | 1 | •• | •• | •• | •• | SW | $\frac{1}{2}$ to 1 | •• | | Pos. | ••• | 7 | •• | ••• | ••• | | 4 | 11 | 64·8
62·5 | 1 | 5·3
5·3 | 55.5 | 8.3 | 69.0 | •• | SW | 1 40 01 | •• | •• | Pos. | 30 | 20 | 10 | 10 | 50. 0 | | 8 | 13 | t i | 1 | i i | | | 46.2 | 1.68 | SW
SSW | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | •• | | Pos. | | 20 | 10 | 10 | 60. 0 | | 10 | II ' I | I I | 1 | | 53.0 | | 87.3 | 0.00 | $\tilde{s}\tilde{s}w$ | ½ constant | 11 | | •• | | 0 | 0 | 0 | | | 12 | 11 | 55.2 | 1 1 | í I | | | 37.7 | 0.00 | SSW |
$0 \text{ to } \frac{1}{2}$ | •• | | Pos. | | • • • | 8 | 10 | 20. 0 | | 14 | 11 : | 50.2 | 1 . | | 45.0 | | 00.5 | 5.575 | SW
SW | 1 to $2\frac{1}{2}$ | •• | •• | Pos. | ••• | 10
2 | 0 | 0 | | | 16
18 | | 48.0 | | | 45.0 | 3.0 | $\begin{bmatrix} 63.5 \\ 62.0 \end{bmatrix}$ | | SW
SW | 1/2 to 1 | :: | | Pos.
Pos. | 2 | 2 | 0 | 0 | | | 20 | | | | | | | | •• | $\tilde{\mathbf{s}}\mathbf{w}$ | $1^{2} \text{ to } 1_{\frac{1}{2}}^{1}$ | 11 | | Pos. | 2 | 2 | 0 | 0 | | | 22 | 30.014 | 59.0 | 52.7 | 6.3 | 44.8 | 14.2 | •• | •• | sw | 1 to $2\frac{1}{2}$ | •• | | Pos. | •• | 10 | • • | •• | ••• | | May 25. 0 | 30.038 | 64.0 | 54.4 | 9.6 | | | | | wsw | 1 to 2 | | | Pos. | 6 | 5 | | | | | 2 | 30.054 | 65.3 | 54.4 | 10.9 | | | •• | •• | WSW | 1 to 2 | •• | •• | Pos. | 10 | 20 | 7 | 5 | •• | | | 30.069 | | | | 41.0 | 26.2 | 69.5 | •• | WSW | 0 to $\frac{1}{2}$ | | •• | Pos. | 5 | 8 | •• | 3 | •• | | 6 | 11 1 | | | | | • • | 42.7 | 1.68 | SW
SSW | $\frac{1}{2}$ constant 0 to $\frac{1}{2}$ | fl . | | Pos.
Pos. | 5
5 | 8 | , , | • • | | | 10 | | | | | 46.0 | 5.7 | 92.5 | 0.00 | S | 0 10 2 | | | Pos. | 2 | 2 | Ô | 0 | | | 12 | 30.103 | 48.0 | 46.9 | 1.1 | 1 1 | | 34.5 | 0.00 | S | | •• | | Pos. | 5 | 12 | 5 | •• | •• | | 14 | | | | | | | | 5.575 | S by W | | • • | •• | Pos. | 4 | 10 | 4 | •• | •• | | 16
18 | 11 1 | | | | 42.5 | | 63.5 | | S by E | •• | •• | •• | Pos. | 3 | 7 | 0 | 0 | •• | | 20 | | | | | | | (62.0) | •• | S by E | | •• | | Pos. | 20 | 30 | 12 | | 8. 0 | | 22 | | | | | | | | •• | $\widetilde{\mathbf{S}}$ by $\widetilde{\mathbf{W}}$ | :: | | | Pos. | 40 | | 60 | 50 | ••• | | May 26. 0 | 1 | 1 1 | | ľ | 1 | | | | sw | | | | Pos. | 3 0 | | 25 | 3 0 | | | 111ay 20. U | 30 107 | 00.8 | 37.3 | 8.9 | •• | •• } | ••• | ··· 1 | 517 | •• | •• | ••, | 1 08. | 9 0 | | | 00 | •• | | Amount of Clouds, 0-10. | Phases of the Moon. | REMARKS. | Observer. | |--------------------------|---|---|-----------| | 9
10
10 | •• | [by passing clouds. Cirro-stratus, masses of dark scud, and fleecy clouds are scattered in every direction: the Moon is frequently obscured Overcast with clouds of various densities. ,, no change: a fine warm night. | T, I | | • • | ••• | en de la companya de
Companya de la companya de la companya de la companya de la companya de la companya de la companya de la compa
Companya de la companya de la companya de la companya de la companya de la companya de la companya de la compa | | | 1 | •• | There are a few cirri and light clouds scattered about the sky. | | | | Transit | Cinna stantani Armanila dha S. E. a lana alambana | | | | Apogee In Equator | Cirro-stratus towards the S. E.; clear elsewhere. The day has been remarkably fine, with an unusually high temperature: the evening was cloudless till about 9 ^h ; at this time a few clouds collected at first about the place of the Moon, and afterwards spread all over the sky, those in the N. and N.W. being very black. Lightning was carefully looked for, but not a single flash was seen. The sky is wholly covered with clouds at a great elevation; occasionally a few stars have been visible. Overcast: cirro-stratus. | | | 10
8
10 | • • • • · · · · · · · · · · · · · · · · | the Sun has not yet been visible this morning. The clouds have become much broken since 18 ^h , particularly about the place of the Sun. Overcast: cirro-stratus, fleecy clouds, and scud. | G | | 10
10
10
2
7 |

Transit | Overcast: fleecy clouds and scud. The sky is wholly covered by cirro-stratus and scud: there are occasional gleams of sunshine. Since 4 ^h . 20 ^m the greater part of the sky has been free from cloud: at present there are a few ill-formed cumuli near The greater part of the sky is covered with cirro-stratus and scud. [the horizon, principally in the N. | L
G | | 10
10
3
3 | •• | Overcast: a shower of rain has fallen since 8 ^h . ,, light rain has been falling since the last observation. Cloudy around the horizon, but mostly to the N. Cirro-strati and light clouds are scattered in various directions. Cloudless. | G
L | | 2
5
6 | • • | Cirri and thin cirro-strati are scattered in various parts of the sky. Cumuli, cirro-stratus, and masses of scud: clear portions of blue sky in every direction. [is the N. and N.N.E. Cumuli, cumulo-strati, and scud, principally W. and S.W. of the zenith: the portion of the sky most free from cloud | T | | 5
5
10 | | Detached portions of imperfectly-formed cumuli and fragments of scud in every direction. Detached portions of cumuli and masses of scud. Cirro-stratus, fleecy clouds, and scud cover the sky. | T . | | 0
0
0
0 | Transit | Cloudless: the sky became clear soon after 8h. | T | | 0 | •• | A few light clouds, but to no numerical extent. | T I | | 0 | | A few light clouds, but to no numerical extent. | | | V | | | | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICAL | LIN | STR | UME | EN18. | |---------------|------------------|--------------|--------------|------------|--------|---------------|--|------------------------------------|--------------------------------|----------------------------|------------|--|----------------------|---|-------------|----------|-----------------|-------------------| | Day and Hour, | Baro- | | | Ther- | | Point | read at 22h. | Stand of
No. 1. | From | | From Whe | | Sign | Rea | ding | s of | | Interv
of time | | Göttingen | meter | Dry | Wet | mom. | Dew | below | Free Therm. | (Osler's).
Reading of | Anemo | meter. | Anemom | T | Electricity, | Single | ٠ | | | recover | | Astronomical | Cor- | Ther- | Ther- | below | Point. | Dry | Rad. Therm. | No. 2 | | Pressure
in lbs. per | | Descent of
the pencil
during the | shewn | Gold Leaf | Lea | vs of | vs of | degr | | Reckoning. | rected. | mom. | mom. | Dry. | roint. | Ther-
mom. | of Therm. in
Water of the
Thames. | Stand of
No. 3.
(Crosley's). | Direction. | square
foot. | Direction. | continu-
ance of
eachWind. | Pile Appa-
ratus. | Single
Gold Leaf
of Dry
Pile Appa-
ratus. | Dou
Gold | Strav | Straws
Volta | afte | | d h | in. | | | 0 | 0 | 0 | o o | in. | | from | | in. | | 0 | 0 | div. | div. | m | | May 26. 2 | 30.086 | 1 | 1 | 13.8 | | | | | sw | lbs. to lbs. | | | Pos. | 40 | | 35 | 40 | | | 4 | 30.071 | 69.0 | | | 48.0 | | 1 | | $\tilde{\mathbf{s}}\mathbf{w}$ | | | | Pos. | 35 | | 40 | 50 | 7. | | 6 | 30.049 | | | 11.7 | | | $\begin{bmatrix} 77.0 \\ 42.9 \end{bmatrix}$ | ∥ | $\mathbf{s}\mathbf{w}$ | | | | Pos. | 20 | | 20 | 30 | 12. | | 8 | 30.041 | 11 | и . | | | | 42 9 | 1.68 | S by W | •• | • • | | Pos. | 20 | •• | 20 | 25 | 11. | | 10 | 30.043 | 11 | 46.3 | | 37.7 | 14.9 | 97.5 | | S | •• | •• | •• | Pos. | 30 | 20 | 30
10 | 40 | 13.
5. | | El . | 30.042 | 11 | 11 | | •• | •• | 29.0 } | 0.00 | SIND | •• | • • • | •• | Pos. | 40
40 | 20 | 5 | 5 | 3.
4. | | 11 | 30.010 | 1 | 41.5 | 1 | 90.5 | 10.0 | | 5.575 | S by E | •• | | '' | Pos. | 40 | 20 | 5 | 5 | 4. | | bi bi | 29·997
29·982 | 1 1 | 41.9 | | 36·5 | | 63.0 | 5.575 | S by E
S by E | | • • | | Pos. | 40 | 30 | 10 | 10 | 6. | | 11 | 29.982 | | 44·3
55·3 | | •• | •• | 62.0 | ••• | SSE | ••• | • • | | Pos. | 40 | 30 | 10 | 10 | 12. | | H | 29.956 | 1 1 | 59·2 | | 52·0 | 16.4 | | •• | ENE | | • • • | | Pos. | 25 | | 25 | 30 | | | 22 | 29 990 | 00 4 | 00 4 | 0 4 | 92 0 | 10 4 | •• | • • • | DIVE | | •• | " | | | | | | | | May 27. 0 | 29.937 | 75.7 | 64.2 | 11.5 | | | | • . | E by S | | | 1 | Pos. | 10 | • • | 10 | 12 | 17. | | | 29.906 | | 63.9 | | | | | | Ě | 0 to $\frac{1}{2}$ | | | Pos. | 10 | • • | 8 | 10 | | | 4 | 29.889 | 73.8 | 62.6 | 11.2 | 53.2 | 20.6 | (81.3) | •• | Е | 0 to $\frac{\tilde{1}}{2}$ | | | Pos. | 40 | 40 | 12 | ł | 16 | | | 29.865 | | | 9.6 | | | 52.6 | 1.68 | ENE | | • • • | •• | Pos. | 40 | 50 | 20 | ı | 12. | | | 29.874 | | | 8.1 | • • | •• | | 1 00 | S by E | | •• | ••• | Pos. | 40 | 60 | 30 | 30 | 3. | | | 29.868 | | | | 57.5 | 4.7 | 106.0 | 0.00 | S by E | •• | •• | •• | Pos. | 40 | 30 | 20
10 | 20
12 | 10.
7. | | - 11 | 29.856 | 1 1: | | 1.3 | • • | •• | 44.5 | | S by E | •• | • • | ••• | Pos. | 15
25 | • • | 20 | 25 | 25. | | | 29.835 | | | 0.6 | 50.0 | 1.0 | 25.0 | 5.575 | SSE | •• | • • | | Pos. | 10 | •• | 8 | 10 | | | | 29·815
29·815 | | 53·7
55·5 | 0.5 | 53.0 | 1.3 | 67.8 |] | SSE
W by S | • • • | • • | • | Pos. | 2 | 2 | 0 | 0 | 10. | | | | | 65.2 | 4·5
6·3 | ••• | ••• | 〔62·5 〕 | •• | WSW | | •• | | Pos. | 30 | | 25 | 30 | 15. | | - 11 | | 81.5 | | - 0 | 60.0 | 21.5 | | | SSE | | | :: | Pos. | 5 | 12 | 5 | | ▮ | | | 20 010 | 0.0 | 00 0 | | 00 0 | -1.0 | •• | ' | ~~= | | •• | | | | | | | | | Iay 28. 0 | 29.812 | 80.8 | 69.2 | 11.6 | | | | | SSW | | | | Pos. | 2 | 7 | 0 | 0 | ∥ | | | 29.796 | | 70.6 | | | | ., | •• | \mathbf{sw} | | •• | | Pos. | 5 | 20 | 7 | 0 | | | | ĺ | | | | | | | | _ | | | | _ | 20 | | | 00 | | | . 10 | 29.775 | | | | 56.0 | 29.3 | ••• | •• | \mathbf{s} | •• | •• | ••• | Pos. | 20 | • • | 15 | 20 | 17.
10. | | · · · | | | 67.9 | | • • | | •• | | S | •• | •• | • | Pos. | 20
25 | • • | 15
20 | | | | LI LI | 29.759 | 11 | 68.6 | 7.4 | | :: | •• | •• | S by W | •• | • • | • |
Pos.
Pos. | 20
20 | 20 | 10 | | | | 10 | 29.763 | 70.5 | 65.8 | 4.7 | 63.2 | 7.0 | •• | •• | S by W | •• | •• | | 1 05. | 20 | 20 | 10 | | ' | | | 90. mar | 5 0.7 | 05.5 | 4.0 |] | | | | S ber W | | | | | | | | | | | 11 | 29·767
29·747 | 66.5 | 64.4 | 0.1 | ••• | ••• | (86.2) | ••• | S by W
S by W | ••• | •• | | Pos. | 5 | 5 | 0 | 1 | 1 | | | 29.719 | | | | | | 60.3 | • • • | S by W | • • • | | | | | | | | | | | 29.703 | | | 1.0 | | •• | 003 | 1.82 | Š | | | | | ., | 0 | 0 | 0 | ∥ | | | 29.710 | | | | | |] 111.0 | 0.19 | wsw | 0 to $\frac{1}{2}$ | | •• | Pos. | 30 | | 25 | 30 | Insta | | 16 | 29.730 | 63.0 | 61.9 | 1.1 | | | 56.0 | | wsw | 0 to $\frac{1}{2}$ | | | Pos. | 35 | | 40 | 50 | Inst | | | il. | | |]] | •• | •• | 68.5 | 5.755 | | 2 | | | | 25 | | 90 | مغ | 14 | | 17 | 29.711 | 61.0 | 60.5 | 0.2 | • • | •• | (63·5 ∫ | •• | W | •• | ••• | •• | Pos. | 25 | •• | 20 | 25 | 14. | | | 29.693 | | | 0.1 | | | | | W | | •• | | Pos. | 8 | • • | 10 | ł | 27. | | | 29.680 | | | 0.2 | •• \ | •• | •• | •• | S | •• | | 1 | Neg. | 20 | ٠. | 20 | | 1 | | | 29.698 | | | 0.7 | •• | •• | •• | •• | S by W | •• | • • | •• | Pos. | 2 | 3 | 0
20 | i | 11 | | | 29.726 | | | 1.2 | ••• | :- | •• | •• | S by W | •• | ••• | 1 | Pos.
Pos. | 25 | 50 | i | | 15. | | | 29.744 | | | - 11 | 62.5 | 4.7 | •• | •• | WSW
SW | •• | | | | •• | | | | | | 23 | 29.743 | 10.0 | 09.0 | 5.0 | | •• | •• | • | 1 13 44 | •• | •• | '' | •• | | • | • | • | | | Iay 29. 0 | 29.739 | 72.0 | 66.3 | 5.7 | | | •• | | wsw | •• | | | Pos. | 40 | | 50 | 60 | | | <i>j</i> • | | | , | 8.7 | •• | | | 1 - 1 | SW | | | 1 | | | | ١ | 1 | ١. | DRY THERMOMETER. May 27^d. A great rise of temperature since May 26^d. DEW POINT THERMOMETER. May 28^d. 16^h. The observation was inadvertently omitted. MAXIMUM FREE THERMOMETER. May 27^a. 22^b. The reading was lower than that of the Dry Thermometer at 22^b. | Amount of Clouds, | Phases
of | | • | |-------------------|--------------|--|------------| | 5 7 | the | | 161. | | onno | Moon. | REMARKS. | Observer. | | A | William. | | ō | | 0 | | Cloudless. | L | | 0 | | • Cabutable | TD | | 0 | |) | | | 0 | Transit | | | | 0 | Transit | ,, the reading of a thermometer placed on long grass is 30°, and one placed on flax is 24°. | T D
G | | 0 | •• | A low bank of cloud appears in the W. and S.W., but to no numerical extent. Cloudless. | | | 0 | | *************************************** | | | 0 | | | G | | 3 | • • • | Cirro-stratus, fleecy clouds, and scud mostly towards the S. | L | | 3 | •• | Cirro-stratus, fleecy clouds, and scud mostly towards the S.: a few mottled cirri about the zenith. | | | 5 | | Cirro-stratus, fleecy clouds, and scud scattered over the sky. | L | | 3. | •• | There are some cumuli and cumulo-strati near the horizon, and some cirri near the zenith. | G | | 0 | •• | A few small cumuli are scattered here and there, but to no numerical extent. Cloudless. | | | 1 | Transit | Cloudless, with the exception of a few clouds near the S. horizon. | G
L | | 2 | • • | A few light clouds in various directions. | | | 0. | • • • | Cloudless. | | | 0 2 | • • • | ,, [of rain fell. A few light clouds about the sky: at about 17^{h} . 10^{m} it became almost overcast for a few minutes, and some large drops | | | 3 | | Cirro-strati, a few cumuli, and fleecy clouds. | L | | 1 | • • • | A few light cirri scattered about the sky. | TD | | 6 | * * | Cumuli, cumulo-strati, cirro-strati, and scud: clear in the zenith and E. of it. | | | 6 | ••• | Cirro-stratus and fleecy clouds all around the horizon to a considerable elevation: since the last observation the sky | | | | | has been covered with cirro-stratus and scud, and at $1^{\rm h}$. $5^{\rm m}$ a few drops of rain fell. | T D | | 1 1 | • • | Cirro-stratus towards the S. horizon: light clouds about the zenith. | L | | 4 | • • | A few fleecy clouds and scud are scattered about: there are a few cirro-cumuli about the zenith. Thin cirro-strati and a few cirro-cumuli, chiefly in the S. and S. S.W. | L
T D | | 3 | •• | There are some loose clouds about the Moon's place and some near the place of Venus, and to the N., of no particular | G | | | | modification. | | | 10 | | [very small portion clear. The amount of the clouds has been increasing since 10 ^h , and they now very nearly cover the sky, there being only a | | | 0 | Transit | The sky is very nearly cloudless. | l | | 10 | • • • | Overcast: cirro-stratus, fleecy clouds, and scud. | G | | 10 | •• | for the last three amountains of an hour three hour positioned | L | | 10 | •• | distant peals of thunder from the N.W., and sheet lightning in almost incessant flashes. | L | | 10 | •• | Overcast: cirro-stratus and scud: since the last observation the flashes of lightning have been incessant, accompanied with distant thunder: occasionally a few drops of rain have fallen. | TD | | 10 | • | Overcast: cirro-stratus and scud: at 16° 30° heavy rain fell, accompanied with vivid lightning, and loud claps of | | | 1 1 | | thunder in the S. S.W.: at 16 ^h . 35 ^m the rain was descending in torrents. | | | 10 | •• | Overcast: cirro-stratus and scud. | m 5 | | 10 | | ,, slight rain has fallen since the last observation. ,, a few drops of rain are falling. | T D
G H | | 10 | | ,, a low drops of faint are faining. | | | 10 | ••, | والمراجع | GН | | 10 | •• | The clouds are becoming broken, and the Sun has been shining occasionally for a few moments. | ΤЪ | | 9 | | Massive cumuli in the S. and S. S.W.; cirro-strati and scud elsewhere. | тр | | 7 | | | | | | | | L | ELECTRICITY. May 26^d. 4^h and 10^h. There were sparks at the distance of 0ⁱⁿ02 at each time. May 28^d. 12^h. 30^m. The sky became overcast, and from this time till 13^h there were frequent flashes of lightning in the S. S.W. May 28^d. 16^h. There was a spark at the distance of 0ⁱⁿ02. | | | | | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICAL | IN | STR | UME | NTS. | |----------------------------|------------------|------------------|---------------|---------------|---------|----------------------|---|-------------------------------------|------------|---|------------|--|---|---|----------------------|-----------------------|-------------------|------------------------------------| | Day and Hour, | Baro- | | 117 | Ther- | | Point | read at 22h. | Stand of
No. 1, | From (| I I | From Who | | Sign
of | Re | ading | ge of | | Intervi | | Göttingen | meter | Dry | | mom. | Dew | below | Free Therm. | (Osler's).
Reading of | Anemo | meter. | Anemoni | Descent of | Electricity,
as | Single | ی ا | ر
آ. | . of | recover
the sar | | Astronomical
Reckoning. | Cor-
rected. | Ther-
mom. | Ther-
mom. | below
Dry. | Point. | Dry
Ther-
mom. | Rad. Therm. in Water of the Thames. | No. 2. Stand of No. 3. (Crosley's). | Direction. | Pressure
in lbs. per
square
foot. | Direction. | the pencil
during the
continu-
ance of
eachWind. | shewn
by Dry
Pile Appa-
ratus. | Gold Leaf
of Dry
Pile Appa-
ratus. | Double
Gold Leaf. | Straws of
Volta 1. | Straws
Volta 2 | degre
of tens
afte
discha | | d h | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | | from
lbs, to lbs. | | in. | | 0 | 0 | di v. | div. | w | | May 29. 2 | 29.768 | 73.0 | 65.2 | 7.8 | | | | | s w | $\frac{1}{2}$ to $1\frac{1}{2}$ | | | Pos. | 5 | 10 | 5 | 0 | • • • | | 3 | 29.783 | | | | •• | | •• | | SW | 1 to $1\frac{1}{2}$ | •• | | <u></u> | • • | •• | •• | •• | • • | | 4 | 29.803 | 11 | 61.2 | | 56.0 | 12.0 | •• | •• | WSW | $\frac{1}{2}$ to $1\frac{1}{2}$ | •• | •• | Pos. | 5 | 10 | 0 | 0 | • • | | 5 | 29.820 | 1) | | 1 1 | •• | ••• | •• | | WSW | $\begin{array}{c c} 1 & \text{to } 1\frac{1}{2} \\ \frac{1}{2} & \text{to } 1\frac{1}{2} \end{array}$ | •• | | Pos. | 12 | 20 | 10 | • • | 16. | | 6 | 29·838
29·867 | 11 . | 1) | 7·5
7·9 | ••• | • • | (75.4) | | wsw | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | :: | 1 05. | | | | | | | 8 | 29.897 | 11 | 11 | | | | 47.9 | 1 | W by S | ,. | | | Pos. | 6 | 12 | | | ٠. | | 9 | 29.946 | 11 . | H | 5.1 | | | | 1.82 | wsw | | | | | | • • | • • | • • | | | 10 | 29.983 | !! | 11 | | 47.0 | 8.7 | 95.0 | 0.00 | WSW | •• | ••• | •.• | Pos. | 40 | 30 | 15 | 15 | • • | | 12 | 30.028 | 53.0 | 49.9 | 3.1 | •• | •• | 40.5 | | WSW | •• | •• | | ••• | • • | 0 | 0 | 0 | • • | | 14 | •• | ••• | ••• | | ••• | ••• | 20.0 | 5.775 | SW
SW | •• | • • | ' | , • • | •• | | | • • | | | 16 | •• | •• | ••• | ••• | | | 64.0 | | SW | | :: | | | | | | • | | | 18
20 | •• | • • | | | | | (04.0) | •• | wsw | | :: | | | | | | | | | 21 | 30.218 | 60.9 | | 6.5 | | | | | wsw | | | | Pos. | 5 | 12 | 7 | | | | 22 | | | | | | | | | wsw | •• | •• | • • | ••• | ••• | ••• | • • | • • | • • | | 22. 30 m | 30.232 | 65.4 | 56·5 | 8.9 | | | •• | •• | wsw | •• | •• | | Pos. | 5 | 20 | 10 | 7 | | | Iay 30. 0 | | | | | | | | | wsw | | | | | | | | | | | 2 | | | | | | | • | | wsw | •• | | | | • • • | | | | | | h m | 30.247 | | 58.5 | li | | ľ | | | sw | | | | Pos. | 5 | 10 | 5 | | | | 3. 35 | 30.247 | 71.8 | ນວນ | 10.0 | ••• | •• | 74.0 | •• | , | ••• | ••• | | 2 00. | | | - | | | | 30. 4 | | •• | | •• | ••• | •• | 47.7 | 1.82 | WSW | •• | •• | | •• | •• | •• | •• | • • | | | 6 | •• | •• | ••• | •• | • • | ••• | $\left \begin{array}{c} - \\ 92.5 \end{array} \right $ | | SW
W | •• | • • • | | | | • • | | • • | | | 8
10 | • | | | | | | 37.8 | 0.00 | ssw | | •• | | |
| | | | | | 10 | | | | | | | | 5.005 | SSW | | | | | • • • | | •• | • • | | | 14 | 30.291 | 50.5 | 49.4 | 1.1 | | | 69.5 | 5.775 | SSW. | ••• | ••• | | Pos. | 10 | 15 | 8 | • • | ∥ • | | | 30.308 | 49.0 | 48.4 | 0.6 | 48.0 | 1.0 | 64.2] | ••• | SSW | •• | •• | | Pos. | , 3 | 5 | | • • | • | | | 30.326 | 50.3 | 49.6 | 0.7 | • • | •• | •• | •• | SSW | • •• | ••• | | Pos. | 5 | 0
20 | 0
8 | 0 | • | | 11 | | I II | 57.4 | 3·7
9·2 | 51.0 | 10.6 | •• | •• | S | •• | | | Pos. | 30 | | 40 | 60 | 10. | | 22 | 30.378 | 10.0 | 01 4 | 9 2 | 51 0 | 190 | •• | •• | | | •• | | | | | | | | | [ay 31. 0 | 30.387 | 72.2 | 60.2 | 12.0 | | | | | NE | •• | •• | | Pos. | 20 | • • | 20 | 40 | • | | | 30.362 | | | | •• | ••• | | | NNE | •• | •• | 1 | Pos. | 15 | •• | 20 | 40 | | | 4 | 30.340 | 75.9 | 63.0 | 12.9 | 55.0 | - 19 | $\begin{bmatrix} 82.3 \\ 49.6 \end{bmatrix}$ | •• | N
NNE | •• | •• | | Pos. Pos. | 30
25 | •• | 30
20 | 40
30 | 8.
16. | | | 30·336
30·328 | | | | ••• | ••• | 48.9 | 1.82 | NNE | •• | .: | | Pos. | 35 | ,•• | 30 | | 17. | | | 30.330 | | | 4.2 | 53.0 | 7.7 | 114.8 | | NNE | | | | Pos. | 40 | | 30 | 40 | | | 12 | 30.338 | 56.4 | 54.2 | 2.2 | | | 38.5 | 0.00 | NNE | • • | | | Pos. | 2 | 2 | 0 | 0 | | | | 30.331 | | | 1.4 | | | | 5.775 | N by E | | •• | | Pos. | 2 | 5 | 0 | 0 | | | 16 | 30.335 | 50.5 | 49.4 | 1.1 | 48.5 | 2.0 | 69.8 | 3 113 | N by E | •• | . • • | | Pos. | 2 | 2 | 0 | 0 | • | | | 30.357 | | | 0.7 | •• | •• | (65·0) | •• | N by E | •• | •• | | Pos | 12 | 0 | 0
10 | 30
30 | 10. | | 20
22 | 30·367
30·371 | 69.0 61.0 | 57·0
59·5 | 4·0
9·5 | 49.5 | 19·5 | • • | •• | N by W | •• | • • | :: | Pos. Pos. | 20 | •• | 15 | 20 | | | \ | 30.374 | - 1 | - 1 | | | | (80.2) | 1.00 | NNE | | | | Pos. | 20 | •• | 15 | 20 | 20. | | | 30.351 | | | | | | 46.8 | 1.82 | NNE | | •• | | Pos. | 10 | | 8 | | 10. | | 4 | 30.328 | 77.5 | 63.1 | 14.4 | 53.5 | 24.0 | 108.0 | 0.00 | N | •• | • • | | Pos. | 10 | •• | 10 | 25 | • | | 6 | 30.321 | 70.9 | 61.4 | 9.5 | | | 35.0 | 0.00 | ENE | •• | •• | | Pos. | 20 | •• | 30 | 50 | • • | | | 30.326 | | | | \cdot | | | 5.775 | E by S | ••• | • • | •• | Pos. | 12
8 | 15 | 10
0 | | • • | | 10 | 30.342 | 56.7 | 50.8 | 9.9 | 43.5 | 13.5 | 65.5 | | E by S | •• | •• | •• | Pos. | 3 | 10 | | J | • • | DRY THERMOMETER. May 30^d . The increase in the reading between 18^h and 20^h was $10^\circ \cdot 8$. TEMPERATURE OF THE WATER OF THE THAMES. June 1^d. The Maximum Thermometer was sent to the maker to be repaired. Electricity. May 31^d . 4^h and 10^h . There were sparks at the distance of 0^{in} 02 at each time. | | D) | | | |---------------------------|----------------------------|--|---| | 3 | Phases | | | | ģ. | of | | | | [1 | the | REMARKS. | | | Amounter Clouds,
0-10. | Moon. | | | | 9 | •• | Cirro-cumuli and scud: a break towards the S. E. | G | | 10 4 | •• | Overcast: cirro-stratus and scud: rain has been falling slightly since the last observation. Detached cumuli, fleecy clouds and scud. | G | | 5 2 | • • | Some detached portions of cumuli are the only prevailing clouds. | T | | 4 0 | •• | Patches of cumuli and cumulo-strati scattered over the sky. Cloudless. | 0 | | 0 | • • |) | 0 | | 0 | Tomoraid | | | | 7 | Transit
Full | The whole of the southern portion of the sky, extending from the horizon to the zenith, is covered with a thin cloud of the stratus character, the Moon and principal stars being visible through it; detached masses of scud in every other direction. | 7 | | | • • | | | | 0 | •• | Cloudless: hazy in the N. horizon. | | | 3 | •• | Light cirri and detached portions of cumuli in every direction. | | | $\cdot \mid$ | •• | | | | 4 | •• | A bank of cirro-stratus in the N., and some detached portions of stratus near the Sun's place. | | | • | •• | | - | | | •• | | | | | | | | | . | •• | | | | | Transit | Cloudless. | | | | ••• | | | | | | ,, a thin haze prevails. | ; | | i L | Greatest
Declination 8. | A large mass of cumuli towards the S.W. part of the horizon. | 1 | | 2 | | Detached patches of cumuli are scattered over the sky. | | | 3 | • • | | G | | | | With the exception of some small breaks in the zenith the whole of the sky is covered with cumulo-strati and portions | 1 | | | | Cloudless. | | | | | *** | 7 | | 1. | 77 | 22 | G | |] | Transit |) | | | | | | | | | |))
)) | 6 | | ' | •• | ** | | | | | ,, , | | |) | | Claudless with the amountion of a fam flavour aloud. 1 of the control cont | - | | ı I | • • | Cloudless, with the exception of a few fleecy clouds, but to no numerical extent. | 1 | | 1 | - 1 | A small natch of cumula-strati towards the N W | i | | | | A small patch of cumulo-strati towards the N.W. Cloudless. | | RAIN. May 31^d. 12^h. The amount collected during the month of May in the rain-gauge No. 4 was 1ⁱⁿ-40, and that collected by the Rev. G. Fisher in a rain-gauge of the same construction at Greenwich Hospital Schools during the same period was 1ⁱⁿ-28. | | | | | Wet | | | Max and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICA | LIN | STR | UME | NTS. | |-------------------------|------------------|---------------|---------------|------------|---|----------------------|--|-------------------------------------|-------------------------|---|------------|---|---|--|----------------------|-----------------------|----------|---| | Dayand Hour, | Baro- | | | Ther- | | Dew
Point | rend at 22h. | Stand of
No. 1. | From (| | From Whe | | Sign
of | | ading | в of | | Interval
of time in | | Göttingen | meter | Dry | Wet | mom. | Dew | below | Free Therm. | (Osler's). Reading of | Anemo | l l | - Themon | Descentof | Electricity, | Single | ايا | ب | 2. | recovering
the same | | Astronomical Reckoning. | Cor-
rected. | Ther-
mom. | Ther-
mom. | | Point. | Dry
Ther-
mom. | Rad. Therm. in Water of the | No. 2. Stand of No. 3. (Crosley's). | Direction. | Pressure
in lbs. per
square
foot. | Direction. | the pencil
during the
continu-
ance of
each Wind. | shewn
by Dry
Pile Appa-
ratus. | Gold Leaf
of Dry
Pile Appa
ratus. | Double
Gold Leaf. | Straws of
Volta 1. | Straws C | degree
of tension
after
discharge. | | d h | in, | | | - | | 0 | Thames. | in. | | from
lbs. to lbs. | | in. | | 0 | 0 | div. | div. | mi s | | June 1.12 | 30.341 | 52.8 | 50.4 | 2.4 | | | | | E by S | 108. 10 108. | | | Pos. | 7 | 10 | 0 | . 0 | •• | | 14 | 30.331 | 51.2 | 49.1 | 2.1 | • | | | | E by S | •• | ٠ | | Pos. | 5 | 9 | 0 | 0 | •• ; | | 16 | 30.337 | 50.0 | 11 | | 43.0 | t i | | | ENE | •• | •• | | Pos. | 2 | 2 | 0 | . 0 | • • • | | 18 | 30.342 | 50.0 | 46.9 | | •• | ••• | | •• | NE
NE | •• | •• | | Pos. | 2
10 | 2 | 0
8 | 0
10 | 7. 0 | | 20 | 30.337 | 1 1 | 54.6 | 1 | | | •• | •• | NNE | •• | •• | •• | Pos. | 5 | 12 | 8 | 0 | il | | 22 | 30.335 | 70.6 | 60.0 | 10.6 | 49.8 | 20.8 | •• | •• | MINE | | •• | ' | Ì | . 0 | | | , | •• | | June 2. 0 | 30.331 | 76.4 | 63.9 | 12.5 | | | •• | •• | NNE | 0 to $\frac{1}{2}$ | •• | | Pos. | 10 | 20 | 10 | •,• | • · | | 2 | 30.314 | • | ıl I | | | | | | NNE | •• | •• | •• | Pos. | 7 | 12 | 10 | •• | • • | | 4 | 30.300 | 4 - [| 1 ! | | 53.2 | 21.7 | (80.4) | •• | N E
Calm | •• | •• | • • | Pos.
Pos. | 7 | 10
10 | •• | •• | •• | | 6 | 30.280 | | | | ••• | •• | 46.4 | 1.82 | Calm | •• | •• | | Pos. | 8 | 10 | ••• | 1 | | | 8 | 30·276
30·290 | | | | 49.0 | 8·2 | 97.8 | | Calm | | | | Pos. | 5 | 7 | | | | | 10
12 |
30.290 | | 52·6
51·1 | 4·6
1·4 | Į . | 02 | 38.0 | 0.00 | Calm | | | | Pos. | 10 | 20 | 10 | 7 | ••• | | 14 | 30.266 | | | 1.1 | | | | F. 800 | Calm | | | | Pos. | 4 | 10 | ••• | • • | ∥ | | 16 | 30.246 | | 49.4 | 0.8 | 49.0 | 1 | 70.2 | 5.775 | Calm | •• | •• | | Pos. | 12 | 25 | 12 | .7 | ••, | | 18 | 30.244 | 51.6 | 49.8 | 1.8 | | | 65.8 | •• | Calm | •• | •• | •• | D | 3.5 | 0 | 0 | 0 | ••• | | 20 | 30.238 | | | 5.0 | | •• | •• | •• | Calm | •• | ••• | •• | Pos.
Pos. | 25
15 | • • | 20
20 | 30
30 | 11 | | 22 | 30.227 | 70.6 | 61.7 | 8.9 | 54.0 | 16.6 | •• | •• | N | •• | •• | '' | I Us. | 10 | ••• | | 30 | 20. 0 | | June 3. 0 | 30·197
30·162 | | 62·5
64·0 | | •• | •• | | •• | N by W | $\begin{array}{ccc} 0 & \text{to} & \frac{1}{2} \\ \frac{1}{6} & \text{to} & 1 \end{array}$ | •• | | Pos.
Pos. | 10
10 | | 10
10 | 20
20 | •• | | | | | i | , | | | | | N | 1 to 1 | | | Pos. | 40 | | 50 | 70 | 4. 0 | | 4
6 | 30·135
30·131 | | | | 50.0 | - 1 | $\begin{bmatrix} 80.2 \\ 51.1 \end{bmatrix}$ | '' | \mathbf{N} | $\frac{5}{2}$ to $1\frac{1}{2}$ | | ,. | Pos. | 20 | | 20 | 30 | 1) | | 8 | 30.119 | | | | | | | 1.82 | $\dot{\mathbf{N}}$ | 0^{2} to $\frac{1}{6}$ | | | Pos. | 40 | | 60 | 70 | | | 10 | | 56.5 | 50.5 | 6.3 | 44.5 | | 97.0 | 0.00 | N | •. ~ | •• | | Pos. | 40 | 50 | 20 | | 20. 0 | | 12 | 30.112 | 53.5 | | 2.5 | | | 41.5 | 0.00 | N | | •• | •• | •• | •• | 0 | 0 | 0 | ••• | | 14 | 30.102 | | | 2.6 | • • | •• | | 5.775 | NNE | 0 to $\frac{1}{2}$ | ••• | •• | •• | ••• | 0 | 0 | 0 | ll . | | 16 | 1 | 53.6 | 1 | 2.6 | 48.5 | 5.1 | 70.5 | | N
NNE | •• | •• | | ••• | ••• | 0 | 0 | 0 | | | 18
20 | 30·105
30·112 | | | 3.1 | •• | •• | [66.0] | •• | NNE | | | | | | 0 | o | ŏ | ••• | | 20
22 | 30.112 | | 52·8
57·1 | 4·4
6·9 | 51·0 | 13.0 | | ••• | NNE | | | | Pos. | 2 | 2 | | •• | ,. | | June 4. 0 | 30·109 | 72.5 | 62.5 | 10.0 | | | | | N | | | | Pos. | 10 | | 15 | 10 | •• | | 2 | 30.092 | 77.0 | 64.7 | 12.3 | | | | | N | | | | Pos. | 6 | 10 | | •,• | | | | | | | | 54 ·5 | | (80.0) | | · N | •• | •• | | | •• | 0 | 0 | .0 | •• | | 6 | 30.069 | 69.8 | 63.0 | 6.8 | | • • | 49.9 | 1.82 | ENE | •• | ٠. | | | •• | 0 | 0 | Q | •• | | 8 | 30.079 | 62.8 | 57.9 | | • • | •• | | 1 02 | N | 1 to 2 | •• | •• | | , • • | 0 | 0 | 0 | •• | | 10 | 30.106 | | | 2.6 | 53.0 | 4.0 | 98.5 | 0.00 | N by W | 1 to 1 | •• | | • • • | ••• | 0 | 0 | 0 | 1 | | 12 | 30.120 | | | 1.7 | •• | •• | 43.2 | | N | 1/2 to 1
0 to 1 | | | :: | • | o | 0 | 0 | | | 14
16 | 30·109
30·101 | | | 2·6 | 47.0 | 5.0 | 70.2 | 5.775 | Ñ | 0 to 1 | | | | | 0 | 0 | o. | | | 18 | 30.108 | | | 3.1 | 4,0 | | 65.8 | | $\overline{\mathbf{N}}$ | 0 to 1 | | | •• | | 0 | 0 | 0 | | | 20 | 30.109 | | | 6.3 | | | | | N | ~ | | •• | | • • | 0 | 0 | .0 | | | 22 | 30.099 | | | | 45.0 | , | •• | •• | N | •• | •• | •• | Pos. | 5 | 10 | •• | ••• | ••, | | June 5. 0 | 30.073 | 68:5 | 56.0 | 12.5 | | | 69.0 | | \mathbf{N} | 0 to 1 | | | Pos. | 5 | 7 | | | | | | 30.060 | | | | | | 49.5 | 1.82 | N | 1/2 to 1 | | | Pos. | 3 | 7 | | | | | | 30.041 | 61.5 | 52.4 | | | | 92.5 | 0.00 | \mathbf{N} | 0 to 1 | •• | | •• | •• | ••• | ••• | • • | | | 6 | 30.032 | 60.2 | 51.8 | 8.4 | | | 43.5 | 0.00 | Ŋ | , • • | • • • | | •• | •• | <u>ا</u> رِ • ا | .; | ·: | •• | | 8 | 30·002
30·007 | | | 6·3
5·1 | | | 69.5 | 5.775 | N
N | •• | •• | •• | | | 0 | 0 | 0 | •• | | 10 | | | | | | | | | | | • • | | | | | | | • • | DRY THERMOMETER. June 1^d . The increase in the reading between 18^h and 20^h was $11^\circ \cdot 4$. ELECTRICITY. June 3^d. 4^h and 8^h. There were sparks at the distance of 0ⁱⁿ02 at each time. June 5^d. 4^h and 6^h. The apparatus was under repair. | | Phases | | | |----------|---|--|------------| | 0-10. | | | | | ۽ | of | D D M A D IZ O | | | 9 | the | REMARKS. | | | | Moon. | | | | _ | | | | | | | Ol- Anna | | | 0 | •• | Cloudless. | | | ט
ס | Transit | | | | ם
ס | | | | | 0 | • • | | | | 5 | • • • | a slight haze prevails. | | | | | m, and a death of annuli ships in the Country of th | | | 2 2 | •• | There are detached portions of cumuli chiefly in the S. and S.W. Some imperfectly-formed cumuli and lines of cirri in the zenith and around it are the only prevailing clouds. | | | | •• | Cumuli towards the N.; clear elsewhere. | | | | • • | Cirro-stratus along the N. horizon; clear elsewhere. | | |) | •• | There are a few light clouds, but to no numerical extent. | ļ | | | • • | Cloudless. | | | | • • • | | | | | •• | ••••••••••••••••••••••••••••••••••••••• | - 1 | | | Transit | | | | | • • | There are a few light cirri in the zenith, but not sufficient to affect the notation. | | | | | Some portions of cirri, light undefined clouds, and vapour prevail in the N. | | | 1 | • • • • | Cirro-cumuli and haze. | - 1 | | . | | | ı | | | • • • | Overcast: cirri, thin cirro-stratus, and haze. | | | | • •. | Cirri, very thin cirro-strati, and haze: at 1 ^h . 10 ^m there was a perfect solar halo, its radius (from estimation) we | ıs | | | | | | | | | about 22°, the inner circle was tinged with pale orange, gradually varying into a dull greenish hue. | | | ı | •• | A considerable portion of the sky is covered with a thin cirro-stratus cloud: the halo is very faint, its radius is 23°. | | | | • • | A considerable portion of the sky is covered with a thin cirro-stratus cloud: the halo is very faint, its radius is 23°. Light cirri are scattered over the sky in small detached portions. | | | | • • • | A considerable portion of the sky is covered with a thin cirro-stratus cloud: the halo is very faint, its radius is 23°. Light cirri are scattered over the sky in small detached portions. Cloudless. | | | 12 | • • | A considerable portion of the sky is covered with a thin cirro-stratus cloud: the halo is very faint, its radius is 23°. Light cirri are scattered over the sky in small detached portions. Cloudless. Cloudless, except a low bank of dark cirro-stratus in the N. horizon. | | | 12 | • • • | A considerable portion of the sky is covered with a thin cirro-stratus cloud: the halo is very faint, its radius is 23°. Light cirri are scattered over the sky in small detached portions. Cloudless. Cloudless, except a low bank of dark cirro-stratus in the N. horizon. Overcast. | | | 12 | • • • | A considerable portion of the sky is covered with a thin cirro-stratus cloud: the halo is very faint, its radius is 23°. Light cirri are scattered over the sky in small detached portions. Cloudless. Cloudless, except a low bank of dark cirro-stratus in the N. horizon. Overcast. | | | 12 | • • •
• •
• •
• • | A considerable portion of the sky is covered with a thin cirro-stratus cloud: the halo is very faint, its radius is 23°. Light cirri are scattered over the sky in small detached portions. Cloudless. Cloudless, except a low bank of dark cirro-stratus in the N. horizon. Overcast. | | | 12 | ······································· | A considerable portion of the sky is covered with a thin cirro-stratus cloud: the halo is very faint, its radius is 23°. Light cirri are scattered over the sky in small detached portions. Cloudless. Cloudless, except a low bank of dark cirro-stratus in the N. horizon. Overcast. | | | 12 | ••• | A considerable portion of the sky is covered with a thin cirro-stratus cloud: the halo is very faint, its radius is 23°. Light cirri are scattered over the sky in small detached portions. Cloudless. Cloudless, except a low bank of dark cirro-stratus in the N. horizon. Overcast. | | | 12 | Transit | A considerable portion of the sky is covered with a thin cirro-stratus cloud: the halo is very faint, its radius is 23°. Light cirri are scattered over the sky in small detached portions. Cloudless. Cloudless, except a low bank of dark cirro-stratus in the N. horizon. Overcast. '' cirro-cumuli and scud. Cirro-cumuli and scud: a large
space of blue sky about the zenith. Fleecy clouds and masses of scud are scattered about the sky. | | | 12 | Transit | A considerable portion of the sky is covered with a thin cirro-stratus cloud: the halo is very faint, its radius is 23°. Light cirri are scattered over the sky in small detached portions. Cloudless. Cloudless, except a low bank of dark cirro-stratus in the N. horizon. Overcast. '' cirro-cumuli and scud. Cirro-cumuli and scud: a large space of blue sky about the zenith. | | | 1 2 | Transit | A considerable portion of the sky is covered with a thin cirro-stratus cloud: the halo is very faint, its radius is 23°. Light cirri are scattered over the sky in small detached portions. Cloudless. Cloudless, except a low bank of dark cirro-stratus in the N. horizon. Overcast. '', cirro-cumuli and scud. '', Cirro-cumuli and scud: a large space of blue sky about the zenith. Fleecy clouds and masses of scud are scattered about the sky. Detached cumuli, fleecy clouds, and scud. | | | 12 | Transit | A considerable portion of the sky is covered with a thin cirro-stratus cloud: the halo is very faint, its radius is 23°. Light cirri are scattered over the sky in small detached portions. Cloudless. Cloudless, except a low bank of dark cirro-stratus in the N. horizon. Overcast. '', cirro-cumuli and scud. Cirro-cumuli and scud: a large space of blue sky about the zenith. Fleecy clouds and masses of scud are scattered about the sky. Detached cumuli, fleecy clouds, and scud. Detached masses of cirro-cumuli in every direction. | | | 12 | Transit | A considerable portion of the sky is covered with a thin cirro-stratus cloud: the halo is very faint, its radius is 23°. Light cirri are scattered over the sky in small detached portions. Cloudless. Cloudless, except a low bank of dark cirro-stratus in the N. horizon. Overcast. '', cirro-cumuli and scud. Cirro-cumuli and scud: a large space of blue sky about the zenith. Fleecy clouds and masses of scud are scattered about the sky. Detached cumuli, fleecy clouds, and scud. Detached masses of cirro-cumuli in every direction. One large mass of cumulus and scud half way between the zenith and the N.W. parts of the horizon. | | | 12 | Transit | A considerable portion of the sky is covered with a thin cirro-stratus cloud: the halo is very faint, its radius is 23°. Light cirri are scattered over the sky in small detached portions. Cloudless. Cloudless, except a low bank of dark cirro-stratus in the N. horizon. Overcast. '', cirro-cumuli and scud. Cirro-cumuli and scud: a large space of blue sky about the zenith. Fleecy clouds and masses of scud are scattered about the sky. Detached cumuli, fleecy clouds, and scud. Detached masses of cirro-cumuli in every direction. One large mass of cumulus and scud half way between the zenith and the N.W. parts of the horizon. There is some loose scud toward the S., but to no numerical extent. | | | 1 2 | | A considerable portion of the sky is covered with a thin cirro-stratus cloud: the halo is very faint, its radius is 23°. Light cirri are scattered over the sky in small detached portions. Cloudless. Cloudless, except a low bank of dark cirro-stratus in the N. horizon. Overcast. '', cirro-cumuli and scud. Cirro-cumuli and scud: a large space of blue sky about the zenith. Fleecy clouds and masses of scud are scattered about the sky. Detached cumuli, fleecy clouds, and scud. Detached masses of cirro-cumuli in every direction. One large mass of cumulus and scud half way between the zenith and the N.W. parts of the horizon. There is some loose scud toward the S., but to no numerical extent. Overcast: cirro-stratus and scud: the clouds began to gather about 9h. 15m, soon after which time the sky became covered. | 1. | | 1 2 | Transit | A considerable portion of the sky is covered with a thin cirro-stratus cloud: the halo is very faint, its radius is 23°. Light cirri are scattered over the sky in small detached portions. Cloudless. Cloudless. Cloudless, except a low bank of dark cirro-stratus in the N. horizon. Overcast. '', cirro-cumuli and scud. Cirro-cumuli and scud: a large space of blue sky about the zenith. Fleecy clouds and masses of scud are scattered about the sky. Detached cumuli, fleecy clouds, and scud. Detached masses of cirro-cumuli in every direction. One large mass of cumulus and scud half way between the zenith and the N.W. parts of the horizon. There is some loose scud toward the S., but to no numerical extent. Overcast: cirro-stratus and scud: the clouds began to gather about 9 ^h . 15 ^m , soon after which time the sky became covered. | ł. | | 12 | Transit | A considerable portion of the sky is covered with a thin cirro-stratus cloud: the halo is very faint, its radius is 23°. Light cirri are scattered over the sky in small detached portions. Cloudless. Cloudless. Cloudless, except a low bank of dark cirro-stratus in the N. horizon. Overcast. '', cirro-cumuli and scud. Cirro-cumuli and scud: a large space of blue sky about the zenith. Fleecy clouds and masses of scud are scattered about the sky. Detached cumuli, fleecy clouds, and scud. Detached masses of cirro-cumuli in every direction. One large mass of cumulus and scud half way between the zenith and the N.W. parts of the horizon. There is some loose scud toward the S., but to no numerical extent. Overcast: cirro-stratus and scud: the clouds began to gather about 9h. 15m, soon after which time the sky became covered. '', '', '', '', '', '', '', '', '', '' | 1. | | | Transit | A considerable portion of the sky is covered with a thin cirro-stratus cloud: the halo is very faint, its radius is 23°. Light cirri are scattered over the sky in small detached portions. Cloudless. Cloudless, except a low bank of dark cirro-stratus in the N. horizon. Overcast. ',' cirro-cumuli and scud. Cirro-cumuli and scud: a large space of blue sky about the zenith. Fleecy clouds and masses of scud are scattered about the sky. Detached cumuli, fleecy clouds, and scud. Detached masses of cirro-cumuli in every direction. One large mass of cumulus and scud half way between the zenith and the N.W. parts of the horizon. There is some loose scud toward the S., but to no numerical extent. Overcast: cirro-stratus and scud: the clouds began to gather about 9h. 15m, soon after which time the sky became covered. ',' ',' ',' ',' ',' ',' ',' ' | 1. | | 12 | Transit | A considerable portion of the sky is covered with a thin cirro-stratus cloud: the halo is very faint, its radius is 23°. Light cirri are scattered over the sky in small detached portions. Cloudless. Cloudless. Cloudless, except a low bank of dark cirro-stratus in the N. horizon. Overcast. '', cirro-cumuli and scud. Cirro-cumuli and scud: a large space of blue sky about the zenith. Fleecy clouds and masses of scud are scattered about the sky. Detached cumuli, fleecy clouds, and scud. Detached masses of cirro-cumuli in every direction. One large mass of cumulus and scud half way between the zenith and the N.W. parts of the horizon. There is some loose scud toward the S., but to no numerical extent. Overcast: cirro-stratus and scud: the clouds began to gather about 9h. 15m, soon after which time the sky became covered. '', '', '', '', '', '', '', '', '', '' | 1. | | 152 | Transit | A considerable portion of the sky is covered with a thin cirro-stratus cloud: the halo is very faint, its radius is 23°. Light cirri are scattered over the sky in small detached portions. Cloudless. Cloudless, except a low bank of dark cirro-stratus in the N. horizon. Overcast. ',' cirro-cumuli and scud. Cirro-cumuli and scud: a large space of blue sky about the zenith. Fleecy clouds and masses of scud are scattered about the sky. Detached cumuli, fleecy clouds, and scud. Detached masses of cirro-cumuli in every direction. One large mass of cumulus and scud half way between the zenith and the N.W. parts of the horizon. There is some loose scud toward the S., but to no numerical extent. Overcast: cirro-stratus and scud: the clouds began to gather about 9h. 15m, soon after which time the sky became covered. ',' ',' ',' ',' ',' ',' ',' ' | 1. | | 12 | Transit | A considerable portion of the sky is covered with a thin cirro-stratus cloud: the halo is very faint, its radius is 23°. Light cirri are scattered over the sky in small detached portions. Cloudless. Cloudless, except a low bank of dark cirro-stratus in the N. horizon. Overcast. '', cirro-cumuli and scud. Cirro-cumuli and scud: a large space of blue sky about the zenith. Fleecy clouds and masses of scud are scattered about the sky. Detached cumuli, fleecy clouds, and scud. Detached masses of cirro-cumuli in every direction. One large mass of cumulus and scud half way between the zenith and the N.W. parts of the horizon. There is some loose scud toward the S., but to no numerical extent. Overcast: cirro-stratus and scud: the clouds began to gather about 9 ^h . 15 ^m , soon after which time the sky became covered. '', '', '', '', '', '', '', '', '', '' | | | 152 | Transit | A considerable portion of the sky is covered with a thin cirro-stratus cloud: the halo is very faint, its radius is 23°. Light cirri are scattered over the sky in small detached portions. Cloudless. Cloudless, except a low bank of dark cirro-stratus in the N. horizon. Overcast. ',', cirro-cumuli and scud. Cirro-cumuli and scud: a large space of blue sky about the zenith. Fleecy clouds and masses of scud are scattered about the sky. Detached cumuli, fleecy clouds, and scud. Detached masses of cirro-cumuli in every direction. One large mass of cumulus and scud half way between the zenith and the N.W. parts of the horizon. There is some loose scud toward the S., but to no numerical extent. Overcast: cirro-stratus and scud: the clouds began to gather about 9 ^h . 15 ^m , soon after which time the sky became covered of the country of the same country of the same clouds are exhibited in the S. horizon; some large detached portions of the same clouds are exhibited
in and clouds. | ιe | | 152 | Transit | A considerable portion of the sky is covered with a thin cirro-stratus cloud: the halo is very faint, its radius is 23°. Light cirri are scattered over the sky in small detached portions. Cloudless. Cloudless, except a low bank of dark cirro-stratus in the N. horizon. Overcast. '', cirro-cumuli and scud. Cirro-cumuli and scud: a large space of blue sky about the zenith. Fleecy clouds and masses of scud are scattered about the sky. Detached cumuli, fleecy clouds, and scud. Detached masses of cirro-cumuli in every direction. One large mass of cumulus and scud half way between the zenith and the N.W. parts of the horizon. There is some loose scud toward the S., but to no numerical extent. Overcast: cirro-stratus and scud: the clouds began to gather about 9 ^h . 15 ^m , soon after which time the sky became covered or the score of the same clouds are exhibited in the Cirro-stratus and scud cover the sky, with the exception of a small portion E. of the zenith. [W.N.W. | ιe | | 152 | Transit | A considerable portion of the sky is covered with a thin cirro-stratus cloud: the halo is very faint, its radius is 23°. Light cirri are scattered over the sky in small detached portions. Cloudless. Cloudless, except a low bank of dark cirro-stratus in the N. horizon. Overcast. '', cirro-cumuli and scud. Cirro-cumuli and scud. Cirro-cumuli and scud are scattered about the sky. Detached cumuli, fleecy clouds, and scud. Detached masses of cirro-cumuli in every direction. One large mass of cumulus and scud half way between the zenith and the N.W. parts of the horizon. There is some loose scud toward the S., but to no numerical extent. Overcast: cirro-stratus and scud: the clouds began to gather about 9h. 15m, soon after which time the sky became covered in the scale of the same clouds are exhibited in the Cirro-stratus and scud cover the sky, with the exception of a small portion E. of the zenith. [W.N.W. Overcast: cirro-stratus and scud. | ıe | | 1-52 | Transit | A considerable portion of the sky is covered with a thin cirro-stratus cloud: the halo is very faint, its radius is 23°. Light cirri are scattered over the sky in small detached portions. Cloudless. Cloudless, except a low bank of dark cirro-stratus in the N. horizon. Overcast. '', cirro-cumuli and scud. Cirro-cumuli and scud: a large space of blue sky about the zenith. Fleecy clouds and masses of scud are scattered about the sky. Detached cumuli, fleecy clouds, and scud. Detached masses of cirro-cumuli in every direction. One large mass of cumulus and scud half way between the zenith and the N.W. parts of the horizon. There is some loose scud toward the S., but to no numerical extent. Overcast: cirro-stratus and scud: the clouds began to gather about 9h. 15m, soon after which time the sky became covered. '', '', '', '', '', '', '', '', '', '' | ıe | | 150 | Transit | A considerable portion of the sky is covered with a thin cirro-stratus cloud: the halo is very faint, its radius is 23°. Light cirri are scattered over the sky in small detached portions. Cloudless. Cloudless, except a low bank of dark cirro-stratus in the N. horizon. Overcast. '', cirro-cumuli and scud. Cirro-cumuli and scud. Cirro-cumuli and scud are scattered about the sky. Detached cumuli, fleecy clouds, and scud. Detached masses of cirro-cumuli in every direction. One large mass of cumulus and scud half way between the zenith and the N.W. parts of the horizon. There is some loose scud toward the S., but to no numerical extent. Overcast: cirro-stratus and scud: the clouds began to gather about 9h. 15m, soon after which time the sky became covered in the scale of the same clouds are exhibited in the Cirro-stratus and scud cover the sky, with the exception of a small portion E. of the zenith. [W.N.W. Overcast: cirro-stratus and scud. | ı e | | | | | | Wet | | Down | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELEC | CTRICAL | INS | STRU | JME | NTS. | |---------------|---------|-------|-------|-------|--------|---------------|---|------------------------------------|--------------|--------------------------------|------------|--|--------------------------------|--------------------------------|----------------------|-----------------------|-----------------------|---------------------------| | Day and Hour, | Baro- | | | Ther- | | Dew
Point | read at 22h. | Stand of
No. 1. | From (| | From Whe | | Sign | Re | ading | s of | | Interv | | Göttingen | meter | Dry | Wet | mom. | D | below | Free Therm. | (Osler's). | Anemo | meter. | Anemom | , | Electricity, | Single | ١. | | | recover | | Astronomical | Cor- | Ther- | Ther- | 11 | Dew | Dry | of
Rad. Therm. | Reading of
No. 2. | | Pressure | | Descent of
the pencil
during the | shewn | Gold Leaf | leaf. | s of | 8 of 2. | the sa | | Reckoning. | rected. | mom. | mom. | Dry. | Point. | Ther-
mom. | of Therm. in
Water of the
Thames. | Stand of
No. 3.
(Crosley's). | Direction. | in lbs. per
square
foot. | Direction. | continu-
ance of
eachWind. | by Dry
Pile Appa-
ratus. | of Dry
Pile Appa-
ratus. | Double
Gold Leaf. | Straws of
Volta 1. | Straws of
Volta 2. | of tens
afte
discha | | d b | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | | from
lbs. to lbs. | | in, | | 0 | ٥ | div. | div. | m | | June 5. 12 | 29.994 | 53.0 | 47.8 | 5.2 | | | | | N by W | •• | •• | •• | •• | •• | 0 | 0 | 0 | •• | | 14 | •• | •• | | | | | •• | •• | NNW | | •• | | •• | •• | • • | •• | •• | • • | | 16 | •• | ••• | • • | •• | • • | | •• | •• | NNW | •• | •• | •• | •• | ••• | ••• | • • | ••• | | | 18 | ••• | ••• | ••• | ••• | | • • | •• | •• | NNW
NNW | | •• | '' | ••• | ••• | | • • | • | | | 20
22 | 29·931 | 60.6 | 51.4 | 9.2 | | | •• | : | NNW | 0 to $\frac{1}{2}$ | ••• | | •• | ••• | 0 | 0 | o | | | June 6. 0 | | | | | | | | | NNW | 0 to $\frac{1}{2}$ | | | | | | | ١ | | | 2 | •• | | | | | :: | | | N by W | 0 to 1 | | | | | | | | | | h m | | | | | | ' | | | N by W | 0 to 1 | | 1 1 | Pos. | 2 | 5 | | | | | 2. 30 | 29.911 | 59.3 | 50.4 | 8:9 | ••• | • • | | | | l | | 1 | 1 | | ا | | | | | 6. 4 | ••• | •• | | | | | (66.3) | •• | N by W | 0 to 1 | •• | | •• | •• | •• | ••• | • • | • • | | 6 | •• | •• | •• | ••• | | • • | 42.9 | 1.82 | N by W | | •• , | •• | ••• | •• | •• | ••• | •• | • | | 7. 20 | 29.915 | 54.3 | 49.4 | 4.9 | | | 99:0 | | N by W | | | | •• | •• | 0 | 0 | 0 | | | d h | | | | | | | | 0.00 | N by W | | | 1 | | | | | ١ | | | 6. 8
10 | | | •• | •• | • • • | | 200 | | N by E | | | | | | | | | | | 10 | •• | •• | ••• | | | | 68.8 | 5.775 | N by W | | | 1 :: | | | | | | | | 14 | 29.938 | 44.0 | 42.5 | 1.5 | | | 64.5 | l l | NNW | | | | | | | | | | | 16 | 29.939 | | 43.9 | . , | 41.3 | | | | NNW | | | | •• | •• | | • • | | | | 18 | 29.970 | 48.0 | 44.8 | 3.2 | | | | | NNW | •• | •• | | | •• | ٠. | •• | ••• | | | 20 | 29.977 | | 46.8 | | | | | | NNW | | •• | ••• | Pos. | 3 | 7 | | | | | 22 | 29.984 | 59.5 | 49.8 | 9.7 | 42.0 | 17.5 | •• | •• | NNW | •• | •• | ••• | Pos. | 20 | ••• | 20 | 40 | • • | | June 7. 0 | 29.985 | 63·4 | 52.2 | 11.2 | | | | | N by W | | •• | | Pos. | 12 | | 10 | 20 | | | 2 | 29.967 | 62.8 | 51.9 | 10.9 | | | | •• | N by W | •• | | | Pos. | 6 | 10 | ٠٠. | •• | • • | | 4 | 29.944 | | | | 44.0 | 18.0 | | | N by W | •• | •• | 1 | Pos. | 8 | 12 | 5 | •• | • • | | 6 | 29.910 | | | . , | •• | •• | 68.5 | •• | N by W | •• | •• | •• | Dan | 70 | 0 | 0 | 0 | | | 8 | 29.894 | 59.5 | 52.2 | 7.3 | ••• | •• | 49.4 | 1.85 | WŚW | •• | • • | | Pos. | 10 | 12 | 5 | •• | • | | 10 | 29.881 | 55.0 | 50.2 | 4.8 | 47.0 | 8.0 | 82.0 | 0.07 | S by W | •• | •• | | Pos. | 12 | 20 | 7 | •• | | | 12 | 29.853 | 54.8 | 50.4 | 4.4 | | | 1 41.5 | F.905 | sw | | | | Pos. | 8 | 12 | | | | | 14 | 29.819 | |) | | | | 67.5 | 5.865 | WSW | | | | Pos. | 20 | | 20 | 40 | | | | 29.781 | | | | 45.5 | 5.0 | 64.0 | | WSW | | •• | | Pos. | 10 | 20 | • • | • • | • | | | 29.761 | | | | ••• | •• | ••• | | SW | | •• | •• | Pos. | 10 | | 10 | 20 | • • | | | 29.724 | | | | | ••• | •• | •• | SW | | •• | | Pos. | 6 | 8 | 15 | 90 | | | 22 | 29.667 | 52.0 | 51.4 | 0.6 | 90.9 | 1.9 | •• | •• | sw | •• | •• | •• | Neg. | 20 | •• | 10 | 20 | 5. | | June 8. 0 | 29.623 | 56.2 | 53.6 | 2.6 | | | | | SW | •• | | | | | 0 | 0 | 0 | | | | 29.600 | | | | ••• | •• | •• | | NW | $\frac{1}{2}$ constant | •• | •• | Pos. | 5 | 8 | • • | •• | • • | | 4 | 29.573 | 61.6 | 52.0 | 9.6 | 43.0 | 18.6 | (62.5) | | NW | 1 constant | | | | | 0 | 0 | 0 | | | | 29.575 | | | | | | 41.4 | l } | \mathbf{W} | | | | Pos. | 15 | | 10 | 30 | ł | | | 29.600 | | | | •• | | | 1.92 | WNW | 0 to $\frac{1}{2}$ | •• | •• | Pos. | 2 | 4 | ••• | •• | • • | | 10 | 29.616 | 48.0 | 45.6 | 2.4 | 43.0 | 5.0 | 32.5 | 0.10 | WNW | | •• | | Neg. | 20 | 80 | 10 | 20 | · . | | | 29.651 | | | 2.2 | | | | 0.005 | WNW | 0 to $\frac{1}{2}$ | | | Pos. | 10 | | 8 | 10 | 7. | | | 29.657 | | | | | | 66.8 | 6.025 | W by N | ~ | •• | | Pos. | 6 | 10 | | | | | 16 | 29.667 | 43.0 | 42.1 | | 41.0 | * 11 | 62·8 ∫ | | W | •• | ••• | 1 | Pos. | 5 | 8 | • • | •• | | | 18 | 29.685 | 44.3 | 42.8 | 1.5 | | | | | W | | •• | | Pos. | 5 | 8 | •• | • • | | | 20 | 29.706 | 50.3 | 45.7 | 4.6 | | | •• | | NNW | 1 to $1\frac{1}{2}$ | •• | • • | Pos. | 15 | 10 | | | 10. | | 22 | 29.726 | 53.0 | 45.9 | 7.1 | 39.0 | 14.0 | | | NNW | $1\frac{1}{2}$ to 3 | • • • | •• | Pos. | 10 | 12 | 5 | | | $\begin{array}{ll} \textbf{Maximum} & \textbf{Radiation Thermometer.} \\ \textbf{June} & 8^d. & \textbf{The instrument was out of order.} \end{array}$ Osler's Anemometer. June 8^d . 6^h . 20^m . A pressure of $4\frac{1}{2}$ lbs. was recorded. | 0-10. | Phases of the Moon. | REMARKS. | 100000 | |--------|---------------------
---|--------| | 10 | • • . | Overcast: cirro-stratus and scud. | Т | | | 3rd Qr.
Transit | | | | 8 | •• | Cirri, cirro-cumuli, cirri, and a few patches of scud: there is a break towards the N.W. | | | : | •• | | | | 0 | •• | Overcast: cirro-stratus, with detached masses of cumuli and scud. | | | . | •• | | | | 0 | • • | Overcast with cumuli and detached masses of scud, | | | | •• | Ovoreast with outful and detached masses of sedd, | | | - 1 | In Equator | | | | 3 | •• | Some detached cirri in the zenith: the stars are dim. | | | 0
8 | •• | Cirro-stratus, cumulo-stratus, and scud. [is seen. | | | 2 1 2 | Transit | Cirro-stratus, cumulo-stratus, and fleecy clouds broken considerably E. of the zenith, where a large portion of clear sky Cumuli in various directions. A few detached cumuli are scattered over the sky. | T
G | | 7 9 | •• | Detached masses of cumuli and scud in every direction. | | | 0 | ••• | Cirro-stratus, cumulo-stratus, and scud. Overcast: cirro-stratus and scud. | G | | 8 | | Cumuli, cumulo-strati, cirro-strati, and scud cover the sky: since the last observation the clouds have become broken. Cumuli, cumulo-strati, fleecy clouds, and scud: the clouds became broken almost in every direction at 7 ^h . 10 ^m , and have continued so until the present time. | | | 0 | ••• | The whole of the sky is covered with a thin cirro-stratus cloud; in the N. densely-packed cumulo-strati are exhibited to 40° of altitude, extending from the N. N. E. | 7 | | 0 | Perigee | Overcast: very dark. [quite clear, and remained so until within ten minutes of this observation., the places of a few of the principal stars about the zenith are dimly visible: at about 1 ^h . 15 ^m the sky became cirro-stratus and scud. | G | | 0 | Tropait | ,, a few drops of rain are falling. | | | 5 | Transit | ,, rain is falling. ,, fine rain is falling. | G | | , | •• | Overcast: cirro-stratus and scud: the rain ceased at about 23h. | | | 1 | •• | ,, cirro-strati, cumulo-strati, and scud: heavy rain has fallen occasionally since the last observation, and several peals of thunder were heard in the W. S.W.: there are some heavy electrical-looking clouds in the S. | | | | ٠. | Detached masses of cumuli and scud in different directions: atmosphere very hazy. [N. and W. parts of the horizon. | | | 3 | •• | Overcast, with cirro-stratus and large masses of dark scud: there is a heavy bank of electrical-looking cloud about the Cirro-strati and light fleecy clouds near the horizon: cumulo-strati towards the N.W.; elsewhere clear but hazy: | G | | , | | since the last observation there has been a violent squall of wind and rain, accompanied by negative electricity. Cirro-stratus and large masses of scud; clear towards the N. and N.W. | G | | | | Cloudless. | | | 7 | | Clear in the zenith and a little S. of it; elsewhere the sky is covered with cirro-stratus and scud: the clouds began to Thin cirro-strati, fleecy clouds, and masses of scud. [collect about twenty minutes since.] | | | | | Cloudless. | | | 3 | Transit | Cumuli in large masses in every direction, with portions of quickly-moving scud. | Т | | | _ | | | Wet | | Dew | Max. and Min. | GAUGES. | | WIN | D. | | ELE | CTRICAL | INS | TRU | JMF. | NTS. | |----------------------------|------------------|--------------|--------------|-------------------|--------|--------------|-----------------------------|-------------------------|--------------------------------|-------------------------|------------|-----------------------------------|--------------------------------|-------------------------------|----------------------|----------------|-------|----------------------------------| | Day and Hour,
Göttingen | Baro-
meter | Dry | Wet | Ther- | | Point | read at 22h. | Stand of
No. 1. | From (| | From Who | | Sign | Rea | ding | s of | | Interval | | 1 | 1 | | | mom. | Dew | below | Free Therm. | (Osler's). Reading of | Tricino | 1 | - Tricinou | Descent of | Electricity, | Single | ۱.,۱ | | | recovering the same | | Astronomical | Cor- | Ther- | Ther- | below | Point. | Dry
Ther- | Rad. Therm.
of Therm. in | No. 2.
Stand of | | Pressure
in lbs. per | | the pencil | shewn | Single
Gold Leaf
of Dry | L'es | 78 of
1a 1. | 78 of | degree | | Reckoning. | rected. | mom. | mom. | Dry. | | mom. | Water of the
Thames. | No. 3.
(Crosley's). | Direction. | square
foot. | Direction. | continu-
ance of
each Wind. | by Dry
Pile Appa-
ratus. | Pile Appa-
ratus. | Double
Gold Leaf. | Strav | Straw | of tension
after
discharge | | d b | in. | ٥ | 0 | 0 | ٥ | ٥ | ٥ | in. | | from
lbs. to lbs. | | in. | | 0 | ٥ | div. | div. | m s | | June 9. 0 | 29.729 | | 1 . | | •• | • • | ••• | | NNW | 1 to 2 | •• | | Pos. | 15 | 20 | 7 | •• | | | 2 | 29·735
29·727 | | 51·3
52·2 | | 40.0 | 22.0 | (65.0) | | NNW
NNW | 1 to 3 | •• | •• | Pos. | 3 | 5 | • • | • • | • • | | 6 | 29.731 | 64·0
59·2 | 50.4 | | i | 1 1 | 65.0 | •• | NNW | $\frac{1}{2}$ to 1 | •• | •• | Pos.
Pos. | 5
7 | 10 | • | •, • | •• | | 8 | 29.727 | 55.3 | 1 1 | | | | 400 | 1.99 | NNW | | | | Pos. | 8 | 12 | 5 | 7 | | | 10 | 29.717 | 51.3 | 48.7 | 2.6 | 46.0 | 1 | 79.2 | 50.10 | N by E | :: | | | Pos. | 20 | | 20 | 25 | 10. (| | 12 | 29.696 | 51.0 | 48.2 | 2.8 | | • • | 40.5 | 0.12 | SSE | | | | | •• | 0 | 0 | 0 | | | 14 | 29.667 | 49.6 | 48.0 | 1.6 | | | | 6.155 | wsw | | | | Neg. | 30 | | 30 | 40 | 5. 6 | | 16 | 29.619 | 48.5 | | 0.6 | 47.0 | 1.2 | 65.8 | l I | SSW | | | | Neg. | 40 | • • | 40 | 50 | 7. | | 18 | 29.599 | | 49.0 | 0.2 | • • | •• | 62·2 ∫ | | SSW | •• | ••• | | Neg. | 25 | •• | 25 | 35 | 11. 30 | | 20 | 29.552 | 50.5 | 50.0 | 0.5 | 40.0 | 0.0 | •• | | SW | ;; | •• | ••• | -:- | • • • | 0 | 0 | 0 | •• | | 22 | 29.547 | 54.2 | 50.6 | 3.6 | 48.0 | 6.2 | •• | | WNW | 1/2 to 1 | •• | •• | Pos. | 2 | 2 | •• | • • | ••• | | June 10. 0 | 29.565 | | 49.8 | 6.4 | | •• | •• | | WNW | 1/2 to 3 | | | Pos. | 2 | 2 | | • • | | | 2 | 29.573 | 1 1 | 49.8 | 6.6 | ••• | •• | • • | | NW | 1 to 2 | | | Pos. | 6 | 10 | • • | | | | 4 | 11 | 58.1 | 50.9 | 7.2 | 46.0 | 12.1 | 61.5 | •• | NW | $\frac{1}{2}$ to 2 | ••• | | Pos. | 4 | 10 | • • | • • | | | | 29.633 | | | 3.7 | • • • | ••• | 44.9 | 1.99 | NNW | 0 to 2 | •• | •• | -:- | ••• | 0 | 0 | 0 | 20 | | | 29·672
29·709 | 52·6
52·5 | 51·0
50·0 | $\frac{1.6}{2.5}$ | 48.0 | 4.5 | 78.5 | | NNW
NW | 0 4 1 | | | Neg. | 20 | 10 | 20 | 30 | 4. | | 11 | - 11 | 50.5 | 46.8 | 3.7 | 1 1 | - 1 | 35.4 | 0.00 | NW | 0 to $\frac{1}{2}$ | •• | 1 | Pos. | 5
2 | 3 | •• | > | | | III. | | 48.0 | 45.4 | 26 | | | | | WNW | •• | •• | | Pos. | 4 | 3 | •• | ··· | ••• | | - 11 | l i | 47.5 | 45.4 | 2.1 | 43.0 | 4.5 | 65.0 | 6.185 | w | | | | i I | | o | o | 0 | | | 18 | 29.804 | 47.0 | 45.0 | 2.0 | | | 61.2 | | WNW | | | :: | Pos. | 3 | 4 | | | | | | 29.829 | 53.2 | 48.6 | 4.6 | | | ••• | | NNW | | | | Pos. | 5 | 8 | | | | | 22 | 29.853 | 59.2 | 51.4 | 7.8 | 45.0 | 14.2 | •• | •• | NNW | 0 to $\frac{1}{2}$ | •• | | Pos. | 6 | 10 | •• | • • | | | | | 12 | 49.8 | 9.0 | | | •• | | NNW | 0 to $\frac{1}{2}$ | | | Pos. | 3 | 5 | | | • • | | 11 | 10 | 64.2 | 52.4 | | •• | | • • | | NNW | •• | | | Pos. | 3 | 5 | • • | | • • | | III. | _ | | 52.2 | | 41.0 | $22 \cdot 2$ | 67.9 | •• | NNW | | ٠, | | Pos. | 20 | 35 | 15 | 10 | •• | | 11 | 29·877
29·889 | 61·7
58·2 | 53·0
50·7 | 8·7
7·5 | •• | ••• | 44.9 | 1.99 | NW
Calar | •• | •• | •• | Pos. | 18 | 30 | 10 | • • | • • | | 11 | | 51.3 | | 3.4 | 43·5 | 7.8 | 83.2 | | Calm
Calm | | ••• | •• | Pos. | 8 | 25 | 8
50 | 70 | 10 | | 11 | 29.893 | 46.2 | | 1.1 | -10 U | 1 | 34.5 | 0.00 | Calm | ••• | | •• | Pos.
Pos. | 40
15 | | 10 | 15 | 10.
10. | | 11 | 29.869 | 46.5 | | 1.1 | | | | | SSW | | | | Pos. | 10 | | 8 | 10 | 7. | | 16 | 29.866 | 46.3 | 45.1 | 1.2 | 44.0 | | 64.5 | 6.185 | SSW | | | | Pos. | 7 | 10 | | | | | 18 | 29.869 | 48.2 | 46.7 | 1.5 | •• | | 60.2 | | SSW | | • • | | Pos. | 7 | 10 | | | | | 20 | 29.866 | 56.0 | 51.6 | 4.4 | | | •• | •• | SW | | | | Pos. | 20 | | 15 | | 15. | | 22 | 29.862 | 63.9 | 53.9 | 10.0 | 46.0 | 17.9 | •• | •• | sw | •• | •• | •• | Pos. | 10 | • • | 7 | 10 | •• | | une 12. 0 | 29.857 | 66.2 | 55.3 | 10.9 | | | | | sw | | | | Pos. | 10 | 18 | 8 | • | | | | 29.821 | 67.0 | 54.8 | 12.2 | | | •• | •• | $\tilde{\mathbf{s}}\mathbf{w}$ | | | | Pos. | 8 | 15 | | | | | 4 | 29.797 | 66.7 | 55.7 | 11.0 | | 19.7 | | •• | ssw | 0 to $\frac{1}{2}$ | | | Pos. | 7 | 10 | | • • | | | | 29.788 | | | - 1 | •• | •• | 70.3 | •• | SSW | 0 to $\frac{1}{2}$ | | | Pos. | 7 | 10 | | | | | | 29.785 | | | 5.6 | 47.0 | | 51.6 | 1.99 | SSW |] | •• | ••• | Pos. | 10 | •• | 8 | 10 | | | | 29.774 | | 50.0 | 2.9 | 47.0 | 1 | 89.0 | | S by W | •• | •• | •• | Pos. | 12 | • • | 10 | 12 | 7. | | 12
14 | 11 | 53.3 | 90.0 | 3.3 | ••• | •• | 44.0 | 0.00 | S by W
S by W | • | •• | •• | •• | •• | •• | •• | . • | ••• | | 16 | | | • • | | • • | | | 0.007 | SDYW | •• | •• | •• | •• | •• | •• | ••• | •• | ••• | | 18 | • | | | | • • | | 64.5 | 6.502 | ssw | •• | • • | | •• | | | • | •• | | | 20 | | | | | | | [61·0] | | SSW | | ••• | | | | | | • | | | 22 | | | | | | | •• | | SSW | | | | | | | | | | | h m | 29.642 | 59.8 | - 1 | 2.1 | | | | ļ | ssw | | | | | | | 0 | | | | | -U U14 | 00 0 | 911 | العسا | • • • | • • 1 | • • | •• . | 100 11 | 1 to 1 | • • | | | •• | 0 | v | 0 | | MINIMUM FREE THERMOMETER. June 9d. 0h. The reading was 53° · 7, which is evidently wrong; the inferred reading from the reading of the Dry Thermometer at 16h is 48° · 5, which reading has been used in subsequent calculations. ELECTRICITY. June 9^d. 16^h. There was a spark at the distance of
0ⁱⁿ02. June 11^d. 10^h. There was a spark at the distance of 0ⁱⁿ01. | f Clouds, | Phases
of | | | |--|-----------------|---|---| | Amount of Clouds, | the
Moon. | REMARKS. | | | 8 | •• | Cumuli, cumulo-strati, cirro-strati, and scud: a large clear break W. of the zenith; every other portion of the sky is | 7 | | 9
5
7 | •• | Cirro-stratus and scud in every direction: a few cumuli E. of the zenith. [covered with clouds. Detached cumuli, fleecy clouds, and scud. Cirro-stratus, fleecy clouds, and scud: clear mostly in the E. and S.: a few cirro-cumuli rather to the E. of the zenith. | | | 10
10 | •• | Cirro-stratus, fleecy clouds, and scud cover the sky. A very thin cirro-stratus covers the sky. | | | 0 | •• | Overcast: cirro-stratus and scud. | | | 0 | •• | ,, rain is failing; it commenced at 15 10 | | | 0. | | ,, cirro-stratus: the rain ceased at about 19 ^h . 45 ^m , having fallen without intermission since its commencement. | | | 0 | Transit | ,, cirro-stratus and scud. | | | 0 | . •• | Overcast: cirro-stratus and scud. | | | 0 | •• | Cumulo-stratus, cirro-stratus and scud: the Sun occasionally gleams through the clouds. | | | 0 | •• | Overcast: cirro-stratus and scud: rain has fallen since the last observation. ,, cirro-stratus: rain is falling: it commenced at 7 ^h . 30 ^m , and has continued to the present time. | | | 0 | •• | ,, cirro-stratus and scud: rain has fallen at intervals since 8 ^h . Cirro-stratus and scud: a large space clear near the zenith towards the S. E. | | | 2 | •• | Cloudless, with the exception of a low bank of cirro-stratus about the horizon; the sky has only just become clear. | | | 0 | •• | Overcast with thin cirro-stratus and scud.
Cloudless, but hazy. | | | 7 | •• | Cloudless, with the exception of a bank of cirro-stratus and haze in the S. E. horizon. Cumulo-stratus, cirro-stratus, and scud in every direction. | | | 8 | Transit | Cumulo-stratus, cirro-stratus, and scud in every direction. | | | 6 | •• | Detached cumuli, fleecy clouds, and masses of scud. Masses of cumuli, cirro-cumuli, and scud in various directions. | | | 1 | •• | A large mass of cumuli towards the S. E. horizon, elsewhere a few patches of cirro-cumuli and haze. Cloudless: hazy about the horizon. | | | 0 | ••• | ,, a slight haze. | | | $egin{array}{c} 0 \ 0 \ 2 \end{array}$ | | A thin cirro-stratus covers the sky; it became overcast at about 13 ^h . 10 ^m . Cirro-stratus towards the N. horizon: loose clouds are floating about. | | | | •• | Thin cirro-stratus towards the South horizon. | | | 1 | | Detached patches of cumuli in various directions. | | | 1 | Transit | Detached patches of cumuli in various directions. | | | 1 | •• | Small fragments of cumuli in various directions. There are a few light clouds, but to no numerical extent. | | | 2 | | Cirro-stratus in the horizon in the W.; clear elsewhere: a few cirro-cumuli about the zenith. Cirro-stratus towards the N. and W. horizon: light clouds are scattered in various directions. | | | 3 | | A thin cirro-stratus covers the greater part of the sky; the part that is clear is about the zenith, and S. of it. | | | 1 | New | Overcast: cirro-stratus. | | | | ••• | | | | | Greatest docli- | | | | , | nation N. | ,, cirro-stratus and scud: a fine drizzling rain is falling. | | | | | | | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICA | LIN | STR | UME | NTS. | |----------------------------|------------------|--------------|--------------|-----------------------|---------------|----------------|--|--|----------------------|--|---|---|---|---|----------------------|-----------------------|-----------------------|--| | Day and Hour,
Göttingen | Baro-
meter | Dry | Wet | Ther- | | Point
below | read at 22h. of Free Therm. | Stand of
No. 1.
(Osler's). | From (| | From Who | | Sign
of
Electricity, | | ading | s of | | Interval
of time i
recoverin | | Astronomical Reckoning. | cor-
rected. | Ther- | Ther- | mom.
below
Dry. | Dew
Point. | Dry | of Rad. Therm. of Therm. in Water of the Thames. | Reading of
No. 2.
Stand of
No. 3.
(Crosley's). | Direction. | Pressure
in lbs. per
square
foot. | Direction. | Descent of
the pencil
during the
continu-
ance of
each Wind. | shewn
by Dry
Pile Appa-
ratus. | Single
Gold Leaf
of Dry
Pile Appa-
ratus. | Double
Gold Leaf. | Straws of
Volta 1. | Straws of
Volta 2. | the same
degree
of tension
after
discharge | | đ h | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | | from
lbs. to lbs. | | in. | | 0 | 0 | div. | div. | ın a | | June 13. 0 | 20,010 | | | | •• | •• | ••• | •• | SSW | 0 to 1 | • • | •• | Pos. | •• | 4 | •• | • • | •• | | 2
4 | 29.613 | 62.0 | 58.9 | 3.1 | | •• | \ | | SSW
SSW | 1 to $3\frac{1}{2}$
0 to $\frac{1}{2}$ | •• | | 105. | | | | : | | | 6 | 29.546 | 61.9 | 58.8 | | | | •• | | SSW | 1/2 to 1 | •• | | •• | | 0 | 0 | 0 | •• | | 8
10 | ••• | | :: | •• | | •• | 64.3 | | SSW
S by W | •• | •• | | | | | • • • | | | | 12 | •• | | | | | | 55.1 | 2.01 | S by W | •• | •• | | Dos. | | | | • • | •• | | 14 | 29.452 | 57.0 | 55.2 | 1.8 | •• | •• | 69·0
48·5 | 0.03 | SŠW | 0 to $\frac{1}{2}$ | •• | •• | Pos. | 10 | 10 | 2 | ••• | •• | | | | | | | | | 64.5 | 6.270 | | | | | | | | | | | | 16 | 29.425 | 57.0 | 54.5 | 2.5 | 53.0 | 4.0 | 61.2 | •• | ssw | 0 to ½ | •• | | Pos. | 10 | 2 | | | | | 18 | 29·419
29·433 | | 54.9 | 1 1 | •• | | •• | •• | SSW
SSW |
0 to 1 | •• | •• | Pos.
Pos. | 2 2 | 3 | ••• | ••• | | | 20
22 | 29.423 | | | | 55.0 | 3.2 | •• | •• | SW | 0 to ½ | •• | •• | | _ | 0 | 0 | 0 | • | | _ | 29 423 | 1 1 | 1 | 1.1 | | | •• | •• | ssw | 0 to 1 | •• | • | •• | •• | 0 | 0 | 0 | | | June 14. 0 | 29.396 | | 56.8 | 1.9 | | | •• | •• | SSW | 1 to $3\frac{1}{2}$ | •• | :: | | ••• | 0 | 0 | 0 | | | 4 | 29.404 | 63.1 | 59.2 | 3.9 | 56.2 | 6.6 | 67.5 | •• | ssw | ½ to 1 | ••• | •• | Pos. | 10 | 30 | 12 | 10 | •• | | 6 | 1 | 62.1 | 57.6 | - 1 | • • |] | 48.2 | 2.08 | SSW | 0 to ½ | •• | •• | Pos. | 30
30 | 30
30 | 10
10 | 10
10 | | | 8
10 | 29·401
29·397 | | 54·5
50·4 | 3.6 | 47.5 | 6.5 | 76.2 | 0.13 | SSW
SSW | 0 to ½ | •• | | Pos. | 30 | 30 | 10 | 10 | 30. | | 12 | 29.359 | | 51.1 | 0.5 | ••• | | 41.2 | 0.400 | SSW | •• | •• | •• | ••• | •• | 0 | 0 | 0 | •• | | 14
16 | 29·343
29·347 | | 50·4
48·6 | 0.4 | 48.0 | 1.4 | 64.2 | 6.483 | SSW
SSW | | • • | | | •• | 0 | 0 | 0 | | | 18 | 29.373 | 50.2 | 49.1 | 1.1 | | | (61.0) | | SSW | 0 to $\frac{1}{2}$ | •• | •• | •• | •• | 0 | 0 | 0 | | | 20
22 | 29·399
29·411 | 56·2
58·5 | 51·6
51·9 | 4·6
6·6 | 46.0 |
12·5 | •• | •• | SW
SW | $\begin{array}{c c} 0 & \text{to} & \frac{1}{2} \\ 1\frac{1}{2} & \text{to} & 3 \end{array}$ | •• | | Neg. | 30 | 0 | 30 | 0
40 | ••• | | June 15. 0 | 29.410 | 59.0 | 53.8 | 5.2 | | | •• | | ssw | 1½ to 7 | •• | | Pos. | •• | | بغي | •• | •• | | | 29·396
29·443 | | | |
49·0 |
5·5 | ∫62·6 ┐ | | SSW
SSW | 1 to 5 | sśw | 3·20 | Neg.
Neg. | 2 | 2 | | • • | •• | | | 29 445
29·475 | | | | 490 | | 46.2 | 2.08 | SW | $\begin{array}{c c} \frac{1}{2} \text{ to } 3 \\ 1 \text{ to } 2 \end{array}$ | • | | 110g. | •• | 0 | 0 | | ••• | | 8 | 29.545 | 56.2 | 51.1 | 5.1 | | | 74.0 | | SW | 1 to $2\frac{1}{2}$ | sw | 2.15 | ••• | •• | 0 | 0 | 0 | •• | | | 29.602
29.628 | | | | 47.0 | 4.7 | 37.5 | 0.00 | SSW
SSW | •• | •• | ••• | Pos. | 6 | 10 | 0 | 0 | | | 14 | 29.655 | 49.4 | 47.9 | 1.5 | | | 64.0 | 6.483 | ssw | | | | Pos. | 2 | 3 | | | | | | 29.657 | | | | 45.0 | - 11 | 60.5 | | S by W | •• | •• | ••• | Pos.
Pos. | 12
12 | 40
35 | • • | • • | •• | | | 29.661
29.654 | | | | | | - | •• | S | •• | • | | Pos. | 4 | 10 | | • • | | | | 29.634 | | | | 49.5 | | | •• | $\tilde{\mathbf{s}}$ | •• | wsw | 0.85 | Neg. | 40 | 40 | 15 | | •• | | June 16. 0 | 29·603
29·573 | 57·7 | 52·5 | 5·2
3·2 | •• | | $\begin{bmatrix} 62.7 \\ 49.6 \end{bmatrix}$ |
2·13 | SSW
SSW |
½ to 3 | •• | | Neg.
Pos. | 5
3 | 5
10 | 0
0 | 0
0 | 5. | | 4 ∥ | 29.519 | 54.5 | 52.9 | 1.6 | 50.5 | | 78.0 | | S by W | 0 to 1 | •• | | | •• | 0 | 0 | 0 | | | | 29.475 | | 53.8 | 0.9 | ••• | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 0.10 | S by W | 0 to $\frac{1}{2}$ | •• | •• | Pos. Pos. | 2 2 | 3
2 | 0 | 0 | •• | | 8
10 | 29·436
29·459 | 55·7 | 54·9 | 1.6
1.6 | 52·0 | 3.7 | $\left \frac{1}{63\cdot 2} \right $ | 6.680 | SSW
SSW | •• | •• | | Pos. | 2 2 | 2 | 0 | 0 | | | | 29.451 | | | | | | 60.2 | | ssw | :: | | | | | 0 | 0 | 0 | | Osler's Anemometer. June 15^d . 0^b . 15^m and 2^b . 50^m . There were pressures of $6\frac{1}{2}$ lbs. and 7 lbs. respectively. Whewell's Anemometer. June 15^d. 0^h. Previously to this time the instrument was returned from the maker and set to work. June 14^d. 22^h and June 15^d. 0^h and 4^h. There were sparks at the distances of 0ⁱⁿ·01, 0ⁱⁿ·11, and 0ⁱⁿ·05 respectively. | | Phases | | - | |-------|---------
---|---| | 0-10. | of | | 1 | | Ī | the | REMARKS. | 1 | | | Moon. | | l | | _ | | | _ | | | m :4 | | | |) | Transit | Overcast: cirro-stratus and scud: there are occasional slight showers of rain. | } | | | • • | 99 | | | | •• | | | | | • • | | | | 5 | •• | At 9 ^h the greater part of the sky was free from cloud, but continued so for a short time only: between 10 ^h and the present time the appearance of the sky has been variable, it having been at times much covered with dark clouds, and at other times but little covered by them: at present there are some dark clouds nearly at every part of the sky, and particularly so in the N. where a black cirro-stratus cloud appears to be motionless; it extends from | | | | | the E. to W. and is at an altitude of about 45°. | | | | • • | Overcast: cirro-stratus. | | | | • • | ,, , a slight rain is falling. A very thin rain was falling till $19^{\rm h}$. $45^{\rm m}$: a large quantity of scud is passing quickly from the S.W., and there is a | | | | •• | faint gleam of sunshine at present, the first that has been seen this morning. | | | | • • | Overcast: cirro-stratus and scud: fine rain is falling. | | | | | | | | | Transit | Overcast: cirro-stratus and scud: fine rain is falling. the rain ceased about half an hour since. | | | | · · | Ill-formed cumuli near the horizon all around: white clouds of no particular modification are scattered over the | | | | | remainder of the sky: patches of blue sky are seen here and there. | | | 1 | • • | Ill-formed cumuli near the horizon: fleecy clouds and scud nearly cover the remainder of the sky. | | | | •• | Cirro-stratus and scud: a thin rain is falling. | | | | •• | " | | | | •• | ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, | | | | •• | Cloudless: the rain ceased soon after the last observation. | | | | •• | en e | | | 1 | •• | The southern half of the sky is covered with cirro-strati and cumuli: light scud passing over the sky. | | | 1 | •• | Masses of cumuli, cirro-cumuli, and scud: a few minutes since a slight rain was falling. | | | | 3, | Cumuli, cirro-cumuli, and scud: the amount of cloud is continually varying: there have been two short squalls of wind and rain since the last observation. | | | | Transit | Large masses of cumuli and scud about the horizon: the squalls of wind and rain have continued since the last observation. | | | | •• | Overcast: cirro-stratus and scud: rain is falling heavily, it commenced at 3 ^h , 50 ^m . | | | | •• | Cumulo-strati, cirro-strati, and large masses of scud: a few breaks about the zenith: distant thunder is heard in the N. | | | | •• | Cirro-stratus towards the horizon: in the N. and S. a few cumuli are scattered about: the sky became clear about ten | | | | •• | Cloudless. [minutes since. | | | | •• | ,,
,, | | | 1 | | Overcast with thin hazy cirri. | | | | | Overcast with very thin cirro-stratus, and a few lines of cirri and scud. | | | | •• |);
() () () () () () () () () () () () () (| | | | •• | Overcast: rain is falling. | | | | | Rain has been falling nearly continuously since the last observation; at present it is falling very lightly. | | | | | Overcast: cirro-stratus: no rain has fallen since the last observation. | | | | Transit | ,, cirro-stratus and scud: rain is falling. | | | 1 | •• | ,, the rain has just ceased falling. | 1 | | | | ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, | | | • | •• | there have been occasional breaks in the clouds near the zenith since 10 ^h . | 1 | Henley's Electrometer. June 15^d . The reading was 7°. | | | | | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | | WIN | D | | ELE | CTRICA | LIN | STR | UME | NTS. | |--|------------------|---------------|---------------|-----------------------|--------|------------------------------|--|---|------------------------|--|--------------|--|---|---|----------------------|-----------------------|-----------------------|---| | Day and Hour,
Göttingen | Baro-
meter | Dry | Wet | Ther- | | Point | read at 22h. of Free Therm. | Stand of
No. 1.
(Osler's). | From (| | From Whe | | Sign | Rea | ding | s of | , | Interva | | Astronomical Reckoning. | Cor-
rected. | Ther-
mom. | Ther-
mom. | mom.
below
Dry. | Dew | below
Dry
Ther
mom. | of Rad. Therm. of Therm. in Water of the Thames. | Reading of No. 2. Stand of No. 3. (Crosley's). | Direction. | Pressure
in lbs. per
square
foot. | Direction. | Descent of
the pencil
during the
continu-
ance of
eachWind. | Electricity,
as
shewn
by Dry
Pile Appa-
ratus. | Single
Gold Leaf
of Dry
Pile Appa-
ratus. | Double
Gold Leaf. | Straws of
Volta 1. | Straws of
Volta 2. | the sau
degree
of tensi
after
dischar | | June 16. 14 | in.
29·443 | o
52·7 | °
52·0 | o
0·7 | 0 | 0 | 0 | in. | ssw | from
lbs. to lbs. | •• | in. | | 0 | 0 | div. | div. | m s | | 16 | 29.445 | | | | 49.8 | 0.9 | | •• | ssw | •• | | | | | 0 | 0 | o | ••, | | 18
20 | 29·453
29·452 | | | | • • | •• | •• | •• | SSW
SSW | •• | :: | | Pos. | 30 | 0
30 | 0
10 | 0
10 | •• | | 22 | 29.464 | 60.3 | 53·1 | 7.2 | 47.0 | 13·3 | | •• | sw | | ssw | 4.60 | Pos. | 20 | | 15 | 20 | 10. (| | June 17. 0 | 29.465 | | | | | | | •• | SSW | | •• | •• | Pos. | 15 | •• | 10 | | 17. | | $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$ | 29·462
29·462 | | | 6·3 | 49.0 |
13·4 | •• | •• | SSW
SW | •• | | | Pos. Pos. | 15 | · · 5 | 10
0 | 15
0 | 20. (| | 6
8 | 29·451
29·464 | | 54·9
56·0 | | | • • | 68·3
51·1 | •• | ssw
s | | •• | | Pos.
Pos. | 40 | 0 | 0
40 | 0
50 | 0. 19 | | 10 | 29.505 | 51.8 | 50.9 | 0.9 | 50·0 | 1.8 | 88.5 | $\frac{2.33}{0.25}$ | wsw | | •• | | Pos. | 20 | •• | 70 | 80 | 35. (| | 12 | 29.476 | 52.6 | 51.1 | 1.5 | | | $\left \begin{array}{c} 42.5 \\ \end{array} \right $ | 6.938 | s | | | | Pos. | 2 | 2 | 0 | 0 | | | 14 | 29.458 | 52.4 | 50.9 | | | | 63.5 | | ssw | | | | Pos. | 2 | 2 | 0 | 0 | | | 16 | 29.463 | | | 1.3 | 49.0 | 3.0 | 〔60·2 〕 | | $\mathbf{s}\mathbf{w}$ | | •• | | | | () | . 0 | 0 | | | 18 | | 52.3 | | 0.7 | •• | •• | •• | •• | WSW | •• | ••• | •• | Neg. | 20 | • • | 20 | 25 | 0. 30 | | 20 | 29.496 | | | 0.3 | ••• | • | •• | •• | SW | •• | •• | •• | Neg. | 40 | •• | 40 | 50 | Instant | | 22 | 29.508 | | | 0.7 | 51.5 | 2.1 | •• | •• | SW | •• | WSW | 0.80 | Neg. | 6 | 8 | 0 | 0 | •• | | June 18. 0 | 29·520
29·566 | | | 4.5 | •• | •• | •• | •• | WSW | •• | •• | •• | Neg. | 12 | 25 | •• | 110 | •• | | 4 | 29.577 | | | 1·4
1·9 | 53.5 | 4.2 | (61.5) | •• | NNW | •• | •• | | Neg.
Neg. | 40
40 | •• | | 110
60 | I | | 6 | 29.605 | | 1 1 | 3.8 | | | 49.6 | | NNW | •• | •• | | Pos. | 15 | • • | 10 | 12 | 4. | | 8 | 29.644 | | | 2.6 | | | 100 | 2.41 | NW | •• | •• | | Pos. | 10 | | 8 | 10 | 10. | | 10 | 29.660 | | | | 51.0 | 3.7 | 69.0 | 0.13 | W | | | | Pos. | 15 | ٠. | 10 | 12 | 7. | | 12 | 29.675 | | | 1.2 | •• | ••• | 41.0 | 0 10 | W by S | | • • | | Pos. | 30 | | 30 | 50 | 12. | | 14 | 29.692 | | | 1.1 | | •• | | | W by S | •• | •• | | Pos. | 30 | • • | 30 | 50 | •• | | 16
18 | 29·700
29·713 | | | | | 3.4 | 62.8 | 7.150 | W by S | •• | •• | | Pos. | 25 | • • | 10 | 20 | •• | | 20 | | | | | | •• | [60.0] | •• | W by S
W | •• | •• | | Pos. | 20 | •• | 10
12 | 20
15 | 5. | | 22 | 29.756 | | | | | 10.0 | •• | •• | w | •• | wsw | 2.22 | Pos.
Pos. | 15
20 | • • | 25 | | J | | June 19. 0 | 29·758
29·781 | | | | 11 - 1 | •• | •• | | W
N W | 0 to $\frac{1}{2}$ | \mathbf{w} | 0.68 | Pos. | 15 | • • | 15
8 | - | | | | 29 780 | 66.6 | 58.8 | 6.5 | 53.0 | 13.6 | •• | •• | NW | 0 to $\frac{1}{2}$ | NW | 0.15 | Pos. Pos. | 5
2 | 5 | | 5 | •• | | 6 | 29.793 | | | | | | (68.9) | • • | NNW | •• | 14 44 | | Pos. | 40 | | 20 | 20 | | | _ | l | | | | | | 49.8 | 2.41 | | •• | | | | | | | | | | 8
10 | 29·826
29·829 | | | 2·7
1·2 | 53.0 | 2.3 | 05.4 | | NNE | •• | •• | ••• | Pos. | 40 | 0 | 30
0 | 40 | 16. 3 | | 10 | 29 829 | | | | | 2.3 | $\left\{egin{array}{c} 85\cdot4 \ 39\cdot5 \end{array} ight\}$ | 0.00 | NNE
SSE | •• | • • | | •• | •• | 0 | 0 | 0 | • • • | | 14 | 20 301 | 000 | | | | | | | | :: | | :: | • • | •• | | | | | | 16 | | | | | | | 63.0 | 7.150 | | • • • | | | | | | | | | | 18 | | | | | | | 60.2 | | , | | | | | | | | | | | . 20 | | | | | | | ••• | | | | • • | | | | • • | • • | | | | 22 | | | | 1.6 | •• | | •• | | | | SW | 0.55 | | ••• | 0 | 0 | 0 | | | 23 | 29.828 | 61.3 | 157.8 | 3.5 | 1 1 | | | | SW | | 1 | I | l I | 1 | 0 | 0 | 0 | | Osler's Anemometer. June 19^d . 22^h . The direction pencil was found off the rack-work, and had been so since 12^h . 20^m . ELECTRICITY. June 17^d. 20^h. There was a spark at the distance of 0ⁱⁿ·02. June 18^d. 2^h, 4^h, 12^h, and 14^h. There were sparks at the distances of 0ⁱⁿ·02, 0ⁱⁿ·02, 0ⁱⁿ·01, and 0ⁱⁿ·01 respectively. Henley's Electrometer. June 18^d . 2^h and 4^h . The reading was 2° at each time. | Amount of Clouds, | Phases
of
the | REMARKS. | | |-------------------|---------------------
--|---| | Amou | Moon. | | | | 2 | | Till 13 ^h . 42 ^m the sky was covered by a thin cirro-stratus cloud, which has dissipated, and the sky is cloudless, except near the horizon, where a low bank remains: the stars look small and dull. | • | | 10
10
01 | •• | The sky is covered again with a thin cirro-stratus cloud, broken here and there, but the portion of sky without cloud A thin cirro-stratus covers the sky. [is of no numerical extent.] There have been occasional faint gleams of sunshine: the sky is very nearly covered with cirro-stratus and scud; | | | 9 <u>1</u> | • • | the former, within the last hour, has sensibly become less dense, and the latter has diminished in quantity. Cirro-strati, fleecy clouds, and scud cover the greater part of the sky: there are some breaks a little S. of the zenith. | | | 0 | •• | Overcast: fleecy clouds and scud. ,, cirro-strati, fleecy clouds, and scud: there have been occasional breaks since the last observation. | | | 9 | Transit | With the exception of a portion of blue sky about and to the E. of the zenith, the sky is covered with cumulo-strati, fleecy clouds, and scud. | | | 0 | •• | The sky is wholly covered by cloud, portions of cumuli, cumulo-strati, dark cirro-strati, and scud. The sky is covered with very black clouds, particularly to the N. and N.W.; the clouds are so dense and dark as to cause a considerable gloom: a light rain is falling. | | | 8 | •• | A shower of rain fell at 8 ^h . 10 ^m , and since that time a portion of the sky about the zenith has been nearly free from cloud: at present the sky near the zenith and around it, just reaching to the Moon and Venus, is clear, everywhere else being covered by cirro-stratus. | | |) | •• | Overcast: cirro-stratus and scud. | | |) | •• | 990 m. 1990 | | | , | • • | ,, rain is now falling. | | |) | •• | rain is falling heavily: several peals of thunder have been heard in the N., and rain has fallen continuously since the previous observation. | | | 0 | | Overcast: cirro-stratus and scud: the rain has just ceased falling. | 0 | | 0 | | Overcast: cirro-cumuli and dark scud. | | | 0 | | ,, cirro-stratus and scud: rain is falling, and has been falling since the last observation. | 0 | | 3 | Transit | cumulo-strati, cirro-strati, and scud: the rain is falling heavily: at 4 ^h . 3 ^m the rain ceased. Cirro-strati, fleecy clouds, and cirri: a few cumuli towards the S. | | | 7 | ••• | Thin cirro-strati, fleecy clouds, and scud. | | | 3 | | Overcast: cirro-stratus and scud. Overcast, with the exception of clear sky reaching from the zenith towards the N.W. part of the horizon. | | | 2 | :: | Cloudless, with the exception of a low bank of cloud towards the N. and N.W. parts of the horizon. | ` | |) | ••• | Overcast: cirro-stratus and scud. | | |) | •• | Cloudless, with the exception of a few lines of cirri to no numerical amount. Overcast: cirro-stratus, fleecy clouds, and scud. | C | | | | ,, ,, | | | : | | Cumulo-strati, cirro-strati, and scud. | | | | | Overcast: cumulo-strati, dense cirro-strati, and scud. | | | 3 | Transit | ,, cirro-strati, cumulo-strati, and scud: a few small breaks, but to no numerical extent. A portion of the sky, near the zenith and around it, is generally free from cloud, but it is of a very pale blue colour; | | | . | | the remainder of the sky is generally covered with cirro-stratus clouds. The sky is cloudless, except a few clouds about the place of the Sun and a few small clouds scattered about the sky, | | | | | Cirro-cumuli in various directions. [which are becoming less in amount. | (| | 1 | •• | Cloudless. | 0 | | | •• | | | | | | | | | | | | | |) | | The morning has been dull, and the sky covered with clouds: at present a very thin rain is falling. | | |) [| | The clouds are much lighter and thinner: the Sun is shining faintly. | 1 | | | | | | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICA | L IN | STR | UME | NTS. | |------------------------------------|------------------|---------------|---------------|---------------|--------|----------------------|--|-------------------------------------|--|---|------------|---|---|---|----------------------|-----------------------|-----------------------|--| | Day and Hour, | Baro- | | | Ther- | | Point | read at 22h. | Stand of
No. 1. | From C | , | From Whe | | Sign | Re | ading | s of | | Interval
of time in | | Göttingen | meter | Dry | Wet | mom. | Dew | below | Free Therm. | (Osler's).
Reading of | Anemo | meter. | Anemome | | Electricity, | Single | | | | recovering | | Astronomical Reckoning. | Cor-
rected. | Ther-
mom. | Ther-
mom. | below
Dry. | Point. | Dry
Ther-
mom. | Rad. Therm. of Therm. in Water of the Thames. | No. 2. Stand of No. 3. (Crosley's). | Direction. | Pressure
in lbs. per
square
foot. | Direction. | Descent of
the pencil
during the
continu-
ance of
eachWind | shewn
by Dry
Pile Appa-
ratus. | Gold Leaf
of Dry
Pile Appa-
ratus. | Double
Gold Leaf. | Straws of
Volta I. | Straws of
Volta 2. | the same degree of tension after discharge | | d h | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | | from
lbs. to lbs. | | in. | | 0 | 0 | div. | div. | m 5 | | June 20. 0 | | •• | | | | | •• | | sw | • • | | 1 | | | 0 | 0 | 0 | | | 2 | •• | ••• | •• | | •• | •• | •• | | SW | •• | •• | | ••• | ••• | | • • | • • | • • | | 4 | 29.793 | 64.5 | 60.0 | 4.2 | ••• | •• | 600.50 | •• | WSW | •• | •• | •• | •• | •• | ••• | • • | • • | •• | | 6
8 | • • | ••• | •• | | ••• | ••• | 66·5
55·1 | •• | WSW
WSW | •• | • • |] •• | •• | •• | • | | ••• | •• | | 10 | | | | | | | 35 1 | 2.41 | wsw | • • | | | | | | | | | | 12 | | | | | | | 77.0 | 0.01 | SSW | | | | | | | | | | | 14 | 29.747 | 56·1 | 55.1 | 1.0 | | | 48.5 | 0.01 | sw | | •• | | Pos. | | 3 | | | | | 16 | 29.714 | 61 | 11 | 1 | 54.0 | 2.5 | | 7.175 | SW | ••• | •• | | | | 0 | 0 | 0 | •• | | 18 | 29.704 | | | | •• | •• | 63.5 | 11.0 | SSW | | •• | •• | •• | ••• | 0 | 0 | 0 | •• | | 19
20 | 29·702
29·704 | | | | •• | ••• | 〔60·2 〕 | •• | SSW
SSW | 0 to ½ | •• | •• | •• | •• | 0 | 0 | 0 | •• | | 20
21 | 29.704 | | | 1 | | | •• | •• | SSW | 1 to 1 1 to 4 | •• | •• | | ••• | 0 | 0 | 0 | •• | | 22 | 29 683 | H | | - | 51.0 | 1 1 | •• | •• | ssw | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | sw | 4.60 | ••• | •• | ő | ŏ | Ö | | | June 21. 0 | 29.661 | 11 | 11 |) 1 | | | | | ssw | $\frac{1}{2}$ to $2\frac{1}{2}$ | | | | | 0 | 0 | 0 | | | 1 | 29.660 | | | 1. | | •• | •• | | SW | 0 to 2 | •• | •• | | •• | 0 | 0 | 0 | | | 2 | 29.655 | | 56.5 | | • • | ••• | •• | •• | SSW . | 1 to 3 | •• | •• | •• | •• | 0 | 0 | 0 | ••• | | $\frac{3}{4}$ | 29·653
29·653 | II. | 11 | | 53.0 | 9.5 | •• | ••• | SSW
SSW | 0 to 3
1 to 3 | • • | •• | •• | ••• | 0 | 0 | 0 | •• | | 5 | 29.646 | 1 | 1 | 1 _ 1 | 350 | | •• | | SW | 0 to 2 | św | 3.80 | ••• | | 0 | 0 | 0 | •• | | 6 | 29.637 | 11 1 | | , , | | | | :. | SSW | 1 to 2 | ••• | | | | o | o | o | | | 7 | 29.641 | 59.2 | | 2.8 | | | | | SSW | 0 to 1 | | | | | 0 | 0 | 0 | | | 8 | 29.632 | 58.5 | 56.2 | 2.3 | ••• | | 62.7 → | | SSW | 0 to $\frac{1}{2}$ | •• | \ | | | 0 | 0 | 0 | •• | | | 20.690 | 50.0 | - 4 | 2.3 | | | 51.7 | 2.41 | COM | | | | | | ١, | | | | | 9
10 | 29.633
29.630 | | 1 | | 52.0 | 3.6 | 76.0 | | SSW
S by W | •• | • • | •• | •• | • • • | 0 | 0 | 0 | •• | | 10 | 29.619 | | | | 02.0 | | 44.8 | 0.00 | Suy W | • | | | | • • • | 0 | 0 | 0 | • • | | 13 | 29.607 | 53.5 | | 1 : | | | | 7 .000 | $\tilde{\mathbf{s}}$
| | | | | | 0 | 0 | 0 | | | 14 | 29.592 | | , | | | | 63.8 | 7.200 | S by W | | •• | | | | 0 | 0 | 0 | | | 15 | 29.585 | | | (I | | | [60·2] | | S | •• | •• | | •• | | 0 | 0 | 0 | •• | | 16 | 29.582 | 52·6
52·5 | | | 51.2 | 1.1 | •• | •• | S | ••• | •• | •• | ••• | •• | 0 | 0 | 0 | •• | | 17
18 | 29·585
29·592 | | 1 | | | ••• | •• | •• | S by W
SSW | •• | •• | •• | •• | ••• | 0 | 0 | 0 | •• | | 19 | 29.597 | 1 1 | 1 | | | | :: | | SW | | | | | | 0 | 0 | 0 | •• | | 20 | 29.604 | | | | | | | | $\tilde{\mathbf{s}}\mathbf{w}$ | | | | | | 0 | 0 | o | | | 21 | 29.600 | | | | | | •• | | SW | | | | ,. | | 0 | 0 | .0 | •• | | 22 | 29.597 | | | | 45.0 | 15.7 | | | SW | •• | WSW | 1.20 | ••• | | 0 | 0 | 0 | •• | | 23 | 29.591 | | | | •• | •• | •• | •• | sw | •• | •• | | Pos. | 2 | 2 | ••• | • • | •• | | June 22. 0 | 29.580 | | | | | | •• | | SW | | •• | | Pos. | 6 | 8 | 5 | | •• | | 1 | 29.578 | | | | •• | •• | •• | •• | SW | | •• | •• | ТР | | 0 | 0 | 0 | •• | | $egin{array}{c} 2 \ 3 \end{array}$ | 29·561
29·555 | | | 7·7
6·5 | •• | •• | (66.0) | •• | SSW
SSW | 0 to $\frac{1}{2}$ | •• | •• | Pos. | 8 | 10 | | ••• | •• | | 4 | 29.544 | 63.4 | 55.1 | 8.3 | 48.0 | 15.4 | 44.6 | 2.41 | SSW | 0 to $\frac{1}{2}$ 0 to $\frac{1}{2}$ | • | | Pos.
Pos. | 4 | 5 7 | : : | : :
 | • • | | 5 | 29.533 | 63.6 | 54.9 | 8.7 | | | | | $\widetilde{\mathbf{s}}\widetilde{\mathbf{s}}\widetilde{\mathbf{w}}$ | 0 to $\frac{2}{5}$ | | | Pos. | 6 | 10 | | | •• | | 6 | 29.519 | 61.8 | 53.7 | 8.1 | | | $\left \begin{array}{c} 84.2 \\ 36.0 \end{array}\right $ | 0.00 | ssw | 0 to $\frac{1}{2}$ | | | Pos. | 5 | 8 | | | | | 8 | 29·532 | | | | | • • | 30 0 | | SSW | ~ | •• | | Pos. | 5 | 8 | | | •• | | 10 | 29.527 | | | | 46.0 | 6.5 | 64.0 | 7.225 | S by W | | •• | •• | Pos. | 7 | 10 | • • | $ \cdot\cdot $ | •• | | 12
13 | 29·522
29·503 | | | | •• | ••• | 60.5 | •• | S by W | •• | •• | •• | •• | | 0 | 0 | 0 | • • | | 13 | 29.503 | 47.0 | 40.9 | 0.3 | | ••• | | ••• | SSW
S | •• | | | | | 0 | 0 | 0 | •• | | | 29.515 | | | | | 1.0 | | •• | ssw | :: | | | | | 0 | 0 | 0 | •• | | | | | | - | | | | ' | | ' | | ' | | | - | ľ | | •• | | <u>-</u> | <u> </u> | | | · · · · · · | | | | ·· | · | | | * | ······································ | · | | | | | | Amount of Clouds, | Phases of the Moon. | REMARKS. | Observer. | |--|-----------------------------------|---|-----------| | 10

4
8
10 | In Equator Apogee Transit 1st Qr. | The clouds have been frequently more or less broken since 23 ^h ; at present the sky is quite cloudy. Between 4 ^h and 9 ^h the sky was generally covered by cirro-stratus clouds; a little rain fell between 9 ^h and 10 ^h , after which the sky became clear in different places; the Moon was visible for a short time near the horizon, and the clouds gradually dissipated. [seem to be of a fleecy character. The whole of the western hemisphere is clear, and the greater part of the eastern hemisphere is cloudy, but the clouds A large quantity of scud is scattered over the sky, moving from the W.: a very wild looking sky. Overcast: cirro-stratus and scud. | G | | 10
10
10
10 | •• | 75 | G | | 10
10
10
10
9
10 | | Overcast: cirro-stratus and scud. ',' ',' ',' Overcast, except a small portion of blue sky to the S.; the sky is generally covered with scud: there does not seem Overcast: large masses of scud: the wind is in gusts to 1½ and to 2. [to be any upper cloud. | L
G | | 10
10
8
9
8
3
8
10
10 | Transit | ',' the scud is less in quantity than before: the wind is blowing in gusts to 1½ and 2. There are many small portions of blue sky in different places: the Moon was visible for some little time about half an hour. since: large quantities of scud moving from the W. [horizon. Thin detached cirri, through which the blue sky in places is visible, with a very long bank of scud towards the N.W. Cirri, light fleecy clouds, and scud, more particularly towards the S. and S.W. portions of the sky. Cirro-stratus around the horizon: a few light clouds about. The greater part of the sky is covered with cirro-stratus and scud. Overcast: cirro-stratus and scud: rain is falling. ,, the rain has ceased. | G I | | 10
8
4
3
2
7 | | Fleecy clouds, cirro-strati, and scud: breaks towards the W. Cirro-stratus and light clouds are scattered about the sky. Cirro-stratus and fleecy clouds about the horizon. Cirro-stratus around the horizon, some cumuli towards the N. Cirri, detached patches of cumuli, and scud are in every direction. Cirri, with masses of cumuli in various directions, and small portions of scud. | L
G | | 8
10
9½
7
8
4
4
2
0
0 | Transit | Cirri, with large masses of cumuli and scud in various directions. Cirro-strati, cumuli, and scud. Cirro-strati, cumuli, and masses of dark scud. Cirro-strati, cumuli, and masses of dark scud. Cirrus, thin cirro-stratus, cumulus, and scud: a large space in and near the zenith is clear: a shower of rain, lasting Detached cumuli, cirro-strati, and masses of white scud cover the greater part of the sky. Cirri with detached cumuli principally about the horizon. Cumulo-strati and detached cumuli around the horizon: a few cirri and light clouds are floating about. Cirro-stratus around the horizon: there are a few light clouds scattered about: a bank of cumulo-strati towards the N. A few light clouds, but to no numerical extent. Cloudless. | G I | | 2
10 | •• | A patch of thin hazy cloud towards the S.W. horizon. Overcast with thin and uniform stratus. | | | _ | _ | | | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICAL | IN | STR | UME | NTS. | |---|------------------|---------------|--------------|---------------|--------------|----------------------|--|--------------------------------------|------------------|--|------------|--|---|---|-------------------------------------|-----------------------|-------------------|---| | Day and Hour, | Baro- | D | Wet | Ther- | | Point | read at 22h. | Stand of
No. 1. | From (| | From Whe | | Sign
of | Re | ading | s of | | Interval
of time in | | Göttingen | meter | Dry | 1 | mom. | Dew | below | Free Therm. | (Osler's). Reading of | Anemo | meter. | | Descent of | Electricity
as | Single
Gold Leaf | ی ا | ŧ. | . of | recovering the sam | | Astronomical Reckoning. | Cor-
rected. | Ther-
mom. | Ther- | below
Dry. | Point. | Dry
Ther-
mom. | Rad. Therm.
of Therm. in
Water of the
Thames. | No. 2. Stand of No. 3. (Crosley's). | Direction. | Pressure
in lbs. per
square
foot. | Direction. | the pencil
during the
continu-
ance of
eachWind, | shewn
by Dry
Pile Appa-
ratus. | Single
Gold Leaf
of Dry
Pile Appa-
ratus. | Double
Gold Lea | Straws of
Volta 1. | Straws
Volta 2 | degree
of tension
after
discharg | | d h | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | | from
lbs. to lbs. | | in. | | 0 | 0 | div. | div. | m | | June 22. 18 | 29.516 | | 45.9 | | | | | | S by W | | | | | ٠. | 0 | 0 | 0 | • • | | 19 | 29.521 | | | | | •• | | | S by W | | | | | | 0 | 0 | 0 | •• | | $egin{array}{c} 20 \ 22 \end{array}$ | 29·527
29·525 | 54·9
61·8 | | | 47.0 | 14.8 | | ••• | SSW
SSW | •• | sśw | 4.55 | | | 0 | 0 | 0 | | | - | | | | | | | | |) | | | | | 90 | | 40 | 20 | | | June 23. 0 | 29·521
29·523 | | | 3·9 | •• | | •• | •• | SSW
SSW | 0 to 1 | •• | | Neg.
Neg. | 30
15 | •• | 40
 10 | 30
15 | Instan | | 4 | 29.514 | | | | 52·5 | 5.0 | | •• | NW | | | | Neg. | 40 | •• | 6 | 29.509 | | | | 3 | | , | | ssw | | | | Pos. | 4 | 5 | | | | | 8 | 29.510 | | | | P . | | | | SSW | | | | Pos. | 5 | 8 | | | | | 10 | 29.518 | | | | | 4.2 | •• | ••• | SIN | | •• | •• | Pos. | 40 | 30 | 10 | 10 | 11 | | 11 | 29.518 | 21.8 | 90.6 | 1.2 | ••• | | 62.7 | •• | S by W | •• | •• | | •• | •• | | ' ' | • • | •• | | 10 | 00.517 | 51.0 | 40.0 | 7.0 | | | 49.9 | 2.46 | Q 1 107 | | | | Pos. | 40 | 40 | 10 | 10 | | | 12
13 | 29·517
29·506 | 50.8 | 49.9 | $0.9 \\ 1.3$ | | ••• | 81.2 | 0.07 | S by W
S by W | | •• | | ros. | 1 | 40 | 10 | | | | 14 | 29.497 | | | | •• | | 44.5 | | S by W | | | | Pos. | 25 | 30 | 12 | 7 | | | 15 | 29.482 | 51.5 | 50.4 | 1.1 | | | 64.0 | 7.330 | S by W | | | | | | | | | | | 16 | 29.477 | | | 0.9 | 49.0 | 2.8 | [60⋅2] | | S by W | | | | Pos. | 20 | 30 | 10 | | | | 17 | 29.480 | | | 1.1 | | | | | S by W | | | | | | | | | | | 18 | 29.480 | | | 1.6 | •• | ••• | | | S by W | | | | Pos. | 10 | | 8 | 10 | • • • | | 19 | 29.484 | 55.4 | 51.9 | 1.2 | •• | • • | | •• | S by W | •• | •• | ••• | Pos. | 15 | 20 | •• | 8 | •• | | 20 | 29.488 | | | 3.6 | •• | | • • • | | SSW | 0 to $\frac{1}{2}$ | •• | ••• | Pos. | 18
2 | 25 |
••• | 10 | •• | | $\begin{array}{c} 21 \\ 22 \end{array}$ | 29·488
29·487 | | 55·0
54·1 | 4·7
2·9 | 51·0 | 6.0 | •• | •• | S by W
SSW | 0 to 1 | ssw | 5.00 | Neg.
Pos. | 18 | $egin{array}{c} 2 \ 25 \end{array}$ | 10 | | | | 23 | 29.478 | | | - 1 | | | •• | | SSW | •• | | | | | | | | | | June 24. 0 | 29.482 | 61.0 | 55.0 | 6.0 | | | •• | •• | sw | ½ to 1 | •• | | Pos. | 40 | | 40 | 50 | • • | | 1 | 29.472 | 63.2 | 56-1 | 7·1 | •• | •• | •• | •• | sw | $\frac{1}{2}$ to $1\frac{1}{2}$ | • | | Pos. | 5 | 8 | | | •• | | 2 | | | | 7.9 | | | | | sw | ½ to 1 | | | Pos. | 3 | 4 | | | | | 3 | 29.458 | 64.0 | 56.5 | 7.5 | • • | | (65.7) | ••• | SW | $\frac{1}{2}$ to 3 | ••• | | | | | ••• | •• | •• | | 4
5 | 29·462
29·465 | | | 8·9
6·5 | 50.0 | 15.0 | 52.3 | 0.40 | SW
SW | 1 to 1½ | •• | | Pos. | 8 | 10 | ••• | | ••• | | 6 | 29.465 | | | 7.0 | •• | | | 2.46 | ssw | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | | | Pos. | 15 | 20 | 5 | | • | | 7 | 29.465 | 59.7 | 53.4 | 6.3 | | | 81.2 | 0.00 | SSW | 0^2 to $\frac{1}{5}$ | | | | | | | | | | 8 | 29.470 | | | 4.7 | •• | | 45.0 | | SSW | 0 to $\frac{\tilde{1}}{2}$ | | | Pos. | 20 | 40 | 12 | • • | ••• | | 9 | 29.479 | | | 3.7 | | ••• | 64.0 | 7.335 | SSW | •• | •• | | - · | 1 :: | ••• | 10 | 10 | • • • | | 10
12 | 29·487
29·502 | 55.0 | 52.7 | 2.3 | 51.0 | | 60.2 | •• | SSW
SSW | •• | • • | ••• | Pos. | 10
5 | 25 | 12
10 | 10
7 | ••• | | 14 | 29.503 | 53 8 | 52.3 | 2·2
1·5 | | •• | - | •• | SSW | •• | | | Pos. | 3 | 10 | | | | | 16 | 29.504 | | | | 51.0 | 2.0 | :: | | ssw | | | | Pos. | 5 | 12 | | | | | 18 | 29.535 | 55.0 | 53.4 | 1.6 | | | | | SSW | | • • | | | •• | 0 | 0 | 0 | | | 20 | 29.547 | | | 3.2 | | | | •• | SSW | | COM | | | • • • | 0 | 0 | 0 | • • • | | . 22 | 29.542 | 58.7 | 56 7 | 2.0 | 55 ·0 | 3.7 | | • • • | ssw | 0 to 2 | ssw | 6.35 | •• | | 0 | 0 | 0 | ••• | | June 25. 0 | 29.547 | | | 3.0 | | | | | ssw | 1½ to 2 | • • | |
D | ٠. | 0 | 0 | 1 1 | | | 2 | 29.563 | 67.5 | 59.3 | 8.2 | | | | | SW | 1 to 2 | | | Pos. | 5 | | 8 | 5 | | Maximum Free Thermometer. June $23^{\rm d}$. $22^{\rm h}$. The reading was lower than that of the Dry Thermometer at $0^{\rm h}$. Electricity. June 23^d . There were sparks at the distance of 0^{in} .05 occurring at intervals of two seconds. Henley's Electrometer. June 23^d . The reading was 10° . | Amount of Clouds, | Phases | | | |--|---------|--|------------| | ១ខុ | | | | | 94 | of | | 1 | | unto | the | REMARKS. | err | | Ато | Moon. | | Observer. | | 3 | •• | A few light cirri are scattered over the sky towards the S. E. | G H | | 0 | ••• | Cloudless. | | | 6 | •• | Cloudless, except a few light cirri of no numerical amount. Detached cumuli, cirro-strati, and large masses of scud. | G H
L | | | •• | Detached cumun, curo-strati, and large masses of soud. | L | | 7 | •• | Cumuli, cumulo-strati, and large masses of scud. | | | 10 | •• | The sky is covered with cirro-stratus and fleecy clouds: a little rain has been falling. Overcast: cirro-strati, cirro-cumuli, and nimbi towards the N.W.: since the last observation two heavy showers of | L | | 10 | •• | rain have fallen, of short duration. During the observations several peals of thunder have been heard, the storm appearing to move from the N.W. by N. to the E. | GН | | 9 | | Cirri, cumuli, and cirro-cumuli in the southern half of the sky; the northern half is covered with a mass of dark scud. | | | 6 | Transit | Cirri and cirro-strati scattered over the sky, with a large mass of scud towards the N.W. and N. portions of the horizon. | | | $\begin{vmatrix} 9\frac{3}{4} \\ 10 \end{vmatrix}$ | •• | Within the last few minutes the sky has become very nearly covered by cirro-stratus. Overcast: cirro-stratus: the Moon's place visible: at 11 ^h . 40 ^m the clouds became much thinner: a fine halo, | G H | | | | perfect as far as it could be seen, was formed, whose radius was $23\frac{1}{2}^{\circ}$: a corona was also formed around the Moon. | | | 7 | •• | At present there is no halo, but the greater part of the sky is covered with cirro-stratus cloud. [no halo is visible. | G | | 5 9 | •• | The sky is covered in several directions with thin cirro-stratus clouds; the Moon is also covered with a thin cloud, but The only portion of clear sky is E. of the zenith, and that of small extent; in every other direction cirro-stratus and | T D | | " | •• | masses of dark scud prevail. | | | 10 | | Overcast: cirro-stratus and scud. | тр | | 10 | •• | ,, · | L | | 10 | •• | ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, | | | 7 | •• | Cirri, cirro-cumuli, with masses of scud, are scattered over various parts of the sky: clear S.W. of the zenith: a light rain of short continuance has fallen since the last observation. | L | | 91 | •• | Cirro-cumuli and scud: a few breaks towards the S.E. [also fallen at intervals since the last observation.] | GН | | 8 7 | •• | Cirro-cumuli and dark scud: there is a large space of blue sky towards the E. horizon: rain is beginning to fall; it has Broken clouds of no particular modification are scattered over the sky. | G H | | 8 | •• | Cumuli, cumulo-strati, and scud in every direction: a portion of clear sky in the S.W. and S.S.W.: no rain has fallen since the last observation. | T D | | 10 | •• | The whole of the sky is covered with cirro-stratus of various densities: some portions of scud prevail in the W.: | | | 8 | | the Sun is visible through the clouds: at 23 ^h . 40 ^m a slight shower of rain fell. Several portions of blue sky are exhibited in the zenith and E. of it: cirro-strati, fragments of quickly moving scud, | T D
G H | | | | and fleecy clouds prevail in every direction. | | | 8 | •• | Cirri, cirro-cumuli, and scud in every direction. | G H | | 9 | | Cumuli and cumulo-strati are scattered in every direction. | TD | | 8 | | no change since 4h | T D | | 5 | | Cirri and small patches of cumuli are scattered about the sky. | GH | | 6 | ••• | No change since the last observation, except that the clouds are not quite so numerous. Cirri, cirro-cumuli, and scud: a large space clear towards the E. | G H
L | | 2 | | A bank of cirro-stratus in the N.: light clouds in various other directions. [there is a corona around the Moon.] | | | 7 | Transit | Cirro-stratus, fleecy clouds, and a few cirri cover the greater part of the sky, which is clear towards the E. and S.: | L | | 10 | | The sky is covered with cirro-stratus and masses of dark scud: the Moon's place is visible. Overcast: cirro-stratus and scud. | TD | | 10 | | overcast: cirro-stratus and scud. | | | 10 | | ,, | | | 10
10 | [| ,, a few drops of rain have just fallen. | TD | | 10 | •• | ,, slight rain was falling shortly before this observation. | L | | 10 | | Overcast: cirro-stratus and scud. | | | 7 | | Detached cumuli, fleecy clouds, and scud. | L | ## PARASELENÆ. June 23^d. 12^h. 10^m. Two well formed paraselenæ were seen, each at the distance of about 23½° from the Moon; that on the E. or left side was the better defined, and was perfectly formed; that on the W. side was pretty well defined: there were horizontal lines of cirro-strati about the place.—G. | | | | | Wet | | Dew | Max. and Min.
as | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICAL | LIN | STR | UME | NTS. | |--------------------------------------|------------------|-------|------------|------------|-------|-------|--|-----------------------|--------------------------------|-------------------------|---|----------------------------------|----------------------|--------------------------------------|----------------------|-----------------------|-----------------------|--------------------| | Day and Hour, | li | | | Ther- | | Point | read at 22h. | Stand of
No. 1, | From | | From Whe | | Sign | Re | ading | gs of | | Interv | | Göttingen | meter | Dry | Wet | mom. | Dew | below | Free Therm. | (Osler's). Reading of | Anemo | meter. | Anemom | Descent of | Electricity, | Single | ن. ا | <u>.</u> | ٠, | recover
the sai | | Astronomical | Cor- | Ther- | Ther- | below | | Dry | Rad. Therm. | No. 2. | | Pressure
in lbs. per | | the pencil
during the | shewn
by Dry | Single
Gold Leaf
of Dry | Leaf | Straws of
Volta 1. | Straws of
Volta 2. | degr | | Reckoning. | rected. | mom. | mom. | Dry. | | mom. | of Therm. in
Water of the
Thames. | | Direction. | square
foot. | Direction. | continu-
ance of
eachWind. | Pile Appa-
ratus. | | Double
Gold Leaf. | Stra | Stra | afte
discha | | d h | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | | from
lbs. to lbs. | | in. | | 0 | 0 | div. | div. | m | | June 25. 4 | 29.574 | 63.4 | 58.5 | 4.9 | 54.0 | 9.4 | | | SSW | 0 to $\frac{1}{2}$ | • • • | | Pos. | 8 | • • | 10 | 7 | | | 6 | 29.595 | | 57.6 | | | ••• | $\binom{68\cdot1}{}$ | • • • | SW | $\frac{1}{2}$ constant | •• | •• | Pos. | 25 | • • | 20
10 | 20
12 | 7. | | 8 | 29.617 | | 57.0 | | 54.0 | 3.2 | 49.2 | 2.46 | SW
SW | | •• | | Pos. Pos. | 8
20 | :: | 15 | 20 | | | 10
12 | 29.664
29.697 | | 52.6 | | 54.0 | 32 | 82.4 | | wsw | •• | | | Pos. | 10 | | 8 | 10 | | | 14 | 29.720 | 11 : | <i>i</i>) | | | | 41.5 | 0.00 | wsw | | | | Pos. | 10 | | 8 | 10 | | | 16 | 29.747 | | | 0.6 | 49.0 | 1.7 | | 7.385 | wsw | | •• | | Pos. | 2 | 2 | 0 | 0 | | | 18 | 29.786 | 11 | 13 | 0.8 | | • • | 64.0 | 1 900 | WSW | •• | ••• | | Pos. | 2 | 2 | 0 | 0
20 | | | 20 | 29.834 | | | | | 10.0 | [60·8] | •• | WSW | •• | wnw | 5.30 | Pos. Pos. | 20
30 | | 18
30 | 50 | 7.
10. | | 22 | 29.884 | 64.4 | 57.6 | 6.8 | 50.5 | 13.9 |
•• | •• | wsw | •• | WINW | 3 30 | | | | | | 10. | | June 26. 0 | 29.919 | 66.5 | 57.4 | 9.1 | •• | •• | •• | •• | WSW | •• | | | Pos. | 25 | •• | 10 | 20 | | | 2 | 29.947 | 66.7 | 57.9 | 8.8 | | | | | wsw | | | | Pos. | 10 | 15 | | • • • | | | 4 | 29.966 | | | 1 12 | 51.0 | 18.8 | (69.7) | •• | WSW | •• | •• | •• | Pos. | 10 | • • | 8 | 10
10 | | | 6 | 29.991 | | | 8.0 | • • • |] | 51.3 | 2.40 | W by N
W by S | •• | •• | •• | Pos. | 10
15 | | 8
15 | 20 | 10. | | 8
10 | 30·018
30·055 | | 1 1 | 6·1
3·4 | 52.0 | 6.0 | [] [] | 2.46 | W by S | •• | | | Pos. | 10 | | 8 | 10 | | | 10 | | 55.3 | | 2.4 | 32 0 | | 92.0 | 0.00 | SW | | | | Pos. | 2 | 2 | | | | | 14 | 0000 | | | | | | 44.0 | | $\tilde{\mathbf{s}}\mathbf{w}$ | | | | | | • • | | | ∥ | | 16 | | | | | | | 64.0 | 7.385 | SSW | | •• | | ••• | | •• | | • • | ∥ … | | 18 | | | | | •• | •• | 60.8 | | SW | •• | •• | ••• | ••• | •• | ••• | • • | . • • | ∥ … | | $egin{array}{c} 20 \ 22 \end{array}$ | 20.120 | 61.7 | 58·5 | 3.2 | •• | •• | | •• | wsw
wsw | • • | wsw | 2.60 | Pos. | 10 | 15 | | | | | | 30.138 | 01.7 | JO J | 3 2 | | •• | •• | •• | | • • | | | 1 05. | | | ` ` | | | | June 27. 0 | •• | ••• | •• | | • • | | •• | •• | SW
SW | •• | •• | | ••• | ••• | | | : : | :: | | 2
h m | ••• | •• | ••• | | •• | •• | •• | | | •• | • | | | | 1 | 10 | } | 1 | | 2. 30 | 30.129 | 70.4 | 62.4 | 8.0 | •• | | (74.4) | | SW | •• | •• | | Pos. | 25 | 40 | 10 | 20 | | | 4 | | | | | | | 55.5 | 2.46 | W | | | | •• | •• | •• | | ••• | •• | | 6 | | | •• | | •• | •• | | | WbyN | •• | •• | •• | •• | | ••• | | | | | 8 | •• | ••• | •• | •• | •• | •• | 92.0 | 0.00 | WNW
NW | •• | •• | | ••• | • • | | | | | | 10
12 | •• | ••• | ••• | | • • | •• | 47.5 | | NW | | | | • • • | | | | | ∥ ∷ | | 14 | 30.149 | 57.5 | 56.7 | 0.8 | | | 65.0 | 7.385 | NW | | | | Pos. | 2 | 3 | | | ∥ | | 16 | | 56.5 | 55.8 | 0.7 | 55.0 | | 61.2 | | NW | | •• | •• | •• | •• | 0 | 0 | 0 | •• | | 18 | 30.141 | 58.0 | 56.9 | 1.1 | •• | •• | •• | •• | NW | •• | •• | •• | Dag | | 0
2 | 0 | | ∥ … | | 20 | 30.158 | 65.2 | 61.5 | 3.7 | 60.0 | 0.5 | •• | ••• | N by W
N by W | •• | wsw | 2.30 | Pos.
Pos. | $\begin{vmatrix} 2\\3 \end{vmatrix}$ | 5 | | | | | | 30.155 | | 1 | 11 | 00.0 | 0.9 | •• | •• | | •• | W 5 W | | | • | | | | | | June 28. 0 | 30·152
30·138 | | | | •• | •• | • • | •• | N by W
N by W | •• | •• | | Pos.
Pos. | 4
2 | 5 | •• | | • | | 4 | 30.138 | | | | 62.0 | 10.0 | ··· | | N by W | | | | Pos. | 3 | 4 | | | ∥ | | 6 | 30.111 | 72.4 | 65.2 | | | | $\begin{bmatrix} 77.8 \\ 54.1 \end{bmatrix}$ | | N by W | | •• | | Pos. | 2 | 2 | | | •• | | 8 | 30.125 | 64.5 | 61.1 | 3.4 | | | 04 I | 2.46 | E | •• | •• | •• | •• | | 0 | 0 | 0 | •• | | 10
12 | 30·136
30·147 | | | | 55.5 | 3.0 | 93.6 | 0.00 | E
E | | ••• | | •• | • • | 0 | I | 1 | | | | | | | | | | 45·5 { | 7.385 | \mathbf{E} | | | | | | U | 0 | 0 | | | 14
16 | 30·142
30·140 | | | | 52.0 | 3.0 | 65.8 | | NE | | | | | 1 | 0 | } | 1 | 11 | | 18 | 30·143 | | | | | | (61·8) | | NE | | | | | | 0 | 0 | 0 | | | 20 | 30.148 | 60.5 | 57.0 | 3.2 | | | | | N by W | | :: | | Pos. | 3 | 5 | ••• | | | | 99 | 30.147 | | | | 57.0 | 10.7 | | | N by W | | N | 3.00 | Pos. | 4 | 7 | •• | • • | | Maximum Free Thermometer. June 26^d , 22^h . The reading was lower than that of the Dry Thermometer at 4^h . | • | Phases | | | |---------|----------------------------|---|---| | 0-10. | of | | | | -10 | the | D. T. M. A. D. IZ O. | | | 9 | | REMARKS. | | | | Moon. | | | | _ | | Cirms attenting and goods a form during of min house just faller | _ | | 0 | • • | Cirro-stratus and scud: a few drops of rain have just fallen. Cirro-stratus, scud, and light clouds in every direction: at 4 ^h . 10 ^m a shower of rain fell, and continued till 4 ^h . 23 ^m . | | | 8 | | Detached masses of cirro-stratus and scud around the horizon, extending to within a few degrees of the zenith. | į | | 0 | Transit | Overcast: cirro-stratus and scud: rain was falling from 8h. 40m to 9h. 30m. | | | 0.
9 | • • • | Don't sime stratus and sound assent the master west of the above 11 level 1 and 1 and 1 | | | | •• | Dark cirro-stratus and scud cover the greater part of the sky: small breaks about the zenith. Cirro-stratus, fleecy clouds, and scud cover the sky. | | | 7. | ••• | Cirro-stratus, fleecy clouds, and small breaks principally S. of the zenith. | | | l | • • | Cirro-stratus and light clouds about the horizon. | | | 3 | • • | A few light cumuli are scattered over the sky. | | | | | Cirro-stratus, cirro-cumuli, fleecy clouds, and scud: two or three small breaks in the clouds towards the S.W.: the | | | | • • | clouds gradually increased after the last observation till 23h. 30m, when a few drops of rain fell. | | | 1 | | Cirro-cumuli, fleecy clouds, and scud are thickly spread over the sky. | | | | • • | Cirro-stratus, fleecy clouds, and scud cover the sky. | | | | • • | Cirro-stratus and fleecy clouds: a few small breaks, but to no numerical extent. small breaks, but to no numerical extent. | | | 1 | • • | ,, small breaks, but to no numerical extent. ,, clear, mostly S. of the zenith. | | | 1 | Transit | Light fleecy clouds, with a small amount of scud towards the S.W.; clear elsewhere. | | | 1 | • • | | | | 1 | •• | | | | 1 | | | | | 1 | | Overcast: cirro-stratus and scud. | | | 1 | | | | | | • • | | | | | | Cirro-cumuli and haze: overcast occasionally during the day, principally with cirro-cumuli and haze. | | | | •• | on to-cumum and haze. Overcast occasionany during the day, principally with chito-cumum and haze. | | | 1 | •• | | | | 1. | Greatest
Declination S. | | | | 1 | | | | | 1 | Transit | The alry is nearly severed with a weelly kind of slend, the sub-sless area lain a town of the C. W. | | | 1 | : | The sky is nearly covered with a woolly kind of cloud, the only clear space being towards the S.W. Overcast: cirro-cumuli. | | | | | ,, cirro-stratus and scud. [hour since. | | | | | Cirri, cirro-cumuli, and scud: there are a few breaks in different directions: the clouds began to break about half an | | | | | Overcast: cirro-stratus and scud. | | | 1 | | Cirro-stratus and scud; the clouds are slightly broken in the zenith. | | | 1 | Full | Overcast: cirro-stratus and scud. | i | | | (| Cirro-cumuli, fleecy clouds, and scud, principally towards the horizon. | | | | | Cirri, cirro-cumuli, fleecy clouds, and scud in various directions. The sky is nearly overcast with cymoid cirri and a few small patches of cumuli: breaks towards the horizon generally. | | | | :: | Small patches of cirro-cumuli in every direction. | | | | | Cirro-stratus and masses of scud: the Moon is occasionally visible: the clouds have come up within these last ten | | | | T | minutes, previously to which time the sky was cloudless. | | | | Transit | Overcast: cirro-stratus and scud. | | | | :: | | I | | | ì | Cirro-stratus, cumulo-stratus, and fleecy clouds in every direction. | ١ | | | •• | Overcast: cirro-stratus and scud. | 1 | | | | | | Wet | | Dew | Max.and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | ECTRICA | LIN | STR | UMI | ENTS. | |--------------------------------------|------------------|--------------|--------------|-------------------|--------|-------------|--|--------------------------|------------------|--|------------|-----------------------------------|----------------------|---|----------|--------|-----------------|----------------------| | Dayand Hour, | Baro- | D | TT7 - 4 | Ther- | | Point | read at 22b. | Stand of
No. 1. | From C
Anemo | | From Whe | - 1 | Sign | | ading | | | Interval | | Göttingen | meter | Dry | Wet | mom. | Dew | below | Free Therm. | (Osler's).
Reading of | Anemo | lileter. | Anemoni | Descent of | Electricity, | Single | | L. | | recovering the same | | Astronomical | Cor- | Ther- | Ther- | below | Point. | Dry | Rad. Therm. | No. 2.
Stand of | | Pressure
in lbs. per | | the pencil | shewn
by Dry | Gold Leaf | Lea | vs of | vs of
ta 2. | degree
of tension | | Reckoning. | rected. | mom. | mom. | Dry. | | mom. | of Therm. in
Water of the
Thames. | No. 3.
(Crosley's). | Direction. | square
foot. | Direction. | continu-
ance of
each Wind. | Pile Appa-
ratus. | Single
Gold Leaf
of Dry
Pile Appa-
ratus. | Gold | Straws | Straws
Volta | after
discharge | | d h | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | 37377 | from
lbs. to lbs. | | in. | _ | 0 | 0 | div. | div. | m s | | June 29. 0 | 30.147 | | 11 | • | •• | ••• | •• | •• | NNE | 14 | • | •• | Pos. | . 7 | 10 | • • | | •• | | 2 | 30.126 | | 65.8 | 1 | 50.0 | 10.5 | C70.0 \ | •• | NNE
N | $\frac{1}{2}$ constant | •• | •• | Pos. | 5
6 | 8
10 | | •• | | | 4
6 | 30·126
30·124 | | | • | 3 | 1 1 | $\begin{bmatrix} 79.3 \\ 53.9 \end{bmatrix}$ | ••• | N | ,, | | | Pos. | 6 | 12 | | | | | 8 | 30.130 | | | | •• | •• | | 2.46 | Ň | ,, | •• | | Pos. | 3 | 5 | | | | | 10 | 30.144 | | 11 | | 57.0 | 1 . 1 | 100.0 | 0.00 | N | | | | | | 0 | 0 | 0 | | | 12 | 30.134 | 5 8·8 | 56.5 | 2.3 | | | 51.4 | 0.00 | N | $\frac{1}{2}$ constant | • • | •• | | | 0 | 0 | 0 | | | 14 | 30.117 | | 55.3 | | | | [][| 7.400 | N | $\frac{1}{2}$ to 1 | | •• | | •• | 0 | 0 | 0 | •• | | 16 | 30.109 | | | | 54.0 | 1.0 | 66.2 | . 100 | N | •• | | •• | •• | •• | 0 | 0 | 0 | •• | | 18 | 30.111 | | | | • • | •• | 〔62·2 〕 | •• | N
N | 1 40 1 | •• | •• | •• | •• | 0 | 0 | 0 | •• | | 20
22 | 30·119
30·122 | 56·2 | 58.0 | 3·1
6·6 | 52.0 | 12.6 | | •• | N |
$\begin{array}{cccccccccccccccccccccccccccccccccccc$ | Ň | 4.40 | Pos. | 3 | 7 | | | | | ĺ | | | | 0.0 | 32.0 | 12 0 | •• | •• | | 0 10 12 | 14 | | | | | | | ••• | | June 30. 0 | 30.119 | 1 - 1 | | 1 | • • | ••• | | | N | 0 to $\frac{1}{2}$ | • • | •• | Pos. | 8 | 10 | • • | $ \cdots $ | • • | | 2 | 30.111 | 72.9 | 63.5 | 1 | | 17.5 | C 20. 27 3 | •• | N
N | $\frac{1}{2}$ to 2 | •• | •• | Pos. | 8 7 | 10
10 | ••• | ••• | • • | | 4
6 | 30·112
30·108 | 70·5 | | 8·8
6·5 | 55.0 | 1 | \[\begin{pmatrix} 76.7 \ 52.6 \end{pmatrix} \] | •• | N | 1/2 to 1
0 to 1 | • • | •• | Pos. Pos. | 4 | 8 | :: | | • • | | 8 | 30.132 | | | | ••• | | 32.0 | 2.46 | NNE | 0 to 1 | • • | | Pos. | 5 | 12 | | | | | 10 | 30.142 | , , | 1 | 1.9 | 52·0 | | 96.0 | 0.00 | NNE | | | | Pos. | 4 | 7 | | | | | 12 | 30.147 | | | 2.1 | | | 45.0 | 0.00 | NNE | | •• | | | | 0 | 0 | 0 | | | 14 | <i>3</i> 11 | 54.6 | | 2.4 | •• | | | 7.400 | N by E | 0 to 1 | •• | •• | | | 0 | 0 | 0 | | | 16 | 30.142 | | 51.4 | | 49.5 | 4.0 | 67.0 | 1400 | N by E | 0 to $1\frac{1}{2}$ | •• | •• | •• | •• | 0 | 0 | 0 | •• | | 18 | 30.148 | | | 2.7 | •• | •• | 62.5 | ••• | N by E
N by E | 0 to 2
0 to 2 | •• | •• | ••• | ••• | 0 | 0 | 0 | •• | | $egin{array}{c} 20 \ 22 \end{array}$ | 30·161 | 56·5
61·0 | 52·9
56·3 | 3·6
4·7 | 53·5 | 7 ·5 | •• | | N by E | 0 to 2
0 to 1 | Ň | 5.20 | •• | •• | o | o | 0 | | | July 1. 0 | 30.162 | 67.2 | 60.0 | 7.2 | | | | | N | 0 to $\frac{1}{2}$ | | •• | Pos. | 7 | 12 | | | | | 2 | 30.163 | 68.0 | 60.3 | 7.7 | | | | | N | 0 to 1 | | | | | 0 | 0 | 0 | | | 4 | 30.157 | | | 7.9 | 56.0 | 13.6 | 75.1 | | N | | •• | •• | Pos. | 2 | 2 | | • • | | | 6 | 30.136 | , , | | , | •• | •• | 52.3 | 2.46 | N | •• | •• | •• | Pos. | 2 | 2 | | · · | •• | | 8
10 | 30·153
30·173 | 56·5 | 57·1
53·8 | $\frac{3.7}{2.7}$ | 52·0 | 4.5 | 00.0 | | N
N by E | •• | •• | •• | •• | | 0 | 0 | 0 | ••• | | 12 | 30.165 | l i | 1 1 | 2.6 | l i | | $\left\{ egin{array}{c} 92.8 \ 45.7 \end{array} ight. ight.$ | 0.00 | N by E | | | | | | 0 | 0 | ő | | | 14 | 30.142 | | | 2.6 | | | | P 400 | N by E | 0 to $\frac{1}{2}$ | | | | | o | 0 | 0 | | | 16 | 30.143 | 54.0 | 51.4 | 2.6 | 49.0 | 1 1 | 67.0 | 7.400 | N by E | 0 to $\frac{3}{2}$ | • • | | | | 0 | 0 | 0 | | | 18 | 30.145 | | | | | | 62·8 J | •• | N by E | | •• | | | | 0 | 0 | 0 | | | 20 | 30.144 | | | | •• | • • | | •• | N | 0 to $\frac{1}{2}$ 0 to $\frac{1}{2}$ | ». | 4.00 | •• | •• | 0 | 0 | | •• | | | 30.153 | 96.8 | 52"7 | 4.1 | 50.0 | 6.8 | •• | • • | N | 0 to ½ | N | 4.37 | •• | •• | 0 | 0 | 0 | •• | | - 11 | 30.141 | | | | | | | | N | •• | •• | •• | | •• | 0 | 0 | 1 - | | | 2 | 30.128 | | | | •• | ••• | | •• | N by E | •• | •• | ••• | | •• | 0 | 0 | 0 | • • • | | 4 | 30·113
30·086 | | | | 52.0 | - 1 | $\begin{bmatrix} 68.5 \\ 50.0 \end{bmatrix}$ | •• | N by E | •• | •• | •• | Pos. | 10 | 0
15 | 5 | 7 | 177 | | 8 | 30.086 | 60.5 | 55.9 | 6·9
4·6 | ••• | | 50.3 | 2.46 | NNE | ••• | | | LUS. | 10 | 0 | 0 | o | 17. (| | | 30.085 | | | | 52.0 | 4.1 | 71.0 | 0.00 | N | 0 to 1 | | | | | 0 | 0 | 0 | | | 12 | 30.078 | 54.5 | 51.8 | 2.7 | | | 45.0 | 0.00 | NNE | 2 | | | | | 0 | 0 | 0 | | | 14 | 30.065 | 52.0 | 51.4 | | | | | 7.400 | NNE | | | | | | 0 | 0 | 0 | | | | 30.056 | | | 1.5 | 49.0 | 2.3 | 66.5 | . 400 | NNE | •• | •• | •• | •• | • • • | 0 | 0 | 0 | •• | | | 30.045 | | | | •• | •• | 〔62·2 〕 | •• | NNE | •• | •• | •• | •• | ••• | 0 | 0 | 0 | •• | | | 30·038
30·029 | | | | 51·0 | 7.2 | •• | | N
N by E | ••• | NNE | 2.04 | | ••• | 0 | 0 | 0 | | | į | | | | | | 12 | •• | ••• | 14 Dy 12 | •• | 111111 | - 04 | '' | •• | " | • | | •• | | July 3. 0 | 30.022 | 61.6 | 57.5 | 4.1 | | | | · | N | •• | | 1 | | | 0 | 0 | 0 | | RAIN June 30^d. 12^h. The amount collected during the month of June in the rain-gauge No. 4 was 1ⁱⁿ.50, and that collected by the Rev. G. Fisher in a rain-gauge of the same construction at Greenwich Hospital Schools during the same period was 1ⁱⁿ.54. | il | Phases | | |----------|---------|--| | 0-10. | of | | | 7 | the | D. T. A. D. W. O. | | • | | REMARKS. | | | Moon. | | | | | Cirro-stratus and fleecy clouds cover the greater part of the sky: there are a few breaks in the S., and some cumuli | | 3 | • • | Cirro-stratus, detached cumuli, and large masses of white scud are floating about the sky. [towards the S. horizon. | |) | • • | Overcast: cirro-stratus and scud. | | | • • | Cumuli, cirro-stratus, and scud: there are some clear breaks about the zenith. | | | • • | Overcast: cirro-stratus and scud. | | | • • | " | | | Transit | | | | • • | ,, a few drops of fine rain are falling. | | 1 | • • | *** | | 1 | • • | ,, | | 1 | • • | Cumuli and masses of scud are scattered all around the horizon. | | | •• | A few small patches of cumuli are scattered over the sky. | | | •• | Detached cumuli are scattered in various directions. | | | • • | There are a few cumuli towards the N.: cirri and light clouds are floating about the sky. | | | •• | There are a few light clouds, but to no numerical amount. | | 1 | • • | There are detached portions of cirro-cumuli principally in the N. Overcast: cirro-stratus and scud. | | | •• | | | | Transit | ,, cirro-cumuli and detached masses of scud. | | | | ,, cirro-cumuli and scud. | | | • • | 33 | | | • • | ,, cirro-stratus and scud. | | | •• | ,, | | | •• | Cumulo-stratus, cirro-stratus, and scud, much broken, in the N., N.W., and N. N.W. | | | •• | With the exception of a break S. of the zenith, the sky is covered with cumulo-stratus, cirro-stratus, and scud. | | | •• | There are a few detached patches of cumuli.
Cloudless. | | 1 | •• | | | 1 | | Overcast: cirro-stratus and scud: the clouds have gradually increased since 8 ^h . 30 ^m . | | | |), | | | m · · · | " | | | Transit |)) | | 1 | ••• |))))))))))))))))))))) | | | | | | | | Overcast: cirro-stratus and scud. | | | | ,, | | | | ,, , , [the day at 4^{h} . 50^{m} . | | | •• | Cumulo-stratus, cirro-stratus, and broken scud in every direction: the clouds became broken for the first time during | | | | With the exception of a break of considerable extent in the S. S. W., every portion of the sky is covered with cirro-
Overcast: cirro-stratus and scud. [stratus and scud.] | | | |); ;; | | | Perigee | ,, ,, ,, | | 1 | Transit | ,, a very fine drizzling rain is falling. | | | |) | | | •• | ,, | | | •• | ,, ,, | | , | 1 | Overcast: cirro-stratus and scud. | | | conomical Cor- | | | Wet | | | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELEC | TRICAL | INS | STRU | JME | NTS. | | | |---------|--------------------|------------------|---------------|---------------|------------|------|---------------|---|--|----------------------|-----------------------------------|------------|--|-------------------------------|-----------------------------------|----------------------|-----------------------|-----------------------|-----------------------|--------------------| | • | -1 | | | | Ther- | | Dew
Point | read at 22h. | Stand of
No. 1. | From C | | From Whe | | Sign
of | Re | ading | s of | | Inter
of tim | e in | | Götti | ngen | meter | Dry | Wet | mom. | Dew | below | Free Therm. | (Osler's). | Allemon | neter. | Ancinois | | Electricity,
as | Single | ن ا | | _ | recove | | | | 1 | | Ther-
mom. | Ther-
mom. | below | 1 | Dry
Ther- | Rad. Therm.
of Therm. in
Water of the | Reading of
No. 2.
Stand of
No. 3. | Direction. | Pressure
in lbs. per
square | Direction. | Descent of
the pencil
during the
continu- | shewn
by Dry
Pile Appa- | Gold Leaf
of Dry
Pile Appa- | Double
Gold Leaf. | Straws of
Volta 1. | Straws of
Volta 2. | degr
of ten
aft | ree
ision
er | | | | | | | Dry. | | mom. | Thames. | (Crosley's). | · | foot. | | ance of
eachWind. | ratus. | ratus. | 0 | div. | div. | discha | arge | | T., 1., | d h | in.
30.000 | 60.0 | 62·5 | 6·7 | 0 | 0 | 0 | in. | N | from
lbs. to lbs. | • • | in. | Pos. | 15 | 25 | 10 | ••• | 20. | 0 | | July | 3. 2 | 29.965 | 11 1 | 11 | | 55.0 | 15.8 | (73.6) | | Ñ | • • | | | Pos. | 15 | | 15 | 20 | 12. | 0 | | | 6 | 29.928 | | | 6.8 | | | 52.9 | | N by E | | | | Pos. | 10 | | 8 | 10 | | | | | 8 | 29.930 | 11 | 11 | 1 . 1 | | | | 2.46 | Ě | | • • | | Pos. | 7 | 10 | | | | • | | | 10 | 29.938 | | | | 54.0 | 2.3 | 91.5 | 0.00 | Calm | •• | • • | •• | ••• | ••• | 0 | 0 | -0 | | | | | 12 | 29.930 | 54.0 | 53.4 | 0.6 | • • | •• | 44.6 | | E by S | •• | • • | | | •• | 0 | 0 | 0 | • | | | | 14 | •• | •• | •• | $ \cdots $ | ••• | •• | 66.2 | 7.400 | E by S
E by S | •• | •• | | ** | ••• | | | | | | | * | 16 | •• | •• | •• | ••• | ••• | •• | 62.8 | | E by S | • • | | | , | | | | | | | | | 18
20 | •• | | | | | | | | SE | | | | | | | | | | | | | 22 | 29.910 | 65.0 | 58.0 | | | •• | ••• | •• | S by E | | E | 1.50 | •• | ••• | 0 | 0 | 0 | | • | | luly | 4. 0 | | | | | | | | •• | S by E | •• | | | | | | | | | • | | • | 2 | | | | | | | •• | | S by E | | • • | •• | •• | •• | | • • | | • | • | | | ^h 2. 45 | 29.868 | 74.5 | 64.5 | 10.0 | | | (77.1) | ••• | S by E | ••• | •• | | Pos. | 20 | ••• | 10 | 15 | 7. | 0 | | | d h 4. 4 | | | | | | | 46.9 | 2.46 | S by E | | | | | | | • • | | | • | | | 6 | | | | | | | 96.0 | | SE | | •• | | •• | •• | • • | •• | ••• | | • | | | 8 | | | | •• | | | 39.0 | 0.00 | SSE | | | •• | •• | ••• | ••• | • • | • • | • | | | | 10 | •• | •• | •• | •• | ••• | •• | | 5. 400 | SSW | •• | • • | •• | | ••• | ••• | • | | | | | | 12 | 29.812 | 51.8 | 51.7 | 0.1 | ••• | ••• | 67.0 | 7.400 | S | • • • | | | | | 0 | 0 | 0 | | | | |
14
16 | 29.812 | 49.7 | 49.7 | 0.0 | 49.5 | 0.5 | 〔63·5 〕 | :: | \tilde{sw} | | | | | | 0 | 0 | 0 | | | | | 18 | 29.820 | 49.0 | 1 1 | 0.1 | 100 | | | | SSW | | • • | | | | 0 | 0 | 0 | | | | | 20 | 29.818 | 60.3 | 1 1 | 3.0 | | | | | SSW | •• | • • | | Pos. | 30 | | 10 | | 10. | | | | 22 | 29.821 | 69.2 | 62.5 | 6.7 | 58.0 | 11.2 | •• | •• | SW | •• | s | 1.00 | Pos. | 25 | •• | 12 | 15 | 15. | 0 | | fuly | 5. 0 | 29.819 | | 63.5 | | | | | | wsw | | • • • | | Pos. | 30 | | 20 | 25 | 16. | | | | 2 | 29.800 | | 65.3 | | | | | •• | WNW | ٠٠ ا | •• | •• | Pos. | 30
25 | :: | 20
10 | 25
20 | 6. | | | | 4 | 29.787 | | 67.2 | | 1 | 26.2 | 83.9 | .** | N by W | • • • | •• | | Pos. | 10 | 15 | | | | | | | 6
8 | 29·767
29·767 | | 67·6
62·7 | 9·9
7·3 | •• | ••• | \$4. 5 | 2.46 | S | | •• | | Pos. | 2 | 2 | | | | | | | 10 | 29.781 | 1 | 61.0 | , , | 58.5 | 5.7 | 100.5 | 0.00 | $\tilde{\mathbf{s}}$ | | | | | | 0 | 0 | 0 | | | | | 12 | 29.788 | | 57.0 | | | | 47.0 | 0.00 | SSW | | | | | | 0 | 0 | 0 | | • | | | 14 | 29.781 | | 56.6 | | •• | | | 7.400 | ssw | •• | •• | •• | | •• | 0 | 0 | 0 | | • | | | 16 | 29.776 | 55.6 | 55.5 | 0.1 | 55.0 | 0.6 | | | S | •• | •• | • | | •• | 0 | 0 | 0 | • | | | | | 29·787
29·792 | | | | | •• | 64.2 | •• | SSW
SSW | •• | | | | | 0 | o | 0 | | | | | 20
22 | 29 792 | 72.8 | 64.2 | 8.6 | 58.0 | 14·8 | | •• | SW | ••• | ssw | 2.05 | | | | • • | | | | | uly | 6.0 | 29.774 | 78.2 | 65.9 | 12.3 | | | | | wsw | | •• | | | | | | | • | | | J | 2 | 29.754 | 82.8 | 68.3 | 14.5 | | | •• | | wsw | | •• | | | ••• | ••• | | •• | • | • | | | | 29.728 | 84.0 | 68.6 | 15.4 | 60.0 | 24.0 | (86.2) | | SW | •• | •• | •• | •• | • • | | ••• | ••• | • | | | | | 29.708 | 79.3 | 69.2 | 10.1 | •• | ••• | 59.8 | 1 | SSW
SSW | •• | • • | ••• | • • | ••• | 0 | 0 | 0 | | | | | | 29·702
29·715 | | | | | 5.0 | | 2.49 | S by W | ••• | | | | | 0 | 0 | 0 | | | | | | 29.713 | | | | 03.0 | 3.0 | 106.4 | 0.20 | S by W | | | | | | 0 | 0 | 0 | | | | | | 29.673 | | | | | •• | 52.0 | | SSE | •• | •• | ••• | •• | | 0 | 0 | 0 | • | | | | | 20.525 | 00.0 | 500 | - | 1000 | 0.0 | 70.0 | 7.620 | | | | | | | 0 | 0 | 0 | | | | | | 29·565
29·649 | | | | 58.0 | f 1 | 65.0 | •• | | 1 | :: | | | | 0 | 0 | 1 | | | | | | 29.649
29.640 | | | | 1 | ••• | | | | 1 | | | | | 0 | 0 | • | | | | | | 29.635 | | | | 65.0 | | | | | ! | SSW | 1.90 | Pos. | 30 | | 10 | 20 | | • | | | 1 | | | 1 - 1 | | | | | | l | Ī | ! } | | 1 | | 1 | 1 | 1 | 1 | | Dry Thermometer. July 4^d . The increase in the reading between 18^h and 20^a was $11^\circ \cdot 3$. Osler's Anemometer. July $6^d \cdot 13^b \cdot 25^m$. A sudden gust recording a pressure of $3\frac{1}{2}$ lbs. July 6d. 22h. The direction-pencil was found off the rack-work, and it had been so since 15h. 30m. | ds, | Phases | | | |--|--------------------|--|----| | no[] | ĺ | | 1 | | | of | REMARKS. | | | Amount of Clouds,
0-10. | the | REMARKS. | | | - An | Moon. | | _ | | 4 | •• | There are a few patches of cumuli and scud in different parts of the sky. | G | | 3 | •• | Loose scud and a few light clouds are scattered about the sky. Detached cumuli, fleecy clouds, and scud are scattered about the sky. | | | 0 | | Cloudless. | | | | •• | The sky has become suddenly overcast with thin cloud of various densities: a few of the principal stars are dimly seen. | (| | | Transit | | | | : | In Equator | | | | 4 | •• | Masses of cumuli are scattered all around the horizon: a very fine morning. | | | | | | | | 2 | •• | A few light cirri are scattered here and there. | | | • | •• | | | | | •• | | 1 | | • | • • | | 1 | | 0 | • • | Cloudless, but very hazy to the S.W. | | | 0 | _ • • | i. · | 1 | | $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ | Transit
3rd Qr. | Cloudless: a few lines of cirri about the horizon, but to no numerical extent. Thin cirri and haze generally cover the sky. | 1, | | 3 | •• | A bank of cirro-stratus in the E. N. E. horizon; a thin haze also prevails. | | | 0 | •• | Cloudless; hazy. | 1 | | 0
6 | • • | Fleecy clouds and haze. | | | 0 | • • | Cirro-cumuli, fleecy clouds, and several masses of dark scud: the clouds are moving from the N. | | | 2 | •• | Cirri, cirro-cumuli, and scud towards the W. and N.W.; clear elsewhere. | | | $egin{array}{c} 0 \ 2 \end{array}$ | • • | Cloudless: there are a few lines of cirri about the sky, but of no numerical amount. A bank of cirro-stratus near the N. horizon: light clouds are scattered here and there. | | | 3 | •• | Light cirri and haze. | 1 | | 3 | • • | Thin cirro-stratus in the horizon, extending from the E. to W. S.W.: very hazy. | | | 0 | Transit | Cloudless: very hazy. | 1 | |) | • • | 3)
3) | | | 2 | • • | Cloudless. There are fleecy clouds towards the horizon in the N. and S. parts of the sky. | | | 1 | •• | Fleecy clouds are scattered around the zenith. | - | | 1/2 | •• | There is a small bank of cumulo-stratus cloud in the S. S.W horizon. | | | 0 | •• | Cloudless. | | | 0 | •• | ,, several flashes of sheet lightning have been seen since 9 ^h in the S., S. S.W., and S.W. parts of the sky. ,, flashes of sheet lightning are occasionally visible. | 1 | | 0 | •• | Overcast: cirro-stratus and scud: rain has been falling since 13 ^h : thunder has been heard and lightning seen in all directions, but mostly from the N. E. to S. E.; none of the electrical instruments were affected. | | | 0 | ••• | Overcast: the rain ceased soon after the last observation, but lightning is still visible behind clouds in the N.,, cirro-stratus and scud. | | | 0 | Transit | ,, thin cirro-stratus, above which the blue sky is visible in many places. | | | 0 | | ,, cirro-stratus and scud. | 9 | ELECTRICITY. July 5^d . 22^h . The electrical apparatus was lowered that the pole might be repaired. July 6^d . 8^h . Previously to this time the apparatus was raised and set in action. | l l | | | | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | - | WIN | D. | | ELEC | CTRICAL | INS | STRU | JMEI | NTS. | |----------------------------|------------------|-------|------|------------|--------------|--------------|-------------------------|----------------------------------|---|---------------------------------|---------------|----------------------------------|----------------------|----------------------|----------------------|-----------------------|---------|------------------------| | Day and Hour,
Göttingen | Baro-
meter | Dry | Wet | Ther- | | Point | read at 22h. | Stand of
No. 1.
(Osler's). | From C | | From Whe | | Sign
of | | ading | s of | | Interval
of time in | | - I | | 1 - 1 | | mom. | Dew | below | Free Therm. | Reading of | I | 1 | | Descent of | Electricity,
as | C:1- | | | _ | recovering
the same | | Astronomical | Cor- | Ther- | 1 | below | Point. | Dry
Ther- | Rad. Therm. | No. 2.
Stand of | | Pressure
in lbs. per | | the pencil
during the | shewn
by Dry | Gold Leaf
of Dry | ible
Leaf | vs of | vs of | degree
of tension | | Reckoning. | rected. | mom. | mom. | Dry. | | mom. | Water of the
Thames. | No. 3.
(Crosley's). | Direction. | square
foot. | Direction. | continu-
ance of
eachWind. | Pile Appa-
ratus. | Pile Appa-
ratus. | Double
Gold Leaf. | Straws of
Volta 1. | Strav | after
discharge, | | d b | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | | from
lbs. to lbs. | | in. | | 0 | 0 | div. | div. | in 8 | | | 29.677 | 71.5 | | [I | | •• | •• | •• | SW | $\frac{1}{2}$ to 1 | •• | •• | Pos. | 30 | • • | 20 | 25 | 4. 0 | | | 29.688 | | | 1 1 | ••• | •• | | •• | WSW | •• | • • | | Pos. | 30 | • • | 10 | 20 | 10.0 | | 4 | 29.709 | 66.8 | | | 58.0 | 8.8 | (75.3) | •• | SW
SW | •• | •• | ••• | Pos. Pos. | 20
20 | •• | 15 | | 10. 0
15. 0 | | | 29·698
29·727 | 64.3 | 11 | | | •• | 53.5 | 2.54 | SW | •• | •• | | Pos. | 15 | •• | 15
10 | 15 | 15. 0
10. 0 | | 11 | 29.749 | | 11 | | 56.0 | 3.7 | 84.4 | | SSW | • • | | | Pos. | 10 | | 8 | 10 | 10. 0 | | | 29.746 | | i I | 1.3 | 30 0 | | 45.5 | 0.10 | SSW | | | | Pos. | 30 | | 10 | 20 | 10. 0 | | | 29.734 | 1 | 54.9 | | | | 100 | | SSW | | | | Pos. | 15 | 25 | | | | | i II | 29.725 | 55.0 | :1 | 1 | 54.0 | | 70.5 | 7.745 | W by N | | | | Pos. | 30 | | 10 | 20 | 15. 0 | | 18 | 29.727 | 56.5 | 55.8 | 0.7 | | | 66.0 | | W by N | | | | Pos. | 5 | 5 | | | | | 20 | 29.741 | 60.5 | 58.8 | 1.7 | | | | | W by N | | | | Pos. | 40 | ٠. | 40 | 60 | 15. 0 | | 22 | 29.759 | 60.6 | 59.5 | 1.1 | 59.0 | 1.6 | •• | | S by E | ••• | sw | 3.00 | Pos. | 40 | •• | 40 | 60 | 22. 0 | | | 29.765 | | 60.0 | 2.5 | | | •• | | SSE | | | | Pos. | 25 | | 20 | 30 | 4. 0 | | | 29.751 | | | 6.2 | | •• | •• | | S | •• | | | Pos. | 30 | • • | 20 | 25 | 10. 0 | | 11 | 29.747 | | } I | | 58.0 | 14.2 | (73.3) | •• | SSW | 0 to $\frac{1}{2}$ | • • • | • • | Pos. | 25 | • • | 15 | 30 | • • | | | 29.754 | 1 7 | 1 1 | 8.3 | • • | • • | 53.1 | | SSW | 0 to $\frac{1}{2}$ | • • | •• | •• | •• | • • | | •• | •• | | 8 | 29.774 | !!! | 1 1 | 5.5 | ••• | •• | | 2.54 | SSW | •• | •• | | Des | :: | 0 | 0 | 0 | ••• | | 10
12 | 29·799
29·820 | | 56.7 | 3·3
1·3 | •• | •• | 86.0 | 0.00 | S by W
S by W | •• | •• | | Pos. | 20 | | 10
0 | 20
0 | • • | | | | | 54.2 | 0.8 | • • | •• | 45.0 | 0.00 | SSW | •• | • • | 1 | •• | •• | 0 | 0 | 0 | | | | 29.852 | | | 0.7 | 54.0 | 1.0 | | 7.785 | SSW | • • | | | | •• | 0 | o | 0 | • • | | | 20 002 | 000 | 0.0 | • | 0.1 | 10 | 70.5 | 1 1 | 88 11 | •• | •• | | '' | ••• | | ľ | | •• | | 18 | 29.859 | 55.0 | 54.4 | 0.6 | | | (66·0) | | S by W | | | 1 | ,. | | 0 | 0 | 0 | · | | | 29.890 | | | 2.9 | | | | | WSW | | | | | | 0 | 0 | 0 | | |
22 | 29.908 | 66.5 | 59.2 | 7.3 | 53 ·0 | 1 | | •• | wsw | •• | ssw | 4.20 | Pos. | 7 | •• | 5 | 7 | •• | | July 9. 0 | 30.023 | 68.0 | 59.0 | 9.0 | | | | | $\mathbf{s}\mathbf{w}$ | | | | Pos. | 10 | | 8 | 10 | •• | | 2 | 29.918 | 75.3 | 61.8 | | | | | | $\mathbf{s}\mathbf{w}$ | 0 to $\frac{1}{2}$ | |]] | Pos. | 30 | 25 | | • . | | | 4 | 29.931 | 71.3 | 1 1 | | 53.0 | 18.3 | (76.3) | | \mathbf{sw} | $\frac{1}{2}$ to $1\frac{1}{2}$ | • • | | Pos. | 10 | 20 | 5 | 7 | 11. 0 | | 11 | 29.951 | 67.7 | |) | | | 59.1 | 2.54 | $\mathbf{s}\mathbf{w}$ | $\frac{1}{2}$ to 1 | •• | | Pos. | 15 | 25 | 7 | 10 | 13. 0 | | 11 | | 63.5 | | 6.8 | ••• | ••• | | 2 0 2 | SW | ••• | •• | | Pos. | _6 | 10 | •• | | •• | | | 29.985 | | 1 1 | 5.7 | 52.0 | 9.0 | 94.0 | 0.00 | SSW | •• | •• | • • | Pos. | 35 | •• | 20 | 30 | 5. 0 | | - 11 | 29·989
29·979 | 59.7 | 1 1 | 3.0 | • • | ••• | 51.0 | | SSW | •• | •• | •• | Pos. | 10 | •• | 8 | 10 | 17. 0 | | - 1 | 29.979 | 60.3 | : 1 | 0.8 | 59.0 | 1.0 | 70.5 | 7.790 | S by W S by W | •• | •• | | Pos.
Pos. | 15
5 |
10 | 10 | 15 | 10. 0 | | | 29.985 | | | | 1 | - 1 | 66.0 | | SSW | •• | •• | | Pos. | 7 | 10 | • • | • • | •• | | | 30.002 | | | | | | (000) | | SW | 0 to $\frac{1}{2}$ | | | Pos. | 10 | | 8 | 10 | 7. 0 | | | 30.023 | | | | 62.0 | | | •• | $\tilde{\mathbf{s}} \tilde{\mathbf{w}}$ | ••• | sw | 5.39 | Pos. | 15 | 20 | 8 | | | | July 10. 0 | 30.023 | 74.0 | 67:1 | 6.9 | | | | | $\mathbf{s}\mathbf{w}$ | | • • | | Pos. | 10 | 12 | 5 | | | | | | | 69 6 | | | | | | $\tilde{\mathbf{s}}\mathbf{w}$ | | | :: | Pos. | 10 | 12 | 5 | | | | 4 | 30.014 | 75.2 | 68.8 | | 64.5 | 10.7 | (110-0- | | SW | ½ constant | | | Pos. | 5 | 7 | | 4 | | | | 30.012 | 74.8 | 67.9 | 6.9 | | | 78.3 | | SW | $\frac{1}{2}$ constant | II. | | Pos. | 10 | | 8 | 10 | | | 8 | 30.017 | 70.5 | 66.3 | | | | 59.8 | 2.54 | SW | • • • | •• | | Pos. | 25 | | 20 | 25 | 15. 0 | | 10 | 30.021 | 67.2 | 64.5 | 2.7 | 62.5 | 4.7 | 90.2 | 0:00 | SW | •• | •• | •• | Pos. | 15 | •• | 12 | 15 | 8. 0 | | 12 | 30.024 | 63.0 | 61.9 | 1.1 | | | 53.2 | 0.00 | ssw | | | | Pos. | 15 | 20 | 8 | | | | 14 | | | | | | | 70:0 | 7.795 | WSW | | | | | | | | | | | 16 | | | | | | | 70.8 | | SW | | | | | | | | | •• | | 18 | | • • • | | | | | 〔66· 2 〕 | | WSW | •• | •• | | | | | | | •• | | 20 | | | | | | • • | | | WSW | ••• | | | | ••• | •• | | | | | 22 | 30.044 | 73.0 | 66.8 | 6.2 | | | | . 1 | WSW | | \mathbf{sw} | 4.23 | Pos. | 10 | | 8 | 10 | | BAROMETER. July 9^d. 0^b. The reading seems to have increased 0ⁱⁿ·115 since the previous observation, and to have decreased 0ⁱⁿ·105 at the following observation, but it is probable that the reading at 0^b may be in error, and that it should be 29ⁱⁿ·923. Dew Point Thermometer. July 8^d . 10^h . The observation was inadvertently omitted. | | Phases | | | |-------|----------------------------|--|---| | | of | | 1 | | | the | TO TO MA A TO 17 C | 1 | | 0-10. | Moon. | REMARKS. | ١ | | | | | _ | | 0. | .• .• . | Overcast: cirro-stratus and scud. | | | 0 | • • | and the second | | | 0 | • • . | a few drops of rain are falling occasionally. | | | 7 | • • | The sky is clear in the S. and W.; cirro-stratus and scud elsewhere. Cloudless. [clear towards the N. and W. | | | 7 | •• | The sky S. of the zenith is covered with a very thin cirro-stratus: cirri and light clouds are scattered about the sky: | | | 0 | •• | Cloudless. | | |) | •• | Nearly overcast with cirro-stratus of various densities: the clouds have come up within the last half hour. | | |) | • • | Overcast with thin cirro-stratus and scud. | | | ? | •• | | | | | Transit | Overcast: cirro-stratus and detached portions of scud: rain has just commenced falling. ,, cirro-stratus: rain has fallen heavily on several occasions since the last observation. | | | | Transit | ,, cirro-stratus: rain has fallen heavily on several occasions since the last observation. | | | | •• | Overcast: cirro-stratus and scud: rain began to fall at 22h. 50m, and has continued to the present time. | | |) | • • | Cirro-stratus, cumulo-stratus, and scud: the rain ceased at 0 ^h . 50 ^m . | | | | •• | Rocky cumuli towards the N., with a few detached cumuli towards the horizon. | | | | •• | There are a few cirri about the zenith, with cirro-strati and detached masses of cumuli towards the horizon. Cirri, a few patches of cumuli, cirro-strati, and haze principally towards the W. and S.W. | | | | • | The sky is nearly coverd with a thin stratus of no numerical amount; there are also a few cirri and light fleecy clouds. | | | | | Cloudless: hazy in the horizon. | | | . | | There are cirro-strati and masses of dark scud all around the horizon. | | | | •• | Cloudless. | | | 1 | •• | The whole of the N. portion of the sky is covered with cirro-stratus, extending from the horizon to the zenith: | | | | | detached cirri, scud, and fleecy clouds are scattered in every direction, except in the E., where a small portion Cirro-stratus and scud. | | | | Transit | Detached cumuli, fleecy clouds, and large masses of scud. | | | | | [amount. | | | | •• | Cumuli around the horizon: fleecy clouds and cirro-stratus elsewhere: there are a few small breaks, but to no numerical | | | | •• | Detached cumuli and large masses of scud. | | | | •• | Cumuli, cumulo-strati, and masses of scud. [measurement. The sky is covered with cirro-stratus: part of the arc of a solar halo was visible at 6 ^h . 45 ^m , but it was too faint for | | | | | Overcast: cirro-stratus. | | | 1 | | Cirro-stratus, scud, and fleecy clouds: a few drops of rain fell at 8h. 25m. | | | | •• | Overcast: cirro-stratus and scud. | | | | ••• | ,, | | | | • • | ,, | | | 1 | |))
)) | | | | Transit | " | | | | | | | | | •• | Cirro-stratus, fleecy clouds, and scud: a break towards the W. Overeast: cirro-stratus and scud. | | | | | Overcast: onto-stratus and soud. | | | | Greatest
declination N. | Cirro-stratus, fleecy clouds, and scud: breaks mostly S. of the zenith. | | | | • • | Overcast: cirro-stratus, fleecy clouds, and scud. | | | | •• | There are a few light clouds towards the N., but to no numerical extent: the clouds have gradually cleared off within | | | | | the last three-quarters of an hour. | | | 1 | •• | Cloudless. | | | | | | į | | | | | | | | | en de la companya de
La companya de la co | | | | | Overcast: cirro-stratus and scud. | ł | ## ELECTRICITY. July 7^d. 20^h. There was a spark at the distance of 0ⁱⁿ·01. July 8^d. 6^h. The instruments were unconnected with the conducting wire. | | | | | Wet | | Dew | Max. and Min.
as | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICA | LIN | STR | UME | NTS. | |---|------------------|--------------|--------------|-----------------------|---------------|-------------------------------|--|---|--------------|--|------------|---|--|---|----------------------|-----------------------|-----------------------|---| | Day and Hour,
Göttingen | Baro-
meter | Dry | Wet | Ther- | | Point | read at 22h. of Free Therm. | Stand of
No. 1.
(Osler's). | From C | | From Whe | | Sign
of | | ading | s of | | Interval
of time in | | Astronomical Reckoning. | cor- | Ther- | Thon | mom.
below
Dry. | Dew
Point. | below
Dry
Ther-
mom. | of Rad. Therm. of Therm. in Water of the Thames. | Reading of No. 2. Stand of No. 3. (Crosley's). | Direction. | Pressure
in lbs. per
square
foot. | Direction. | Descent of
the pencil
during the
continu-
ance of
each Wind. | Electricity, as shewn by Dry Pile Appa- ratus. | Single
Gold Leaf
of Dry
Pile Appa-
ratus. | Double
Gold Leaf. | Straws of
Volta 1. | Straws of
Volta 2. | recovering
the same
degree
of tension
after
discharge. | | d h | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | | from
lbs. to lbs. | | in. | | 0 | ٥ | div. | div. | m s | | July 11. 0 | •• | | | | | | •• | •• | WSW | | | ••• | •• | •• | •• | •• | • • | •• | | 2
4 | •• | •• | • | •• | ••• | •• | •• | | WSW
WSW | •• | | 10.00 | | | | | | · · · | | 6 | •• | | •• | •• | | | (83.9) | | WSW | | | | •• | ••) | •• | •• | •• | •.• | | 8 | | •• | •• | •• | • • | | 61.3 | 2.54 | WSW
SW | •• | •• | | ••• | | ••• | •• | : : | | | 10
h m | 20.021 | 00.5 | 61.0 | 4.0 | •• | •• | 101.0 | 0.00 | SW | • • | • • | | Pos. | 7 | 10 | | | | | 11. 30 | 30.034 | 66.2 | 61.9 | 4.6 | •• | •• | 54.0 | | WSW | •• | •• | • | | | | •• | ŀ | •• | | $\begin{array}{c} 12 \\ 14 \end{array}$ | 30.038 | 63.4 | 60.6 | 2.8 | ••• | | 70.2 | 7.795 | SW | •• | :: | | ••• | • • | 0 | 0 | 0 | ••• | | 16 | 30.037 | 62.6 | 60.3 | 2.3 | 58.5 | | 66.8 | •• | wsw | •• | | ••• | Pos. | 15 | 20 | 8 | •• | • • | | 18 | 30.041 | 61.7 | 60.0 | 1.7 | •• | • • | •• | •• | WSW | •• | | '' | Pos. | 2 | 2 | ••• | ••• | ••• | | 20
22 | 30·053
30·054 | 1 | | , | 65·0 |
12·8 | •• | •• | wsw
wsw | •• | wsw | 2.53 | Pos. | 6 7 | 8
10 | •• | | •• | | July 12. 0 | 30.066 | 83.2 | 70.6 | 12.6 | | | | | sw | | | | Pos. | 10 | | 10 | 12 | | | 2 | 30.065 | 84.6 | 71.1 | 13.5 | | | •• | | WSW | •• | | | Pos. | 10 | 20 | 5 | 7 | | | 4
6 | 30·048
30·038 | | | | 63.3 | | $\begin{bmatrix} 89.4 \\ 60.5 \end{bmatrix}$ | •• | WSW
W | •• | •• | | Pos.
Pos. | 10
15 | 20
20 | 10
8 | 12 | | | 8 | 30.057 | | | 8.4 | | | | 2.54 | Calm | | | | Pos. | 30 | | 10 | 20 | | | 10 | 30.064 | 68.8 | 63.0
| 5.8 | 62.0 | 6.8 | J 108·5 L | 0.00 | Calm | •• | •• | | Pos. | 40 | •• | 50 | 70
30 | 15.0 | | 12
14 | 30·070
30·072 | 64·5
62·3 | | 1·8
1·0 | •• | | 51.5 | | Calm
Calm | •• | •• | | Pos.
Pos. | 30
10 | | 25
8 | 10 | 17. 0 | | | 30.070 | | | 0.9 | 60.0 | 1.7 | 72.0 | 7.795 | S by W | • • | | | Pos. | 15 | | 20 | 15 | | | - 11 | 30.079 | | | 0.2 | •• | | 〔67·8 〕 | •• | S by W | •• | •• | ••• | Pos.
Pos. | 10 | •• | 12
30 | 15
35 | 8. 0 | | 20
22 | 30·089
30·087 | 70·8
74·5 | 66·1
68·4 | 4·7
6·1 | •• | :: | •• | •• | SSW
SW | •• | wsw | 1.76 | Pos. | 30
10 | 15 | 6 | ••• | ••• | | | 30.086 | | | | | | | | Calm | •• | | | Pos. | 8 | 15 | • • | •• | | | | 30·079
30·067 | | | | 61.0 | | (05.47 | •• | Calm
Calm | •• | | •• | Pos. | 8 7 | 15
10 | • • | • • | •• | | | 30.052 | | 69·9
70·4 | | 61.0 | 22.8 | $\begin{bmatrix} 85.4 \\ 58.5 \end{bmatrix}$ | ••• | Calm | •• | | | Pos. | 7 | 10 | | | | | | 30.060 | 76.6 | 69.6 | 7.0 | | | | 2.54 | Calm | •• | •• | | Pos. | 10 | • • | 8 | 10 | | | 10 | 30.069 | 70.8 | | | 65.0 | 5.8 | 98.4 | 0.00 | Calm
Calm | •• | • • • | •• | Pos. Pos. | 10 | 7 | 8 | 10 | • • | | | 30·081
30·079 | | | | | | 50.0 | | Calm
Calm | • • | :: | | I Us. | | Ó | 0 | 0 | | | 16 | 30.071 | 59.6 | 59.5 | 0.1 | 60.0 | | 73.0 | 7.795 | Calm | | | | | | 0 | 0 | 0 | •• | | 18 | 30.073 | 59.5 | 59.5 | 0.0 | •• | •• | 〔68·5 〕 | • • | Calm
Calm | •• | | •• | Pos. | 5 | 0
10 | 0 | l | •• | | | 30·086
30·081 | | | 2·4
5·6 | 69.0 | 7.4 | •• | •• | Calm | •• | w | 0.16 | Pos. | 40 | •• | 40 | 60 | 15. 0 | | | 30.070 | | | | • • • | | | ••• | Calm | | •• | | Pos. | 30 | | 15 | 30 | •• | | | 30.046 | | | | 64.0 | | (06:0) | •• | Calm
Calm | | •• | •• | Pos. Pos. | 40
30 | • • | 30
25 | 40
35 | 2. 30 | | 6 | 30·025
30·013 | 82.6 | 71.8 | 10.8 | 64.0 | 20.2 | $\begin{bmatrix} 88.0 \\ 60.5 \end{bmatrix}$ | •• | Calm
Calm | •• | •• | | Pos. | 30 | | 20 | 25 | 3. 0 | | 8 | 30.019 | 77.5 | 70.6 | 6.9 | | | | 2.54 | Calm | | •• | | Pos. | 40 | | 30 | 40 | 7. 0 | | 10 | 30.027 | 70.0 | 67.0 | 3.0 | 64.0 | | 96.0 | 0.00 | Calm | •• | •• | •• | Pos. | 40 | • • | 40 | 50 | 6. 0 | | | 30·030
30·021 | | | 1·4
0·5 | •• | •• | 54.5 | | Calm
Calm | •• | :: | | | :: | 0 | 0 | 0 | | | | 30.013 | | | 0.1 | 61.0 | 1.0 | 74.0 | 7.795 | Calm | •• | | | | •• | ő | o | . 0 | ! } | | 18 | 30.020 | 62.0 | 62.0 | 0.0 | •• | | 69.0 | •• | Calm | | •• | | •• | •• | 0 | 0 | 0 | . • | | 20 | 30·029
30·022 | 66.0 | 64.9 | 1.1 | | 7.0 | | •• | Calm | •• | NNW | 0.15 | Pos. | 5 | 7 | 0 | 0 | •• | | 22 | 30.075 | 13.8 | 08.0 | 9.7 | 00.0 | 1.8 | | | Calm | •• | TA TA AA | 1 | T OS. | J 3 | 1 1 | <u> </u> | ••• | 1 | DEW POINT THERMOMETER. July 12^d. 22^h. The observation was inadvertently omitted. July 13^d. 16^h. The reading was higher than that of the Dry Thermometer. Electricity. July $14^d.\,10^h.$ There was a spark at the distance of $0^{in}.02.$ | 0-10. | Phases of the Moon. | REMARKS. | | |-------|---------------------|---|------------| | _ | | | -
-
 | | • | Transit | | | | | • • | | | | | •• | | 1 | | . | •• | | | | - 1 | • • | | | |) | • • • | Cloudless: the sky was generally overcast with thin cirro-stratus till about 7 ^h . 30 ^m , and was cloudless afterwards. | | | | •• | | | |) | •• | Cloudless, but very hazy. | | | 3 | •• | There are a few cirri scattered over the sky: hazy.
Cirri and haze, principally towards the S.: since the last observation there have been many very fine specimens of the | | | 1 | • • | different kinds of cirrus, particularly one of the cymoid character which extended from the N.W. to S. E. | | | 2 | •• | Small fragments of different kinds of cirrus are scattered over the sky, with haze. | | | 1 | •• | A few detached cumuli and light clouds are scattered about the sky. | | | | Transit. | A few detached cumuli and light clouds are scattered about the sky. | | | | New. | Cumuli, cirro-strati, and scud are scattered in every direction. | | | | | Cumuli are scattered over the sky: cirro-stratus in the N. E. horizon. | | | - | | A few small detached cumuli are scattered near the horizon all round. | | | | •• | Cloudless, but hazy, particularly near the horizon. | | | | ••• | Cloudless, but very hazy. Cloudless in the horizon: hazy in the N. | | | | | Cloudless. | | | | ., | Cloudy around the horizon: hazy. | | | | | ,, hazy, particularly in the N. | | | | •• | Cloudless: hazy. There are a few detached cumuli, with much haze. | | | | | Cirro-cumuli and much haze. | | | | Transit | A few cumuli: hazy. | | | | | Cumuli, cirro-stratus, and much haze. | | | | | 22 | | | 1 | ••] | Cloudless, but very hazy, particularly in the N. | | | | •• | Cirro-stratus around the horizon: hazy. Cirro-stratus around the horizon, chiefly in the N. | | | | | Cloudless: very hazy. | | | | | The sky is covered with thin cirro-stratus: hazy. | | | | •• | A dense haze prevails and obscures the sky. | | | | •• | Cloudless: very hazy. | | | | •• | ,, ,, | | | | | Overcast with thin cirro-stratus and haze. | | | | Transit | Overcast: a thin cirro-stratus covers the sky: hazy. | 1 | | | •• | The greater portion of the sky is obscured by cumulo-stratus and haze. Cumulo-stratus, scud, and haze. | | | | • • | Cumulo-stratus, scud, and naze. Cumuli, cumulo-strati, scud, and haze. | | | | | Cloudless: hazy. | į | | | | ,, very hazy. | | | - | •• | ,, a few light clouds towards the N. E., but to no numerical amount. | | | | | Overcast: dense haze. | | | | •• | ,, dense haze and fog. ,, cirro-stratus and scud: the fog has gradually cleared off since the last observation. | | | | | ,, chro-stratus and scud. the log has graduany cleared on since the last observation. | 1 | | | | | | Wat | | | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICAL | LINS | TRU | JME | NTS. | |-------------------------------------|------------------|---------------|---------------|---------------|---------------|----------------------|--|---|------------------|--|------------|--|---|---|----------------------|-----------------------|-----------------------|---| | Day and Hour, | Baro- | | | Wet
Ther- | | Dew
Point | read at 22h. | Stand of
No. 1. | From O | | From Whe | 1 | Sign | Rea | adings | of | | Interval
of time in | | Göttingen | meter | Dry | Wet | mom. | | below | Free Therm. | (Osler's). | Anemor | neter. | Anemoni | Descent of | Electricity, | Single | ا ا | . . | . . | recovering
the same | | Astronomical
Reckoning. | Cor-
rected. | Ther-
mom. | Ther-
mom. | below
Dry. | Dew
Point. | Dry
Ther-
mom. | of Rad. Therm. of Therm. in Water of the Thames. | Reading of No. 2. Stand of No. 3. (Crosley's). | Direction. | Pressure
in lbs. per
square
foot. | Direction. | the pencil
during the
continu-
ance of
eachWind. | shewn
by Dry
Pile Appa-
ratus. | Single
Gold Leaf
of Dry
Pile Appa-
ratus. | Double
Gold Leaf. | Straws of
Volta 1. | Straws of
Volta 2. | degree
of tension
after
discharge. | | d h | in. | | 0 | 0 | - | | o Thames. | in. | | from | | in. | | 0 | 0 | div. | div. | m. s | | July 15. 0 | 30.016 | 79.8 | 69.8 | 10.0 | | | | | NE | lbs. to lbs. | | | Pos. | 25 | | 20 | 25 | ••, | | 2 | 29.997 | 84.2 | 71.1 | 13.1 | ∥ | | | | NE | | •• | •• | Pos. | 10 | 15 | 8
6 | 10
0 | | | 4 | 29.983 | II . | 1 | 12.5 | 62.5 | 20.1 | (86.6) | | NE
E by S | •• | • • | ••• | Pos.
Pos. | 10
10 | 15
15 | 6 | ó | | | 6 | 29·962
29·959 | | | | ∥ … | •• | 57.9 | 2.54 | Calm | • • | | 1 :: | Pos. | 40 | 40 | 12 | 10 | | | 8
10 | 29.939 | 14 | 11 | 1 | 60.0 | 2.7 | 103.0 | | Calm | | | | Pos. | 20 | 20 | 7 | 0 | 11 | | 12 | 29.966 | | | | | | 50.0 | 0.00 | Calm | •• | • • | | ∥ | | 0 | 0 | 0 | 11 | | 14 | 29.956 | 59.2 | 58.5 | 0.7 | | | | 7.795 | Calm | •• | •• | •• | •• | | 0 | 0 | 0 | | | 16 | 29.939 | 1 | 59.1 | 1 | 58.0 | 1 | | | Calm
Calm | •• | | 1 | | | 0 | o | 1 | | | 18
20 | 29·937
29·940 | | | | | ••• | [19·2] | | E | : : | | :: | ∥ ∷ | :: | 0 | 0 | 0 | | | 20 22 | 29.940 | | | | 61.3 | 12.8 | | | NNE | | N | 1.60 | Pos. | 15 | ••• | 12 | 15 | 12.0 | | July 16. 0 | 29.915 | 81.5 | 69.5 | 12.0 | | | | | N by E | | | 1 | Pos. | 15 | | 10 | | | | 2 2 | 29.892 | | | 11.7 | | | | | N by E | | | | Pos. | 10 | 12 | 5 | 1 ` | 11 | | 4 | 29.877 | 83.0 | 70.3 | 12.7 | 62.0 | 21.0 | (85.7) | ∥ ∣ | Ě | •• | | •• | Pos. | 10 | 10 | 8 | 10 | 1 | | 6 | 29.860 | | | | | ••• | 58.5 | 2.62 | SE | •• | | 1 | Pos. | 7 | 10 | | | | | 8 | 29·861
29·873 | | 60·2 | | 58.0 | 5.3 | 103.3 | | E by S
E by S | | | :: | Pos. | 10 | 1 | 8 | 10 | | | 10
12 | 29.873 | | 59.5 | | 38.0 | | 52.5 | 0.02 | E by S | :: | | | | | | | | | | 14 | 29.862 | | | | :: | | | 7.835 | NE | | | •• | 1 | | • • | | 50 | | | 16 | 29.859 | E? | 11 | | 58.0 | 1.2 | 4 1 2 1 | 7 600 | N | | ••• | •• | Neg. | 40 | 0 | 40
0 | 50 | 3. 0 | | 18 | 29.857 | 11 | F) | 1 | | •• | [70·0] | | N by W | •• | •• | | | :: | 0 | 0 | | | | 20
22 | 29·868
29·873 | 11 | 11 | 1 | 57.0 | 4.0 | •• | | N by W | 0 to $\frac{1}{2}$ | NNE | 2.61 | | | 0 | 0 | 1 | •• | | July 17. 0 | 29.867 | 60.2 | 59.7 | 0.2 | | ١ | | | ENE | 0 to 1 | | | n | | | ١., | | •• | | 2 | 29.841 | | | | ··· | | | •• | NE | •• | ••• | 1 | Pos. Pos. | 15
25 | 20 | 8
20 | 30 | 7.0 | | 4 | 29.830 | 11 | 14 | | 63.0 | ı | 70·3
57·8 |
•• | NNE
N | •• | | :: | Pos. | 20 | | 15 | 1 | | | $egin{array}{c} 6 \\ 8 \end{array}$ | 29·831
29·845 | (l | U | 1 | | | 378 | 2.62 | N | 1 :: | | | Pos. | 20 | | 12 | 15 | 11.0 | | 10 | 29.874 | | | 1.9 | 59.5 | l . | 74.0 | 0.00 | N | | | | Pos. | 15 | •• | 12 | 1 | 13. 0 | | 12 | 29.873 | 62.4 | 60.1 | 2.3 | | • • | 55.4 | -0.00 | N by E | •• | •• | •• | •• | | 0 | 0 | 0 | •• | | 14 | | •• | | | •• | •• | 50.0 | 7.835 | N
N | | •• | | :: | :: | | | | | | 16
18 | | •• | | | | | 73·8
69·2 | | N | :: | ∥ :: | | 1 | 1 | | | | | | 20 | | | | | | | | | N | | | | <u></u> | | | | $ \cdots $ | •• | | 22. | 29.924 | 66.3 | 61.3 | 5.0 | | •• | •• | •• | N . | ••• | NNE | 3.28 | Pos. | 2 | 2 | ••• | •• | •• | | July 18. 0 | | | | | | | | | N | | •• | | | ••• | | ••• | •• | •• | | 2
h m | •• | •• | • • | •• | | •• | •• | •• | NNE | •• | •• | •• | | ••• | | | • • | • • • | | 2. 20
h | 29.924 | 69.5 | 61.9 | 7.6 | | •• | •• | | NNE | •• | •• | •• | Pos. | 30 | 30 | 8 | 10 | •• | | 4 | •• | | | •• | | •• | (73.8) | | ESE | •• | | | ∥ … | | | · · | • • | •• | | 6 | •• | ••• | •• | •• | •• | ••• | 49.0 | 2.83 | E
E | | :: | | 1:: | | | | : : | | | 8
10 | •• | •• | •• | •• | | | 88.5 | | ENE | | :: | | :: | | | | | | | 12 | • • | | | | | :: | 42.2 | 0.02 | ENE | | | | | | | | 1 | ••• | | 14 | 29.875 | 51.0 | | 0.8 | | | | 8.205 | ENE | | ••• | | | | 0 | 0 | 0 | • • | | 16 | 29.855 | 50.5 | 50.3 | 0.3 | 50.0 | 0.2 | 68.5 | | ENE | •• | | " | •• | •••• | " | " | " | •• | | 18 | 29.850 | | | | | | •• | | NE | | ∥ | | Pos. | 2 | 2 | | | • • | | 20 | 29.830 | 60.0 | 58.1 | 1.9 | | | • • | •• | NE
NE | •• | ENE | 2.42 | Pos. | 10 | 0 | 8 | | ll i | | 22 | 29.821 | 63.3 | 59.3 | 4.0 | 56.0 | 7.3 | •• | | NE | ••• | ENE | | 11 I US. | 11 10 | 1::- | | 1.0 | • • • | ELECTRICITY. July 16^d . 16^h . There was a spark at the distance of 0^{in} . O2. July 17^d . 0^h . See extra observations. | Amount of Clouds, | Phases
of
the
Moon. | REMARKS. | Observer. | |-------------------|------------------------------|--|-----------| | 3 | | Cumuli, scud, and haze. A few light clouds are scattered about the sky: hazy. | L | | 1
0 | Transit | A few light clouds, with haze, near the horizon.
Cloudless. | L | | 8 | | Thin clouds are scattered over the sky; there are some small portions of blue sky. | G | | 2 | •• | A bank of clouds near the horizon; otherwise cloudless. | G | | 4
10 | :: | Cloudy around the horizon; clear elsewhere, but the stars shine dimly. Overcast: thin cirro-stratus. | I | | 10 | | >> >> | | | 10 | •• | Olan Jan | _ | | 0 | •• | Cloudless. ,, hazy. | T | | · | | | 1 | | 0 | •• | Cloudless. | | | 5
0 | Transit | Cirro-stratus, cumulo-stratus, and haze. There are a few cumuli towards the N., but to no numerical extent. | T | | ŏ | •• | Cloudless. | 1 | | 2 | | Cirro-stratus towards the horizon in the N. and W.: there are a few cirri about the zenith. | | | 2
4 | • • | Cloudy around the horizon. Cirro-stratus near the horizon, but more particularly in the S. and S. S. E. portions. | T | | 10 | • • | Overcast: cirro-stratus and scud. | 1 | | 10 | • • | distant thunder heard in the S.W.: rain was falling from 15 ^h . 10 ^m to 15 ^h . 50 ^m . | | | 10
10 | •• | Cumulo-stratus, cirro-stratus, and scud: thunder has been frequently heard. Overcast: cirro-stratus and scud: thunder has been heard at intervals, since 18 ^h , in the N., N. N.W., and N.W. | T | | 10 | | distant thunder heard occasionally in the W. | G | | 10 | | Overcast: cirro-stratus and scud: rain is falling heavily; it commenced at about 23h: there have been many peals of | | | 10 | • • | the rain ceased at about 1 ^h . 10 ^m . [thunder since the last observation.] | G | | 10 | Transit | | Т | | 10
10 | •• | 29 | | | 10 | •• | and and the second seco | T | | 10 | In Equator | ,, very dark. | G | | • • | •• | | | | • • | • • | | Ì | | • • • | ••• | | | | 10 | Apogee | ,, cirro-cumuli and scud: a few breaks appear occasionally. | Ì | | | | | 1 | | • • | . • • | | | | 10 | •• | Overcast: cirro-cumuli: the sky continued overcast during the greater part of the day; towards evening the clouds cleared away considerably. | | | • • | • • | | | | • • | Transit | | | | | • • | | | | | •• | A few light clouds towards the S.W.: frequent flashes of sheet lightning have been seen in the S.W. Cirri, cirro-strati, and scud cover the greater portion of the sky; clear towards the E.: a few flashes of sheet lightning | | | 2
6 | | were seen shortly after the last observation. | | | 6 | | Cirro-strate and thin soud in every direction • the N mart of the aby is most tree trom cloud | | | | •• | Cirro-strati, and thin scud in every direction; the N. part of the sky is most free from cloud. Cirri, cirro-cumuli, cirro-strati, and scud. | G | | | | | | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | | WIN | D | | ELE | CTRICAL | IN | STR | UME | NTS. | |---------------|--------------------------|-------|--------------|--------------|--------------|--------------|---|------------------------------------|------------------------|-------------------------|-------------|----------------------------------|----------------------|-------------------------------|--------------------|-----------------------|-------------------|------------------------| | Day and Hour, | 1 | | | Ther- | | Point | read at 22h. | Stand of
No. 1. | From (| | From Whe | | Sign
of | | ading | sof | | Interval
of time in | | Göttingen | meter | Dry | Wet | mom. | Dew | below | Free Therm. | (Osler's). | Anemo | meter. | Allemon | Descent of | Electricity
as | Single | | ₻ | ي
د و | recovering | | Astronomical | Cor- | Ther- | Ther- | below | | Dry
Ther- | Rad. Therm. | No. 2. | D' | Pressure
in lbs. per | Direction | the pencil
during the | shewn
by Dry | Single
Gold Leaf
of Dry | Lea | aws
Ita 1 | Straws
Volta 2 | degree
of tension | | Reckoning. | rected. | mom. | mom. | Dry. | | mom. | of Therm. in
Water of the
Thames. | Stand of
No. 3.
(Crosley's). | Direction. | square
foot. | Direction. | continu-
ance of
eachWind, | Pile Appa-
ratus. | Pile Appa-
ratus. | Gold | Straws of
Volta 1. | Str | after
discharge | | d h | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | | from
lbs. to lbs. | | in. | | 0 | 0 | div. | div. | m, p | | July 19. 0 | 29.819 | | | 7.3 | | | | | NE | • • | •• | •,• | Pos. | 15 | | 10 | 12 | | | 2 | 29.313 | | | 7.7 | | | | •• | NE | ; •.•. | • • • | f • •, | Pos. | 10 | | 8 | 10 | ••• | | 4 | 29.784 | | | | 11 | 11.0 | 69.9 | • • | NNE | ••. | •.•. | . • • | Pos. | 10
10 | 15
15 | | | • • | | 6
8 | 29·777
29·761 | | | 8·0 | l i | ••• | 54.3 | 2.83 | NNE
N by E | •• | •• | | Pos. | 10 | 15 | : : | :: | •• | | 10 | 29.753 | | | | I J | 10.0 | 78.8 | | N by E | •,• | | ••• | Pos. | 40 | | 40 | 60 | | | 12 | 29.744 | | | | 11 | | 45.7 | 0.00 | N by E | | •• | | Pos. | 10 | | 8 | 10 | | | 14 | 29.729 | | | 1.9 | 11 | | . | 8.220 | N by E | | | | Pos. | 10 | | 8 | 10 | | | 16 | 29.717 | | | 1.6 | 52.0 | 3.2 | 72.0 | 8.220 | N by E | •• | | ••• | Pos. | 30 | | 25 | 30 | 15. 0 | | 18 | 29.719 | | | 1.8 | •• | • • | [67·8] | •• | N by E | •• | •• | •• | Pos. | 20 | •• | 15 | 20 | 10. 0 | | 20 | 29.744 | | | 4.8 | 500 | | •• | •• | N by E | ••• | NNE | 1.28 | Pos. | 10
35 | : • • ₁ | 10
50 | 10
60 | 10, 0
6. 0 | | 22 | 29.752 | 67.2 | 60.5 | 6.7 | 26.0 | 11.2 | •• | •• | NNW | '' | NNE | 1.28 | Pos. | 99 | • • | 30 | OU | 0. 0 | | July 20. 0 | 29.759 | | | 8.9 | | | | | N by W | | | | Pos. | 40 | •.• | 60 | 70 | 5. 0 | | 2 | 29.760 | | | | | |] | •• | N by W | •• | •• | •,•, | Pos. | 40 | ••• | 60 | 70 | 13. 0 | | 4 | 29.754 | | | | 57.0 | 17.3 | | •• | N by W | •• | . • • . | • • • | Pos. | 40 | ••• | 45 | 60 | 8. 0 | | 6 | 29.747 | | 62.1 | 8.4 | •• | • • | 77.0 | •• | N | •• | ••
| ••• | Pos. Pos. | 40
30 | | 35
25 | 40
30 | 6. 0
7. 0 | | 8
10 | 29·745
29·759 | | | 5:8
3:5 | 1 | 6.0 | 58.7 | 2.83 | SSW | • • • | •,,•. | •• | Pos. | 25 | • • | 20 | 25 | 12. 0 | | 10 | 29.749 | | | 1.2 | () | | 94.4 | | S by W | ••• | | • ,• , | Pos. | 15 | 20 | 5 | 7 | 7. 0 | | 14 | 29.732 | | | 1.0 | | | 54.0 | 0.00 | S by W | | | | Pos. | 3 | 7 | | | | | 16 | 29.719 | | | 1:0 | | | | 0.000 | WŚW | •• | | | Pos. | 5 | 10 | | | | | 18 | 29.732 | | | 1.0 | | | 71.8 | 8.220 | S | •• | • • | , | •• | . •:• | 0 | 0 | 0 | | | 19 | 29.742 | | 59.0 | 2.0 | ••• | • • | 67 ·2] | • • | . S | . • .• | . •• | | <u>.</u> | 0.5 | • • , | | | | | 20 | 29.744 | | 59.5 | 2.2 | | | ••, | • •. | S | • •, | wsw | 0.00 | Pos. | 25
30 | • • | 20
10 | 30
20 | 5. 0 | | 22
23 | 29·754
29·762 | | 60·7
60·1 | 3.8 | 59.5 | 2.0 | •• | •• | SSW
WSW | •• | 1 | 0.92 | Pos. | | 0 | 0 | 0 | •• | | 213 | 28 102 | 04.2 | 00 1 | 4:1 | •• | •• | •• | •• | 11011 | i •.•. | •• | , | •• | •.•. | · | ľ | | ••: | | July 21. 0 | 29.765 | 67.0 | 62.0 | 5.0 | | | | | wsw | | •• | | Pos. | 8 | 10 | | | ••• | | 1 | 29.763 | | 64.5 | 6.0 | | [| | | WSW | •• | •• | | Pos. | 5 | 5 | •• | • • | •• | | 2 | 29.771 | | 66.4 | 7.6 | •• | •• | •• | •• | WSW | •• | •• | •.•. | •• | •• | 0 | 0 | 0 | •• | | 3 | 29.771 | 72.2 | 65.3 | 6.9 | | | •• | •• | WSW | •• | •• | ••• | Dog | 6 | 0 | 0 | 0 | •• | | 4 | 29·776
29·778 | 74.0 | 65·6
65·8 | 8.4 | 59 ·0 | | •• | •• | WSW
WSW | • • | ••• | ' | Pos. | 1 | 8 | • • | ••• | • • • | | 5
6 | 29.780 | 73.7 | 63.7 | | •• | •• | •• | •• | wsw | • • | | ;; | Pos. | 6 | 8 | | | ••. | | | 29.791 | | | | •• | •• | | | wsw | | | | | | | | | | | 8 | 29.812 | | | 8.5 | | • • | 75.1 | | $\mathbf{s}\mathbf{w}$ | | • • • | | Pos. | 10 | • • | 5 | 7 | | | 9 | 29.846 | 65.2 | 62.5 | 3.0 | | | 58.9 | 2.83 | : SW | •• | 2: ••. | ••• | Pos. | | 20 | 10 | | •• | | | 29.866 | | | 2.9 | 59.0 | 5.2 | 90.0 | | SSW | •• | •• | | Pos. | 10 | 20 | 10 | 10 | •• | | | 29.864 | | | 1.2 | •• | •• | 54.0 | 0.00 | SSW | •• | •• | •• | Doc | 10 | 10 | • • | ••• | •• | | 12 | 29·8 74
29·863 | 60.5 | 59.7 | 1.2 | •• | •• | | 8.220 | S by W
S by W | •• | •• | | Pos. | 10 | 10 | 7 | ••• | • • | | 13
14 | 29.863 | 80·0 | 59.4 | 0·9 | •• | • • | 71:5 | | S by W | | | : : | | •• | 0 | 0 | 0 | •• | | | 29.870 | | | 0.3 | •• | | 〔67·8 〕 | •• | S by W | | | (| | | | | | :: | | | 29.866 | | | 0.9 | 58.0 | _ '' | | •• | S by W | | •• | •• | | | 0 | 0 | 0 | •• | | 17 | 29.870 | 59.7 | 58.9 | 0.8 | | | | •• | S by W | | •• | | | •• | • • | · · | | , | | 18 | 29.877 | | | 1.2 | •• | • • • | •• | •• | S by W | | •• | | | •• | 0 | 0 | 0 | • • • | | 19 | 29.895 | | | 2.5 | •• | •• | •• | | SSW | 0 to ½ | •• | •• | ••• | •• | • • | | • • | •• | | 20 | 29.900 | | | 3.0 | 50.5 | 0.9 | •• | •• | SSW | 0 to $\frac{1}{2}$ | wsw | 4:20 | ., •:•: | . ••• | 0 | 0 | 0 | •• | | 22
23 | 29.918
29.918 | | | 4.3 | 58.5 | | •• | | SW | $0: to \frac{1}{2}$ | 3 VV 3/VV | -2.20 | •• | | | | | •• | | 20 | 20 310 | 00 0 | 0, 0 | - 3 U | ••• | . • | | •• | | * | * *.*/
> | | • • | | • | | • | | | July 22. 0 | 29.913 | 67.0 | 61.2 | 5 ·5 | | | •• | •• | SSW | 0 to 1 | ••. | | • • | , | 0 | 0 | 0 | | Maximum Free Thermometer. July 21^d . 22^h . The reading was lower that of the Dry Thermometer at 5^h . ELECTRICITY. July 19^d. 10^h and July 20^d. 4^h. There were sparks at the distances of 0ⁱⁿ·02 and 0ⁱⁿ·01 respectively. | 0—10. | Phases | | 1 | |--|---------|---|----| | | of | | | | Ť | | | | | ٥ | the | R E M A R K S. | 1 | | | Moon. | | _ | | 0 | | Overcast: cirro stratus and scud: there have been a few drops of rain since the last observation. | | | 0 | • • | ,, there was a shower of rain at 1 ^h . 10 ^m . | | | 0 | • • * | ,, | ١ | | 0 | Transit | ,, , a thin rain was falling a few minutes since. | 1 | | $9\frac{1}{2}$ | • • | Cirrus, cirro-stratus, and scud: there is a small break in the clouds towards the S.W. | ł | | 0 | • • | Overcast: cirro-stratus and detached masses of wild looking scud. | | | 0 | •• | ,, cirro-stratus and scud. | | | $\begin{bmatrix} 5 \\ 7 \end{bmatrix}$ | • • | Clear in and around the zenith; cloudy elsewhere.
Clear in the E.; cirro-stratus and scud elsewhere. | | | 0 | •• | Overcast: cirro-stratus and scud eisewhere. | 1 | | ŏ | •• | Overouse. Chro-stratus and soud. | 1 | | o | •• | The sky is covered with thin cirro-stratus: at 22h. 40m a solar halo was visible, but it was too faint for measurement. | 1 | | | | | | | 0 | 1st Qr. | The whole of the sky is covered with cirro-stratus, with patches of scud towards the S. and S. S.W. Overcast: cumulo-stratus, cirro-stratus, and scud: the clouds are thin, the Sun being visible through them. | | | 0 | Transit | ,, cirro-stratus and scud: a very faint solar halo has been visible occasionally since the last observation. | - | | í | | • | 1 | | ól | •• | | - | | | | Cirro-stratus and scud: a few stars are faintly visible in the zenith. | | |) | | Overcast: cirro-stratus and scud. | | |) | | , cirro-stratus. | - | |) | • • | ,, cirro-stratus and scud. | 1 | |) | •• | ja | 1 | | | •• | 21 22 22 22 22 22 22 22 22 22 22 22 22 2 | | |) | •• | " | ١ | | 1 | •• | " | 1 | |) | •• | Overcast: cirro-stratus of different densities and scud. | | |) | •• | ,, cirro-stratus and scud. | 1 | |) | •• | Overcast with very thin cirro-stratus, through which blue sky is visible. | ١ | |) | •• | " | | | | • • • | Cumuli are scattered all over the sky, except near the zenith: the horizon is hazy. | 1 | | 2 | •• | A few detached patches of cumuli near the horizon: hazy. | | | 3 | | There are a few small cumuli, some comoid cirri, and scud scattered over the sky. | | | 2 | Transit | Cirri and light clouds are scattered about the sky. | | | ١ | | A few clouds near the W. horizon; otherwise cloudless. | 1 | | : | •• | There are a few small clouds near the horizon in the N. and W.; otherwise cloudless. | 1 | | | •• | Considerable quantities of scud have collected in different parts of the sky: the stars shine very brightly between the | | | | •• | The zenith and the parts around it for 60° are free from cloud; the horizon is misty. [masses: there is no upper cloud. | | | | •• | Overcast with dark clouds of various densities: a few of the principal stars near the zenith are visible. | | | | ••• | Cloudless. | 1 | | | • • | Cloudy, principally towards the N. and around the horizon; clear elsewhere. | | | | | Cloudy around the horizon. | 1 | | | | Overcast: cirro-stratus and scud. | 1 | | | | Cirro-stratus and scud of various densities. | 1 | | | | Overcast: cirro-stratus and scud. | ١ | | | •• | ,, a thin rain is falling. | | |) | •• | " | | | | } | Overcast: cirro-stratus and scud: the rain has ceased. | 1, | | -1 | •• [| O vereast. On to-stratus and soud; the fain has ceased. | 1 | | | | | | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICA | L IN | STR | UME | NTS. | |---|------------------|-------|--------------|------------|--------------|--------------|---|------------------------------------|--------------------------------|--------------------------------|------------|--|--------------------------------|---|-------|-----------|-----------------|--------------------| | Day and Hour, | Baro- | | | Ther- | | Dew
Point | read at 22h. | Stand of
No. 1. | From C | | From Whe | | Sign | Rea | ding | s of | | Interva | | Göttingen | meter | Dry | Wet | mom. | Dew | below | Free Therm. | (Osler's).
Reading of | Anemoi | neter. | Anemom | | Electricity, | Single | ١., | |) | recoveri | | Astronomical | Cor- | Ther- | Ther- | | Dew | Dry | Rad. Therm. | No. 2. | | Pressure | | Descent of
the pencil
during the | as
shewn | Gold Leaf | be af | s of | 3 of | degree
of tensi | | Reckoning. | rected. | mom. | mom. | Dry. | Point. | mom. | of Therm. in
Water of the
Thames. | Stand of
No. 3.
(Crosley's). | Direction. | in lbs. per
square
foot. | Direction. | continu-
ance of
eachWind. | by Dry
Pile Appa-
ratus. | Single
Gold Leaf
of Dry
Pile Appa-
ratus. | Dou | Straw | Straws
Volta | after
dischar | | đ h | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | | from
lbs. to lbs. | | in. | | 0 | 0 | div. | div. | m = | | July 22. 1 | 29.926 | | | | ∥ | | | •• | SSW | 0 to $\frac{1}{2}$ | | | •• | • •• | • • | • . | | •• | | 2 | 29.920 | 11 | 64.0 | 1 | | | •• | | SW | •• | •• | | • • | • • • | 0 | 0 | 0 | • • | | 3 | 29.943 | | 62·5
62·4 | | 57.5 | 11.0 | •• | •• | SW
SW | •• | •• | | Pos. | 15 | 20 | 8 | :: | | | 4
5 | 29·954
29·952 | | | | 37.9 | 11.0 | (74.3) | : | WSW | | •• | | 1 05. | | | | | | | 6 | 29.962 | | 58.5 | 11.8 | ∥ | | 48.8 | | wsw | | | | Pos. | 10 | | 10 | 15 | 7. (| | 7 | 29.993 | 11 | | 10.7 | | | | 2.83 | wsw | | | | | • • | ••• | • • | 1 | •• | | 8 | 29.999 | 11 - | | 1 | | | 90.0 | 0.00 | WSW | | ••• | •• | Pos. | 40 | 40 | 10 | 10 | ••• | | 9 | 30.031 | 11 | 11 | 1 | | : | 41.0 | | WSW | •• | •• | ••• | Dog | 25 | ••• | 20 | 25 | | | 10 | 30.046 | | 11 | | li | i | 70.0 | 8.220 | WSW
WSW | •• | " •• | ••• | Pos. Pos. | 40 | • • | 20 | 40 | | | 12
14 | 30.069 | 1 1 | 11 | 1 | | | 70·8
67·2 | | SSW | •• | •• | | Pos. | 30 | | 10 | 20 | | | 16 | 30.031 | | | | B . | 1.6 | (6/2) | :: | SW | | | | Pos. | 30 | | 15 | 30 | | | 18 | 30.098 | | | | | | | | $\tilde{\mathbf{s}}\mathbf{w}$ | | | | Pos. | 40 | | 30 | 50 | 5. | | 20 | 30.113 | 11 | 11 | | | | | | SW | | | | Pos. | 40 |
 50 | 70 | 15. | | 22 | 30.122 | 66.3 | 57.3 | 9.0 | 50.0 | 16.3 | •• | • • | W by N | •• | wsw | 3.20 | Pos. | 30 | ••• | 25 | 30 | •• | | July 23. 0 | 30.116 | | | | | | | •• | WNW | •• | •• | | Pos. | 20 | | 15
8 | 1 | | | . 2 | 30.110 | | | 11.8 | ••• | | | •• | N | | • •• | 1 | Pos. Pos. | 10
30 | | 10 | 10
20 | | | 4 | 30.092 | | 58.5 | | ll . | 21.4 | 73.1 | •• | N
N | ••• | •• | 1 | Pos. | 30 | | 10 | | | | 6
8 | 30.092 | | | | ••• | | 45.4 | 2.83 | Calm | • • • | •• | | Pos. | 6 | 8 | 0 | | | | 10 | 30.084 | 11 | 53.9 | | 50.0 | 8.0 | 87.0 | | Calm | | | 1 | Pos. | 40 | | 60 | 80 | | | 12 | 30.081 | | 52.9 | | | | 38.7 | 0.00 | Calm | | | 1 | Pos. | 40 | | 35 | 40 | | | 14 | 30.058 | 50.0 | 48.9 | | | | | 8.220 | Calm | | | •• | Pos. | 25 | •• | 25 | 30 | 10. | | 16 | 30.036 | II : | 47.6 | | 11 | 1.3 | 70.5 | 0 220 | Calm | •• | •• | 1 | Pos. | 20 | ••• | 20 | 25
20 | 15 | | 18 | 30.041 | 11 1 | 46.9 | 0.6 | ••• | ••• | [67.0] | | Calm | •• | •• | | Pos.
Pos. | 20
40 | | 15
35 | 40 | 15. | | $\begin{array}{c} 20 \\ 22 \end{array}$ | 30·037
30·012 | | 54·4
60·5 | 3·4
7·9 | 55 ·0 | 13·4 | •• | •• | Calm
Calm | ••• | NNW | 1.25 | Pos. | 40 | | 50 | t | | | July 24. 0 | 29·994 | 74.0 | 61·5 | 12.5 | | | •• | | Calm | | | | Pos. | 30 | | 40 | 50 | 7. | | 2 | 29.968 | | | | •• | •• | •• | •• | N by E | •• | •• | | Pos. | 25 | ••• | 20 | 25 | 10. | | 4 | 29·941 | 72.8 | 60.7 | 12.1 | 53 ·0 | 19.8 | 78·7
52·3 | | N by E | | | | Pos. | 30 | | 25 | | | | 6 | 29 903 | | | | | ••• | 32 5 | 2.83 | N by E | •• | ••• | •• | Pos. | 15 | ••• | 15
 8 | 1 | ••• | | 8 | 29.893 | | | | 53.0 | 17.0 | 96.2 | 0.00 | N by E
E by S | •• | •• | | Pos. | 10
20 | :: | 18 | 1 | | | 10
12 | | | | | 51.0 | 11.0 | 45.3 | 0.00 | E by S | •• | •• | | Pos. | 10 | | 12 | | 8. | | 14 | 29 001 | • • • | 02.0 | 1 | | | | 8.220 | E by S | •• | :: | | | | | | 1 | | | 16 | | | | | | | 70.5 | | E by S | | | | | | • • | • • | | ••• | | 18 | | | | | | | 〔66·5 〕 | | ENE | •• | | | | ••• | ••• | · · | • . | •• | | 20 | | • • • | | | ••• | •• | ••• | | ENE | •• | 2727.5 | 0.75 | | ∦ •• | | 0 | | | | 22 | 29.751 | 64.6 | 58.3 | 6.3 | •• | •• | •• | •• | NNE | •• | NNE | 0.75 | | •• | 0 | " | 0 | | | July 25. 0 | 29.807 | 67.5 | 58.1 | 9.4 | | •• | (00.5) | •• | ENE
ENE | 0 to $\frac{1}{2}$ | 1 | | •• | •• | 0 | 0 | 0 | .: | | 2 | •• | •• | ••• | •• | •• | ••• | 69.5 | 2.83 | NE | 0 to $\frac{1}{2}$ | | | :: | | | | | | | 4 ¹ | | • • | •• | • | • • | • • | 48.2 | 2 00 | NE | | | | :: | | | | | | | 8 | | | | | | :: | 84.0 | 0.00 | N | | | | | ∥ | •• | | | | | 10 | | | | | | | 42.0 | | N | | | | | ∥ | | | | | | 12 | | | | | | • • | 70.0 | 8.220 | N | •• | •• | •• | ∥ | ∥ •• | | | | | | 14 | 29.798 | | | 0.6 | | | [65·8 j | | N | •• | ••• | | | •• | 0 | 1 - | 1 | ••• | | 16 | 29.786 | 50.0 | 49:9 | 0.1 | 50.0 | 0.0 | ll | | N by W | | | | | | ľ | 1 0 | 1 0 | • • | DRY THERMOMETER. July 23^d. The increase in the reading between 18^h and 22^h was considerable. ELECTRICITY. July 22^d. 12^h and 20^h. There were sparks at the distance of 0ⁱⁿ·01 at both times. July 23^d. 10^h. There was a spark at the distance of 0ⁱⁿ·02. | Clouds, | Phases | | \cdot | |---------|------------------------------|---|---------| | ŏ. | of | | 1 | | 7 | the | REMARKS. | | | 0-10 | Moon. | | | | :
 | <u> </u> | | - | | 9 | | Cirro-stratus and scud in every direction except the N.W., where a small portion of blue sky is visible. | | | 0 | •• | Cirro-stratus and scud. | | | 0
9 | •• | Overcast: cirro-stratus and scud: a few drops of rain have fallen since the last observation. Cirro-cumuli and scud: a few small breaks towards the N.W. | | | 7 | | Cumulo-stratus, cirro-stratus, and scud: clear portions of blue sky in and around the zenith. | | | 3 | | Detached cumuli are scattered around the horizon; every other part of the sky is clear. | | | 1
1 | Transit | Nearly cloudless, there being only a few cumuli near the horizon in the N. | | | 3 | Transit | Cloudy around the horizon, and in the N. | | | 2 | | Cloudy around the horizon; clear elsewhere. | | | 0 | •• | Cloudless; but hazy about the Moon's place. | | | 0
0 | •• | Cloudless, but hazy. | | | 0 | | Thin cirri towards the horizon in the S. and S.W.; elsewhere cloudless, but hazy. | | | 2 | | Cirri towards the horizon in the S. and S.W., with slight haze in every direction. | | | 3 | | Cumulo-strati, detached cumuli, loose scud, and haze. | | | 7 | | Cumulo-strati, detached cumuli, loose scud, and haze. | į | | 9 | | Cumulo-strati, cirro-stratus, and loose masses of scud. | | | 1 | •• | There are a few detached cumuli and some fleecy clouds in different directions: hazy. | | | 3 | • • | Detached cumuli near the horizon: hazy. | 1 | | 5 | Transit | Cirro-cumuli and scud are scattered over the sky. Cloudless: hazy about the horizon. | 1 | |) | • • | hazy. | 1 | |) | • • | ,, | 1 | | 2 | •• | ,, very hazy.
Light clouds in the N. and S., near the horizon: hazy. | 1 | | [| • • • | There are a few clouds towards the S. horizon: hazy | 1 | |) | •• | Cloudless: hazy. | | | , |
 | [increased in amount. Cumulo-stratus, cirro-stratus, and scud: the clouds began to gather at 23 ^h . 30 ^m , and since that time they have gradually | | | 3 | • • | With the exception of a break S.W. of the zenith, of some extent, through which the Sun is visible, the sky is covered with cumulo-stratus and scud. | | |) | •• | Cirro-strati, cumulo-strati, and fleecy clouds nearly cover the sky: there are a few small breaks about the zenith, but to | | | , | · • • | Overcast: cirro-stratus and scud: the upper arc of a faint halo has been visible for the last quarter of an hour; the Overcast: cirro-stratus and scud. [clouds are very thin in some places: at 6 ^h . 10 ^m the halo disappeared. | | | | Transit | ,, | | | , | . • • | ,, cirro-stratus: the Moon's place is faintly visible: at 11 ^h . 10 ^m a perfect lunar halo was seen, whose radius | | | | •• | [was estimated to be 23°. | | | | Greatest decli-
nation N. | | - | | 1 | •• | Overcast: cirro-stratus and scud: the Sun's place is visible. | | | | • • | Overcast: cirro-stratus and scud: the Sun's place is visible. | | | | •• | | | | | | | | | | | | | | | Transit | | | | 1 | | Cloudless: hazy. | | | • | ••• | Cirro-stratus all around the horizon: a thin cirro-stratus obscures the sky to a considerable extent: very hazy. | | | | _ | | | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICAL | LIN | STR | UME. | NTS. | |---------------|------------------|----------|------------|-------|--------|---------------|------------------------------|-----------------------|--------------------------------|--------------------------------|------------|-----------------------------------|----------------------|----------------------|---------------|-----------------------|-----------------|----------| | Day and Hour, | Baro- | | | Ther- | | Point | read at 22h. | Stand of
No. 1. | From C | | From Whe | | Sign | Rea | ding | s of | | Interva | | Göttingen | meter | Dry | Wet | mom. | Dew | below | Free Therm. | (Osler's). Reading of | Anemor | neter. | Anemom | | Electricity, | Gingle | | | | recoveri | | Astronomical | Cor- | Ther- | Ther- | below | 11 | Dry | Rad. Therm. | No. 2. | | Pressure | | Descent of
the pencil | as
shewn | Single
Gold Leaf | e af | 2 - T | 8 of | the san | | Reckoning. | rected. | mom. | mom. | Dry. | Point. | Ther-
mom. | of Therm. in
Water of the | Stand of
No. 3. | Direction. | in lbs. per
square
foot. | Direction. | during the
continu-
ance of | by Dry
Pile Appa- | of Dry
Pile Appa- | Dout
old I | Straws of
Volta 1. | Straws
Volta | of tens | | | | <u> </u> | | | !! | | Thames. | (Crosley's). | | Toot. | | eachWind, | ratus. | ratus. | 75 | SO. | SO. | dischar | | d h | in. | ٥ | ٥ | 0 | 0 | 0 | 0 | in. | | from
lbs. to lbs. | | in. | | ٥ | ٥ | div. | div. | m | | July 25. 18 | 29.798 | 1 | !! | | • • • | | •• | | N | •• | • • | | | | 0 | 0 | 0 | • • | | 20 | 29.810 | | | | | ••• | •• | •• | N | 0 to $\frac{1}{2}$ | 37 | | <u> </u> | • • | 0 | 0 | 0 | • • | | 22 | 29.801 | 67.0 | 57.5 | 9.5 | 51.0 | 16:0 | | •• | N | 0 to 1 | N | 3.60 | Pos. | 6 | 8 | | ••• | | | July 26. 0 | 29.815 | 67.5 | 57.5 | 10.0 | | | | | N | 0 to 1½ | | | Pos. | 8 | 10 | ١ | | | | 2 | 29.825 | | | | | | | | Ñ | 0 to 1 | | :: | Pos. | 30 | | 10 | 20 | | | 4 | 29.831 | | 11 | 1 1 | 54.0 | 20.1 | | | N | | | | Pos. | 3 | 7 | | | | | 6 | 29.832 | 70.3 | 60.0 | | | | (75.7) | | N | | | | Pos. | 40 | | 40 | 50 | 5. | | 8 | 29.858 | | | 1 - | | | 47.0 | 2.83 | N | ••• | | | Pos. | 40 | • • | 50 | 60 | 3. | | 10 | 29.901 | 59.0 | 54.4 | 4.6 | 51.5 | 7.5 | 00.0 | | · N | •• | •• | | Pos. | 30 | •• | 30 | 40 | 10. | | 12 | 29.914 | 54.0 | 51.1 | 2.9 | | | 92.6 | 0.00 | N | | | 1 | Pos. | 3 | 3 | | | | | 14 | 29.920 | | | | | | 100 | | N | | | | Pos. | 2 | 2 | | | • • | | | | | | | • • • | ' | 69.5 | 8.220 | , | ,, | | | | - | - | | | • | | 16 | 29.931 | 49.1 | 48.3 | 0.8 | 48.0 | 1.1 | 65.8 | | N | | | | | | 0 | 0 | 0 | | | 18 | 29.942 | 11 | 11 | i i | | | •• | | N by W | • • | •• | | | • • | 0 | 0 | 0 | | | 20 | 29.959 | | | | | | •• | •• | N by W | •• | 373777 | | Pos. | 10 | 15 | | :: | •• | | 22 | 29.981 | 68.8 | 61.2 | 7.6 | 55.0 | 13.8 | •• | •• | N by W | •• | NNW | 2.35 | Pos. | 40 | •• | 40 | 50 | 6. | | July 27. 0 | 29.953 | 75.0 | 62:5 | 12.5 | | | | | N by W | | | | Pos. | 25 | | 30 | 40 | 10. | | 2 | 29.953 | | | | | | •• | | NNW | * * * | |] :: | Pos. | 20 | | 20 | 30 | 13. | | 4 | 29.948 | | | 12.9 | 53.0 | 24.0 | (80.4) | | NNW | | • • | 1 | Pos. | 10 | 15 | l o | 0 | | | 6 | 29.944 | | | 10.2
| | | 52.5 | 2.83 | NNW | •• | • • | | Pos. | 10 | 15 | 0 | 0 | | | 8 | 29.948 | | | 1 (| • • | | | 2.60 | NNW | •• | •• | | Pos. | 30 | | 10 | 20 | | | 10 | 29.954 | | | | 55•5 | 9.5 | 99.6 | 0.00 | NNW | •• | •• | | Pos. | 40 | •• | 30 | 50 | | | 12 | 29·963
29·951 | | | | •• | •• | | | NNW | •• | •• | •• | Pos. | 20 | | 15 | 20
10 | 12. | | 14
16 | 29 931 | | 54·5 | | 52·5 | 2.1 | 69.2 | 8.220 | SW
SW | •• | •.4 | | Pos. Pos. | 10
30 | ** | 8
25 | 30 | 15. | | 18 | 29.947 | | | | 02.0 | | 66.0 | | $\tilde{\mathbf{s}}\mathbf{w}$ | | • • | | Pos. | 20 | | 15 | 20 | 1 | | 20 | 29.942 | 62.4 | | | | | | | $\tilde{\mathbf{s}}\mathbf{w}$ | | | | Pos. | 10 | | 8 | 10 | | | 22 | 29.942 | 68.8 | 61.0 | 7.8 | 52.5 | 16.3 | •• | | wsw | • • | SW | 3.05 | Pos. | 20 | | 20 | 30 | | | | , | | | | | | | | | | | ļ | | | | | | | | July 28. 0 | | | | | . • • | •• | •• | •• | W | •• | •• | •• | Pos. | 10 | •• | 10 | 15 | •• | | 2
4 | 29·929
29·912 | | | 10.7 | 57.0 | 17.0 | •• | •• | W | 1 40 7 | •• | ••• | Pos.
Pos. | 15
10 | | 12
8 | 15
10 | ••• | | 6 | 29.909 | | | | 11 | 1 | 77.3 | | w | 1 to 1 2 to 1 | | | Pos. | 10 | | 8 | 10 | •• | | 8 | | 67.0 | 59.7 | 7.3 | | | 60.3 | 2.83 | wsw | 2 10 1 | | | Pos. | 10 | | 8 | | | | | 29.925 | 65.5 | 60.0 | 5.5 | 56.0 | | 02.0 | | wsw | •• | •• | | Pos. | 30 | | 30 | 40 | 11. | | 12 | 29.927 | 62.3 | 59.0 | 3.3 | | | 93·0
53·0 | 0.00 | wsw | •• | •• | •• | Pos. | 40 | 40 | 12 | 10 | 8. | | | 20.000 | | | | | | | | CTT | | | } | | | | | | | | 14 | 29·919
29·907 | 63.0 | 59.0 | 4.0 | 58.5 | 5:0 | 69.5 | 8.220 | sw
wsw | •• | •• | •• | Pos. | 10 | 10 | | 0 | •• | | 18 | 29.907 | | | | li | 1 1 | [66·0] | ••• | SW | •• | •• | ••• | Pos.
Pos. | 10
10 | 15
10 | | 0 | ••• | | | 29 927 | | | | | :: | | | wsw | •• | ** | | Pos. | 10 | 15 | 5 | 0 | | | | 29.953 | | | | | 17.0 | •• | | NW | | wsw | 3.40 | Pos. | 35 | | 40 | 1 1 | | | | 1 | | | | | | | | | | | ļ | | | | | | | | July 29. 0 | | | | | | | (81.4) | | WNW | •• | •• | | Pos. | 7 | 12 | _ | 1 | ••• | | | 29.947 | | | | | 00.5 | 57.5 | 2.83 | NW | •• | •• | •• | Pos. | 3 | 7 | 0 | 0 | ••• | | 4 | 29·940
29·927 | 81.7 | 68.1 | 13.6 | 99.0 | 1 | 96.2 | 0.00 | N
N | •• | •• | | Pos. Pos. | 10
10 | 20 | 8
10 | 10 | ••• | | ا
و | 29 92 7 | | | | | | ີງ 50∙0 ີ | 0.00 | NNE | •• | •• | | Pos. | 10 | 20 | | 0 | •• | | 10 | 29.935 | | | | | 7.0 | 69.8 | 8.220 | SSE | | • • | | Pos. | 10 | 10 | | | •• | | | 29.935 | | | | | ••• | 66 0 | | SSE | | | | | o. | 0 | | 1 1 | | | | } | 1 | j i | | | | | | ļ | 1 | | ļ | | 1 | 1 | | | | DRY THERMOMETER. July 26^d . The increase in the reading between 20^h and 22^h was $11^o \cdot 1$. ELECTRICITY. July 26^d. 8^h. There was a spark at the distance of 0ⁱⁿ·03. July 27^d. 10^h. There was a spark at the distance of 0ⁱⁿ·01. | 0-10. | Phases | | 1 | |-------|---------|---|-----| | 0 | of | | l | | 7 | the | REMARKS. | | | | Moon. | | | | _ | | | - - | | 0 | •• | A few portions of light scud occasionally pass over, but to no numerical amount. Cloudless. | | | 2 | • • | There are a few cumuli near the horizon: cirrus is prevalent. | | | 6 | | [about the zenith, and N. of it. Cirri, with masses of cumuli and scud near the horizon, more particularly the S. and W. portions: the sky is clear | | | 3 | • • . | A small quantity of cirrus about the zenith; cumuli, fleecy clouds, and scud in every other part of the sky. | | | 7 | | Cumuli, cumulo-stratus, cirro-stratus, and scud. | 1 | | 3 | • • | Cirro-stratus and light clouds are scattered in every direction, more especially in the W. and S.W. Thin cirro-stratus near the W. horizon: light clouds are scattered here and there, chiefly cirri. | ١ | | 5 | | Cirro-stratus, scud, and lines of cirri: the S. E. portion of the sky is mostly free from cloud: there are several small | } | | | | breaks in every direction, except in the N., where a dense cirro-stratus prevails. | | | | Transit | Overcast, with a thin stratus, through which the Moon and principal stars are visible. | | | 7 | • • | About the zenith and N. of it the stratus cloud has cleared off, but in other parts of the sky it continues the same: shortly after the last observation the upper part of a lunar halo was observed, but it was too faint and indistinct | | | | •• | Cloudless: hazy in the horizon. | - | |) | • • | Cloudless, but very hazy. | | | | •• | Detailed small and be as | | | 1 | •• | Detached cumuli, scud, and haze. | ١ | | | | Detached cumuli are scattered in the horizon, principally in the E. and S. S. E. | 1 | | 1 | | Cirro-stratus, cumulo-stratus, and scud: clear in the zenith. | 1 | | 1 | •• | Detached masses of cumuli in every direction. | 1 | | | •• | There are a few detached cumuli with much haze towards the W. and S.W. parts of the horizon. | ١ | | | Full | Cirri, cirro-strati, scud, and haze principally towards the W. parts of the horizon: the clearest part of the sky is near Cloudless, but very hazy in every direction. [the zenith. | 1 | | | Transit | Cirro-stratus around the horizon, and lines of cirri principally N. of the zenith: hazy. | | | 1 | | Cloudy around the horizon: hazy. | ١ | | | ••• | | 1 | | | | Thin cirro-stratus, fleecy clouds, and scud cover the greater part of the sky. Thin cirro-stratus, fleecy clouds, and scud cover the sky: there are a few small breaks, but to no numerical amount. | ١ | | | | Thin cirro-stratus, fleecy clouds, and scud cover the sky, except a small portion E. of the zenith. | | | | | The sky is covered with a thin cirro-stratus, through which the Sun is visible. [are seen. | | | | •• | Thin clouds of the cirro-stratus character prevail in every direction, except in the zenith, where portions of blue sky Overcast: cirro-stratus, fleecy clouds, and scud. | ١ | | | | ,, , ,, | 1 | | | | ,, | 1 | | | | ,, cirro-stratus and scud: the clouds in the N. horizon are a bright red, as if from the reflection of a fire. | | | | •• | The greater part of the sky is covered by a thin cirro-stratus; the Moon is frequently covered by it, but not sufficiently to obscure her, though at such times the sky is wholly covered by clouds. [is overcast with cirro-stratus. | | | | Transit | The sky has been principally covered by cloud since 12 ^h : the Moon has been visible occasionally: at present the sky | | | | | The sky continued overcast till 15 ^h . 30 ⁱⁿ , and since that time the Moon has frequently been visible, and the clouds are | | | | | The sky is nearly covered by small round-shaped clouds. [forming into small round shapes.] [forming into small round shapes.] | | | | | The sky is very nearly covered by a white cloud of no particular modification, through which the Sun shines faintly. Cirro-stratus and fleecy clouds all around; the zenith is the only part clear. | 1 | | | | Cloudless. | | | 1 | | " | ŀ | | | | ,, hazy. | | | | | The whole sky is covered by cirro-stratus cloud, but in some places it is very thin. There are a faw small partiage of blue aky, but the greater part is cloudly a near the genith are cirri; the horizon near | | | | :: | There are a few small portions of blue sky, but the greater part is cloudy: near the zenith are cirri: the horizon near Since 8 ^h the clouds gradually dispersed, and at present the sky is cloudless. [the S.W. is clear. | | | | | A few light clouds in the S., but to no numerical amount. | 1 | | 1 | 1 | | 1 | | _ | | | | Wet | | Dew | Max. and Min. | GAUGES. | | WIN | D. | | ELE | CTRICAL | LIN | STR | UME | NTS. | |---|------------------|--------------|--------------|---------------|--------------|----------------------|--|-------------------------------------|--|--|------------|--|---|---|---------|--------------------|-----------------------|--| | Day and Hour,
Göttingen | Baro-
meter | Dry | Wet | Ther- | | Point | read at 22h.
of
Free Therm. | Stand of
No. I.
(Osler's). | From (| | From Whe | | Sign
of | Re | ading | gs of | | Interval
of time in | | | | Ther- | | mom. | Dew | below | of | Reading of | | · | | Descent of | Electricity,
as | Single
Gold Leaf | | ٠. ٥٠ | ان ق | recovering
the same | | Astronomical Reckoning. | Cor-
rected. | mom. | mom. | below
Dry. | Point. | Dry
Ther-
mom. | Rad. Therm. in Water of the Thames. | No. 2. Stand of No. 3. (Crosley's). | Direction. | Pressure
in lbs. per
square
foot. | Direction. | the pencil
during the
continu-
ance of
eachWind. | shewn
by Dry
Pile Appa-
ratus. | Gold Leaf
of Dry
Pile Appa-
ratus. | 름다 | Straws of Volta 1. | Straws of
Volta 2. | degree
of tension
after
discharge | | d h | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | | from
lbs. to lbs. | | in. | | 0 | 0 | di v. | div. | D) \$ | | July 29. 14 | 29.924 | | | 1 1 | | | •• | •• | S by W | •• | •• | | Pos. | 5 | 10 | 0 | 0 | •• | | 16
18 | 29·909
29·912 | : 1 | 59.0 | 1·4
1·4 | 58.0 | 2.1 | | | SSW
S by W | •• | | | | 0 | 0 | 0 | 0 | | | 20 | 29.910 | 1 1 | 1 | | | | | | S by W | | | | Pos. | 8 | 12 | 3 | 4 | | | 22 | 29·9 09 | 70.2 | 63.0 | 7.2 | 58.0 | 12.2 | •• | •• | wsw | •• | SW | 1.49 | Pos. | 40 | •• | 30 | 50 | 10. 0 | | July 30. 0 | 29.893 | | 62.0 | | | | •• | | sw | | | •• | Pos. | 40 | | 20 | 1 . | 15. 0 | | 2 | 29.884 | | 64.0 | | | 10.0 | (#0.9.) | | WSW
WSW | •• | | •• | Pos. Pos. | 40
35 | • • | 60
40
 80
50 | 18. 0
7. 0 | | 4
6 | 29·867
29·850 | | 63·6
64·0 | | 57· 0 | 19.0 | $\begin{bmatrix} 78 \cdot 3 \\ 53 \cdot 1 \end{bmatrix}$ | • • • | WSW | ••• | • • • | | Pos. | 40 | •• | 50 | 60 | | | 8 | 29.864 | | | | | | | 2.83 | W by S | | | | Pos. | 40 | | 50 | 70 | 7. 0 | | 10 | 29.875 | | 58.5 | | 55.2 | 8.0 | 96.4 | 0.00 | SW | •• | •• | •• | Pos. | 20 | •• | 20 | 30 | | | 12 | 29·883
29·893 | | | 1·6
0·9 | • • | •• | \ 48.0 [| | SW
WSW | •• | •• | •• | Pos.
Pos. | 15
2 | 20
2 | 0 | 0 | • | | 14
16 | 29.891 | | | 0.4 | 55.0 | 0.3 | 70.2 | 8.220 | wsw | •• | | | I US. | | ō | 0 | o | • • | | 18 | 29.917 | 54.0 | 53.8 | 0.2 | | | 66.5 | | WSW | | •• | | Pos. | 2 | 2 | 0 | 0 | •• | | $\begin{array}{c} 20 \\ 22 \end{array}$ | 29·931
29·950 | | | 2·1
7·0 | •• | •• | •• | •• | WSW
W | •• | wsw | 2.33 | Pos. Pos. | 2
25 | | 0
20 | 0
30 | | | July 31. 0 | 29.945 | | 62.5 | | | - | | | wsw | | | | Pos. | 15 | | 12 | 15 | | | 2 1 2 2 | 29.934 | | 65.9 | | | | | | wsw | •• | :: | :: | Pos. | 10 | :: | 10 | 12 | | | 4 | | 81.1 | 66·1 | 15.0 | 54.0 | 27.1 | (82.2) | | WSW | | | | Pos. | 6 | 8 | • • | | | | f1 | 29.906 | | 63.9 | | •• | | 53.1 | 2.83 | WSW | •• | •• | | Pos. | 30 | •• | 10 | 20 | | | 8
10 | 29·904
29·919 | 70·2
66·0 | 62·0
60·0 | 8·2
6·0 | 55·0 | 11:0 | 100.4 | | W by S
WSW | ••• | •• | •• | Pos. Pos. | 40
20 | | 30
8 | 50
10 | łl. | | | 29.930 | 61.4 | 58.8 | 2.6 | | | 46.0 | 0.00 | wsw | •• | | | Pos. | 10 | | 8 | 10 | | | 14 | | ٠ | • • • | | | | | 8.220 | $\mathbf{s}\mathbf{w}$ | | •• | | | •• | | • • | | ••, | | 16 | • • | ••• | •• | •• | •• | •• | 70.5 | 0 220 | SW
SSW | •• | •• | •• | | • • | •• | •• | • • • | •• | | 18
20 | •• | | •• | •• | •• | • | └67·0 | •• | SSW | | | :: | | •• | | | | | | 22 | 29.929 | 76.3 | 64.9 | 11.4 | •• | | •• | •• | sw. | ••• | sw | 1.15 | Pos. | 25 | •• | 25 | 30 | 11 | | Aug. 1. 0 | 29.903 | 81.2 | 67.9 | 13.6 | $ \dots $ | | •• | •• | SW | | •• | | Pos. | 40 | | 40 | 45 | | | 2
4 | • • | ••• | ••• | • • | •• | •• | •• | •• | SW
SW | • • | | | | •• | | | | | | 6 | | | | | | | 87.7 | | $\tilde{\mathbf{s}}\tilde{\mathbf{s}}\mathbf{w}$ | | | | | | | • • | | | | 8 | | | | •• | | | 51.3 | 2.83 | SSW | •• | •• | | | • • | • • | • • | | • • | | _ 11 | 29.828 | 1 | 1 | H | •• | • • | 108.0 | 0.00 | SSW
SSW | •• | •• | •• | Pos. | 25 | ••• | 25 | 30 | •• | | 10
12 | • • | | | | | | 42.5 | 0.00 | SSW | ••• | •• | :: | | • • • | | | ``. | • • | | 14 | 29.791 | 58.0 | 54.7 | 3.3 | •• | | 71.8 | 8.220 | ssw | •• | •• | | Pos. | 20 | | 15 | 20 | ••• | | | 29.749 | | | 1.1 | 50.2 | 2.0 | 67.5 | •• | SSW | •• | •• | •• | •• | •• | 0 | 0 | 0 | • • | | | 29·736
29·746 | | | 6·0 | ••• | •• | _ | •• | SW
SW | | | • | Pos. | 10 | | 8 | 10 | | | | 29.745 | | | | 55·0 | 19.2 | | •• | wsw | •• | ssw | 0.60 | Pos. | 40 | | 60 | | 14. 0 | | | 29· 7 35 | | | | | | (84.8) | •• | wsw | •• | | •• | Pos. | 40 | | | | 20. 0 | | | 29.703 | | | | 50.5 | | 50.3 | 2.83 | WSW | · •• | •• | •• | Pos. | 40 | •• | 80
25 | f I | 17. 0
10. 0 | | | 29.686
29.689 | | | | 56.5 | 1 | 103.4 | 0.00 | NW
NW | 0 to $\frac{1}{2}$ | NW | 2.05 | Pos. | 25
20 | | 15 | 20 | 11 | | | 29.733 | | | | | | 40.0 | | NNW | $\frac{1}{2}$ to 1^2 | | | Pos. | 20 | :: | 18 | 20 | 1 | | 10 | 29.779 | 63.0 | 59 ·8 | 3.2 | | | 72.0 | 8.220 | N | 1 to 1½ | | | Pos. | 10 | | 8 | 10 | •• | | 7.3.11 | 29.800 | 58.6 | 50.0 | 2.6 | | | 67.5 | l | N | 1½ to 2 | | | | | 10 | 0 | 1 0 | | DRY THERMOMETER. August 1^d. The increase in the reading between 18^h and 20^h was 10^o. Dew Point Thermometer. July 30^d. 22^h. The observation was inadvertently omitted. Maximum Free Thermometer. July 29^d. 22^h. The reading was lower than that of the Dry Thermometer at 4^h. Osler's Anemometer. August 2^d. 7^h. 10^m. A sudden gust of wind took place, recording a pressure of 3 lbs. | Amount of Clouds, | Phases of the Moon. | REMARKS. | Observer. | |---------------------------------|---------------------|---|-------------------| | 0
0
5
4
10 | | Cloudless. ,, [fourths covered. Thin cirro-stratus and fleecy clouds chiefly in the N.: since the last observation the sky has been occasionally three- Thin cirro-stratus and fleecy clouds in the S., extending to the W. S.W: lines of cirri here and there. Overcast: cirro-stratus and thin scud. | T D | | 10
8
9
9 | •• | Overcast: cirro-stratus and thin scud: a few drops of rain fell about an hour since. Cirro-strati, cirro-cumuli, and scud: a large break W. of the zenith. Cirro-stratus and scud, with small breaks in every direction. Cirro-stratus, cumulo-status, fleecy clouds, and scud. Cirri and light clouds here and there. | T D
G H
T D | | 0
0
0 | Transit | Thin cirro-stratus and haze in the horizon; light clouds and vapour in several directions. Cloudless, but hazy towards the N. and N.W. ,, there are a few light clouds scattered about the sky, but to no numerical extent: hazy. | T I | | 0 0 | ••• | A bank of cloud towards the N. and N.W. horizon, with a few light clouds scattered over the sky. Cloudless, but very hazy. Cloudless: hazy. | G H
T I | | 0
3
4
2
1
0
2 | ••• | There are a few light clouds scattered about the sky, but to no numerical amount. Cirro-stratus near the horizon in the W. and N.W: there are small portions of white scud near the zenith. There are a few fleecy clouds in different directions: hazy. Cirri, cirro-cumuli, and haze in different directions. A few cirri are scattered over the sky. Cloudless, but hazy around the horizon. There are lines of cirri scattered in various directions. | Т | | 0 | Transit | Cloudless. | | | 0 | •• | Cloudless. | | | 1 | •• | It is cloudy near the horizon: there are a few lines of cirri about the horizon; clear elsewhere. | G F | | 1
5
2
0 | Transit | There are a few light clouds. There are very thin cirro-strati scattered in different directions: the sky is clear mostly in and S. of the zenith. There are some very beautiful cirro-cumuli and light clouds scattered about the zenith: at 16 ^h . 30 ^m part of a very fine Cloudless. [lunar halo was visible; its radius by measurement was 23°; it lasted but a short time. | L
G F | | 0 | ••• | Cloudless. | G H | | 0
9
10 | | There are a few light clouds scattered over the sky, but to no numerical extent. The sky is nearly covered with cirro-stratus and dark scud, which came up within the last half hour. Overcast: cirro-stratus and scud. | L | | 10
10 | | Overcast with dense cirro-stratus. | T D | ELECTRICITY July 30^d. 2^h, 6^h, and 8^h. There were sparks at the distances of 0^{ln}·02, 0^{ln}·02, and 0^{ln}·03 respectively. August 1^d. 22^{ln}, and August 2^d. 0^h and 2^h. There were sparks at the distance of 0^{ln}·03 at each time. RAIM July 31^d. 12^h. The amount collected during the month of July in the rain-gauge No. 4 was 0th 67, and that collected by the Rev. G. Fisher in a rain-gauge of the same construction at Greenwich Hospital Schools during the same period was 0th 63. | | | | | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICA | L IN | STR | UME | NTS. | |------------------------------------|------------------|-------|--------------|---------------|-------|---------------|--|-------------------------------------|------------------------------------|--|------------|--|---|---|---------|-----------------------|-----------------------|---| | Day and Hour,
Göttingen | Baro-
meter | Dry | Wet | Ther- | | Point | read at 22h. | Stand of
No. 1. | From (| | From Whe | | Sign | Re | ading | s of | | Interval
of time in | | Astronomical | 1 . 1 | Ther- | Ther- | mom. | Dew | below
Dry | Free Therm. | (Osler's).
Reading of | Anemo | ı | Michon | Descent of | Electricity,
as | Single | | L. | | recovering
the same | | Reckoning. | Cor-
rected. | mom. | mom. | below
Dry. | 11 | Ther-
mom. | Rad. Therm. in Water of the Thames. | No. 2. Stand of No. 3. (Crosley's). | Direction. | Pressure
in lbs. per
square
foot. | Direction. | the pencil
during the
continu-
ance of
eachWind. | shewn
by Dry
Pile Appa-
ratus. | Gold Leaf
of Dry
Pile Appa-
ratus. | 걸니 | Straws of
Volta 1. | Straws of
Volta 2. | degree
of tension
after
discharge. | | d h | in. | 0 | • | 0 | 0 | 0 | 0 | in. | | from
lbs. to lbs. | | in. | | 0 | 0 | div. | div. | m · | | Aug. 2.14 | 29.806 | | 55.7 | | | | •• | •• | N | 108. 00 108. | •• | | •• | •• | 0 | 0 | 0 | | | 16 | 29.813 | | | | 51.0 | 2.4 | •• | •• | NNW | | •• | •• | D | ;; | 0 | 0
12 | 0
15 | •• | | 18
20 | 29·847
29·870 | | 49·4
53·1 | | ••• | ••• | •• | • | NNW | •• | •• | | Pos.
Pos. | 12
25 | | 20 | 30 | 7. 0 | | 20
22 | 29.901 |) | 56.8 | 1 | 47.0 | 19.5 | •• | •• | N | | N | 0.65 | Pos. | 20 | 25 | | | | | Aug. 3. 0 | 29.902 | 70.0 | 58.7 | 11.3 | | | | •• | N | •• | | | Pos. | 30 | • • | 6 | 10 | | | 2 | 29.892 | 1 -1 | 57.7 | | 53.0 | | | •• | N | •• | •• | •• | Pos. | 30 | ••• | 6 | 10
12 | •• | | 4
6 | 29·877
29·864 | | 58·5
57·4 | | 51.0 | 1 | $\left[\left[egin{matrix} 74.4 \\ 42.3 \end{array}
ight]$ | •• | W by N
W N W | •• | •• | •• | Pos. | 20
25 | | 10
20 | 30 | | | 8 | 29.877 | | 54.4 | | | | 12.5 | 2.83 | Calm | •• | • | | Pos. | 15 | | 12 | 15 | | | 10 | 29.885 | 57.0 | 50.9 | | 47.0 | | 90.5 | 0.00 | Calm | | | | Pos. | 35 | | 30 | 40 | 6. 0 | | 12 | 29.896 | 1 | 48.8 | 4.4 | •• | | 31.5 | 0.00 | Calm | | •• | | Pos. | 40 | | 30 | 50 | ••• | | 14 | 29.887 | | 46.1 | 1.3 | 43.5 | | 50.0 | 8.220 | Calm | •• | •• | •• | Pos. | 2 | 0 | | 0 | • • | | 16
18 | 29·853
29·847 | | 42·8
42·9 | 1·1
1·7 | 41.5 | 2.4 | $\begin{bmatrix} 72 \cdot 2 \\ 67 \cdot 5 \end{bmatrix}$ | | Calm
Calm | •• | •• | | | •• | 0 | 0 | 0 | | | 20 | 29.832 | | 53.3 | | •• | | (010) | | Calm | | • • | | Pos. | 4 | 6 | | | | | 22 | | | | | 51.0 | 16.7 | •• | •• | SW | | N | 1.10 | Pos. | 10 | • • | 8 | 10 | •• | | Aug. 4. 0 | 29.788 | | | | ٠ | | | •• | sw | | | | Pos. | 10 | | 8 | 10 | •• | | $\frac{2}{4}$ | 29.735 | , . | 59.8 | | | 22.0 | 6000 | •• | SW | 0 to $\frac{1}{2}$ | •• | •• | Pos. | 5 | 7 | • • | • • | ••• | | 4
6 | 29·711
29·682 | | 59·3
56·5 | | 49.0 | | $\begin{bmatrix} 76.9 \\ 54.1 \end{bmatrix}$ | •• | SSW
SSW | $\frac{1}{2}$ to 1 | •• | | Pos. Pos. | 15 | 6
20 | | | | | 8 | 29.657 | | 54.4 | | | | | 2.83 | SSW | | | | Pos. | 30 | | 6 | 10 | | | 10 | 29.633 | 1 -1 | 53.4 | | 47.0 | - 1 | 92.8 | 0.00 | SSW | | | | Pos. | 30 | | 10 | 20 | | | 12 | 29.619 | 1 - | 55.1 | 4.1 | • • • | | 49.5 | 0 00 | SSW | | •• | | Pos. | . 10 | ••• | 8 | 10 | •• | | 14
16 | | ; 1 | 53.7 | 2.1 | 52.0 | | 71.0 | 8.220 | SSW | •• | •• | •• | Pos. | 7 | 10 | 0 | 0 | •• | | 18 | 29·531
29·519 | | 54·2
54·7 | 1·8
1·1 | 53.0 | | 71·8 67·0 | | SSW
SSW | | ••• | | | | 0 | 0 | 0 | :: | | 20 | 29.526 | 1 | 59.7 | 2.0 | | | (0,0) | | $\widetilde{\mathbf{s}}\mathbf{w}$ | | | | Pos. | 7 | 10 | | | | | 22 | 29.514 | 66.4 | 62.1 | 4.3 | 58.0 | | | •• | SW | •• | ssw | 4.45 | Pos. | 5 | 7 | | • • • | | | Aug. 5. 0 | 29.495 | | 62.9 | 7.6 | | | | •• | WSW | | •• | | Pos. | 3 | 5 | | | •• | | $egin{array}{c} 2 \ 4 \end{array}$ | 29·485
29·451 | | 61·5
62·5 | 6·5
7·7 | 58.0 | 10.0 | (72.4) | •• | WSW
WSW | | •• | •• | Pos. Pos. | 7 | 12 | | | | | 6 | 29.435 | 1 | | 1.3 | 3.0 | 12 2 | 55.3 | ••• | wsw | | • • | :: | Neg. | | | | :: | | | | 29.414 | 60.7 | 59.7 | 1.0 | | | | 3.41 | SW | | •• | | Pos. | 20 | | 15 | 20 | • • | | | 29.383 | | | , | 57.0 | 3.0 | 81.3 | 0.98 | SSW | ••• | •• | ••• | Pos. | 5 | 7 | | :: | | | 12 | 29·354
29·337 | | | 0.2 | | • | 52.0 | | SSW | | •• | •• | Pos. | 25
20 | •• | 20
12 | 30 | 3. 0 | | | 29.337 | | | | 57·0 | -0.5 | 71.0 | 9.065 | W by N
W | | •• | | Pos. | 20
15 | • • | 10 | 15
12 | :: | | 18 | 29.323 | 56.7 | 56.5 | 0.2 | | | 67.2 | | NW | | | | Pos. | 5 | 12 | | | | | 20 | 29.359 | 56.3 | 55.5 | 0.8 | | | · / | •• | NNW | | | | Pos. | 25 | • • | 20 | 30 | 5. 0 | | 22 | 29.394 | 59.2 | 57.5 | 1.7 | 56.5 | 2.7 | •• | •• | NNW | •• | Wsw | 2.47 | Pos. | 25 | •• | 6 | 10 | •• | | | 29.422 | | | - 11 | | | 70.9 | | N by W | 2 constant | | | Pos. | 30 | •• | 10 | 1. 1 | | | $\frac{2}{4}$ | 29.451 | 68.2 | 60.5 | 7.7 | 50.0 | .:. | 50.3 | 3.41 | WNW | ½ constant | •• | | Pos. | 40 | • | 20 | 40 | | | | 29·484
29·501 | | | 7·0
6·0 | 56·0 | 11.5 | 83.8 | 0.00 | NW
NW | ₫ constant | | | Pos.
Pos. | 15
20 | | 12
12 | 15
15 | :: | | 8 | 29.547 | 63.5 | 59.0 | 4.5 | | | 44.0 | | NW | | | | Pos. | 15 | | 10 | 12 | | | | 29.594 |] | 1 | | 55·0 | | 70.5 | 9.065 | NNW | | , | | Pos. | 25 | | | 30 | 8. 0 | | 10 1 | #U UU4 | וניטט | 01.9 | 3 U I | aa u | മാമി | i na'u (l | | | | •• | | a 1. US. I | . 40 | | ~~ | | 1 U 1 | DRY THERMOMETER. August 3^d . The increase in the reading between 18^h and 22^h was $23^o\cdot 1$. DEW POINT THERMOMETER. August 5^d. 16^h. The reading was higher than that of the Dry Thermometer. | | Phases | | |--|---------|---| | 0-10. | of | | | Ī | the | DUMANKS | | ľ | Moon. | REMARKS. | | | MODE | | | | 11 .75 | | | 0 | • • | Overcast with dense cirro-stratus. | | 5 | | Cirro-stratus around the horizon: the zenith is free from clouds: the clouds broke suddenly before this observation. | | 0 | Transit | Cloudless. There are a few light clouds in the S., but to no numerical extent. | | 8 | •• | The sky is nearly covered with different kinds of cirri. | | 7 | | Cirri, cirro-strati, and cirro-cumuli are scattered over the sky; there is also much haze towards the S. and S.W. | | 5 | 3rd Qr. | Cirro-cumuli are scattered over the sky: hazy towards the S. and S.W. | | 4 | • • | Detached masses of cumuli are scattered over the sky, principally in the N. and S.W. | | 3 | •• | Detached portions of cumuli are scattered here and there. | | 0 | • • | Cloudless. | | 0 | • • | There are a few light clouds towards the E., but to no numerical extent. | | 0 | • • | Cloudless: since the last observation several meteors have been seen in different parts of the sky, principally towards | | 0 | | fthe N W | | 0 | | Cloudless, but hazy. | | 9 | Transit | Cloudless: the sky is covered with a thin haze, approaching in places to cirro-stratus. | | 3 | •• | Detached cumuli and fleecy clouds are scattered about the sky. | | 7 | •• | Detached cumuli, cirro-stratus, and large masses of white scud. | | <u> </u> | •• | | | 3 | •• | Cirri are scattered over the sky, with cirro-strati principally about the horizon. Cirri with several large patches of cirro-strati in different directions. | | 6 | • * | Overcast: cirro-stratus. | | 0 | | ,, cirro-stratus and scud. | | 0 | | | | 0 | •• | ,, a few drops of rain are now falling: at about 12 ^h . 50 ^m a slight shower of rain fell. | | $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ | •• | " | | 0 | Transit | • • • • • • • • • • • • • • • • • • • | |) | •• | 12 | | | | | | | • • | Overcast: cirro-stratus and scud. Cumulo-stratus: cirro-stratus and scud: there is a portion of clear blue sky N. E. of the zenith. | | | ••• | Overcast: cirro-stratus and scud. | |) | • • | ,, rain is falling heavily: rain has been falling in torrents since the last observation. | |) | | ,, the rain ceased at about 6 ^h . 20 ^m . | | | |)) | | | ••• | ,, rain is falling; it commenced at about 10 ^h . 25 ^m . ,, rain is falling steadily. | | | :: | ,, cirro-stratus: rain is falling slightly. | | | | ,, no rain is falling at present; it ceased ten minutes previously to this observation. | |) | •• | Cirro-stratus and scud. [to alter the notation.] | | 1 | •• | Overcast: cirro-stratus and scud: there are two or three small breaks towards the N.W., but not sufficiently large | |) | •• | Overcast: cirro-stratus and scud: about one hour since there were several large breaks in the clouds. [of the zenith.] | | | •• | Cirro-cumuli and scud: the clouds began to break at about one hour since: the clearest part of the sky is near and S. | | | •• | Cirro-stratus and scud: a few small breaks near the zenith, but to no numerical extent. | | 9 | •• | Cirro-stratus and scud all around: in the zenith the clouds, which are of the cumulo-stratus character, are slightly broken, and portions of blue sky are seen. | | 3 | | With the exception of a large clear break N. E. of the zenith, the sky is covered with cirro-stratus and scud: the | | | | appearance of the sky is very variable, at times nearly $\frac{3}{4}$ being clear, and at others being nearly wholly obscured. | | | · i | From 8 ^h . 10 ^m to 9 ^h . 25 ^m the sky was overcast, and since that time the amount of cloud has been variable. | | | ** | | | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICAL | LIN | STR | UME | NTS. | |----------------------------|------------------|---|--------------|--|--------|---------------|--|--------------------------------------|--------------|--|---|--|---|---------------------|-------------------|-----------------------|-----------------------|---| | Day and Hour,
Göttingen | Baro-
meter | Dry | Wet | Ther- | | Point below | read at 22h. of Free Therm. | Stand of
No. 1.
(Osler's). | From (| | From Whe | | Sign
of | Re | ading | s of | | Interva | | Astronomical | cor- | Ther- | Ther- | mom. | Dew | Dry | of | Reading of | - Inchio | ı | | Descentof | Electricity,
as | Single
Gold Leaf | <u>ي</u> ا | w | 200 | the same | | Reckoning. | rected. | rom. | mom. | below
Dry. | Point. | Ther-
mom. | Rad. Therm. in Water of the Thames. | No. 2. Stand of No. 3. (Crosley s). | Direction. | Pressure
in lbs. per
square
foot. | Direction. | the pencil
during the
continu-
ance of
eachWind. | shewn
by Dry
Pile Appa-
ratus. | of Dry | Double
Gold Le | Straws of
Volta 1. | Straws of
Volta 2. | degree
of tensio
after
discharge | | d h | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | | from
lbs. to lbs. | | in. | | 0 | 0 | div. | div. | m | | Aug. 6.12 | 29.612 | | 55.7 | 3.1 | | •• | •• | | NW | •• | •• | •• | Pos. | 30 | | 10 | 20 | •• | | | 29.626 | 1 | 52.8 | 1.2 | | 0.0 | •• | ••• | WSW | | • • • | ••• | Pos.
Pos. | 10
10 | 15
15 | | | • • | | 16
18 | 29·636
29·651 | 1 1 | 51·9
50·8 | 0.6 | 51.5 | 1 1 | | | SW
SW | | • | | Pos. | 30 | 40 | | | | | 20 | 29.664 | | 54.0 | 1 - | | •• | | | wsw | | • • • | | Pos. | 40 | | 20 | 40 | •• | | 22 | 29.660 | 65.0 | 60.5 | 4.2 | 57.0
 8.0 | •• | | wsw | constant 2 | WSW | 4.67 | Pos. | 20 | •• | 20 | 25 | •• | | Aug. 7. 0 | 29.656 | 66.6 | 61.5 | 5.1 | | | •• | | sw | | •• | •• | Pos. | 25 | | 15 | 20 | | | 2 | 29.634 | 1 - | 1 | | | •• | •• | ••• | SW | 0 to 1 | •• | •• | Pos. | 25 | 20 | 25 | 30 | •• | | 6 | 29.607
29.602 | | 62·7
61·6 | 8·4
4·4 | 56.5 | | (75.1) | •• | SW
SW | $\begin{array}{c c} 0 & \text{to} & \frac{1}{2} \\ & \frac{1}{2} & \text{to} & 2\frac{1}{2} \end{array}$ | •• | ••• | Pos. Pos. | 15
10 | 15 | :: | : : | | | 8 | 29 502 | | 60.5 | 1.4 | | | 51.6 | 3.41 | sw
sw | $0^{2} \text{ to } \frac{1}{2}$ | •• | | | | 0 | 0 | 0 | •*• | | 10 | 29.592 | 1 | | 0.8 | 58.5 | | 93.0 | | Wsw | 2 | •• | ٠ | •• | ••• | 0 | 0 | 0 | • • | | 12 | 29.604 | 57.7 | 55.7 | 2.0 | | | 44.5 | 0.00 | wsw | | wir. | | | | 0 | 0 | 0 | | | 14 | 20 004 | | 00 , | 2.0 | | | | 9.095 | wsw | | | | | | | | | | | 16 | | | | | | | 70·0
65·5 | | wsw | •• | •• | • • • | | •• | •• | • • | | •• | | 18 | •• | •• | ••• | ••• | •• | •• | (00.0) | •• | WSW | | •• | •• | ••• | •• | •• | • • | ••• | • • | | 20
22 | 29.607 | 65·5 | 59·0 | 6.5 | • | | •• | •• | wsw
wsw | •• | sw | 6.27 | • • | • • | o | 0 | o | | | Aug. 8. 0 | •• | | | •• | •• | | •• | •• | SW
SW | 0 to ½ | •• | •• | •• | • • | | | | | | 1 2 m
2. 10 |
29·581 | 67:9 | 59·0 | 8.9 | ••• | | •• | . • • | SW | •• | • • | | Neg. | 15 | 20 | | | | | 2.10
h
4 | į | | | , | •• | •• | (72.7) | •• | SW. | •• | • | | | ••• | | | | | | 6 | | | | | | | 49.4 | 3:52 | s w | | | 7. | | | | | | | | 7. 30 m | 29.580 | 60.7 | 56.7 | 4.0 | | | $\left \frac{}{89\cdot 2} \right $ | | sw | 0 to $\frac{1}{2}$ | •• | •• | Pos. | 15 | 20 | •• | | | | 8 | | | | | | | 33.2 X | 0.12 | SW | | | | | | | | | ∥ | | 10 | | | ., | ••• | | •• | | 9.275 | SW | | •• | | | •• | ••, | | • • | | | 12 | 00.500 | | 5 1.0 | : . | •• | •• | 69.2 | 0 2.0 | SW
SW | •• | •• | •• | ••• | •• | | 0 | 0 | | | 14
16 | 29·598
29·605 | $\begin{array}{c} 52 \cdot 3 \\ 51 \cdot 2 \end{array}$ | 51·2
50·7 | $\begin{vmatrix} 1 \cdot 1 \\ 0 \cdot 5 \end{vmatrix}$ | 50.0 | 1.2 | (65·0) | •• | SW | | | | :: | •• | ő | 0 | o | | | 18 | 29.613 | | 51.1 | 0.7 | | | | | SW | | | | | | 0 | 0 | 0 | | | 20 | 29.629 | 18 | | 2.6 | ••• | ••• | •• | | SW | •• | 0.107 | 5.50 | . | • • | 0 | 0 | 0 | | | 22 | 29.634 | 57.2 | 54.4 | 2.8 | 52.0 | 5.5 | •• | •• | WSW | 0 to $\frac{1}{2}$ | sw | 5.20 | Pos. | 7 | 12 | | | | | Aug. 9. 0 | 29.656 | 58.8 | 53.9 | | •• | | •• | ••. | WSW | | • • | | | •• | 0 | 1 | 1 | | | 2 | 29.665 | 64.5 | 57.7 | 6.8 | 50.0 | 10.0 | (00.45 | •• | SW
SW | $\begin{array}{c cccc} 0 & to & \frac{1}{2} \\ 0 & to & 1 \end{array}$ | •• | •• | ••• | ••• | 0 | 0 | 0 | | | | 29.669
29.687 | | | 8·2
5·4 | 53.0 | 19.4 | $\begin{bmatrix} 66.4 \\ 47.8 \end{bmatrix}$ | | SW | 0 to 1 | *• | | | | 0 | i . | 1 | | | | 29.711 | | | 4.6 | | | | 3.25 | sw | 2 | • • | | Pos. | 20 | 30 | 7 | 0 | ∥ | | | 29.740 | | | 4.0 | 49.5 | 7.1 | J 80·5 ↓ | 0.01 | SW | •• | •• | .,. | Pos. | 4 | 6 | •• | •• | | | | 29.754 | | | 2.0 | •• | •• | 40.5 | | SSW
SSW | •• | •• | ••• | Pos.
Pos. | 5
4 | 10
7 | ł | | | | | 29·763
29·765 | | | 1.1 | 47.0 | 2.4 | 68.0 | 9.290 | S by W | •• | | | ı os. | | ó | 0 | 0 | | | 18 | 29.766 | 50.0 | 48.1 | 1.9 | | | 64.0 | | \mathbf{S} | | | | | •• | 0 | 0 | 0 | | | 20 | 29.769 | 53.0 | 51.4 | 1.6 | 55.5 | | | | 8 | •• | SSW | 3:00 | ••• | •• | 0 | 0 | 0 | • • | | | 29.770 | ' | - 1 | 1.4 | 55.5 | 2.6 | •• | •• | S | •• | SSW | 3.00 | •• | •• | | ,. | | ••• | | Aug. 10. 0 | 29·761
29·772 | 63.5 | 59.5 | 4·0
3·4 | • • | •• | •• | •• | SSW
SSW | $\frac{1}{2}$ constant $\frac{1}{2}$ constant | · •• | | Pos. | ••• | 0 2 | ŀ | 0 | | | 2 | 40 114 | 12 40 | "000 | U ± | •• | • • | •• | •• | ~~ ** | 5 coustant | | | - 000 | - | ! ~ | ١ | | ll ' ' | Maximum Free Thermometer. August 9^d , 22^b . The reading was lower than that of the Dry Thermometer at 4^b . | Amount of Clouds, | Phases of the Moon. | REMARKS. | Observer. | |---------------------------------|------------------------|---|-------------| | 0
0
1
2
6
3
8 | Greatest declination N | Cloudless, but very hazy, particularly around the horizon. Cloudless. [observed about one hour since to pass from the zenith southwards. There are a few light clouds of the cirrus character towards the S.; cloudless elsewhere: two faint meteors were Cirri are scattered over the sky: hazy. Cirro-stratus in the horizon, extending about 30° upwards, in the N.W. part of the sky. Cirro-stratus, fleecy clouds, and a few detached cumuli cover most of the sky: a few breaks towards the N. | G H | | 9
10
9
10
10
4 | •• | Cirro-stratus and scud, the former much broken in the S. Overcast: cirro-stratus, cumulo-strati, and scud: there are a few small breaks, but to no numerical extent. Cirro-stratus, cumuli, and scud: there are a few small breaks towards the S. and S. E. Overcast: cirro-stratus and scud: a few drops of rain have commenced falling. ,, a light rain has fallen occasionally since the last observation. A few patches of scud are scattered near the horizon; cloudless elsewhere: a shower of rain fell at about 9 ^h , which lasted fifteen minutes, and after this the clouds began to break. | T I L G H | | 7

 | •• | Cirro-stratus and dark scud: there are a few small breaks, principally about the zenith. | L | | 6 | Transit | Cirri, cirro-strati, cumuli, and a few small patches of scud are scattered over the sky. | | | 9 | •• | Detached masses of cumuli and scud nearly cover the sky. | | | 2 | | Cirri and cumuli about the horizon: between 2 ^h . 30 ^m and 3 ^h . 10 ^m thunder was heard: at about 3 ^h . 15 ^m a flash of lightning was seen in the N.W., which was followed in three seconds by thunder. | | | 2
5
9
10
10 | •• | Cirro-stratus in the N.W. horizon: there are a few light clouds scattered about the sky. Fleecy clouds and cirro-stratus are scattered about the sky. Fleecy clouds and cirro-stratus cover the greater part of the sky: there are a few small breaks here and there. Overcast: cirro-stratus, fleecy clouds, and scud. | L | | 10
10
8
10
93
10 | Transit | Overcast: cirro-stratus, fleecy clouds, and broken masses of scud. Cirro-stratus and scud lightly broken in the W. Cirro-stratus, detached cumuli, and large masses of scud cover the greater part of the sky: small breaks in various direc- Cirro-stratus and fleecy clouds cover the sky: there is a break in the S., but to no numerical extent. Cirro-stratus: a small portion of the sky surrounding the zenith is clear. Overcast: cirro-stratus and scud. | T D L G G H | | 3
2
10
10
10
10 | •• | Cirro-stratus around the horizon, at a low elevation. Several portions of cirro-stratus in the S. and S. S.W. parts of the sky. Overcast: cirro-stratus and scud. ,, ,, ,, rain commenced falling at 19 ^h . 45 ^m . a light rain is falling. | T D
G H | | 10
10 | Transit | Overcast: cirro-stratus and scud: the rain ceased within half an hour after the last observation. ,, cirro-stratus and detached masses of scud: during the last half-hour a light rain has fallen. | G H | | | | | | Wet | | D | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICAL | INS | STRU | JME | NTS. | |----------------------------|------------------|---------------|---------------|--|--------------|----------------------|---|-------------------------------------|------------------------|--|---|--|--------------|---|----------------------|-----------------------|-----------------------|---| | Day and Hour, | | n | 177 | Ther- | | Dew
Point | read at 22h. | Stand of
No. 1. | From (| | From Whe | | Sign | | ading | s of | | Interva | | Göttingen | meter | Dry | Wet | mom. | Dew | below | Free Therm. | (Osler's).
Reading of | Auemo | meter. | Anemon | Descentof | Electricity, | (Single | ی ا | | . . | recoveri | | Astronomical
Reckoning. | Cor-
rected. | Ther-
mom. | Ther-
mom. | below
Dry. | Point. | Dry
Ther-
mom. | Rad. Therm. in Water of the Thames. | No. 2. Stand of No. 3. (Crosley's). | Direction. | Pressure
in lbs. per
square
foot. | Direction. | the pencil
during the
continu-
ance of
eachWind. | shewn | Gold Leaf
of Dry
Pile Appa-
ratus. | Double
Gold Leaf. | Straws of
Volta 1. | Straws of
Volta 2. | degree
of tension
after
discharg | | d h | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | | from
lbs. to lbs. | | in. | | ۰ | 0 | div. | div. | m s | | Aug. 10. 4 | 29.765 | 4 | | 1 1 | 55.0 | 5.9 | •• | | SSW | 0 to $1\frac{1}{2}$ | •• | •• | •• | | 0 | 0 | 0 | •• | | 6 | 29.754 | 1 | | | •• | • • | (65.0) | •• | SSW
SSW | constant | 1 | • • | Pos. | 10 | 20 | | | | | 8
10 | 29·771
29·789 | | | | 59.5 | 0.3 | $\begin{bmatrix} 65.9 \\ 53.3 \end{bmatrix}$ | 3.52 | SSW | 0 to $\frac{1}{2}$ | •• | | Pos. | 7 | 12 | | •• | | | 12 | 29.829 | | | | | | 83.0 | 0.27 |
$\mathbf{s}\mathbf{w}$ | | • • | | | | 0 | 0 | 0 | | | 14 | 29.858 | | | | 50.5 | | 47.5 | | SW | •• | •• | •• | •• | •• | 0 | 0 | 0 | ••• | | 16 | 29.876 | 54.9 | 93.9 | 1.4 | 53.5 | 1.4 | 67.0 | 9.315 | SW | •• | •• | '' | •• | ••• | " | " | ľ | | | 18 | 29.910 | 54.0 | 53.7 | 0.3 | | | 63.5 | | SW. | | | | | | 0 | 0 | 0 | | | 20 | 29.950 | 59.2 | | | | | •• | | SSW | | | | | • • • | 0 | 0 | 0 | •• | | 22 | 29.966 | 66.3 | 60.0 | 6.3 | 55.0 | 11.3 | •• | •• | wsw | •• | SSW | 3.60 | Pos. | 10 | ••• | 8 | 10 | • • | | Aug. 11. 0 | 29.976 | | 61.8 | 8.2 | | | •• | | wsw | | | | Pos. | 10 | | 10 | 12 | | | 2 | 29.978 | | | 9.5 | | | •• | ••• | SW | •• | • • | •• | Pos. | 7 | 10
20 | • • | ••• | ••• | | 4
6 | 29·975
29·987 | | | 9·7
8·1 | 57 ·0 | 1 1 | (76.9) | | SW
SW | ••• | •• | | Pos. Pos. | 15
20 | 30 | 8 | | | | 8 | 1 1: | 66.0 | 1 1 | 4.2 | • • | | 63.3 | 3.52 | SSW | | | | 1 05. | | 0 | o | 0 | | | 10 | 29.999 | | | | 62.0 | , , | 97.3 | 0.00 | SSW | | •• | •• | | •• | 0 | 0 | 0 | • • • | | 12 | 30.004 | | | 1.1 | | | 48.0 | 0 00 | $\mathbf{s}\mathbf{w}$ | | | | | | 0 | 0 | 0 | | | 14 | 30.001 | | | 0.9 | | •• | 64.2 | 9.315 | SSW | | •• | •• | •• | •• | 0 | 0 | 0 | • • | | 16 | 29.989 | | | 0.7 | 64.0 | 1 | 63.2 | •• | SSW
SSW | ••• | •• | | •• | •• | 0 | 0 | 0 | | | 18
20 | 29·991
30·001 | 69.2 | | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | | | | | SSW | | • | | | | o | 0 | 0 | 11 | | 22 | | 75.0 | | | 68.0 | 7.0 | | | sw | | ssw | 5.40 | •• | •• | 0 | 0 | 0 | • • | | Aug. 12. 0 | 29.983 | 78.0 | | 6.9 | | | | | sw | 0 to ½ | | | | •• | 0 | 0 | 0 | | | 2 | 29.974 | | | 8.8 | ••• | | | •• | SW | •• | •• | | •• | ••• | 0 | 0 | 0 | • • | | 4
6 | 29·967
29·951 | | | 6·7
6·4 | | 11.6 | $\left[\left(egin{matrix} 82.6 \\ 59.8 \end{smallmatrix} ight] \right]$ | •• | SW
SW | [•• | św | 2.90 | •• | •• | 0 | 0 | 0 | | | 8 | 29.951 | - 1 | | 4.1 | | | 99.8 | 3.52 | wsw | | | 2 90 | •• | | 0 | 0 | 0 | | | 10 | 29.973 | | | | 63.0 | | 98.8 | 0.00 | SW | | | | | | 0 | 0 | 0 | | | 12 | 29.986 | | | | | | 53.0 | 0.00 | WSW | | •• | | •• | •• | 0 | 0 | 0 | | | | 29.993 | | | | 20.0 | | 05.0 | 9.315 | W | •• | •• | •• | •• | ••• | 0 | 0 | 0 | | | 16
18 | 29·998
30·021 | | | | | l 1 | $\begin{bmatrix} 65.0 \\ 64.5 \end{bmatrix}$ | | \mathbf{W} | •• | •• | | •• | | 0 | 0 | 0 | | | | 30.056 | | | | •• | :: | (04.0) | | NNE | | • | | | | o | 0 | 0 | | | | 30.077 | | | | 56 ·5 | 12.9 | •• | •• | N by E | •• | N | 0.12 | Pos. | 6 | 8 | •• | | •• | | | 30.089 | | | | • • | | •• | | N by E | | •• | | Pos. | 30 | • • | 10 | 20 | | | | 30.088 | | | |
@9.0 | 100 | (99.9) | •• | SE SE | •• | • • | ••• | Pos.
Pos. | 30
15 | ••• | 10
7 | 20
12 | •• | | 4
6 | 30·082
30·109 | 80.7 | 62.5 | 6:5 | | i 1 | $\left[\left[egin{array}{c} 82 \cdot 2 \\ 48 \cdot 8 \end{array} \right] \right]$ | •• | ESE | | | | Pos. | 20 | | 10 | 15 | | | 8 | 30.143 | | | | | | | 3.2 | E | | | | Pos. | 10 | | 7 | 10 | | | 10 | 30.170 | 59.4 | 57.2 | 2.2 | | | 100.5 | 0.00 | E by N | | | | Pos. | 20 | | 12 | 20 | | | | 30.182 | | | | •• | •• | 40.5 | | E by N | | ••• | •• | •• | | 0 | 0 | 0 | •• | | | 30.189 | | | | 50.5 | 0:0 | 65.5 | 9.315 | E by N
E by N | •• | •• | •• | •• | ∥ … | 0 | 0 | 0 | • • | | 16
18 | 30·189
30·192 | | | | 50.5 | 0.0 | 64.8 | | E by N | :: | | | • • | | 0 | 0 | 0 | | | 20 | 30.194 | 59.7 | 57.3 | 2.4 | | | | | NE | :: | | | | | o | 0 | 0 | | | 22 | 30.199 | | | | | 10.0 | | · | NE | 0 to 1 | ENE | 2.00 | | | 0 | 0 | 0 | | DRY THERMOMETER. August 13^d. The decrease in the reading between 4^h and 6^h was 11° '7. MAXIMUM FREE THERMOMETER. August 10^d. 22^h. The reading was lower than that of the Dry Thermometer at the same time. METEORS. August 10^d. 12^h. 16^m. 0^s. A faint meteor passing from Polaris through Ursa Major. 12^h. 17^m. 0^s. A faint meteor passing towards the S. E. 12^h. 19^m. 0^s. A very faint meteor near Ursa Major. 12^h. 30^m. 0^s. A very faint meteor observed through the haze passing towards the N.W. METEORS—continued. August 10^d. 12^h. 30^m. 30^s. A very faint meteor observed through the haze passing towards the N.W. towards the N.W. 12h. 31m. 0s. A very faint meteor observed through the haze passing towards the N. 12h. 32m. 0s. A very faint meteor observed through the haze passing towards the N.W. 12h. 46m. 0s. A faint meteor passing across the sky midway between the zenith and horizon. 13h. 2m. 0. Two meteors passing from the zenith towards the S.W. horizon. | - | | 1 | | | |---|-----------------------------|---|--|--------------------------------------| | | Amount of Clouds, | Phases of the Moon. | REMARKS. | Observer. | | | 10
10 | •• | Overcast: cirro-stratus and scud: rain has fallen frequently since the last observation. | тр | | | 10
10
8
0
7 | New | a misty rain has been falling frequently since 6 ^h . cirro-stratus and quickly moving scud: occasionally a few stars are visible, but they become instantly obscured again by the scud: a misty rain is falling. Stratus of different densities: about 15 minutes since the sky was nearly cloudless: three meteors have been seen, two Cloudless: hazy. [of which left trains of light which lasted for a few seconds; they were towards the E. and S. There are light clouds in different parts of the sky with much haze: the amount of cloud has been constantly changing since the last observation. [deposition of moisture since 14 ^h . | ТD | | | 7
8
3 | •• | Cirri and light clouds are in every direction, with a bank of cirro-stratus and scud along the S. horizon: a great Cirro-strati, fleecy clouds, and scud are scattered about the sky: there is a large clear space N.W. of the zenith. Cirro-stratus, detached cumuli, and fleecy clouds are scattered about the horizon. | G H
L | | | 10
4
1
9
3 | Transit | Cirro-stratus and fleecy clouds cover the sky: there are a few small breaks, but to no numerical extent. Cirro-stratus and fleecy clouds are scattered about the sky. A bank of cirro-stratus in the W. and N.W. horizon; cloudless elsewhere. Cirro-stratus, fleecy clouds, and scud: there are two small breaks towards the S. E. and S.W. parts of the horizon. Cirri and cirro-strati principally around the horizon; hazy elsewhere. The sky is overcast, with the exception of a clear space towards the N.W. and N. horizon: in the S.W. a flash of | L
G H | | | 10
10
10 | •• | sheet lightning was observed just before this observation. The quantity of cloud is variable in amount, at present the sky is overcast, at other times it is not more than half Overcast: cirro-stratus and scud. [covered by cloud. | L | | | 10
10
6 | •• | Fleecy clouds, cirro-stratus, and scud: there are a few small breaks, but to no numerical extent. Cumuli, cumulo-strati, and scud in large detached portions all around. | L
T D | | | 8
8
10
9
6
1 | Transit | Cumuli and cumulo-strati in every direction. Cumuli, cirro-strati, and scud in every direction. Overcast: detached cumuli, cirro-stratus, and scud. Detached cumuli, cirro-stratus, and scud cover the greater part of the sky: it is clear in and about the zenith. Fleecy clouds, cirro-stratus, and scud. A bank of cirro-stratus along the N. horizon: there are a few light clouds about the sky. Cirro-stratus in the N. horizon, also in the W. S.W.: a few small meteors have been seen. | T D
L
L
T D | | | 10
10
10
10 | •• | Overcast: cirro-stratus. | TD | | | 8
4
5 | Transit | Nearly overcast with cirro-cumuli: a few small breaks in various directions. Fleecy clouds towards the S. and S. E., and around the horizon. | G H | | | 6
7
10
0 | •• | Cirro-strati and fleecy clouds are scattered about the sky. Cumulo-strati, cumuli, and scud: the zenith is the only part of the sky that is free from cloud. Cirro-stratus, scud, and light clouds: portions of blue sky in every direction. Cirro-stratus and scud. Cloudless. A patch of dark cloud towards the W., with a few lines of strati near the N. horizon. | T D
T D | | | 0
0
4
0
7 | In Equator | Cloudless. , hazy in the N.
horizon: there is a slight deposition of moisture: at 16 ^h . 5 ^m a rather bright meteor was Light cirri and haze are scattered over the sky. Cloudless, but hazy around the horizon. Detached cumuli, fleecy clouds, and scud. | СН | | | Aug | 13b. 5
14 ^k . 1
ing the night
following
ust 12 ^d . 8 ^k . | METEORS—concluded. 44". 0°. A meteor observed through the haze very near the horizon in the S.S.W. 50". 0°. Two very faint meteors across the zenith passing N. and S. 55". 0°. Two very faint meteors from the zenith to Saturn. of Angust 12 a careful watch was kept for meteors, and the gewere observed:— 50". 0°. A very faint meteor passing from the zenith to 10° North of it; time of duration 1 second. 53". 0°. A very faint meteor passing from Arcturus to W. horizon; time of duration 2 seconds. METEORS—concluded. August 12 ⁴ . 9 ⁵ . 13". 15°. A rather bright meteor passing from a little S. of a to midway between the zenith and W. hori leaving a faint train; time of duration 4 second E. to W. 9 ⁵ . 36". 0°. A faint meteor passing from E. to W. along the horizon; time of duration 1 second. 10 ⁵ . 15". 0°. A rather bright meteor appeared midway between the zenith and W. hori leaving a faint train; time of duration 4 second E. to W. 9 ⁵ . 36". 0°. A faint meteor passing from E. to W. along the horizon; time of duration 1 second. 10 ⁵ . 15". 0°. A rather bright meteor appeared midway between the zenith and W. hori leaving a faint train; time of duration 4 second E. to W. 9 ⁵ . 36". 0°. A faint meteor passing from E. to W. along the horizon; time of duration 1 second. 10 ⁵ . 15". 0°. A rather bright meteor appeared midway between the zenith and W. hori leaving a faint train; time of duration 4 second E. to W. 9 ⁵ . 36". 0°. A faint meteor passing from E. to W. along the horizon; time of duration 1 second. 10 ⁵ . 15". 15". 15". 15". 15". 15". 15". 15" | zon,
nds.
from
e N.
veen | | | | | | Wet | | Dew | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICAL | IN | STRI | UME | NTS. | |--|------------------|--------------|---------------|-------|--------|--------------|--|------------------------------------|------------------|-------------------------|---|----------------------------------|---|----------------------|----------------------|-----------------|-----------|---------------------| | Day and Hour, | Baro- | | | Ther- | | Point | read at 22h. | Stand of
No. 1. | From C | | From Whe | 1 | Sign | Re | ading | s of | | Interval | | Göttingen | meter | Dry | Wet | mom. | Dew | below | Free Therm. | (Osler's). Reading of | Anemo | meter. | Anemom | Descent of | Electricity
as | Single | ن ا | . of | .5 of | recovering | | Astronomical | Cor- | Ther- | Ther- | below | | Dry
Ther- | Rad. Therm. | No. 2. | 5 1 | Pressure
in lbs. per | Dimetica | the pencil | shewn
by Dry | Gold Leaf
of Dry | Lea | aws
Ita 1 | ws ofta 2 | degree
of tensio | | Reckoning. | rected. | mom. | mom. | Dry. | l Gint | mom. | of Therm. in
Water of the
Thames. | Stand of
No. 3.
(Crosley's). | Direction. | aquare
foot. | Direction. | continu-
ance of
eachWind. | Pile Appa-
ratus. | Pile Appa-
ratus. | Double
Gold Leaf. | Straws
Volta | Straws | after
discharg | | d h | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | | from
lbs. to lbs. | | in. | | o | 0 | di√. | div. | 112 * | | Aug. 14. 0 | 30.181 | 1 - 1 | | 9.5 | •• | | •• | | NE | 0 to $\frac{1}{2}$ | •• | •• | •• | •• | 0 | 0 | 0 | •• | | 2 | 30.173 | | 65.8 | 9.9 | 50.0 | 20.4 | (20.0.3 | •• | NE
NE | 0 to ½ | • • | • • • | Pos. | 12 | 0
15 | 6 | | | | 4
6 | 30·157
30·138 | | 64.5 | | 52.0 | ļ | $\begin{bmatrix} 78.2 \\ 52.2 \end{bmatrix}$ | ••• | ENE | 0 to $\frac{1}{2}$ | • | | Pos. | 15 | 20 | 8 | | | | 8 | 30.149 | | | | 11 | • | | 3.2 | ENE | | | | | | 0 | 0 | 0 | •• | | 10 | 30.167 | 57.2 | | 2.1 | 53.0 | į | 94.7 | 0,00 | ENE | | | ; | | •• | 0 | 0 | 0 | •• | | 12 | 30.164 | 57.0 | 55.5 | 1.5 | | | 145.0 | 0.00 | ENE | | •• | •• | •• | •• | 0 | 0 | 0 | • • • | | 14 | | | | | •• | | | 9.315 | NE | •• | •• | •• | •• | ••• | •• | ••• | •• | ••• | | 16 | | ••• | | ••• | •• | •• | 65.2 | 0 3.0 | NE
NE | •• | •• | ••• | •• | ••• | ••• | | | • | | 18
20 | | | • • • | •• | •• | ••• | (65·0) | | NE
NE | •• | •• | | • • | :: | :: | | | | | $\begin{bmatrix} 20 \\ 22 \end{bmatrix}$ | 30.106 | 66.8 | 63.0 | 3.8 | • • • | • | | | NE
NE | | NE | 1.82 | | | 0 | 0 | 0 | | | | 50 100 | 00 6 | 000 | | • • | •• | •• | •• | | | | | | | | | | | | Aug. 15. 0 | ••• | •• | • • | •• | • • | •• | •• | | N by E
NNE | •• | • | | • | | | | | | | 3. 15 | 30.066 | | 6 7 ·1 | 8.4 | | | | •• | NNE | | | | | | 0 | o | o | | | 1 1 d | | 10 0 | | | | | 80·8
57·1 | | NNE | 0 to 1 | | | | | | | | | | 6 | | | | | | • • • | 3/1 | 3.76 | NE | 0 to 1 | • | | | | | | | | | 8 | | | | | | •• | 96.0 | 0.50 | NE | | | | | | | | 1 | | | 10 | | | | | | | 49.0 | 0.20 | NNE | | •• | | | •• | | • • | ٠٠. | ••• | | 12 | | | | | | | | 9.840 | NNE | | •• | •• | • • | ••• | | | • • | ••• | | 14 | 30.029 | 59.5 | 58.7 | 0.8 | | ••• | 65.2 | 0010 | NNE | •• | •• | •• | Neg. | •• | 0 | 0
70 | 80 | 11 | | 16
18 | 1 1 | 58.3 | | | 1 : | 0.3 | (64.8) | •• | N by E
N by E | •• | •• | | Neg. | 40 | | 40 | 50 | ** | | 20 | 29·993
29·961 | 57·6
59·2 | | , , | •• | ••• | •• | •• | N by E | 0 to 2½ | • | | Neg. | 10 | | 10 | 15 | | | 22 | 29.958 | | | | | 1.0 | ••• | •• | N | | NNE | 3.66 | •• | •• | 0 | 0 | 0 | | | Aug. 16. 0 | 29.941 | 64.5 | 63.2 | 1.3 | | | | | N | | | | Pos. | 5 | 12 | | | | | 2 | 29.926 | | | 1.9 | | | | •• | N | •• | •• | •• | Pos. | 20 | •• | 12 | 15 | 11 | | 4 | 29.919 | 1 - 1 | 1 . | 1 1 | 1 | 4.7 | (71.8) | | N | •• | •• | ••• | Pos. | 10 | ••• | 8 | 10 | • • | | 6 | 29.917 | | | | | •• | 61.1 | 3.76 | N
N | ••• | •• | ••• | Pos.
Pos. | 7 | 10
10 | ••• | • • | •• | | 8
10 | 29·919
29·920 | 63.5 | | | 1 | 0.0 | 78.8 | | N | • • | | | Pos. | 7 | 10 | | | | | 12 | 29.925 | | | | 02 7 | 1 | 57.0 | 0.00 | N | | | | Neg. | 40 | | 80 | 100 | Instan | | 14 | | | | | 11 | | | 0.007 | N | | •• | | Pos. | 25 | | 20 | 30 | | | 16 | 29.895 | 61.3 | 61.5 | -0.5 | 61.0 | | | 9.895 | N | | ••• | •• | Pos. | 15 | | 10 | 15 | | | 18 | 29.908 | 62.0 | 62.0 | 0.0 | | | 〔65·0 〕 | | N | •• | •• | •• | Pos. | 12 | 20 | 5 | 7 | •• | | 20 | 29.929 | 62.0 | 61.8 | | | | ••• | •• | N | •• | Ň | 2.73 | Pos. | 5
40 | 10 | 30 | 50 | • • | | 22 | 29.932 | 64.6 | 63.1 | 1.2 | 61.0 | 3.6 | •• | •• | N | •• | TA | 2.13 | | 40 | •• | 30 | 30 | | | Aug. 17. 0 | | | | | | •• | •• | | Calm | •• | •• | · | Pos. | :5 | 3 | 10 | | | | 2 | | | | | | 5.0 |
(#1.5 > | •• | Calm | •• | • • | •• | Pos.
Pos. | 40
40 | ••• | 40
 30 | 60 | 3. | | 4 | 29·924
29·924 | 71.3 | 67.8 | 3.2 | 66.0 | 1 | 71.5 | ••• | Calm
Calm | •• | •• | | Pos. | 40 | :: | 30 | 40
40 | 3.
4. | | 6
8 | 29·924
29·936 | 65.0 | 65.0 | 1·9 | | • | 61.9 | 3.76 | Calm | :: | ••• | | Pos. | 15 | | 10 | 15 | | | 10 | 29.950 | | | | 63.0 | 2.0 | 78.5 | 0.00 | Calm | | | | Pos. | 12 | | 7 | 12 | | | 12 | 29.944 | 64.5 | 63.8 | | 1 | | 59.0 | 0.00 | Calm | | •• | | Pos. | 15 | 20 | 8 | •• | • • • | | 14 | 29.943 | 63.8 | 63.3 | 0.2 | | | | 9.900 | Calm | | ••• | | ·•• | • • | 0 | 0 | 0 | •• | | 16 | 29.941 | | | | 62.0 | 1.0 | 65.0 | 2 200 | Calm | •• | •• , | •• | •• | •• | 0 | 0 | 1 1 | •• | | 18 | 29.944 | | | 0.2 | 1 1 | •• | 〔65·0 〕 | •• | Calm
Calm | ・・ | , •• | 1 | •• | •• | 0 | 0 | | •• | | $egin{array}{c} 20 \\ 22 \\ \end{array}$ | 29·958
29·982 | | | | 62.0 | 0.3 | •• | •• | Calm
Calm | | N | 1.25 | | | 0 | 0 | 1 | | | 22 | 40 002 | 04 3 | 041 | U 2 | V2 U | UU | •• | ••• | Vaint | | | | | 1 | " | Ĭ | " | l '' | Dry Thermometer. August 16^d . 16^b . The reading was lower than that of the Wet Thermometer. ELECTRICITY. August 15^d. 16^h. There was a spark at the distance of 0ⁱⁿ 01. August 16^d. 12^h and 22^h, and 17^d. 2^h. There were sparks at the distances of 0ⁱⁿ 05, 0ⁱⁿ 02, and 0ⁱⁿ 01 respectively. | 0-10. | Phases | | |-------|---------
--| | . | of | | | | the | DUMADEG | | ١ ١ | | REMARKS. | | | Moon. | | | | | Detached cumuli give stratus and fleesy slouds seven the greater part of the sky | | | •• | Detached cumuli, cirro-stratus, and fleecy clouds cover the greater part of the sky. Detached cumuli and light clouds are scattered about the sky. | | 1 | Transit | Cirri are scattered about the sky: cirro-strati around the horizon with much haze. | | 1 | | Cirri, cirro-strati, and haze spread over the sky, particularly towards the N.W. horizon. | | | • • | Reticulated cirri with haze towards the N.W.; cloudless elsewhere. | | | • • | There are a few light clouds towards the N.W., but to no numerical amount. | | | • • | Overcast: cirro-stratus. | | 1 | Apogee | | | 1 | | | | 1 | •• | | | 1 | • • | • • • • • • • • • • • • • • • • • • • | | | | | | | • • • . | Cirro-stratus and scud. | | | • • | | | 1 | • • | ,, the Sun's place is visible. | | 1 | Transit | | | 1 | • • | | | | • • | | | I | • • | | | | •• | Overcast: cirro-stratus: a few drops of rain are falling: lightning has been occasionally visible in the S.E. and S. | | | ٠ | ,, rain is falling heavily. | | l | • • | rain is falling. | | l | • • | ,, cirro-stratus and scud: a few drops of rain are falling. | | | • • | ,, no rain is falling: very gloomy. | | | •• | Overcast: cirro-stratus and scud. | | | Transit | and the state of t | | | TTAUSIL | 99 | | | | 99
99 | | l | • • | frequent flashes of lightning are seen in all directions. | | | •• | rain is falling in torrents; it commenced at 11 ^h . 50 ^m : flashes of lightning have been | | | | ,, cirro-stratus: a distant clap of thunder was heard at 12 ^h . 35 ^m . [visible in the E. and S.E. since 10 ^h . 10 ^m . | | | • • | | | 1 | •• | en de la companya de
La companya de la co | | | • • | | | | | | | | •• | Overcast: cirro-stratus and scud. | | ı | •• | | | | Transit | ,, cirro-stratus. | | | | | | | •• | | | | •• | ,, very dark. | | | ••• | | | | • • | , , cirro-stratus. | | 1 | • • | give stratus and saudy a fine rain has just commenced falling | | 1 | | ,, curro-stratus and scud. a fine rain has just commenced failing. | Henley's Electrometer. August 16^d. 12^h. The reading was 5°. | [| | | | Wet | | _ | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELEC | CTRICAL | INS | STRU | JME | NTS. | |---|--|---------------|---------------|----------------|---------------|----------------------|---|---|------------------|--|---|--|---|---|----------------------|---|-----------------------|---| | Day and Hour, | Baro- | | | Ther- | | Dew
Point | read at 22h. | Stand of
No. 1. | From (| | From Whe | | Sign | Re | ading | s of | | Interval
of time in | | Göttingen | meter | Dry | Wet | mom. | n. | below | Free Therm. | (Osler's). | Anemo | meter. | Anemom | | Electricity, | Single | | | | recovering
the same | | Astronomical
Reckoning. | Cor-
rected. | Ther-
mom. | Ther-
mom. | below
Dry. | Dew
Point. | Dry
Ther-
mom. | Rad. Therm. of Therm. in Water of the Thames. | Reading of No. 2. Stand of No. 3. (Crosley's). | Direction. | Pressure
in lbs. per
square
foot. | Direction. | Descent of
the pencil
during the
continu-
ance of
eachWind. | as
shewn
by Dry
Pile Appa-
ratus- | Gold Leaf
of Dry
Pile Appa-
ratus. | Double
Gold Leaf. | Straws of
Volta 1. | Straws of
Volta 2. | degree
of tension
after
discharge. | | d h | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | | from | | in, | | 0 | 0 | div. | div. | m s | | Aug. 18. 0 | 29.994 | 65.7 | 63.8 | | | | •• | | Calm | • • | • • | | | •• | ••• | 0 | 0 | • • | | 2 | 29.982 | 11 1 | | 2.9 | | ••• | C70.0 > | •• | Calm | •• | •• | | Pos. | ··· 2 | 2 | 0 | 0 | •• | | 6 | 29·964
29·966 | | 65·6 | 1·7
2·1 | 64.5 | | $\begin{bmatrix} 72.9 \\ 62.0 \end{bmatrix}$ | ••• | N
N | •• | | | Pos. | 30 | اً | 10 | 20 | | | 8 | 29.991 | | 1 | | | | | 3.76 | N | •• | | | Pos. | 6 | 10 | 5 | | | | 10 | 1 | | 64.1 | | 63.0 | 2.0 | 83.0 | 0.00 | N | •• | . •• | | •• | •• | 0 | 0 | •• | ••• | | $\begin{array}{c} 12 \\ 14 \end{array}$ | 29·999
29·998 | 64·2
63·0 | 63·8 | , , | •• | •• | 59.4 | | N
N | • • | | | • • • | | 0 | 0 | | | | 16 | 30.045 | 1 | 62.5 | | 62.0 | 0.5 | 65.0 | 9.900 | N | •• | | | | | 0 | 0 | •• | • • | | 18 | | | 4 1 | | | •• | [65·0] | | N by E | •• | •• | | •• | | 0 | 0 | •• | •• | | 20 | 29.999 | 64.3 | 1 1 | | 61.0 | | •• | •• | N by E
N by E | •• | Ň | 2.02 | Pos. | 15 | 0 | $\begin{vmatrix} 0 \\ 12 \end{vmatrix}$ | 15 | | | 22 | 30.002 | 69.2 | 09.0 | 3.0 | 61.0 | 8.2 | ••• | •• | IN Dy II | •• | . 1 | 2 02 | I Os. | 10 | | | | | | Aug. 19. 0 | 29.996 | | | | • • • | | | | \mathbf{N} | | | | | ••• | 0 | 0 | 0 | ••• | | 2 | 29.981 | | 64.5 | 1.1 | | | Cro.o.> | •• | N | • •• | • • | •• | Pos. | 20 | 0 | 0
20 | 0
25 | 2. 0 | | 4
6 | 29·962
29·950 | , , | 64·7
63·5 | 1·1
1·7 | 64.0 | 1.8 | $\begin{bmatrix} 72.9 \\ 57.3 \end{bmatrix}$ | ••• | NNE
NNE | | | | ros. | | 0 | 0 | 0 | 2. 0 | | 8 | 29.943 | 1 1 | | 1.0 | | | | 3.76 | NNE | •• | | | Pos. | 10 | | 8 | 10 | | | 10 | 29.945 | | 61.3 | | 61.0 | 1.0 | 84.5 | 0.00 | NE | •• | •• | | Pos. | 20 | • • | 15 | 20 | ••• | | 12 | 29.925 | 61.0 | 60.0 | 1.0 | ••• | •• [| 53.0 | | ENE
ENE | •• | • • | ••• | •• | •• | 0 | 0 | 0 | •• | | 14
16 | 29·897
29·882 | 58·1
58·0 | 57.5 | 0.6 | 57.0 | 1.0 | 65.2 | 9.930 | ENE | • • | | | :: | | 0 | ő | o | | | 18 | 29.869 | | 57.7 | 0.3 | | | 65.2 | | ENE | •• | •• | | Pos. | 5 | 10 | | • • | | | 20 | - 31 | 60.5 | | 0.7 | | | | | ENE | •• | NUNTE | 0.45 | •• | | 0 | 0 | 0 | •• | | 22 | 29.868 | | 62.0 | 1.2 | 60.0 | 3.2 | • • | •• | NE | •• | NNE | 2.45 | _ | ••• | | " | ľ | •• | | Aug. 20. 0 | 29.855 | | 62.0 | 1.7 | | •• | •• | | NE
NE | •• | • • | ••• | Pos. | 4 | 6 | 0 | 0 | ••• | | $egin{array}{c} 2 \ 4 \end{array}$ | 29·835
29·791 | 65·2 | 63·5
65·6 | 1·7
2·8 | 64.0 | 4.4 | •• | ••• | NE
NNE | • • | | | | | 0 | 0 | 0 | | | 6 | 29.774 | | 64.9 | | 0.0 | | (71.1) | | Calm | •• | | | Pos. | 40 | | 40 | 50 | 3. 0 | | 8 | 29·7 88 | 62.0 | 61.6 | | •• | ••• | 50.5 | 3.76 | Calm | •• | •• | •• | Pos. | 40 | • • | 50 | 70 | 6. 0 | | 10 | 29·788
29·781 | 59·9
57·0 | 60·0
57·0 | $-0.0 \\ -0.1$ | 60.0 | _ [| 01.5 | | Calm
Calm | •• | •• | • • | Pos.
Pos. | 40 | | 70
60 | 90
80 | 3. 0
10. 0 | | $\begin{array}{c} 12 \\ 14 \end{array}$ | 29 781 | | 55.5 | 0.5 | | | 81·5
45·0 | 0.00 | N | • • | • | | | | 0 | 0 | o | | | 16 | 29.779 | 52.8 | 52.8 | 0.0 | | | | 9.935 | N | • • | •• | | | | 0 | 0 | 0 | ••• | | 18 | 29.791 | 54.0 | 53.4 | 0.6 | | •• | 65.0 | 3 300 | N | • • | •• | •• | • • | | 0 | 0 | 0 | •• | | 19
20 | 29·794
29·795 | 57.6 | 57.9 | 0.4 | ŀ | ••] | 65·0 | •• | N
N | •• | | | | :: | 0 | 0 | 0 | | | 20
22 | 29.808 | 68.5 | 64.0 | | 58.5 | 10.0 | | | N | • | NE | 0.30 | | | 0 | 0 | 0 | | | 23 | 29.795 | 71.9 | 66.1 | 5.8 | ••• | ••• | •• | •• | N | •• | •• | | •• | ••• | •• | ••• | •• | •• | | Aug. 21. 0 | 29.791 | | | | | | •• | | N | | | | | | 0 | 0 | 0 | •• | | 1 | 29.772 | 74.0 | 67.8 | 6.2 | ••• | ••• | | •• | N | •• | •• | ••• | •• | ••• | 0 | 0 | 0 | •• | | $\frac{2}{3}$ | 29·769
29·752 | | 68·3 | | •• | •• | 79·4
56·4 | •• | N
W | •• | •• | | | | 0 | " | | | | 4 | 29.735 | | | | 64·0 | 14.2 | | 3.76 | wsw | | | | | | 0 | 0 | 0 | •.• | | 5 | 29.711 | 76.2 | 68.1 | 8.1 | | | 96.2 | 0.00
 WSW | •• | •• | | Dog | 15 | | | • • | • • | | 6 7 | 29.691
29.682 | 74.1 | 67.1 | 1 1 | •• | •• | 50.0 | | WSW
SW | •• | •• | | Pos. | 15 | 20 | 8 | :: | | | 1 | 29.682 | | | 3·9 | •• | •• | 65.5 | 10.035 | SSW | | | | | | 0 |] · o | o | | | 9 | 29.675 | 64.7 | 61.9 | 28 | | • • • | 65.2 | | SSW | | | | | • • : | • • | | • • | | | 10 | 29.666 | 62.7 | 60.5 | 2.2 | 59.5 | | ••• | | SSW | •• | • • • | | •• | •• | 0 | 0 | .0 | •• | | 11 | 29.652 | 61.5 | 59.6 | 1.9 | ••• | • • | •• | •• | ssw | ••• | • | ••• | •• | •• / | الا | ۱ ' | 0 | •• | | | <u> </u> | اا | <u>!</u> | | 1 | | ! | H | 1 | | <u>"</u> | <u>'</u> | " | · | | <u> </u> | · | | DRY THERMOMETER. August 20^d . 10^h . The reading was lower than that of the Wet **Thermometer**. August 20^d . The increase of the reading between 20^h and 22^h was $10^o \cdot 9$. Dew Point Thermometer. August 20^d. 10^h and 16^h. The readings were higher than those of the Dry Thermometer. | . | Phases | | | |----------|------------------------------|--|----| | 0.00 | of | | | | Ī | | REMARKS. | 1 | | | the | REMARS. | Ì | | 0-10. | Moon. | | | | | | | | | 10
10 | •• | Overcast: cirro-stratus: gloomy: the air is exceedingly calm. | | | 10 | •• | ,, ,, there are occasional breaks about the Sun's place: hazy. ,, cirro-stratus and scud: a few drops of rain occasionally fall. | 1 | | 10 | Transit | | 1 | | 10 | •• | 99 99
99 | | | 10 | | a light rain has fallen occasionally since the last observation. | Ι, | | 10 | • • | ,, cirro-stratus. | ١ | | 10 | •• | ,, a few drops of very fine rain are falling. | ١ | | 10 | ••_ | 23 | 1 | | 10 | 1st Qr. | ,, | | | 10 | • • | | 1 | | 8 | •• | Cumulo-stratus, cirro-stratus, and scud: the clouds became broken at about 21 ^h . | 1 | | | | Orrangest a sinus structure and soul | | | 10
10 | •• | Overcast: cirro-stratus and scud. | - | | 10 | •• | ,, cirro-stratus: rain is falling; it commenced at about 1 ^h . 45 ^m . ,, cirro-stratus and scud: fine rain is falling. | 1 | | io | Transit | ,, cirro-stratus and scud: and rain is failing. | 1 | | 7 | | Clear in about the zenith: cirro-stratus, scud, and a few cirri elsewhere. | ١ | | 10 | | Overcast: cirro-stratus and scud. | 1 | | 10 | | a few stars are occasionally faintly seen through the clouds. | 1 | | 10 | | ,, cirro-stratus. | 1 | | 10 | • • | 39 99 | 1 | | 10 | ••• | 33 27 | | | 10 | ••• | 23 | 1 | | lo | •• | ,, cirro-stratus and scud. | 1 | | 10 | | Overcast: cirro-stratus and scud. | 1 | | 10 | •• | ,, cirro-stratus. | 1 | | 10 | •• | Cirro-stratus and scud: the Sun's place is visible. | 1 | | 0 | m··· | A few light clouds are scattered in the S., but to no numerical amount: the clouds became broken immediately after | | | 0 | Transit | Cloudless. [the last observation, and gradually cleared off, leaving the sky free from cloud. | 1. | | 0 | •• | ,, | | | 0 | •• | " | 1 | | o l | | Cloudless, but very hazy. | ı | | ĭ | | A few light cirri are scattered about the sky with much haze. | 1 | | 1 | | •• | - | | 0 | | Cloudless, but very hazy, particularly towards the S. and S.W. | 1 | | 0 | | Cloudless. | 1 | | 0 | •• | | | | 0 | | Cloudless. | 1 | | 0 | | | | | 0 | | 9,9
9,9 | | | 3 | • | Cumuli towards the E. and S.: hazy. | | | U | Greatest decli-
nation S. | | | | 2 | •• | There are a few cumuli near the horizon all around: the sky is of a fine clear blue. | 1 | | 4 | •• | There are a few cirri towards the E. with cumuli and haze generally towards the horizon. | | | 2 | <u></u> | There are a few cumuli with much haze around the horizon. | | | 1 | Transit | There are a few small patches of scud towards the W. with much haze. | | | 0 | 1 | Cloudless. | I | | 0 | •• | • • • • • • • • • • • • • • • • • • • | | | 0 | •• |) | 1 | ELECTRICITY. August 20^d . 10^h and 12^h . There were sparks at the distances of 0^{in} . 02 and 0^{in} . 01 respectively. | | | | | Wet | - | 1 | Max and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | ECTRICA | L IN | STR | UME | ENTS. | |--|------------------|-------|-------|------------|----------|---------------|---|------------------------------------|--|---|------------|--|--------------------------------|--------------------------------|----------------------|-----------------------|-------------------|----------------------------------| | Day and Hour, | Baro- | | | Ther- | | Dew
Point | read at 22h. | Stand of
No. 1. | From (| | From Whe | | Sign
of | Re | ading | s of | | Interval
of time i | | Göttingen | meter | Dry | Wet | mom. | D | below | Free Therm. | (Osler's). | Anemo | meter. | Anemom | | Electricity, | Single | Ι. | | | recovering | | Astronomical | Cor- | Ther- | Ther- | 1 | Dew | Dry | of
Rad. Therm. | Reading of
No. 2. | | Pressure | | Descent of
the pencil | as
shewn | Single
Gold Leaf | leaf | s of | a 2. | degree | | Reckoning. | rected. | mom. | mom. | Dry. | Point. | Ther-
mom. | of Therm. in
Water of the
Thames. | Stand of
No. 3.
(Crosley's). | Direction. | in lbs. per
square
foot. | Direction. | during the
continu-
ance of
eachWind. | by Dry
Pile Appa-
ratus. | of Dry
Pile Appa-
ratus. | Double
Gold Leaf. | Straws of
Volta 1. | Straws
Volta 2 | of tension
after
discharge | | d h | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | į | from
lbs. to lbs. | | in. | | ٥ | ٥ | div. | div. | m s | | Aug. 21. 12 | 29.645 | 60.7 | 59.2 | 1.5 | • • | • • | | | SSW | | •• | | | • • | 0 | 0 | 0 | ••• | | 14 | | • • • | ••• | •• | •• | • • | | | SSW | | • • | •• | • • | •• | • • | ••• | | ••• | | 16 | •• | •• | ••• | ••• | ••• | • • • | •• | ••• | SW
SW | 1 | •• | 1 | | | | | | | | 18
20 | •• | •• | | | | :: | | | $\tilde{\mathbf{s}}\tilde{\mathbf{w}}$ | l constant | | | | | | | | | | 22 | 29.546 | 65.0 | 62.5 | 2.5 | | | | | SW | | sw | 4.00 | | | 0 | 0 | 0 | | | 23 | 29.537 | 63.2 | 63.0 | 0.2 | | | | | sw | | •• | | | •• . | •• | ••• | ••• | | | Aug. 22. 0 | | | ∥ | | | | | | W by S | 0 to 1 | | | | | | | | | | 2 | | | | | | • • | | | W by S | 1 | | | | •• | • • | | | ••• | | 2. 30 | 29.552 | 64.6 | 60.6 | 4.0 | | | | l l | wsw | l | | 1 | Pos. | 20 | 30 | 10 | | | | 1 do | | - 0 | ij. | | | | (68.4) | | wsw | 0 to $\frac{1}{6}$ | | | | | | | | | | 6 | | | | | | | 46.8 | 0.50 | W by S | 0 10 2 | | | •• | | | | | | | 7. 30 | 29.584 | 59.5 | 54.9 | | | | | 3.78 | wsw | i i | | | Pos. | 40 | | 80 | 100 | | | h | 20 004 | 99 0 | 04 3 | 40 | ••• | | 80.3 | 0.02 | l | •• | ľ | | 1 05. | 10 | l | | | | | 8 | •• | ••• | •• | •• | ••• | ••• | 38.0 | | WSW
W | •• | sw | 2.70 | ••• | •• | | | | | | 10
12 | | | | | | | 64.8 | 10.070 | WNW | | | | | | | | | | | 14 | 29 656 | 53.2 | 50.4 | 2.8 | | | 64.0 | | NW | | | | Pos. | 10 | 10 | | | ∥ | | 16 | 29.678 | 50.5 | 48.9 | 1.6 | 47.5 | 3.0 | | | NNW | | • • • | ••• | Pos. | 10 | 7 | •• | • • | | | 18 | 29.716 | 48.0 | 47.4 | 0.6 | ••• | •• | •• | •• | NNW | •• | •• | •• | Pos. | 10 | 5 | | | ••• | | 20
22 | 29·739
29·793 | | | 1·8
2·7 |
47·5 | 6·1 | •• | | N
N | $\begin{array}{c} \frac{1}{2} \text{ constant} \\ \frac{1}{2} \text{ constant} \end{array}$ | NNE | 1.05 | Pos. | 7 | 5
0 | 0 | 0 | | | Aug. 23. 0 | 29.814 | 59.5 | 55.0 | 4.5 | | ١,. | | | N | 1/2 to 2 | | | •• | | 0 | 0 | 0 | | | 2 | 29.843 | | | | | •• | •• | •• | N | 0 to $2\frac{1}{2}$ | | | | ••• | 0 | 0 | 0 | ••• | | 4 | 29.855 | 1 1 | 1 | | 49.0 | 1 | | •• | N | 0 to $1\frac{1}{2}$ | •• | | D | 10 | 0
50 | 0 | 0
10 | • • | | 6
8 | 29·861
29·892 | 59·0 | | | •• | •• | $egin{bmatrix} 62 \cdot 1 \ 48 \cdot 9 \end{bmatrix}$ | •• | N
N | $\begin{array}{c c} \frac{1}{2} \text{ to } 3 \\ 0 \text{ to } 1 \end{array}$ | •• | | Pos.
Pos. | 40
40 | 50 | | 7 | | | ٥ | | | | | •• | ••• | 40 9 | 3.78 | | | •• | | 1 05. | 40 | | | | ••• | | 10 | 29.923 | 53.8 | 50.4 | 3.4 | 47.3 | 6.2 | 75·0 41·5 | 0.00 | N | 0 to $2\frac{1}{2}$ | •• | •• | •• | •• | 0 | 0 | 0 | •• | | 12 | 29.932 | 51.8 | 49.6 | 2.2 | | | | 10.073 | N | 0 to $1\frac{1}{2}$ | | | Pos. | 15 | 20 | 8 | | | | 14 | | | | | •• | •• | 63.8 | 10 0 10 | N | constant 2 | | •• | Pos. | 10 | 20 | 8 | • • | ••• | | 16 | 29.926 | 50.0 | 48.3 | 1.7 | | 3.2 | 〔62·8 〕 | •• | N
N | 0 to 1
0 to 13 | •• | •• | Pos. | 15 | 20 | 8 | 1 - 1 | • • | | 18
20 | 29·942
29·956 | 51.3 | 48.4 | 1.8 | ••• | •• | | •• | N | 0 to 1½
0 to 1 | 4 | | Pos. | 10 | 15 | 5 | l i | | | $egin{array}{c} oldsymbol{20} \ oldsymbol{22} \end{array}$ | 29.964 | | | | 49·0 | 6.2 | | ••• | Ñ | $\begin{array}{c c} 0 & \text{to } 1\frac{1}{2} \end{array}$ | Ň | 5.20 | | | 0 | o | _ | | | Aug. 24. 0 | 29.965 | 64.0 | 58.2 | 5.8 | | | •• | | N | $\frac{1}{2}$ to $1\frac{1}{2}$ | | | Pos. | 5 | 12 | | | | | 2 | 29.905 | 63.0 | 57.0 | 6.0 | | | | | NE | $\frac{1}{2}$ to 1 | | | | | 0 | 0 | 0 | | | 4 | 29.977 | 63.2 | 57.5 | 6.0 | 49.5 | | (65.0) | | NNE | | | ••• | Pos. | 15 | 25 | | | | | 6 | | 60.8 | 55.8 | | • • | ••• | 50.6 | 3.78 | NNE | •• | •• | •• | Pos. | 40 | •• | 20 | | 15. (| | 8
10 | 29·994
29·997 | 55.1 | 50.1 | 4 0
3·0 | 50·0 | 5·1 | 79.8 | | NE
NE | •• | NE | 1.50 | Pos.
Pos. | 40
40 | • • | 40
15 | 60
30 | | | 10 | 30.007 | 53.8 | 50.7 | 3.1 | 30.0 | 5.1 | 44.8 | 0.00 | N by E | | 1112 | 1.00 | Pos. | 5 | 10 | | | | | 14 | 29.992 | 53.2 | 50.9 | 2.3 | | | | 10:059 | Ň | | | | Pos. | 20 | | 10 | 15 | | | 16 | 29.977 | 53.0 | 50.9 | 2.1 | | | 62.0 | 10.073 | N | | | | Pos. | 20 | | 10 | 15 | | | 18 | 29.976 | 52.0
| 50.0 | 2.0 | | •• | 〔61·5 〕 | •• | N by W | •• | •• | •• | Pos. | 3 | 5 | ٠., | :. | ••• | | | 29·972
29·981 | | | | 53·0 | 9.7 | | •• | N
N | •• | NNE | 1.10 | Pos.
Pos. | 12
40 | • • | 7
20 | | 35. 0 | | 22 | 20 001 | 02 1 | 012 | 0 0 | 00.0 | 01 | | | 7.4 | | 74747 | 1 | T 09. | 70 | ١٠٠ | - 0 | -0 | JU. U | ELECTRICITY. August 22^d. 7^h. 30^m. There was a spark at the distance of 0ⁱⁿ02. August 24^d. 8^h. There was a spark at the distance of 0ⁱⁿ01. | ٠, | Phases | | |----|---------|--| | | of | | | | the | REMARKS. | | | Moon. | | | 4 | | | | | | Cloudless. | | 1 | • • | Cloudless. | | 1 | •• | | | | • • | | | | . •• | | | 1 | . • • | Overcast: cirro-stratus and scud: a light rain has just commenced falling. | | | • • | ,, a squall of fine rain has just ceased. | | | | | | | | | | | • • | Overcast: cirro-stratus with detached masses of scud: heavy rain fell between 23h. 30m and 0h. 30m. | | | | The state of s | | | • • | | | | | ,, cirro-stratus with small portions of scud. | | | • • | ,, cirro-stratus with small portions of scud. | | | //P | Miles In the law was aller developed and the dam. The Many of Company is a 1 of | | | Transit | The sky has been generally cloudy throughout the day; the Moon and a few stars have been visible occasionally: at about 12h. 35 ^m there was a considerable break near the S.W. horizon, and the Moon shone brightly for an hour. | | ļ | •• | A star is visible here and there, otherwise the sky is overcast. | | | | The sky has been cloudless for an hour since the last observation, and then suddenly became overcast. | | | | The sky has been chiefly clear: since 16 ^h a large quantity of scud has passed from the N.N.E.; at times when the | | Į. | | grantity was small, that part of the skyr poor the genith was partially covered with some fine specimens of simi | | | | quantity was small, that part of the sky near the zenith was partially covered with some fine specimens of cirri. | | | ••• | The sky is wholly covered by scud: it has been clear and cloudy alternately since 18h. | | | •• | | | | | The sky is wholly covered by scud: it has been clear and cloudy alternately since 18 ^h . Overcast: cirro-stratus and scud. Cirro-stratus, cumuli, and scud: there are a few small breaks towards the S.W. and W. | | | •• | The sky is wholly covered by scud: it has been clear and cloudy alternately since 18 ^h . Overcast: cirro-stratus and scud. Cirro-stratus, cumuli, and scud: there are a few small breaks towards the S.W. and W. there is a small break towards the S.W.: there has been a slight shower of rain since | | | •• | The sky is wholly covered by scud: it has been clear and cloudy alternately since 18 ^h . Overcast: cirro-stratus and scud. Cirro-stratus, cumuli, and scud: there are a few small breaks towards the S.W. and W. there is a small break towards the S.W.: there has been a slight shower of rain since Cirro-stratus, cumuli, and patches of blue sky towards the S.W. [the last observation. | | | •• | The sky is wholly covered by scud: it has been clear and cloudy alternately since 18 ^h . Overcast: cirro-stratus and scud. Cirro-stratus, cumuli, and scud: there are a few small breaks towards the S.W. and W. there is a small break towards the S.W.: there has been a slight shower of rain since Cirro-stratus, cumuli, and patches of blue sky towards the S.W. [the last observation.] There are a few breaks in the clouds, otherwise the sky is covered with white cirro-stratus. | | | •• | The sky is wholly covered by scud: it has been clear and cloudy alternately since 18 ^h . Overcast: cirro-stratus and scud. Cirro-stratus, cumuli, and scud: there are a few small breaks towards the S.W. and W. , there is a small break towards the S.W.: there has been a slight shower of rain since Cirro-stratus, cumuli, and patches of blue sky towards the S.W. [the last observation.] There are a few breaks in the clouds, otherwise the sky is covered with white cirro-stratus. A large quantity of scud has passed from the N.N.E.: there are a few small portions of blue sky visible here and | | | •• | The sky is wholly covered by scud: it has been clear and cloudy alternately since 18 ^h . Overcast: cirro-stratus and scud. Cirro-stratus, cumuli, and scud: there are a few small breaks towards the S.W. and W. , there is a small break towards the S.W.: there has been a slight shower of rain since Cirro-stratus, cumuli, and patches of blue sky towards the S.W. [the last observation.] There are a few breaks in the clouds, otherwise the sky is covered with white cirro-stratus. A large quantity of scud has passed from the N.N.E.: there are a few small portions of blue sky visible here and there: the wind is blowing at times in gusts to 1. Large dark clouds of a very stormy appearance: the place of the Moon is visible: that part of the sky below the Moon | | | •• | The sky is wholly covered by scud: it has been clear and cloudy alternately since 18 ^h . Overcast: cirro-stratus and scud: Cirro-stratus, cumuli, and scud: there are a few small breaks towards the S.W. and W. , there is a small break towards the S.W.: there has been a slight shower of rain since Cirro-stratus, cumuli, and patches of blue sky towards the S.W. [the last observation.] There are a few breaks in the clouds, otherwise the sky is covered with white cirro-stratus. A large quantity of scud has passed from the N.N.E.: there are a few small portions of blue sky visible here and there: the wind is blowing at times in gusts to 1. Large dark clouds of a very stormy appearance: the place of the Moon is visible: that part of the sky below the Moon is covered by clouds moving from the S.; the motion of the clouds elsewhere is from the N. | | | •• | The sky is wholly covered by scud: it has been clear and cloudy alternately since 18 ^h . Overcast: cirro-stratus and scud: Cirro-stratus, cumuli, and scud: there are a few small breaks towards the S.W. and W. there is a small break towards the S.W.: there has been a slight shower of rain since Cirro-stratus, cumuli, and patches of blue sky towards the S.W. [the last observation.] There are a few breaks in the clouds, otherwise the sky is covered with white cirro-stratus. A large quantity of scud has passed from the N.N.E.: there are a few small portions of blue sky visible here and there: the wind is blowing at times in gusts to 1. Large dark clouds of a very stormy appearance: the place of the Moon is visible: that part of the sky below the Moon is covered by clouds moving from the S.; the motion of the clouds elsewhere is from the N. Overcast: cirro-stratus with detached masses of scud. | | | Transit | The sky is wholly covered by scud: it has been clear and cloudy alternately since 18 ^h . Overcast: cirro-stratus and scud: Cirro-stratus, cumuli, and scud: there are a few small breaks towards the S.W. and W. , there is a small break towards the S.W.: there has been a slight shower of rain since Cirro-stratus, cumuli, and patches of blue sky towards the S.W. [the last observation.] There are a few breaks in the clouds, otherwise the sky is covered with white cirro-stratus. A large quantity of scud has passed from the N.N.E.: there are a few small portions of blue sky visible here and there: the wind is blowing at times in gusts to 1. Large dark clouds of a very stormy appearance: the place of the Moon is visible: that part of the sky below the Moon is covered by clouds moving from the S.; the motion of the clouds elsewhere is from the N. Overcast: cirro-stratus with detached masses of scud. [zenith, and 20° around it.] | | | | The sky is wholly covered by scud: it has been clear and cloudy alternately since 18 ^h . Overcast: cirro-stratus and scud. Cirro-stratus, cumuli, and scud: there are a few small breaks towards the S.W. and W. , there is a small break towards the S.W.: there has been a slight shower of rain since Cirro-stratus, cumuli, and patches of blue sky towards the S.W.
[the last observation.] There are a few breaks in the clouds, otherwise the sky is covered with white cirro-stratus. A large quantity of scud has passed from the N.N.E.: there are a few small portions of blue sky visible here and there: the wind is blowing at times in gusts to 1. Large dark clouds of a very stormy appearance: the place of the Moon is visible: that part of the sky below the Moon is covered by clouds moving from the S.; the motion of the clouds elsewhere is from the N. Overcast: cirro-stratus with detached masses of scud. ,, [zenith, and 20° around it. Light scud and haze principally about the horizon, and in different directions: the clearest part of the sky is in the Overcast with cirro-stratus of various densities and with scud. | | | Transit | The sky is wholly covered by scud: it has been clear and cloudy alternately since 18 ^h . Overcast: cirro-stratus and scud. Cirro-stratus, cumuli, and scud: there are a few small breaks towards the S.W. and W. there is a small break towards the S.W.: there has been a slight shower of rain since Cirro-stratus, cumuli, and patches of blue sky towards the S.W. [the last observation.] There are a few breaks in the clouds, otherwise the sky is covered with white cirro-stratus. A large quantity of scud has passed from the N.N.E.: there are a few small portions of blue sky visible here and there: the wind is blowing at times in gusts to 1. Large dark clouds of a very stormy appearance: the place of the Moon is visible: that part of the sky below the Moon is covered by clouds moving from the S.; the motion of the clouds elsewhere is from the N. Overcast: cirro-stratus with detached masses of scud. ,,, [zenith, and 20° around it. Light scud and haze principally about the horizon, and in different directions: the clearest part of the sky is in the | | | Transit | The sky is wholly covered by scud: it has been clear and cloudy alternately since 18 ^h . Overcast: cirro-stratus and scud. Cirro-stratus, cumuli, and scud: there are a few small breaks towards the S.W. and W. , there is a small break towards the S.W.: there has been a slight shower of rain since Cirro-stratus, cumuli, and patches of blue sky towards the S.W. [the last observation.] There are a few breaks in the clouds, otherwise the sky is covered with white cirro-stratus. A large quantity of scud has passed from the N.N.E.: there are a few small portions of blue sky visible here and there: the wind is blowing at times in gusts to 1. Large dark clouds of a very stormy appearance: the place of the Moon is visible: that part of the sky below the Moon is covered by clouds moving from the S.; the motion of the clouds elsewhere is from the N. Overcast: cirro-stratus with detached masses of scud. ,, [zenith, and 20° around it. Light scud and haze principally about the horizon, and in different directions: the clearest part of the sky is in the Overcast with cirro-stratus of various densities and with scud. | | | Transit | The sky is wholly covered by scud: it has been clear and cloudy alternately since 18h. Overcast: cirro-stratus and scud: Cirro-stratus, cumuli, and scud: there are a few small breaks towards the S.W. and W. there is a small break towards the S.W.: there has been a slight shower of rain since Cirro-stratus, cumuli, and patches of blue sky towards the S.W. There are a few breaks in the clouds, otherwise the sky is covered with white cirro-stratus. A large quantity of scud has passed from the N.N.E.: there are a few small portions of blue sky visible here and there: the wind is blowing at times in gusts to 1. Large dark clouds of a very stormy appearance: the place of the Moon is visible: that part of the sky below the Moon is covered by clouds moving from the S.; the motion of the clouds elsewhere is from the N. Overcast: cirro-stratus with detached masses of scud. ,, [zenith, and 20° around it. Light scud and haze principally about the horizon, and in different directions: the clearest part of the sky is in the Overcast with cirro-stratus of various densities and with scud. Cirro-stratus and scud: there is a large space of clear blue sky towards the N.W. horizon. | | | Transit | The sky is wholly covered by scud: it has been clear and cloudy alternately since 18 ^h . Overcast: cirro-stratus and scud. Cirro-stratus, cumuli, and scud: there are a few small breaks towards the S.W. and W. there is a small break towards the S.W.: there has been a slight shower of rain since Cirro-stratus, cumuli, and patches of blue sky towards the S.W. [the last observation.] There are a few breaks in the clouds, otherwise the sky is covered with white cirro-stratus. A large quantity of scud has passed from the N.N.E.: there are a few small portions of blue sky visible here and there: the wind is blowing at times in gusts to 1. Large dark clouds of a very stormy appearance: the place of the Moon is visible: that part of the sky below the Moon is covered by clouds moving from the S.; the motion of the clouds elsewhere is from the N. Overcast: cirro-stratus with detached masses of scud. [zenith, and 20° around it. Light scud and haze principally about the horizon, and in different directions: the clearest part of the sky is in the Overcast with cirro-stratus of various densities and with scud. Cirro-stratus and scud: there is a large space of clear blue sky towards the N.W. horizon. | | | Transit | The sky is wholly covered by scud: it has been clear and cloudy alternately since 18h. Overcast: cirro-stratus and scud. Cirro-stratus, cumuli, and scud: there are a few small breaks towards the S.W. and W. there is a small break towards the S.W.: there has been a slight shower of rain since Cirro-stratus, cumuli, and patches of blue sky towards the S.W. [the last observation.] There are a few breaks in the clouds, otherwise the sky is covered with white cirro-stratus. A large quantity of scud has passed from the N.N.E.: there are a few small portions of blue sky visible here and there: the wind is blowing at times in gusts to 1. Large dark clouds of a very stormy appearance: the place of the Moon is visible: that part of the sky below the Moon is covered by clouds moving from the S.; the motion of the clouds elsewhere is from the N. Overcast: cirro-stratus with detached masses of scud. (i) [zenith, and 20° around it. Light scud and haze principally about the horizon, and in different directions: the clearest part of the sky is in the Overcast with cirro-stratus of various densities and with scud. Cirro-stratus and scud: a few small breaks have occurred since 22h. Overcast with cirro-stratus of various densities and with scud. | | | Transit | The sky is wholly covered by scud: it has been clear and cloudy alternately since 18h. Overcast: cirro-stratus and scud. Cirro-stratus, cumuli, and scud: there are a few small breaks towards the S.W. and W. , there is a small break towards the S.W.: there has been a slight shower of rain since Cirro-stratus, cumuli, and patches of blue sky towards the S.W. There are a few breaks in the clouds, otherwise the sky is covered with white cirro-stratus. A large quantity of scud has passed from the N.N.E.: there are a few small portions of blue sky visible here and there: the wind is blowing at times in gusts to 1. Large dark clouds of a very stormy appearance: the place of the Moon is visible: that part of the sky below the Moon is covered by clouds moving from the S.; the motion of the clouds elsewhere is from the N. Overcast: cirro-stratus with detached masses of scud. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | Transit | The sky is wholly covered by scud: it has been clear and cloudy alternately since 18h. Overcast: cirro-stratus and scud. Cirro-stratus, cumuli, and scud: there are a few small breaks towards the S.W. and W. there is a small break towards the S.W.: there has been a slight shower of rain since Cirro-stratus, cumuli, and patches of blue sky towards the S.W. [the last observation.] There are a few breaks in the clouds, otherwise the sky is covered with white cirro-stratus. A large quantity of scud has passed from the N.N.E.: there are a few small portions of blue sky visible here and there: the wind is blowing at times in gusts to 1. Large dark clouds of a very stormy appearance: the place of the Moon is visible: that part of the sky below the Moon is covered by clouds moving from the S.; the motion of the clouds elsewhere is from the N. Overcast: cirro-stratus with detached masses of scud. [zenith, and 20° around it. Light scud and haze principally about the horizon, and in different directions: the clearest part of the sky is in the Overcast with cirro-stratus of various densities and with scud. Cirro-stratus and scud: there is a large space of clear blue sky towards the N.W. horizon. Overcast with cirro-stratus of various densities and with scud. Cirro-stratus and scud: there is a large space of clear blue sky extending along the horizon from W. to N. Cirro-stratus and scud: there is a large space of clear blue sky extending along the horizon from W. to N. Cirro-cumuli with heavy scud around the horizon: the clearest part of the sky is from the zenith towards the N.W. | | | Transit | The sky is wholly covered by scud: it has been clear and cloudy alternately since 18h. Overcast: cirro-stratus and scud. Cirro-stratus, cumuli, and scud: there are a few small breaks towards the S.W. and W. there is a small break towards the S.W.: there has been a slight shower of rain since Cirro-stratus, cumuli, and patches of blue sky towards the S.W. There are a few breaks in the clouds, otherwise the sky is covered with white cirro-stratus. A large quantity of scud has passed from the N.N.E.: there are a few small portions of blue sky visible here and there: the wind is blowing at times in gusts to 1. Large dark clouds of a very stormy appearance: the place of the Moon is visible: that part of the sky below the Moon is covered by clouds moving from the S.; the motion of the clouds
elsewhere is from the N. Overcast: cirro-stratus with detached masses of scud. [zenith, and 20° around it. Light scud and haze principally about the horizon, and in different directions: the clearest part of the sky is in the Overcast with cirro-stratus of various densities and with scud. Cirro-stratus and scud: a few small breaks have occurred since 22h. Overcast with cirro-stratus of various densities and with scud. Cirro-stratus and scud: a few small breaks have occurred since 22h. Overcast with cirro-stratus of various densities and with scud. Cirro-cumuli with heavy scud around the horizon: the clearest part of the sky is from the zenith towards the N.W. Cirro-cumuli with heavy scud around the horizon: the clearest part of the sky is from the zenith towards the N.W. | | | Transit | The sky is wholly covered by scud: it has been clear and cloudy alternately since 18h. Overcast: cirro-stratus and scud. Cirro-stratus, cumuli, and scud: there are a few small breaks towards the S.W. and W. there is a small break towards the S.W.: there has been a slight shower of rain since Cirro-stratus, cumuli, and patches of blue sky towards the S.W. [the last observation. There are a few breaks in the clouds, otherwise the sky is covered with white cirro-stratus. A large quantity of scud has passed from the N.N.E.: there are a few small portions of blue sky visible here and there: the wind is blowing at times in gusts to 1. Large dark clouds of a very stormy appearance: the place of the Moon is visible: that part of the sky below the Moon is covered by clouds moving from the S.; the motion of the clouds elsewhere is from the N. Overcast: cirro-stratus with detached masses of scud. [zenith, and 20° around it. Light scud and haze principally about the horizon, and in different directions: the clearest part of the sky is in the Overcast with cirro-stratus of various densities and with scud. Cirro-stratus and scud: there is a large space of clear blue sky towards the N.W. horizon. Overcast with cirro-stratus of various densities and with scud. Cirro-stratus and scud: there is a large space of clear blue sky extending along the horizon from W. to N. Cirro-cumuli with heavy scud around the horizon: the clearest part of the sky is from the zenith towards the N.W. Cirro-cumuli and scud: a large space of clear sky towards the N.W. horizon. | | | Transit | The sky is wholly covered by scud: it has been clear and cloudy alternately since 18h. Overcast: cirro-stratus and scud. Cirro-stratus, cumuli, and scud: there are a few small breaks towards the S.W. and W. there is a small break towards the S.W.: there has been a slight shower of rain since Cirro-stratus, cumuli, and patches of blue sky towards the S.W. There are a few breaks in the clouds, otherwise the sky is covered with white cirro-stratus. A large quantity of scud has passed from the N.N.E.: there are a few small portions of blue sky visible here and there: the wind is blowing at times in gusts to 1. Large dark clouds of a very stormy appearance: the place of the Moon is visible: that part of the sky below the Moon is covered by clouds moving from the S.; the motion of the clouds elsewhere is from the N. Overcast: cirro-stratus with detached masses of scud. [zenith, and 20° around it. Light scud and haze principally about the horizon, and in different directions: the clearest part of the sky is in the Overcast with cirro-stratus of various densities and with scud. Cirro-stratus and scud: a few small breaks have occurred since 22h. Overcast with cirro-stratus of various densities and with scud. Cirro-stratus and scud: a few small breaks have occurred since 22h. Overcast with cirro-stratus of various densities and with scud. Cirro-cumuli with heavy scud around the horizon: the clearest part of the sky is from the zenith towards the N.W. Cirro-cumuli with heavy scud around the horizon: the clearest part of the sky is from the zenith towards the N.W. | | | Transit | The sky is wholly covered by scud: it has been clear and cloudy alternately since 18h. Overcast: cirro-stratus and scud. Cirro-stratus, cumuli, and scud: there are a few small breaks towards the S.W. and W. there is a small break towards the S.W.: there has been a slight shower of rain since Cirro-stratus, cumuli, and patches of blue sky towards the S.W. [the last observation. There are a few breaks in the clouds, otherwise the sky is covered with white cirro-stratus. A large quantity of scud has passed from the N.N.E.: there are a few small portions of blue sky visible here and there: the wind is blowing at times in gusts to 1. Large dark clouds of a very stormy appearance: the place of the Moon is visible: that part of the sky below the Moon is covered by clouds moving from the S.; the motion of the clouds elsewhere is from the N. Overcast: cirro-stratus with detached masses of scud. [zenith, and 20° around it. Light scud and haze principally about the horizon, and in different directions: the clearest part of the sky is in the Overcast with cirro-stratus of various densities and with scud. Cirro-stratus and scud: there is a large space of clear blue sky towards the N.W. horizon. Overcast with cirro-stratus of various densities and with scud. Cirro-stratus and scud: there is a large space of clear blue sky extending along the horizon from W. to N. Cirro-cumuli with heavy scud around the horizon: the clearest part of the sky is from the zenith towards the N.W. Cirro-cumuli and scud: a large space of clear sky towards the N.W. horizon. | | | Transit | The sky is wholly covered by scud: it has been clear and cloudy alternately since 18th. Overcast: cirro-stratus and scud. Cirro-stratus, cumuli, and scud: there are a few small breaks towards the S.W. and W. there is a small break towards the S.W.: there has been a slight shower of rain since Cirro-stratus, cumuli, and patches of blue sky towards the S.W. There are a few breaks in the clouds, otherwise the sky is covered with white cirro-stratus. A large quantity of scud has passed from the N.N.E.: there are a few small portions of blue sky visible here and there: the wind is blowing at times in gusts to 1. Large dark clouds of a very stormy appearance: the place of the Moon is visible: that part of the sky below the Moon is covered by clouds moving from the S.; the motion of the clouds elsewhere is from the N. Overcast: cirro-stratus with detached masses of scud. [zenith, and 20° around it. Light scud and haze principally about the horizon, and in different directions: the clearest part of the sky is in the Overcast with cirro-stratus of various densities and with scud. Cirro-stratus and scud: there is a large space of clear blue sky towards the N.W. horizon. Overcast with cirro-stratus of various densities and with scud. Cirro-stratus and scud: there is a large space of clear blue sky extending along the horizon from W. to N. Cirro-cumuli with heavy scud around the horizon: the clearest part of the sky is from the zenith towards the N.W. Cirro-cumuli and scud: a large space of clear sky towards the N.W. horizon. Cirro-stratus and scud. | | | | | | Wet | | Dom | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICA | LIN | STR | UME | NTS. | |-------------------------|------------------|---------------|---------------|---------------|--------------|----------------------|---|-------------------------------------|------------------------------|--|------------|--|---|---|----------------------|--------------------|-----------------------|--| | Day and Hour, | Baro- | D- | 127 | Ther- | | Dew
Point | read at 22h. | Stand of
No. 1. | From C | | From Whe | | Sign | Res | ding | s of | | Interval | | Göttingen | meter | Dry | Wet | mom. | Dew | below | Free Therm. | (Osler's). Reading of | Anemo | i i i i i i i i i i i i i i i i i i i | Allemon | Descent of | Electricity, | Single | ی | | ا ـ ا | recovering the same | | Astronomical Reckoning. | Cor-
rected. | Ther-
mom. | Ther-
mom. | below
Dry. | | Dry
Ther-
mom. | Rad. Therm. of Therm. in Water of the Thames. | No. 2. Stand of No. 3. (Crosley's). | Direction. | Pressure
in lbs. per
square
foot. | Direction. | the pencil
during the
continu-
ance of
eachWind. | shewn
by Dry
Pile Appa-
ratus. | Gold Leaf
of Dry
Pile Appa-
ratus. | Double
Gold Leaf. | Straws of Volta 1. | Straws of
Volta 2. | degree
of tensio
after
discharg | | đ h | in. | 0 | 0 | 0 | 0 | 0 | 0 | in. | | from
lbs. to lbs. | | in. | _ | 0 | 0 | div. | div. | m s | | Aug. 25. 0 | 29.972 | | | 9.0 | •• | •• | •• | | N | •• | •• | •• | Pos. | 40 | •• | 20 | 25
25 | 00 (| | 2 | 29.952 | | | | ••• | ••• | | •• | N | •• | | ••• | Pos. | 40
40 | •• | 20
80 | 100 | 33. 5. | | 4 | 29.935 | | 61.5 | 9.0 | 1 | 15·5 | 74.5 | 1 | N
ESE | •• | •• | | Pos.
Pos. | 40 | •• | 70 | 90 | 8. | | 6
8 | 29·935
29·952 | 1 1 | 1 | 4·6
2·8 | ••• | •• | 56.2 | 3.78 | ESE | •• | •• | •• | Pos. | 40 | • • | 40 | 50 | 6. | | 10 | 29 932 | | 57.0 | | 55.0 | 4.3 | 94.8 | | ESE | • • | •• | | Pos. | 30 | | 20 | 30 | 7. | | 10
12 | 29.974 | | 56.7 | 1.9 | 1 | 1 | 50.6 | 0.00 | ESE | •• | • • | | Pos. | 20 | | 18 | 20 | 15. | | 14 | 29.967 | | 56.2 | 1.5 | | | 000 | | ESE | | .: | | Pos. | 10 | | 8 | 10 | | | 16 | 29.981 | | | 1.3 | 55.0 | | 62.5 | 10.073 | ESE | | | | | | 0 | 0 | 0 | | | 18 | 30.000 | | | 1.2 | | | 61.8 | | ESE | | | | | | 0 | 0 | 0 | | | 20 | 30.018 | | 56.9 | 2.8 | | | | | E by N | •• | | | | | 0 | 0 | 0 | | | 22 | 30.038 | | | 4.0 | 55.0 | 7.0 | •• | •• | ENE | •• | NNE | 0.80 | •• | | 0 | 0 | 0 | | | ug. 26. 0 | 30.050 | | | 6.5 | •• | | | •• | N | | • • | ••• | Pos. | 15 |
••• | 12 | 15 | | | 2 | 30.048 | | 64.0 | 7.0 | | | | •• | N by W | •• | •• | •• | Pos. | 30 | 10 | 15 | 20 | | | 4 | 30.042 | 72.0 | | 6.8 | 61.0 | 11.0 | ••• | •• | N | •• | • • • | ••• | Pos. | 7 | 10 | ••• | ••• | ••• | | 6 | 30.040 | | | 5.1 | •• | • • | C#0.7 > | •• | N by W | •• | • • | | Pos. Pos. | 7 | 10 | ••• | ••• | • • • | | 8 | 30.080 | | 1 1 | 3.4 | 59.0 | 9.0 | 73.5 | •• | N
N | •• | •• | | Pos. | 10 | , | 8 | 10 | • • • | | 10
12 | 30·107
30·110 | . (| 54.6 | 1·4
0·6 | 53.0 | | 47.3 | 3.78 | NNW | •• | •• | | Pos. | 10 | 8 | | | | | 12
14 | 30.110 | 50.9 | 50.6 | 0.3 | •• | ••• | 90.0 | | NNW | •• | •• | •• | Pos. | 5 | 5 | | | ll . | | 16 | 30.109 | | 49.7 | 0.3 | 49.7 | 0.3 | 900 | 0.00 | NNW | • • | | | Pos. | 5 | 5 | | | •• | | 18 | 30·127 | 48.8 | 48.7 | 0.1 | •• | | $\begin{bmatrix} \\ 62 \cdot 2 \\ 61 \cdot 8 \end{bmatrix}$ | 10.073 | NNW | | •• | | •• | | 0 | 0 | o | | | 20 | 30.142 | 55.0 | 53·3 | 1.7 | •• | | | •• | NNW | •• | •• | •• | •• | •• | 0 | 0 | 0 | • • • | | 22 | 30·152 | 65·5 | 60.9 | 4.6 | 56 ·0 | 9.5 | •• | | NNW | • • | NNW | 0.90 | •• | | 0 | 0 | o | | | ug. 27. 0 | 30·145 | 73.2 | 65.3 | 7.9 | | | | | N by W | • • | | | | • • | 0 | 0 | 0 | | | 2 | 30.141 | 76.0 | 67.5 | 8.2 | | | | | N by W | •• | • • • | • • | Pos. | 7 | 12 | • • | •• | •• | | 4 | 30.143 | | 67.1 | 8.9 | 60.2 | 16.5 | •• | | N by W | •• | | | | •• | 0 | 0 | 0 | 11 | | 6 | 1 | | 1) | 6.4 | | | | | \mathbf{N} by \mathbf{W} | •• | | | •• | • • | 0 | 0 | 0 | 1) | | 8 | 30.159 | | | 4.4 | ••• | •• | •• | •• | W | •• | • • • | ••• | • • | •• | 0 | 0 | 0 | 11 | | 10 | 30.159 | | | | 56.7 | 4.9 | •• | •• | W | •• | •• | ••• | •• | •• | 0 | 0 | 0 | | | 11 | | 59.4 | 57.7 | 1.7 | • • | •• | (80.4) | •• | SW
W ber S | • • | ••• | •• | • • • | •• | 0 | 0 | 0 | 1 | | 12 | 30.177 | 56.9 | 55.5 | . !! | • • | •• | 52.5 | 2.70 | W by S | • • | • • | | • • | •• | 0 | 0 | 0 | 1 | | 13
14 | 30·173
30·176 | 55.4 | 54.0 | 1.3 | ••• | •• | | 3.78 | W by S
WSW | •• | | ••• | | • • | 0 | 0 | | 1 | | | 30.176 | | | | | •• | J 98·3 [| 0.00 | SW | • • | | | | • • | 0 | 0 | ŏ | 1 | | | 30.172 | | | | 53·0 | 0.5 |) [] | | $\tilde{\mathbf{s}}$ | | | | | | 0 | 0 | o | 11 | | 10 | | | | | | | $\left \frac{}{62\cdot 5} \right $ | 10.075 | | , . | | | | | | | | | | 17 | 30.165 | 54.2 | 53.9 | 0.3 | • • | | (61·8 J | | SW | •• | •• | ••• | •• | •• | 0 | 0 | 1 1 | 1 | | 18 | 30.173 | 54.2 | 53.9 | | •• | •• | •• | •• | SW | •• | •• | ••• | • • | •• | 0 | 0 | 0 | •• | | 19 | 30.201 | 54.0 | 53.9 | 0.1 | • • • | •• | •• | •• | SW | • • | | | ••• | •• | 0 | 0 | 0 | •• | | 20 | 30.207 | 57.6 | 50.5 | 1.1 | • • | •• | •• | | WSW
WSW | •• | •• | | | •• | 0 | 0 | 0 | | | | 30·209
30·181 | | | | 56.5 | 6.5 | •• | •• | WSW
WSW | •• | wsw | 0.95 | • | • | 0 | 0 | 0 | • | | | 30.181 | | | | 56·5 | 6.5 | •• | •• | wsw | •• | | - 33 | Pos. | 40 | | 10 | 1 1 | :: | | ug. 28. 0 | | | | | | | | •• | W by S | •• | | | Pos. | 15 | | 10 | 12 | | | | 30.151 | | | | | | • • | 1 | W by S | | | 1 | l | | | | ١١ | | DRY THERMOMETER. August 26^d. The increase of the reading between 20^h and 22^h was 10^o·5. MINIMUM RADIATION THERMOMETER. August 26^d. The instrument was accidentally broken. ELECTRICITY. August 25^d. 4^h and 6^h. There were sparks at the distances of 0ⁱⁿ·02 and 0ⁱⁿ·03 respectively. | • | 1 | | | |-------------------|------------|---|-----------| | Amount of Cleuds, | Phases | | 1 1 | | 5 - | of | | i i | | 별수 | the | R E M A R K S. | L A | | g | Moon. | | Observer, | | ₹ | 1,000 | | | | 5
3 | •• | There are some fine white cumuli scattered about the sky; near the zenith there are also some cirri: a fine blue sky. Cumuli are scattered about the sky. | G
G | | 4 | 1 | There are detached cumuli in various directions. | TD | | 7 | ••• | Cumuli, cumulo-strati, cirro-stratus, and scud. [prevail in every direction. | | | 9 | | With the exception of a small portion of the sky E. of the zenith that is free from cloud, cumulo-stratus and scud | | | 10 | Transit | Cirro-stratus and scud. Overcast: cirro-stratus and scud. | TD | | 10 | 1 | | L | | 10 | ••• | " | | | 10 | Full | 91 99 | | | 10 | | ** | | | 10 | | 99
99 | L | | 1 | 1 | ,, , , , , , , , , , , , , , , , , , , | | | 5 | | Detached cumuli and cumulo-strati are scattered in every direction. [sky here and there. | αт | | 8 | | Heavy masses of cumuli all around the horizon, cumulo-stratus and cirro-stratus in the zenith, with portions of blue | TD | | 2 | | Cumuli towards the N. and S. horizon: a few light clouds are scattered about the sky. | L | | 1 | | There are a few light clouds scattered about the sky. | | | 8 | | Cirro-stratus, fleecy clouds, and scud: there are a few breaks in the clouds at and near the zenith. | | | 1 | | Lines of thin clouds are scattered about the sky. | L | | 4 | | Linear clouds are spread over the sky; their direction is from E. to W. | G | | 8 | Transit | The whole of the northern and the greater part of the southern hemisphere are covered with white clouds. | | | 10 | | The appearance of the sky has been very variable: since 14 ^h it has been at times nearly cloudless, and at other times overcast; it is at present wholly covered by a thin white cloud, which obscures everything except the Moon. | | | 3 | | The appearance of the sky continued variable till 17 ^h . 30 ^m , since which time it has been mostly clear; at present there are a few clouds scattered over the sky. | | | 7 | •• | The sky has been cloudless for some time since 18 ^h ; at present and within the last quarter of an hour the greater part of it has been covered with small white clouds, close together, and of sufficient density to prevent any shadow from the Sun. | G | | 8 | •• | The greater portion of the sky is covered with small white clouds and portions of cirro-stratus: the only clear portion [is in the E. N. E. | TD | | 6 | Perigee | Thin cirro-stratus, heavy looking cumuli, and haze: it is clear in and around the zenith. | | | 3 | | Thin cirro-stratus, fleecy clouds, and haze. | TD | | 5 | | Cirro-stratus and haze. | ЕН | | 6 | | Fleecy clouds and haze. | | | 10 | | Overcast. There are a few light clouds seattened about different parts of the above | ЕН | | 3 | In Equator | There are a few light clouds scattered about different parts of the sky. Cloudless, with the exception of a few clouds near the horizon. [ception of a few small breaks: there is no upper cloud. | G | | 9 | | Within the last half-hour a large quantity of cloud has collected, and at present it covers the whole of the sky, with the ex- | G | | 1 | •• | A few fleecy clouds towards the S. E. horizon. | L | | 0 | Transit | Cloudless. [elsewhere. | " | | 3 | ·· | A bank of fleecy clouds extending from the N. N. E. to S. S.W., crossing the zenith and covering the Moon; clear | L | | 5 | • • | At 15 ^h . 5 ^m a double corona was visible, beautifully coloured, the inner one being white, yellow, and red, and the outer one yellow and red: at 15 ^h . 12 ^m the corona disappeared: cumulo-stratus, light cirri, and fleecy clouds: the whole of the eastern portion of the sky is free from cloud; clear breaks are shewn in several other directions. | TD | | 10 | | Cirro-stratus, fleecy clouds, and scud. [kind of cloud scattered around the zenith. | | | 6 | | Closely packed fleecy clouds prevail in the E. S. E. and S.W. portions of the sky, with detached fragments of the same | TD | | O | | Cloudless: a slight haze. | G | | 0 | | ,, hazy. | | | 10 | | Overcast: hazy; the Sun's place just visible. [visible. | | | 10 | | ,, cirro-stratus and thick haze: there is a halo around the Sun, whose radius is 20°: the Sun's place is just | | | 0 | •• | Cloudless: hazy. | G | | 0 | | Cloudless: hazy. | L | | 0 | | ,, ,, | TD | CORONA, LUNAR LIGHT, AND HALO. August 26^d. 12^h. There is a coloured corona around the Moon, and there is also a coloured lunar light, a part of which is of the form of a double cone, whose base is the vertical diameter of the Moon, the apex of each cone being at the distance of 5° on either side of the Moon; the remaining part of the light consists of two cones upon the same base as the other parts, inclined to the former, and making an angle of 30° with the horizon, the apex of each of these being at the distance of 5° from the Moon. There is also a halo, whose radius by measurement was found to be 22½°.—G. | li li | | | | Wet | | 1 | Max. and Min. | RAIN
GAUGES. | | WIN | D. | | ELE | CTRICAL | LIN | STRU | UME: | NTS. | |---------------|------------------|-------|--------------|------------|--------------|---------------|--|------------------------------------|------------------------|-------------------------|------------|----------------------------------|--|----------------------|------|----------|----------|----------------------| | Day and Hour, | Baro- | | | Ther- | | Dew
Point | read at 22h. | Stand of
No. 1. | From C | | From Whe | | Sign | Rea | ding | s of | | Interva | | Göttingen | meter | Dry | Wet | mom. | D | below | Free Therm. | (Osler's). Reading of | Anemo | neter. | Anemoni | Descent of | Electricity, | Single | | | | recovering the sam | | Astronomical | Cor- | Ther- | Ther- | below | Dew | Dry | Rad. Therm. | No. 2. | | Pressure
in lbs. per | , | the pencil
during the | shewn | Gold Leaf | ble | vs of | vs of | degree
of tension | | Reckoning. | rected. | mom. | mom. | Dry. | Point. | Ther-
mom. | of Therm. in
Water of
the
Thames. | Stand of
No. 3.
(Crosley's). | Direction. | square
foot. | Direction. | continu-
ance of
eachWind. | Electricity, as shewn by Dry Pile Appa- ratus. | Pile Appa-
ratus. | Gold | Strav | Straws | after
discharg | | d h | in, | 0 | 0 | 0 | 0 | 0 | 0 | in. | | from
lbs. to lbs. | | in. | | 0 | 0 | div. | div. | m. · | | Aug. 28. 2 | 30.140 | | 67.1 | 8.4 | | | •• | | W | •• | •• | •• | Pos. | 20 | | 12 | 15 | •• | | 3 | 30.170 | | | f I | | | •• | •• | W | •• | •• | ••• | •• | •• | | | | • | | 4 | 30·134
30·108 | | | | 11 | 1 1 | •• | •• | W | •• | . •• | •• | • • | | | | | | | 5
6 | 30.108 | 0 | 11 | | | ••• | 80 4 | | W | •• | • • • | :: | Pos. | 30 | 20 | 3 | | | | 7 | | | | | | | 52.5 | 3.84 | \mathbf{w} | •• | | | | | | | | ••• | | 8 | 30.090 | II. | | l | | | 00: | | \mathbf{sw} | | | | Pos. | 20 | | 15 | 15 | ••• | | 9 | 30.084 | | | | | | 98.5 | 0.10 | SSW | | •• | | -:· | ••• | • • | 1:: | 10 | ••• | | 10 | 30.082 | 10 | | 1 | 61.0 | 3.0 | | | \mathbf{SSW} | ••• | •• | | Pos. | 15 | | 10
12 | 12
15 | 7. | | 12 | 30.062 | 64.0 | 62.9 | 1.1 | ∥ … | •• | 63.0 | 10.095 | SW | •• | • • | | Pos. | 20 | | 12 | 1 | | | 14 | ••• | ••• | ••• | • • • | | | 62.0 | •• | WSW
NNW | l constant | •• | | | • | | | :: | | | 16
18 | •• | | | ••• | | • • | | •• | N | ₫ constant | | | | | | | | | | 20 | | | | | | | | | N by W | | | | | •• | 1 | | | ∥ | | 22 | 30.020 | H | 57.0 | | | • • • | ••• | | WNW | •• | sw | 1.10 | ••• | •• | 0 | 0 | 0 | ∥ | | Aug. 29. 0 | •• | | | •• | | | | | N | | | | | | | | | ∥ | | 2 | | • • | • • | • • | | •• | • • • | | N | | •• | | :· | | | | | ••• | | 4 | 29.962 | 72.0 | 63.7 | 8.3 | •• | •• | (73.9) | | N | •• | •• | | Pos. | 35 | • • | 20 | 30 | ••• | | 6 | • • • | ••• | ••• | • • • | • • | • • | 46.5 | 3.84 | N
N | ••• | • • | | | • • | | | | | | 8
10 | •• | • • | ••• | •• | ••• | •• | 89.7 | | N | •• | | | | | 1:: | | | | | 10 | | :: | | | • • | | 3 | 0.00 | N | | Ň | 0.95 | | | | | | | | 14 | 29.964 | 1 | 47.8 | 0.7 | | | | 10.005 | Ñ | | | | | | 0 | 0 | 0 | | | 16 | 29.960 | 50.0 | 50.0 | 0.0 | 50.5 | -0.2 | 63.2 | 10.095 | N | •• | | | | •• | 0 | 0 | 1 | | | 18 | 29.954 | | 1 1 | 0.1 | 1 | ••• | [62·5] | | N by W | •• | •• | 1 | | •• | 0 | 0 | 1 | • • • | | 20 | 29.956 | | 50.3 | 0.7 | 1 | | •• | •• | WŠW | •• | THETH | 0.04 | Dor | | 0 | 0 2 | 0 | | | 22 | 29.952 | 57.7 | 54.4 | 3.3 | 52 ·0 | 5.7 | •• | •• | WSW | ••• | WSW | 0.64 | Pos. | 5 | ' | | | 1 | | Aug. 30. 0 | 29.925 | | | | •• | . • | •• | •• | NW | | | 1 | Pos. | 30 | 20 | | | | | 2 | 29.903 | 1 | 1 | | 5.4.0 | 70.0 | (07.00 | •• | WNW | ••• | • • • | | Pos. | 12 | 0 | 0 7 | 10 | | | 4
6 | 29·874
29·849 | | 58·7
57·3 | 7·3
5·3 | 11 | 1 | $\begin{bmatrix} 67.2 \\ 55.3 \end{bmatrix}$ | | W | ½ constant | •• | | Pos. | 20 | | 20 | 30 | 11. | | 8 | 29.855 | | | 3.7 | | | 35 5 | 3.84 | W by S | 2 Constant | | | Pos. | 10 | | 8 | 20 | | | 10 | 29.849 | | | 3.4 | 11 ' | | 81.7 | 0.00 | W by S | | | | Pos. | 40 | 50 | 20 | 30 | 20. | | 12 | 29.832 | 57.3 | 54.7 | 2.6 | | | 47.0 | 0.00 | W by S | | •• | ••• | Pos. | 20 | | 15 | 20 | 10. | | | 29.807 | | | | 1 | • • | | 10.095 | W by S | | •• | •• | Pos. | 25 | 1 | 25 | 1 | ∥ •• | | 16 | 29.802 | | | | | 1 | | 10 000 | W by S | •• | •• | | Pos. | 10 | | 8 8 | 10 | | | 18
20 | 29·810
29·831 | 57.0 | 55.0 | 1·4
1·8 | | •• | [62·5] | •• | W | •• | •• | •• | Pos.
Pos. | 10
20 | :: | 25 | | 7. | | | , | | | | 53 ·0 | 5 .9 | •• | • • • | NW | | wsw | 2.64 | | | o | | | | | Aug. 31. 0 | 29.873 | 61.5 | 57.1 | 4.4 | | | (67.2) | | NW | | | | Pos. | 7 | 12 | | | | | 2 | 29.879 | 60.7 | 56.5 | 4.2 | | | 45.9 | | WNW | | | | Pos. | 3 | 5 | | | | | 4 | 29.889 | 62.7 | 57.9 | 4.8 | 54.0 | | | 3.84 | W | | | •• | Pos. | 10- | | 8 | 10 | •• | | | 29.895 | | | | | | 74.9 | 0.00 | WNW | | •• | •• | Pos. | 7 | 10 | | 10 | •• | | 8 | 29 909 | 54.7 | 52.4 | 2.3 | | | 40.5 | | WNW | •• | ••• | | Pos. | 10
20 | | 10
15 | | 8. | | | 29·911
29·900 | | | | 48.5 | | { | 10.095 | W by S | •• | • • | ••• | Pos.
Pos. | 20
5 | 8 | | | 0. | | 12 | 29 ⁻900 | 49.2 | .10.0 | 0.0 | •• | •• | $\begin{bmatrix} 62.5 \\ 62.2 \end{bmatrix}$ | | v by S | •• | | | L US. | | | `` | • | | | 14 | 29.889 | 49.1 | 48.4 | 0.7 | | | (022) | | $\mathbf{s}\mathbf{w}$ | | | | Pos. | • 5 | 5 | | | •• | | | | | | | | | | | | | | | | | | } | | | Electricity. Aug. 28^d . 4^h. The observation was omitted. RAIN. August 31^d. 12^h. The amount collected during the month of August in the rain-gauge No. 4 was 1^{in.}95, and that collected by the Rev. G. Fisher in a rain-gauge of the same construction at Greenwich Hospital Schools during the same period was 2^{in.}06. | | Phases | | | |-------|---------|---|---| | | of | | | | = | the | | | | 0-10. | | REMARKS. | | | _ | Moon. | | - | | 4 | • • | Cumulo-stratus, light fleecy clouds, and haze. | 1 | | 3 | •• | Fleecy clouds and haze. | 1 | | 3 | • • | Cirro-stratus and thick haze cover three-fourths of the sky. | | | 0 | •• | Overcast: cirro-stratus and scud. The sky is wholly covered by a thin cirro-stratus cloud: the Sun is visible. | l | | | ••• | Cirro-stratus, fleecy clouds, and scud cover the sky: there are a few small breaks, but to no numerical amount. | | |) | • • | Overcast: cirro-stratus and scud. | | |) | • • | 999 | | | 3 | • • | Cumulo-stratus, cirro-stratus, and broken scud, shewing large portions of clear sky; a few of the stars are visible. | 1 | |) | •• | Cumulo-stratus, cirro-stratus, and scud. | | | | Transit | | | | | • • | | | | | •• | | | |) | •• | Cirro-stratus, fleecy clouds, and scud: a shower of rain fell at about 21h. | | | | | | 1 | | - | | | | | | | Detached masses of cumuli and scud are scattered in every direction. | | | - | | | 1 | | 1 | •• | | | | 1 | •• | | l | | | •• | Cloudless. | | |) | Transit | Cirro-stratus and scud: the Moon is occasionally visible: the clouds came up suddenly at 15 ^h . 45 ^m . | | |) | •• | Cirro-stratus and fleecy clouds: a small portion of the sky is clear in the E. | | | 7 | •• | There are some detached cumuli scattered about the sky. | | | | •• | There are some demand cumum sources and any | | | 3 | | Detached cumuli are scattered about the sky. | | |) | •• | Detached masses of cumuli and scud cover the sky: there are a few small breaks, but to no numerical amount. | | | 3 | •• | Cirro-stratus, scud, and fleecy clouds. The sky, with the exception of a small portion in the S. S.W., is covered with cirro-stratus and fleecy clouds. | | | | •• | Overcast: cirro-stratus and scud. | | | | | ,, a very dark night. | | | | | 93 | - | |) | m · · · | ,, | | | - | Transit | ,, cirro-stratus and scud. ,, a slight rain is falling. | | |). | •• | | 1 | | | •• | ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, | - | | | •• | Overcast: cirro-stratus and scud. | | | 1 | •• | 1,1 | | | 3 | • • | Detached cumuli, fleecy clouds, and scud: there are some small breaks in every direction. | | | | • • | The sky N. of the zenith is nearly covered with cirro-stratus and fleecy clouds; cirro-stratus also towards the S. horizon. | | | 3 | | Cirro-stratus around the horizon, particularly about the N.W.: hazy. Cloudless: hazy. | | | 5. | •• | Till 11 ^h . 55 ^m the sky was cloudless: there is at present a small quantity of cloud: at 11 ^h . 30 ^m the reading of the thermometer at Dartmouth-terrace, Lewisham, was 45° 5. | | | 3 | | At 12h, 5m a great many lines of cloud, running N, and S,, had formed about the Moon, and shortly afterwards they | | | | | were crossed by other lines, whose direction was E. and W.: at 12 ⁿ . 20 ^m these clouds formed, with small round | 1 | | | Ì | clouds touching each other, a kind of network, covering the whole of the eastern nemisphere, and the whole | 1 | | - 1 | | of the sky became obscured; since that time the appearance of the sky has been variable. | 1 | | 1 | if i | 1) | Wet | } | Dew | Max, and Min.
as | RAIN
GAUGES. | 1 | WINI | υ. | l l | 19019 | CTRICAL | 7 114 | | | | |--------|--|---
--|---|--|--|--
--	--	---	---
---	--		Baro-
4·4 4·4 4·4 4·4 4·4 4·4 4·4	meter Cor- Ther- Ther- mom. Dew Point. mom. Dry. Met mom. Dry. Met mom. Dry. Met mom. Dry. Met mom. Dry. Met mom. Dry. Met	Dry Wet Ther- mom. Dew Dry Point. Elow Dry Point. Ther- mom. Dry Ther- mom. Dry Point. Ther- mom. Dry Point. Ther- mom. Dry Point. Ther- mom. Dry Point. Ther- mom. Dry Point. Ther- mom. Dry Point. Ther- Dry Point. Ther- mom. Dry Point. Ther- mom. Dry Point. Ther- mom. Dry Point. Ther- mom. Dry Dry Point. Ther- mom. Dry Point. Ther- mom. Dry Dry Point. Ther- mom. Dry D	Dry Wet Ther- rected. mom. Ther- mom. mom. mom. mom. mom. mom. Ther- mom. mom. mom. Ther- material Ther- mom.
W by N			
same degree of tension after discharge		d h	in.
••	••	0	0
0	0	•••	
Pos.	40	• • •	30
0 0	the rain ceased in ten minutes after the last observation: there has been another squall of rain within the last hour.		0
1.42			0
Overcast: cirro-stratus and scud. Cirro-stratus and some light clouds towards the N. Cirro-stratus towards the N. horizon. The sky is about one-third covered by cirro-stratus and fleecy clouds. Overcast: cirro-stratus and scud.	T D T D G H L		10
zenith. Cumuli, cumulo-strati, cirro-stratus, and scud: the whole of the N. portion of the sky became clear shortly after the Cumuli, cirro-stratus, and scud. ,,, very dark: a few drops of rain fell at 6 th . 20 th : the clouds are very high. The sky is wholly covered with very black clouds: a few of the larger stars have been visible since about 10 th . Overcast with cirro-stratus: very dark: shortly before this observation a few drops of rain fell. Cirro-stratus, cumulo-stratus, and scud: the Moon is visible through the clouds.	T D E H G G T D		10 10 10 10
as at the last observation.	G:		3
clouds began to break about half an hour since, but at the present time the sky is overcast. ,, a few stars are occasionally visible. ,, cirro-stratus and scud: there are a few breaks, but to no numerical extent.)))
Transit	the clouds began to break about half an hour since, but at the present time the sky is overcast. a few stars are occasionally visible. cirro-stratus and scud: there are a few breaks, but to no numerical extent. there was a slight rain about twenty minutes previous to this observation, but it has ceased. cirro-stratus: rain is falling. Overcast: cirro-stratus and scud: a slight rain is falling. ''' ''' ''' ''' ''' ''' '''	H H C C C C C C C C C C C C C C C C C C	
in other directions.	.) [
-----------		¥ _	
cirro-stratus and scud: the wind is blowing in gusts to 1: rain commenced falling at about 19 ^b . 10 ^m . cirro-stratus and quickly moving scud. cirro-stratus and scud.	G E H T I G H		10 10 10 10 10 10 10 10 10
haze: there are a few small breaks in the zenith. Cirro-stratus and haze.)	
10 10 10 3	••	in the sky is covered with a stratus cloud of various densities, through which the Moon and a few of the principal stars	
the sky is clear about the zenith and towards the E. and N.E.	١,		5
--	--	--------------------	--------------------
--	---	---	---
--	---		Baro-
temperature has increased a degree since 12 ^h , and the sky is misty.			6
principally towards the W. horizon. Very thin cirro-strati towards the S. and S.W.; cloudless elsewhere. Thin cirro-strati towards the S.W. and W. Cloudless.			2 0
G I		0 0 0 3	••
Astronomical Reckoning. Astronomical Reckoning. In	Cor- rected. in. 29·899 29·914 29·956 29·942 29·944 29·965 30·009 30·009 29·980 29·980 29·980 29·980 29·980 29·980 29·980 29·980 29·980	mom. 0 40.0 41.5 45.0 52.4 53.2 51.3 47.6 47.0 49.0 49.4 48.5 48.5 48.5 49.3 50.0 50.0 50.0 50.1 50.0 51.0	48.9 48.6 48.4 46.1 45.8 45.9 48.0 47.8 47.6 47.6 47.7 48.9 48.9 48.5 49.0
--	----------------------------------	---	--
29·942 29·944 29·965 29·983 29·996 30·009 30·009 29·999 29·980 29·980 29·980 29·960 29·970 20·970 20	53·2 51·3 47·6 47·0 46·9 49·0 49·4 48·5 48·5 49·3 50·0 50·0 50·0 50·0 51·0	48·6 48·4 46·1 45·8 45·9 48·0 47·8 47·6 47·6 47·7 48·9 48·9 48·8 49·0	4.6 2.9 1.5 1.2 1.0 1.0 0.7 1.1 1.5 1.7 2.3 1.1 1.6 1.2
0 0 0 0 0	••		2 29 4 29 6 29 10 29 11 29 14 29 16 29 20 29 22 29
square foot.	Direction.	continu- ance of eachWind.	by Dry Pile Appa- ratus.
	12	30.237	1 1
••	••		
44.1	42.3	1.8	
	42.8		SSW
1	42·5	1.7	
			::
SE	••	••	
8	••		••
	18		
Shade Sun Shade Sun Shade	38 ·7 37 ·0 66 ·7 5 ·8	37 ·8 66 ·8 65 ·9 35 ·5 34 ·0	$+29 \cdot 3$ $-0 \cdot 9$ $+29 \cdot 8$ $-0 \cdot 8$ $+29 \cdot 7$ $-1 \cdot 0$ $+29 \cdot 5$
----------	------------------------------	-------------------------------------	---
from 0 ^h . 23 ^m . 40 ^s to 0 ^h . 24 ^m . 0 ^s there was a long roll of distant thunder in the S.W.; and at 0 ^h . 27 ^m there was a clap of thunder heard in the S.S.W., which passed to W. and to N.W. by 0 ^h . 27 ^m . 15 ^s ; the sky at these places was very black: at 0 ^h . 48 ^m a clap of thunder was heard in the S.E.: at 1 ^h . 0 ^m the great darkness near the horizon had passed away, and at 1 ^h . 15 ^m it again became dark.	G		••
--	------------		GALVAN
^h . 50 ^m . 2 ^s , was most loud at 22 ^d . 50 ^m . 9 ^s , and was not heard at 22 ^h . 50 ^m . 16 ^s : another clap was just heard at 22 ^h . 51 ^m . 36 ^s , was still faint at 22 ^h . 53 ^m . 6 ^s , was loud at 22 ^h . 53 ^m . 13 ^s , and was faintly heard at 22 ^h . 53 ^m . 19 ^s : very distant thunder was occasionally heard after this time.	G &		to 2
arch seemed to move much more to the S. than either of the extremities. At 8^h. 30^m the arch was of a uniform brightness; shortly after, the western portion increased considerably in brightness, and it remained visible much longer than the eastern portion. The arch was not of a uniform appearance, but seemed to considerably different parts, or bands one over the other, giving it the appearance of several shades running into each other. #### AURORA BOREALIS OF 1847, MARCH 19-(concluded). 6. Observations at Play ford, near Ipswich. (Private Communication.) 1847, March 19.—At 9^h an auroral arch was seen, situated for the most part between α Bootis and the constellation Corona Borealis; it passed a little to the S. of α Coronæ Borealis, between Castor and Pollux, a little to the N. of α Orionis, and continued to the horizon. At 9^h . 30^m it had moved towards the S., and was less bright; it then increased in brightness, and finally disappeared. #### AURORA BOREALIS OF 1847, SEPTEMBER 24. Observations at the Royal Observatory, Greenwich. 1847, September 24, 9^h. 39^m. 30^s, Göttingen Mean Solar Time.—Mr. Humphreys was on the watch for streamers of an Aurora, whilst Mr. Glaisher's eye was at the telescope of the theodolite, and at this time Mr. Humphreys announced the presence of a streamer. The declination magnet immediately moved rapidly towards the Astronomical meridian, the cross passing out of the field of the telescope, and both the horizontal and vertical force magnets moved so as to increase their readings. At 9^h. 46^m. 30^s some streamers had been visible, but Mr. Glaisher had been engaged in reading the theodolite, &c.; at this time another streamer appeared, the declination still further decreased, the horizontal force increased, and the vertical force diminished. At 9^h. 51^m. 4^s a blood red streamer was seen. At 9^h. 52^m. 0^s a red streamer appeared in the W. and shot up in the prime vertical. At 9^h. 59^m. 30^s a streamer suddenly appeared; the time noted is that of its first appearance, and the declination magnet moved rapidly so as to decrease the W. declination. At 10°. 4°. 30° a fine white streamer darted up from the W.N.W. and extended to 30° S. of the zenith. The W. declination decreased, and both the horizontal force and vertical force increased. A rigorous watch was kept up till 12h for streamers, one observer keeping his eye upon the magnets, but no more were seen. #### AURORA BOREALIS OF 1847, OCTOBER 24. 1. Observations at the Royal Observatory, Greenwich. 1847, October 24.—At 7^h. 11^m, Göttingen Mean Time, there were several deep rose-coloured streamers extending from near the horizon to an altitude of 45°. At 7^b. 18^m the rose-coloured streamers have increased in brilliancy, and are more numerous, extending from the N.W. to the N.; in some places they have the appearance of sheets of flame. At 7^h. 28^m the streamers continue to the same extent, and as brilliant as at the last observation. At 7^h. 34^m the red streamers are less brilliant, but still continue in the N., N. N.W., and N.W. At 7^h. 43^m the streamers are less brilliant. At 7^h. 48^m the streamers have nearly faded away; they are faintly visible from the N. to the N.W. At 7^h. 50^m there is nothing visible. At 7^h. 56^m rose-coloured streamers have again burst forth from the same quarter. At 8^h. 2^m there is a very brilliant red light in the N. N.W. Rose-coloured streamers of the same beauty as at 7^h. 28^m are visible. At 8^h. 9^m a faint white streamer extending from the N.W. to the zenith. At 8h. 15m both the coloured and white streamers are less brilliant, but continue as numerous as before. At 10^h. 16^m a brilliant rose-coloured streamer burst upwards from the N.E. horizon, as well as a white streamer from the N.W. There are rose-coloured streamers flashing in the N. and N. N.W. At 10°. 19° the Aurora is increasing in brilliancy, and the streamers are more numerous. At 10h. 22m both classes of streamers are extending from the N.W. to the N.E. Between 10^h. 37^m and 10^h. 44^m there was a magnificent display: it consisted of an intense red column in the N.N.W. and another of the same form and colour in the N.E.; both these columns were about 5° in breadth at the base, and pointed towards the zenith. Between these two boundary portions there was a collection of silvery-white and rose-coloured columns, all rising vertically and pointing to the zenith; parts of their central portions were in constant motion, both upwards and downwards; the ### AURORA BOREALIS OF 1847, OCTOBER 24—(continued). lower portions of the columns seemed to approach to and recede from each other, except the deep crimson boundary portions, which remained unmoved and exceedingly brilliant. In addition, there were three beautiful portions like milk-white clouds, floating slowly from the N. N.W. towards the S. E. Each of these portions of the Aurora was like a living mass, having, apparently, a pulsation within itself: these appearances were still in progress when both Mr. Glaisher and Mr. Humphreys left to record the positions of the magnets, which were found to have moved from their usual positions to a most unusual extent. The horizontal force magnet had moved to such a position that the field of the telescope was black. Mr. Humphreys then moved the light along the scale till the divisions were visible. (See the section of Extraordinary Magnetical Observations.) The declination magnet had also changed its place considerably, but the change in the vertical force was small. At 10^h. 48^m the Aurora is diminished in splendour. At 11^h. 12^m the Aurora is scarcely visible. At 12^h, 20^m the Aurora has again burst forth with great splendour. There is a well-defined arch extending from the N.W. by the N. to the N.E.; the highest part of the arch is about 30° above the horizon. Both the red and white streamers in their flashing occasionally shot downwards, but mostly they shot upwards. At times the streamers all met at a point a little S. of the zenith. The Moon was shining so brightly that this last appearance was seldom seen, and never very clearly. Both the extremities of the arch were bounded by brilliant rose-coloured flames of light, over which occasionally a sheet of white flame would spread with great rapidity. This appearance with its full splendour continued about 20 minutes, after which it begun to fade. The space between the extremities of the arch was composed of white streamers in the form of beautifully arranged drapery, which, as they flashed, had the appearance of being disturbed by the wind. The above remarks were made in a very hurried manner, between the observations of the magnetic instruments, which necessarily occupied almost the entire time of the observers, so that the remarks are those made at momentary examinations of the heavens only. The magnetical instruments had been much disturbed during the two preceding days. #### 2. Observations at Dartmouth Terrace, Blackheath. 1847, October 24.—The barometer-reading during the previous day had declined rapidly, and during this day it had increased as rapidly. The day had been for the most part overcast, and light rain had fallen occasionally; towards evening the sky became perfectly cloudless; the night was beautiful, and the Full Moon shone with unusual brilliancy. At about 6h. 30m p.m. a bright red streamer was seen to spring up from the N.W. At 6^h. 40^m another streamer was seen in the N.W., and at the same instant one sprung from the N.; both of which were of a beautiful red. At 6^h. 56^m a less brilliant streamer was seen in the N.W., and within three minutes after this time, several faint streamers were seen in the N., N. N.W. and N.W. From 7th to 7th 12m a few streamers were seen, and after this time no trace of the Aurora could be seen for some time. Between 7^h. 30^m and 9^h. 40^m there were occasional streamers, both white and red, appearing between the N.W. and the E.N.E. At 9^h. 55^m a splendid column of red light appeared in the N.W., whose base was about 5° in breadth. This pyramid exhibited all the tints of the most brilliant sunset, and appeared to be composed of streamers whose colours shaded from the most intense crimson into the ruddiest and most brilliant orange, which orange parts again contrasted with the ruddy hue of the next portion, forming by means of contrast upon contrast an endless gradation of shade and colour,—a truly sublime and gorgeous appearance. About this time, the furnace glow which pervaded this appearance increased in intensity, and had all the appearance of the reflexion from an immense conflagration; in the mean time the orange colour entirely disappeared, and gave place to a uniform deep crimson, increasing, as before stated, in intensity, and apparently in denseness. At 10^h. 0^m the same appearance continued as above; but in addition to it, there was a collection of vertical columns of light from 2° to 3° in breadth; and from the E. N. E. there was a column similar in form and colour to the one in the N.W., with the exception of being less brilliant. These two red columns formed the East and West boundaries of the fan-like appearance of the whole mass, all the columns of which converged to a point a few degrees S. of the zenith. The columnar appearances situated between the red columns were of the most silvery light, shaded with a most delicate and pure gray; they were perpetually glancing and shifting upwards and downwards; the lower parts of each column would suddenly glance into the place of the upper portion of the same column, whilst the upper portion would shoot higher towards the zenith, and then both would suddenly descend. This vibrating motion was simultaneous in all the columns, excepting the splendid red portions #### AURORA BOREALIS OF 1847, OCTOBER 24-(continued). at either termination, which remained immoveable, though it rather appeared that as the central silvery light fluctuated, now bright,			
now dim, these rosy extremities fluctuated in direct opposition, their rosy hue becoming fainter and inclining to a neutral tint in proportion to the increase of the silvery brightness. The whole variation of appearance somewhat resembled the reflexion cast upon a wall by a Gothic casement lighted from within by some fitful and inconstant light. Towards 10^h. 12^m a considerable diminution in the brilliancy of the light, fleecy, silvery columns took place; their regular and casement-like appearance disappeared by degrees and assumed more of the character of the extremities, although they still continued their fitful, glancing, and radiating motion. During these appearances two or three milk-white, cloud-like masses came up from the N.W. and slowly moved towards the S. E.; each of these masses seemed to have a kind of pulsation within itself. At 10^h. 19^m little could be seen of the Aurora, excepting the red column in the N.W.; this still retained much brilliancy, though all else seemed merged into the sky, when at times, like the bursting of a firework, streamers would spring up from this column, white and brilliant, except at their upper portions, which were tinged with rose colour. About this time, the Moon, which had been shining upon a cloudless sky, was suddenly surrounded with a splendid corona, exhibiting concentric circles, first of a neutral tint, next of violet, then of green, the outermost being red; the external boundary of the latter passed nearly midway between the Moon and the planet Mars; this appearance continued at its extreme brilliancy a short time only, but more dimly it continued for a long time. From 10^h. 30^m to 11^h. 0^m, with the exception of an occasional streamer, there was no appearance of the Aurora; and at times no Aurora at all was visible. To 11^h. 14^m no arch-formation or bank of vapour had been seen; a bright arch however was supposed to have formed about this time, but, if so, it continued a short time only. Shortly after 11^h. 15^m a faint stream or column of white light was seen in the N. N. E., and a splendid red patch of light, nearly in the E., was seen, which grew very bright, and the phenomenon at midnight exhibited an appearance as beautiful as any of those that had preceded it. An arch appeared extending from the N.W. to the S. E.; from this arch very bright and flickering pencils of light darted out, both upwards and downwards. At 12^h. 30^m the streamers were frequent; the arch now extended from the N. by W. to the E. by N., and at every part of this arch an occasional streamer, with taper-like form, sprung up; and this appearance continued till after 13^h. I did not observe any halo around the Moon at any time, and the Aurora, with the exception of the beautiful white clouds, was confined to the northern hemisphere. Many of the preceding observations were made by an assistant at my residence, as my own attention was almost completely occupied by observations of the magnetical instruments; so much so, that I was obliged to neglect some of its finest appearances, but which I believe were pretty well observed as above described. The watch by which the times were taken was compared about midnight, so that the several times are Greenwich Mean Solar Times. JAMES GLAISHER. ### 3. Observations at Maidenstone Hill, Greenwich. 1847, October 24.—The sky had been covered by cirro-stratus, some light rain had fallen in the afternoon, and towards evening the clouds cleared gradually away. At 6^h. 25^m, Greenwich Mean Time, there was a bright white auroral streamer visible in N.W., which soon disappeared, and a red streamer rose about W.N.W., followed by others at 6^h. 32^m in N.N.W. and N.N.E. At 6^h. 34^m. 45^s several very red and bright streamers appeared in N. N.W.; a moment afterwards another appeared in N.W.: the sky became completely illuminated by red streamers from N. N. E. to W.N.W., reaching to an altitude of 30°, which gradually faded away. At 6^{h} . 37^{m} . 45^{s} a red streamer shot up for 10^{s} as high as α Ursæ Majoris, and about this time there was a white auroral arch whose apex was about 10° in height, reaching from N.W. to N., or perhaps a little beyond these points. At 6^h. 40^m. 5^s a red streamer was visible (the place unrecorded in the hurry), and at 6^h. 41^m. 40^s a part of a reddish arch appeared at the West extremity of the white arch, and continued visible for 30^s or 40^s. At 6^h. 44^m. 25^o there was a bright red streamer at the West extremity of the white arch, and a few seconds afterwards a smaller one appeared close to it; they at first increased in brightness, but had nearly disappeared at 6^h. 46^m. At 6^h. 46^m. 30^s a broad red and bright streamer; the white arch was not visible. At 6^h. 48^m. 40^s a faint streamer in N. N.W. which soon disappeared. ### AURORA BOREALIS OF 1847, OCTOBER 24-(continued). At 6^h. 49^m. 10^s a whitish and bright streamer in N.W. which disappeared at 6^h. 52^m; the streamer which became visible at 6^h. 44^m. 25^s vanished soon after this. At 6^h. 52^m. 45^s a high and bright red streamer rose in N.W. but soon disappeared. The increasing elevation of the Moon rendered the observations less satisfactory. A little redness in N.W. at about 7^h. Nothing was now seen till 7^h. 25^m. 30^s, when a broad red and exceedingly bright streamer appeared in N.N.W. reaching nearly to Ursa Major; it became fainter and disappeared at 7^h. 29^m or 7^h. 30^m. At 7^h. 31^m. 45^s a bright red streamer in N.W. for about 1^m. Between 7^h . 38^m and 7^h . 45^m three dull red streamers were seen in different parts. There now appeared to be some cessation, for nothing else was seen (though the sky was examined every 10 or 15 minutes) till 9^h . 24^m when a few white streamers were seen between N. and N. N.W. At 9^h . 26^m a beautiful broad red streamer rose in N. E., and continued visible with some variations in its brightness for 21 minutes, or till 9^h . 47^m , and then faded, during the greater part of the time reaching very nearly as high as Capella; a smaller one was visible part of the time, a little nearer to the E.: on looking now to the West, there was a red streamer reaching, when first seen, above α Aquilæ; and from this time $(9^h$. 50^m) till 10^h . 10^m the changes of the Aurora were such that description becomes almost impossible; suddenly white streamers darted almost simultaneously from every point between the two last-mentioned red streamers, which with the white ones reached right up to the zenith, both white and red increasing in brilliancy, and all converging to the zenith; red streamers also rose from other points besides the E. and W.: they were in fact mingled, as if promiscuously, together. At 9^h. 55^m. 10^s both white and red streamers began to flash or wave with great rapidity, and continued flashing (particularly in the zenith, where they were very bright) till 10^h. 0^m. 30^s, flashing two or three times in a second, with occasional short cessations; the sky now presented an almost terrific appearance; from East to West, and up to the zenith, it was one continued blaze of white and red streamers intensely bright, more particularly the great red streamer in the W., which passed the zenith to the S., and some of the white ones in N.W. and W. N.W.; after this they decreased in brightness. At 10^h. 2^m. 10^s a few streamers flashing again in the E. At 10^h. 8^m flashing in the W. again. At 10^h. 8^m. 55^s a very bright meteor shot in the direction from Polaris towards α Cygni, across the flashing streamers, which now began to fade. At 10^h. 27^m white streamers still reached to the zenith, though not so vividly as before, till 10^h. 45^m, when they subsided a little; a few clouds interrupted them, but not to any great extent; a few streamers were seen at different times afterwards. At 12^h. 8^m, from N. N. E. to W. N.W., a fine arch of streamers (white ones) was visible, with a red one in N. N. E. Streamers at times were visible till 13^h. 30^m, the latest moment to which my observation extended; but it is likely that more may have been seen after that time. The prominent features in this extraordinary Aurora, were the great quantity of red streamers, and their deep colour, the Moon being so bright; the convergence of all to a point in the zenith, and the flashing or waving motion of the streamers, both right and left, and also upwards; for a bright flash would sometimes suddenly burst out at the bottom, and then run all the way to the top. The edges of some of the streamers were also very well defined. The watch by which these observations were taken was compared on the same night, and the times are nearly correct. WILLIAM ELLIS. ### 4. Observations at the Royal Naval School at Greenwich. (Private communication to Mr. Glaisher.) 1847, October 24.—At 10^h. 0^m (when I first saw it) the Aurora consisted of a collection of light fleecy columns, nearly vertical, and approaching near to the zenith, and very faintly illumined. They were confined between the limits of N. and E. N. E. (true). No arch-formation, or bank of vapour, was then seen to the northward, but there was an extensive, confused, fleecy patch of light in the direction of N., which continued for a short time. At 10h. 30m nearly as above, but the streamers are more to the westward, that is, between the limits of N. N. W. and N. N. E. At 10^h. 45^m Aurora much diminished; some faint, low, and indistinct columns, apparently converging towards a point in the horizon, situated in the direction of N. N. E.; light fleecy clouds near the zenith; no arc or bank visible; wind in puffs. At 10^h. 56^m a low dark bank, apparently of vapour, visible a little above the horizon towards the N., which was faintly illuminated at the upper edge, particularly about due North, where it appeared as an illumined patch of white light cloud; some faint streamers to the N. N. E. at the			
same time. At 10^h. 58^m Aurora scarcely visible; the atmosphere apparently warmer to the feelings, but I did not observe the thermometer. ### AURORA BOREALIS OF 1847, OCTOBER 24-(continued). - At 11^h. 0^m the patch of light in the direction of North again visible, with faint streamers as before. - At 11^h. 14^m suddenly a bright arch to the northward, which continued for a few seconds only, and no streamers from it. - At 11^h. 18^m a faint streamer or column of white light from the N. N. E. point of the horizon to the zenith, but it disappeared immediately. - At 11^h. 19^m a red patch of light about E. N. E.: altitude about 25°. - At 11^h. 20^m the red patch very splendid. - At 11^h. 23^m the red patch still bright, but proceeding apparently towards the S. E. direction: a bank of vapour to the N., increasing in altitude. - At 11^h. 25^m no streamers visible: the red patch of light before observed still going to the S. E., and appearing to extend itself downwards, to a point in the horizon situated in the direction of E. by N. - At 11^h. 30^m the red patch E. by N., very bright. - At 11^h. 32^m the bank of vapour to the northward, fringed on the upper edge with short and unequal streamers of light, the bank extending between the limits of N.W. by N. to N. N. E. - At 11^h. 40^m a splendid column of red light suddenly appeared from the horizon (from the N. N. E. point) and inclined obliquely towards the south-east. At the same instant another column appeared nearly parallel to it, but of white light, very bright, and which rose from the N. N.W. point of the horizon. - At 11^h. 42^m the Aurora very general in the northern half of the hemisphere; i. e. from N. W. to N. E.: a singularly wild, scattered, and stormy arrangement of fleecy cloud. - At 11^h. 44^m the red column of light last mentioned is now very beautiful; nearly in the previous position: the Aurora has now extended itself more round to the westward. - At 11h. 45m a faint red patch of light near the zenith, and the red column in the direction E. N. E. now nearly gone. - At 11^h. 48^w Aurora now extends itself round to the West, from which part of the horizon proceeds a red column nearly vertical, and extending to the zenith. - At 11^h. 55^m the appearance of the heavens extremely singular and beautiful. An irregular arch of white clouds, having the North point of the horizon apparently as a center: the upper portion of the arch was fringed with irregular short streamers, and at each extremity of the arch there was a brilliant column of red light, i. e. one at the eastern extremity of the arch bearing E. N. E., and the other at the western, bearing W. by S.; within the circle the sky quite clear. - At 12^h went within doors. - At 12^h. 5^m observed from my room, which looked only towards the eastward, a red vertical column rise suddenly from the N. E. point of the horizon towards the zenith. - N. B. The Aurora appeared at no time during my observations to extend itself to the southern portion of the visible hemisphere; with the exception of a part near the horizon towards the westward, at the latter end of the foregoing observations, when it extended itself round to W. S. W. No appearance of halo round the Moon at any time; nor did I observe the undulatory transmission of light common in auroral displays. - 5. Observations at the Observatory at Cambridge. (From the Cambridge Chronicle, 1847, October 30.) - 1847, October 24.—An Aurora was noticed as early as six o'clock in the evening: at ten o'clock it had attained great brilliancy, and between the hours of ten and eleven its peculiar phenomena were most distinctly displayed. In this interval streamers rose at all azimuths from W. by S. through N. to E. by N. The aggregate of these streamers formed a kind of canopy, which covered considerably more than half the celestial vault, the part toward the S. being free from auroral light. The streamers did not, as is usually the case, proceed from a luminous arch, but appeared to shoot up either from the horizon or from positions elevated a few degrees above the horizon. The beauty of the spectacle was much increased by large patches of a peculiar ruddy colour, more permament in their character than the streamers, and formed principally in the W. and N. E. quarters of the heavens. The streamers themselves were for the most part white, and were constantly varying in intensity, or shifting their positions horizontally, while rapid pulsations were propagated through them in vertical directions. The most remarkable feature of the phenomenon was the distinct convergence of all the streamers towards a single point of the heavens, situated a little to the E. of the meridian, and to the S. of the zenith. Around this point a corona, or star-like appearance, was formed, the rays of which diverged in all directions from the center, leaving a space about the center free from light, in which I noticed at one time the rapid formation and disappearance of part of a circular luminous ring. It was easy to fix on the central point. According to an estimate made conjointly by myself and a friend, at 10^h. 10^m Cambridge mean time, it preceded the bright star Mirach, [β Andromedæ] 10^m in ### AURORA BOREALIS OF 1847, OCTOBER 24—(continued). right ascension, and had greater north polar distance by 20°; consequently, by calculation, its azimuth was 18°. 41′ from S. towards E., and its altitude 69°. 51′. The azimuth appeared not to vary with the diurnal motion of the heavens. According to the above result, this singular point was situated in or very near a vertical circle passing through the magnetic pole. Some valuable inferences might be deduced if a similar phenomenon were witnessed elsewhere, and the time and position accurately noted. The Aurora was still faintly visible at one o'clock. Had it not occurred in bright moonlight, the splendour of this display would probably have equalled any ever observed in this latitude. J. CHALLIS. 6. Observations at the Observatory of Stone, near Aylesbury. (From the Bucks Herald, 1847, October 30.) 1847, October 24, Stone mean time.—At 6^h. 30^m a well-defined auroral arch was first noticed at this time, and the following observations were taken during the evening. At 6^h. 30^m auroral arch well defined. The depth of the arch was 10°, its vertex on the magnetic meridian 35° above the horizon, the upper edge extending from a little above Arcturus in the West to Capella in the East. The colour of the arch was a bright rosy red, and the portion below the arch was a yellowish white. The sky nearly cloudless. At 6^h. 45^m the center of the arch suddenly disappeared, and a bright yellow spire of light shot up in its place a little to the West of the two pointers. It continued stationary for 35 seconds, and then vanished. A similar spire appeared in the extreme West of the arch, and afterwards seven spires between the western boundary, and the center of the arch appeared with great intensity till 7^h. At 7^h. 0^m a small cloud appeared in the East below the arch, and as it passed in front of it, it was clearly illuminated with the auroral light. Larger portions of the center of the arch disappeared. At 7^h. 15^m nothing remained but faint portions of the eastern and western extremities of the arch. At 7^h. 35^m a strong West wind brought up large masses of cloud, and the whole sky was overcast. Thermometer, Dry Bulb, 40°.5; Wet Bulb 40°.5. Barometer 29ⁱⁿ. 45. At 8^h. 25^m the clouds had passed away to the East, and the auroral light again appeared in the East, extending from Capella to the pointers, from which a few streamers darted to the zenith. At 8^h. 30^{m} two well-defined auroral arches, the lower one of a bright yellowish white, situated with respect to the magnetic meridian, similarly to the first arch of the evening; above this arch an upper one was extended, of a bright rose red, and about 5° in width. Bright streamers rose from the western extremity of the arch, and shot up through α Lyræ to a point about 20° South of the zenith. At 8^h. 36^m the vertex of the yellow arch has risen uniformly about 10° on the magnetic meridian, yellowish streamers extending from the eastern limit through Capella to Cassiopeia. At 8^h. 37^m red streamers through α Lyræ, a few light fleecy clouds rising with the wind in the West. At 8^h. 40^m clouds (cirro-strati) forming and rapidly increasing in the zenith, not illuminated with auroral light. A red auroral patch in magnetic West. At 8^b. 42^m streamers extending from the West in a well-defined line to a Cygni, passing through the zenith to Cassiopeia. At 8^h. 45^m the vertex of the auroral arch has risen 5°. Sky cloudless to the North. At 8h. 48m waves of light moving horizontally from a Lyræ to a Aquilæ and Delphinus. At 8^h. 50^m a bright white streamer in front of the auroral arch to the West of the Great Bear. Streamers darting throughout the whole length of the auroral arch. The lower edge of the arch entirely broken by the irregular terminations of the streamers, which scarcely rose above the upper edge of the arch. The streamers, which were stationary for several seconds, extended into the auroral atmosphere below the arch, and appeared to converge to a point in the magnetic meridian below the horizon. At 8^h. 55^m a streamer from the horizon, from the magnetic West, through α Aquilæ to β Pegasi. At 8^b. 57^m the auroral arch has risen to Polaris. Three distinct arches now appeared below the primary one, the colour was pale white, and the spaces between them bluish grey. At 8h. 58m the lower arches disappear. At 9^h. 5^m red streamers shooting again through α Aquilæ to θ Pegasi. At 9^h. 7^m a bright yellowish white streamer or band, extending from the magnetic West, through α Aquilæ and β Pegasi, and passing a little to the North of Aldebaran, reached the magnetic East. Permanent for a few minutes. At 9^h. 25^m a brilliant red mass of auroral cloud			
appeared in the magnetic East, extending about 20° along the horizon towards Castor, and rising to Capella, reached the zenith, and terminated in the West below a Aquilæ. Cloudless sky. #### · AURORA BOREALIS OF 1847, OCTOBER 24-(continued). At 9^b. 30^m auroral arch from E. to W. through Pegasus. At 9h. 35 m streamers from the West slightly red, from the East bright red. At 9^h. 36^m the red colour becoming more intense in the West. At 9^h. 40^m waves of light extending from the horizon to Polaris, and moving westward. At 9h. 42m the auroral cloud begins to disappear in the North. At 9h. 46m auroral cloud of a bright vellow red to the West. At 9^h. 47^m a fine red streamer through α Aquilæ. At 9h. 48m auroral clouds very intense both in the West and East, Ursa Major shining brilliantly in a clear blue sky. At 9h. 49m auroral arch forming rapidly in the North, of a most brilliant light yellow, with similar streamers in the N.W. At 9^h . 50^m pulses passing rapidly from α Lyræ to α Aquilæ, which stars shone through an intensely red auroral mass. These pulses or undulations become more general, and the whole auroral hemisphere is assuming additional intensity. At 9^h. 55^m it is scarcely possible to describe the extraordinary appearance of the Aurora at this moment. The undulations, which had been universal and of some continuance, moved on all sides towards & Andromedæ, and the remarkable centering and curling of the extremities of the streamers in this point, gave the idea of an auroral pole in the magnetic meridian, about 20° South of the zenith, the opposite pole being the point to which the streamers converged below the horizon at 8^h. 50^m. From this North auroral pole the most magnificent streamers were extended in all directions; at the magnetic East and West points their extremities were upon the horizon; in the direction of the magnetic meridian they were about 35° above the horizon, or 90° from the auroral pole, and on each side of the magnetic meridian their terminations not varying much from 90° from their pole, formed an auroral arch, whose direction was at right angles to the magnetic meridian, and appeared to indicate the plane of an auroral equator. It is impossible by any description to give an adequate idea of the gorgeous coruscations which flashed on all sides. The light of a Moon nearly full and fast approaching the meridian, seemed lost amid the vivid splendour which dazzled the eye, and the variety of prismatic colours which ever changed their place without losing their intensity, gave a brilliancy to the auroral waves and streamers which far surpassed the most extravagant fancies of even Turner's pencil. At 10^h. 4^m the colours are fainter, though the undulations still continue towards the auroral pole. At 10^h. 9^m brilliant streamers to the auroral pole from the West. At 10^h. 11^m colour less intense throughout. At 10^h. 14^m Thermometer, Wet Bulb 38°; Dry Bulb 38°. At 10^h. 25^m streamers again in full play from the auroral arch to their pole. At 10^h, 38^m auroral clouds occupy the North only, suddenly appearing and disappearing until 10^h, 50^m, At 10h. 55m auroral clouds formed in the North and West. At 11^h. 0^m streamers stretching from the auroral arch to their pole. At 11^h. 17^m a mass of rose-red auroral clouds to the East. At 11^h. 30^m streamers to the pole from the East. At 11^h. 38^m white streamers extending to the pole from the northern horizon; a red mass near Capella. At 11^h, 40^m a mass of most beautiful white auroral clouds to the East. At 11^h. 41^m a bright red streamer on the N.E. At 11^h. 42^m a brilliant red streamer, with white in the center, in the N.E.; a red patch round the auroral pole, and strong undulations towards that quarter. At 11^h. 46^m vanishing in the North. At 11^h. 47^m fading in the East. At 11^h. 50^m two red streamers in the West and East. At 11^h. 55^m bright blue sky in the North, the East and West again indescribably beautiful during the gradual formation of the arch. At 11^h. 58^m streamers, the base of which form an arch and repeat with but little diminution of intensity the phenomena of 9^h. 55^m. At 12h. 0m auroral light travelled along the horizon from West to East, till it joined the auroral cloud in the East. At 12^h. 13^m Aurora almost ceased. No subsequent repetition of streamers. J. B. READE. ### AURORA BOREALIS OF 1947, OCTOBER 24-(concluded). ### 7. Observations at Christ Church, Oxford. (Private communication to Mr. Glaisher.) 1847, October 24.—The night was most lovely, and the full Moon was shining with unusual brilliancy. About 24 minutes to 10 p.m. I observed a small patch of red in the N.N.E. sky, which I immediately conceived was auroral, and I therefore hurried to a place where my view would be uninterrupted. In a minute or two a corresponding redness was seen in the W.N.W., and there two spots were quickly connected by a band of light, forming a faint arch across the northern sky. The light rapidly overspread the whole heavens, and the redness in the W.N.W. increased both in dimensions and in brilliancy until 15 minutes to 10, when it had assumed the appearance of an extensive cloud of a deep rose-colour. Meanwhile, bands of light, averaging 2° or 3° broad, irregular and variable, alternating with dark bands, and diverging from a nucleus a little S. of the zenith, shot across the sky to the horizon in every direction, except that immediate part of it where the Moon seemed to intercept them. These radiations increased in brightness until 10 minutes to 10, and at this time the phenomenon was at its height, and presented a most sublime and gorgeous appearance. The divergent bands vibrating and flashing like lightning; waves of light, 60° or 70° in breadth, flowing up in rapid succession from the horizon to the zenith, and the vast and brilliant rose-coloured cloud moving slowly and majestically from the West towards the South, conbined to form a scene of splendour and magnificence never to be effaced from my mind. It was aptly compared by a spectator at this time to a boundless tent of light; and the radiations presented much the same appearance as that phenomenon popularly called "the Sun drawing water." The light was very bright along the northern horizon; and I remarked, that whenever it was peculiarly brilliant, it assumed a pale green colour, which was remarkably beautiful in the N.W. direction. The nucleus remained fixed in the same spot during the whole time, but varied considerably in appearance, and together with the variations, flickered like the shadow from an unsteady lamp, producing an undulatory appearance of the sky which was most astonishing. At 10th it grew fainter, and the rose-coloured cloud seemed to melt away in the S.W. horizon; but it gradually brightened again and continued darting out radiations, though faintly, till 11^h; there being all the time a slight redness in the N.E. and S.W., which seemed to interchange—growing brighter in the N.E. when it faded in the S.W., and vice versd. At 11th it was very faint, but at 15 minutes to 12 the N.E. redness grew very bright, and the phenomenon, although now confined exclusively to the northern half of the sky, presented an appearance as beautiful as any of those that had preceded it. An arch of red light spanned the sky from N.E. to S.W., deepening as each limb neared the horizon; and within this arch a divergent pencil of very bright and flickering rays darted out from its highest point, and terminated abruptly about 30° from the northern horizon, seeming to be a last effort of the phenomenon to exhibit its earlier magnificence: this lasted 10 minutes; and at 20 minutes past 12 a very faint redness in the N.E. was all that was visible. I have been assured that faint traces of it were seen so early as half-past 6 in the evening. ### 8. Observations at Playford, near Ipswich. (Private communication to the Astronomer Royal.) 1847, October 24.—At about 6^h a few streaks of light were observed in the North, which portion of the sky, to the altitude of 45°, was of a reddish colour. At this time there were no streamers, and but slight flickering. In less than an hour all had entirely disappeared. After this time I was within doors till 10^h, at which time a great extent of the western sky was vividly red, with occasional streamers, and much flickering. Light cloud passed over this portion, which had but little effect in lessening the brilliancy of the red portions. There was one considerable red streak, situated nearly North, and there was another, situated nearly N. E. by E. These red portions were in height about 48°, and they were several degrees in width at their bases. The space between these red streaks was filled or nearly so by very white streaks, which were frequently shifting and often streaming. All the streamers converged to the zenith, and very few of them reached the horizon. Its appearance was like that of a light, situated in the zenith, emitting rays which did not diminish in brilliancy as the distance increased. This appearance continued about 10 minutes. The Aurora was visible for an hour afterwards in great beauty: its appearance, however, was frequently changing. A small meteor was seen to pass from the S.W. and W. to the N. downwards. ### 9. Observations at Hyde Vale, Greenwich. 1847, October 24. The luminous waves of the Aurora progressed from the N. with the same rapidity that a low cirrus cloud would have done, and on passing the zenith the nimbus-form appearance was discernible, as of hail falling, and rendered conspicuous when the atmosphere is in a highly electrical state. JOHN HENRY. ### ROYAL OBSERVATORY, GREENWICH. # ABSTRACTS OF THE ## RESULTS OF THE ## MAGNETICAL OBSERVATIONS. 1847. TABLE I.—Mean Westerly Declination as deduced from the Twelve Observations generally taken on every Civil Day, between January 1 and December 26 (except Sundays, March 24, Good Friday, and Christmas Day), at the Even			
Hours of Göttingen Mean Time.	Days of the Month, 1847.	January.	February.
9.31	21.20	26.10	15.22
3.36	+ 5.10	+ 7.29	+ 8.18
--	---	---	---
	21	::	0.001528
0.021808 0.022411 0.022973 0.024436 0.024585 0.024384 0.024279	0·024340 0·024766 0·024683 0·023652 0·023342 0·023904 0·024430 0·024899 0·025049 0·024600	0 · 024637 0 · 024822 0 · 025218 0 · 024419 0 · 024576 0 · 025284 0 · 025117 0 · 025172	The diurnal movement has consisted of four maxima and four minima in January; of a triple maximum and minimum in February, March, October, November, and December; of a double maximum and minimum in April and July; and of a single maximum and minimum in May, June, August, and September. The next table is formed by taking the mean of the numbers in the preceding Table, corresponding to the same hours for each month; those from April to September being grouped together for summer, and those for the other six months for winter. TABLE XVIII.—Mean Reading of the Horizontal Force Magnet, corrected for Temperature, expressed in parts of the whole Horizontal Force, at every Even Hour of Göttingen Mean Time, for the Summer and Winter periods, and for the Year.
---	---	---	--
.001298	0.003432	0.001032	0.001230
.054807	0 ·054787		May
30 .084		29	$29 \cdot 239$
S	0.057	0 ·244	0.450
length of time without interruption. Between 0 and 2 a fall at all periods; large in autumn, rather large in spring and summer, and smallest in winter. Between 2 and 4 the fall continues at all periods; being largest in spring and smallest in winter. Between 4 and 6 a slight fall in summer, and a very small rise in the other periods. Between 6 and 8 a rise at all periods; rather large and of equal amounts in spring, summer, and autumn, and very slight in winter. Between 8 and 10 the rise continues in spring, summer, and autumn, and of nearly equal amount; in winter a slight fall. Between 10 and 12 a stationary reading in autumn, a very slight rise in winter, a considerable rise in summer, and a fall in spring. Between 12 and 14 a fall at all periods; small in spring, large, and of the same amounts in summer and autumn, and very large in winter; in fact, the greatest change in the year. An inspection of the above table will shew that at 20^h, at 2^h, and at 8^h, the mean reading of the barometer was very nearly the same as the mean reading for the year. Similar results have been obtained in all the preceding years; and, consequently, observations made at these hours may, by small corrections, be reduced to the mean of the two-hourly observations throughout the year. The most probable corrections to reduce observations made at any one of these hours to the mean for the year, as found from the observations in the years 1841 to 1847, both inclusive, are as follows:— If the observations be made at $\overset{\text{h}}{20}$ daily, the correction is $\overset{\text{in}}{0} \cdot 001$,, 2 ,, $+ 0 \cdot 001$,, 8 ,, $- 0 \cdot 002$ TABLE VII.—Excess of the Mean Readings of the Barometer in every Month, at each Even Hour of Göttingen Mean Time, above the Mean of all for the Month.	18 47, Hour, Göttingen Mean Time.	Ianuary	February.
29 .656			11. 22 9. 22 9. 22 7. 22 6. 22 5. 22 4. 22 4. 22 3. 3. 22
of the barometer was the greatest. In deducing these results, the numbers in brackets have not been used, in consequence of the small number of observations on which they depend. The following table is formed in the same manner as the last two :- TABLE XII.—Mean Daily Readings of the Barometer, with reference to the relative Positions of the Sun and Moon.	Days after New Moon.	Mean Readings of the Barometer.	Number of Obser- yations.
the lowest was 23° ·3 on February 12^d; the difference between these numbers is 50° ·0, being the yearly range of the mean daily temperature. The highest and lowest readings of the thermometer in the simple two-hourly observations in each month were as follows:—			0
readings in each month, as deduced from the two-hourly observations, are as follows:—			
--		1847, Month.	Observations of Of Highest Reading of the Thermometer whose Bulb is in the full Rays of the Sun.
53.58	55.08	54 · 81	54 02
.64	54 .23	58.55	58.84
36 44 · 36 44 · 37 44 · 40 44 · 45 44 · 50 44 · 52 44 · 53 44 · 52 44 · 51 44 · 49 44 · 48	50 · 96 50 · 97 50 · 99 51 · 04 51 · 16 51 · 22 51 · 32 51 · 31 51 · 29 51 · 27 51 · 28	57 ·13 57 ·11 57 ·12 57 ·17 57 ·27 57 ·33 57 ·36 57 ·36 57 ·29 57 ·23 57 ·18	61 · 35 61 · 34 61 · 34 61 · 41 61 · 54 61 · 63 61 · 70 61 · 76 61 · 68 61 · 60 61 · 55
57.7	58.7	61.6	65.5
S	7 · 5	3.1	$2 \cdot 2$
7	39 · 5	35 .7	\boldsymbol{s}
11 .9	8.9	8.5	4.8
of Pressures.	Number of Hours.	January	lbs. 2
",	56	,,	
to 1		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,
76		310	
6 1	1bs. 3½ 1	ь 5 2	1bs. 284 34
• 35		12 · 64	42 ·4 3
lines upwards, which implies apparent retrograde motion 360°. 9.19. The trace was shifted to the next set of lines downwards, which implies apparent direct motion 360°. June 19.22. The trace was shifted to the next set of lines downwards, which implies apparent direct motion 360°. Therefore the whole excess of direct motion in the month of June was 3825°. a 1847. June 30.12. The direction of the wind was N. N. E. 31.12. S. W., which implies apparent direct motion 202\frac{10}{2}. July 3. 22. The trace was shifted to the next set of lines downwards, which implies apparent direct motion 360°. 5.22. The trace was shifted to the next set of lines downwards, which implies apparent direct motion 360°. 6. 22. The trace was shifted to the next set of lines downwards, which implies apparent direct motion 360°. 29.22. The trace was shifted to the next set of lines downwards, which implies apparent direct motion 360°. Therefore the whole excess of direct motion in the month of July was 1642\frac{1}{2}^{\circ}. d b 1847. July 31.12. The direction of the wind was S. W. August 31.12. S. S. W., which implies apparent retrograde motion 2210. Therefore the whole excess of retrograde motion in the month of August was 22½°. 1847. August 31. 12. The direction of the wind was S.S.W. Sep. 30.12. N. E., which implies apparent retrograde motion, 157\frac{1}{2}. Sep. 28.22. The trace was shifted to the next set of lines downwards, which implies apparent direct motion 360°. Therefore the whole excess of direct motion in the month of September was 2022°. d h 1847. Sep. 30.12. The direction of the wind was N. E. S. S. W., which implies apparent direct motion 157%. 1.22. The trace was shifted to the next set of lines upwards, which implies apparent retrograde motion 360°. Oct. Oct. The trace was shifted to the next set of lines downwards, which implies apparent direct motion, 360°. Oct. 16.22. The trace was shifted to the next set of lines upwards, which implies apparent retrograde motion 360°. Oct. 17.22. The trace was shifted to the next set of lines downwards, which implies apparent direct motion 360°. Therefore the whole excess of direct motion in the month of October was 157½°. a b 1847. Oct. 31.12. The direction of the wind was S.S.W. S. W., which implies apparent direct motion 221°. 3. 22. The trace was shifted to the next set of lines downwards, which implies apparent direct motion 360°. 28.22. The trace was shifted to the next set of lines downwards, which implies apparent direct motion 360°. Therefore the whole excess of direct motion in the month of November was 742½°. d h 1847. Nov. 30.12. The direction of the wind was S.W. Dec. 31.12. N., which implies apparent direct motion 135°. Dec. 19.22. The trace was shifted to the next set of lines upwards, which implies apparent retrograde motion 360°. 29.22. The trace was shifted to the next set of lines downwards, which implies apparent direct motion 360°. Dec. 30.22. The trace was shifted to the next set of lines upwards, which implies apparent retrograde motion 360°. Therefore the whole excess of retrograde motion in the month of December was 225°. ``` The whole excess of direct motion to the end of the year was 3870°. # Amount of Cloud in the Year 1847. TABLE LXI.—Mean Amount of Cloud, as deduced from the Twelve Observations taken Daily at the Even Hours of Göttingen Mean Time, for every Day in the Year (except Sundays, March 24, Good Friday, and Christmas Day). (The number 10 denotes that the Sky was covered with Clouds.)	a 1 2 3 4 5 6	S	9·0 8·8 10·0 9·1 9·2
Year.	1847, Hour,	Mean Amount of Cloud in	
${oldsymbol s}$	2 .86	3 . 96	4.72
Time, in Quarterly Periods, and for the Year.	1847, Hour, Göttingen Mean Time.	Spring.	Summer.
---	---	---	----------------------------
the whole year.	Introduction.	P₄ge	
_	the Soil through which the Thermometers have been sunk	lxx	
--|-------| | Yearly Range of Mean Daily Values, and Extreme Range of Readings in the Year | (233) | | Table III. Mean Monthly Values of the Western Declination, and Mean for the Year 1847 | (233) | | Table IV. Daily Ranges of the Declination Magnet | (234) | | Days on which the Greatest and Least Daily Ranges took place during the Year | (234) | | Table V. Diurnal Ranges of the Declination Magnet in each Month, and for the Year | (234) | | Table VI. Mean Monthly Western Declination at every Even Hour of Observation | (235) | | Hours of the Maxima and Minima of the Mean Monthly Declination | (235) | | Table VII. Mean Western Declination at every Even Hour of Observation for Summer, Winter, | | | and for the Year, and Mean Western Declination for those Periods | (235) | | Remarks upon the preceding Table | (235) | | Table VIII. Diurnal Inequality of Declination for each Month | (236) | | Table IX. Mean Western Declination deduced from all the Observations taken at 1 ^h . 50 ^m , 2 ^h . 0 ^m , | | | and 2 ^h . 10 ^m in each Month, and for the Year | (236) | | Table X. Mean Daily Readings of the HORIZONTAL FORCE MAGNET, corrected for Temperature | (237) | | Table XI. Daily Readings of the Horizontal Force Magnet, reduced to the same Zero (237) & | (238) | | Frequency of Differences of given Amounts on consecutive Days | (238) | | Table XII. Range of Mean Daily Values, Extreme Readings, and Range of the Readings for the | | | Horizontal Force in every Month | (238) | | Yearly Range of Mean Daily Values | (239) | | Extreme Range for the Year, of the Horizontal Force, from Single Observations | (239) | | Table XIII. Mean Monthly Readings of the Horizontal Force Magnet, and for the Year | (239) | | Table XIV. Daily Ranges of the Horizontal Force | (239) | | Days on which the Greatest and Least Daily Ranges took place in the Year | (239) | | Table XV. Mean of the Daily Ranges of Horizontal Force in each Month, and for the Year | (240) | | Table XVI. Mean Readings of the Horizontal Force Magnet for every Even Hour in each | | | Month , | (240) | | Table XVII. Mean Readings of the Horizontal Force Magnet for every Even Hour in each Month, | | | reduced to one and the same Series | (240) | | Remarks on the preceding | (241) | | Table XVIII. Mean Readings of the Horizontal Force Magnet, at every Even Hour, for Summer, | | | Winter, and the Year | (241) | | Remarks on the preceding | (241) | | Table XIX. Diurnal Inequality of the Horizontal Force for each Month | (241) | | Diurnal Inequality of the Horizontal Force for Summer and Winter | (242) | | Table XX. Mean Readings of the Horizontal Force Magnet, from the Observations at 1 ^h . 52 ^m . 30 ^s , | | | 2 ^h . 2 ^m . 30 ^s , and 2 ^h . 12 ^m . 30 ^s , in every Month and for the Year | (242) | | Table XXI. Mean Readings of the VERTICAL FORCE MAGNET corrected for Temperature . (242) & | (243) | | Frequency of Differences of given Amounts on consecutive Days | (243) | | Table XXII. Difference between the Greatest and Least Mean Daily Values, Extreme Readings, | | | and Ranges of the Vertical Force Magnet in every Month | (243) | | Range of the Vertical Force for the Period, February to December | (244) | | Table XXIII. Mean Monthly Readings of the Vertical Force Magnet, and Mean of all the Months | (244) | | Table XXIV. Daily Ranges of the Vertical Force | (244) | | Days on which the Greatest and Least Daily Ranges of the Vertical Force took place in the | | | Period | (244) | | Table XXV. Diurnal Range of the Vertical Force Magnet in each Month, and for the Year | (245) | | Table XXVI. Mean Readings of the Vertical Force Magnet for every Even Hour in each Month | (245) | | Table XXVII. Diurnal Inequality of the Vertical Force for each Month | (245) | | the state of s | | | | PAGE | |---|---------------| | Table XXVIII. Mean Vertical Force for each Month and for the Year, from the Observations | | | taken at 1^h . 47^m . 30^s , 1^h . 57^m . 30^s , and 2^h . 7^m . 30^s | (246) | | Table XXIX. Mean Monthly MAGNETIC DIP | (246) | | Table XXX. Mean Quarterly Magnetic Dip | (247) | | Mean Magnetic Dip for the Year at 21h and 3h | (247) | | ABSTRACT OF THE OBSERVATIONS OF DEFLEXION | (247) | | Table XXXI. Values of Absolute Measure of Horizontal Force, from Observations of Deflexion | ` , | | of a Magnet | (247) | | Table XXXII. Values of Absolute Measure of Horizontal Force, from Observations of Vibrations | (-20) | | | (047) | | of the Deflecting Magnet | (247) | | ABSTRACTS OF THE RESULTS OF THE METEOROLOGICAL OBSERVATIONS | (249) | | Table I. Mean Daily and Monthly Readings, and Range of Readings of the BAROMETER in | , | | every Month | (250) | | Differences between the Mean Readings of the Barometer on two consecutive Days | (250) | | Remarks on the preceding | (250) | | Extreme Differences in the Mean Daily Readings of the Barometer on consecutive Days in | | | each Month | z (251) | | Greatest and Least Mean Daily Readings of the Barometer in each Month, and the Days of | • | | their Occurrence | (251) | | Range for the Year of the Mean Daily Readings | (251) | | Table II. Absolute Maxima and Minima of Barometer Readings, from Two-hourly Observations | (251) | | | (251) | | Table III. Daily Ranges of the Barometer | | | Number of Days when the Daily Range of the Barometer was within certain Limits | (253) | | Table IV. Diurnal Range of the Readings of the Barometer for each Month, for Quarterly Periods, | | | and for the Year | (253) | | Table V. Mean Readings of the Barometer for every Even Hour in each Month | (253) | | Hours at which the Maxima and Minima Readings occurred in each Month | (253) | | Table VI. Mean Readings of the Barometer at every Even Hour, for Quarterly Periods and for | | | the Year, and Mean of the Readings and Range for those Periods and the Year | (254) | | Hours at which the Maxima and Minima Readings occurred in the Quarterly Periods, with | | | their Differences | (254) | | Diurnal Motion for Different Periods and for the Year | (254) | | Table VII. Diurnal Inequality of Readings for each Month | (255) | | On the Influence of the Moon on the Barometer | (255) | | | (255) | | Table VIII. Mean Monthly Readings of the Barometer arranged by Hour-Angles of the Moon. | (256) | | Table IX. Mean Reading of the Barometer at every Two Hours of the Moon's Hour-Angle | | | Table X. Mean Daily Readings of the Barometer arranged with reference to the Moon's Declination | (256) | | Abstract of the Results of Table X | (256) | | Table XI. Mean Daily Readings of the Barometer with reference to the Moon's Parallax | (256) | | Abstracts of the Results of Table XI | (257) | | Table XII. Mean Daily Readings of the Barometer with reference to the relative Positions of the | | | Sun and Moon | (257) | | Abstracts of the Results of Table XII | (258) | | RESULTS OF THE OBSERVATIONS OF THE THERMOMETERS | (258) | | Table XIII. Mean Daily and Monthly Temperatures of the Air, and Range of Mean Daily | | | Temperatures for every Month | (258) | | | () | | Instances of Differences of certain different Amounts in the Mean Daily Temperatures | (259) | | between consecutive Days | (200) | | Highest and Lawrest Man Deily Temperatures in each Manth and the Dans of their | P₄gi | |---|------------------------| | Highest and Lowest Mean Daily Temperatures in each Month, and the Days of their | (050 | | Occurrence | (259 | | Highest and Lowest Mean Daily Temperatures in the Year | (259 | | Highest and Lowest Temperatures in each Month, from the Two-hourly Observations | (259 | | Highest and Lowest Temperatures in each Month, as shewn by the Self-registering | | | Maximum and Mininum Thermometers | 9) & (260 | | Table XIV. Mean Temperature for each Month and for
the Year, deduced from the Self- | (2.5) | | registering Maximum and Minimum Thermometers | (260) | | Table XV. Daily Range of Temperature throughout the Year |)) & (261 _. | | Greatest and Least Daily Ranges in each Month, from the Two-hourly Observations, and | (2.27) | | the Days on which they occurred | (261) | | Table XVI. Diurnal Range of Temperature for each Month, for Quarterly Periods and for | (2.21) | | the Year | (261) | | Table XVII. Mean Temperature at every Even Hour in each Month | (262) | | Times of the Day at which the Maxima and Minima Temperatures occurred in each Month | (262) | | Table XVIII. Mean Temperature at every Even Hour, for Quarterly Periods and for the Year, | (2.22) | | and Mean and Range for those Periods and the Year | (262) | | Hours of Maximum and Minimum Temperature for the Different Seasons and for the Year | (262) | | Table XIX. Diurnal Inequality of Temperature in each Month | (263) | | Table XX. ABSTRACT OF THE RESULTS OF THE OBSERVATIONS OF RADIATION | (263) | | RESULTS OF THE OBSERVATIONS OF THE THERMOMETERS SUNK IN THE GROUND. | (263) | | Table XXI. Mean Daily Readings, Mean for the Month, and Mean Daily Range of a Thermometer | | | whose Bulb is sunk to the depth of 25 6 feet (24 French feet) below the surface of | | | the soil | | | Mean for the Year | (264) | | Table XXII. Mean Reading at every Even Hour of the Thermometer whose Bulb is sunk to the | (2.2.1) | | depth of 25 6 feet (24 French feet) below the surface of the soil | (264) | | Table XXIII. Mean Daily Readings, Mean for the Month, and Mean Daily Range of a Thermo- | | | memeter whose Bulb is sunk to the depth of 12.8 feet (12 French feet) below the | | | surface of the soil | | | Mean for the Year | (265) | | Table XXIV. Mean Reading at every Even Hour of the Thermometer whose Bulb is sunk to the | (905) | | depth of 12.8 feet (12 French feet) below the surface of the soil | (265) | | | | | meter whose Bulb is sunk to the depth of 6.4 feet (6 French feet) below the surface of the soil | (200) | | of the soil | (266) | | Table XXVI. Mean Reading at every Even Hour of the Thermometer whose Bulb is sunk to the | (266) | | depth of 6.4 feet (6 French feet) below the surface of the soil | (266) | | Table XXVII. Mean Daily Readings, Mean for the Month, and Mean Daily Range of a Ther- | (200) | | mometer whose Bulb is sunk to the depth of 3 ·2 feet (3 French feet) below the surface | | | of the soil | (267) | | Mean for the Year | (267) | | Table XXVIII. Mean Reading at every Even Hour of the Thermometer whose Bulb is sunk to | (201) | | the depth of 3 2 feet (3 French feet) below the surface of the soil | (267) | | Table XXIX. Mean Daily Readings, Mean for the Month, and Mean Daily Range of a Thermo- | (201) | | meter whose Bulb is sunk to the depth of 1 inch below the surface of the soil | (2 68) | | Mean for the Year | (268) | | | (=00) | | GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1847. | | | | Page | |--|---------------------| | Table XXX. Mean Reading at every Even Hour of the Thermometer whose Bulb is sunk to the | | | depth of 1 inch below the surface of the soil | (268) | | Table XXXI. Mean Daily Readings, Mean for the Month, and Mean Daily Range of a Thermo- | | | meter within the Case covering the Deep-sunk Thermometers | (269) | | Mean for the Year | (269) | | Table XXXII. Mean Reading at every Even Hour of the Thermometer within the Case covering | , , | | the Deep-sunk Thermometers | (269) | | Table XXXIII. Abstract of the Results of the Observations of Thermometers | (200) | | PLACED TWO FEET BELOW THE SURFACE OF THE WATER OF THE THAMES | (970) | | | (270) | | Abstract of the Results of the Observations of the Wet-Bulb Thermo- | | | METER | (270) | | Table XXXIV. Mean Daily Temperature of Evaporation and Mean for the Month | (270) | | Mean for the Year | (270) | | Table XXXV. Difference between the Mean Daily Temperature of the Air and the Mean Daily | | | Temperature of Evaporation | (271) | | Table XXXVI. Mean Temperature of Evaporation at every Even Hour in each Month | (271) | | Table XXXVII. Difference between the Mean Temperature of the Air and the Mean Tempera- | ` , | | ture of Evaporation at every Even Hour in each Month | (272) | | Table XXXVIII. Mean Daily Temperature of the DEW-Point and Mean for the Month, | (-1-) | | deduced from the Air Temperature and the Evaporation Temperature | /n=n\ | | • | (272) | | Table XXXIX. Difference between the Mean Daily Temperature of the Air and the Mean Daily | | | Temperature of the Deduced Dew-Point | (273) | | Table XL. Mean Temperature of the Deduced Dew-Point at every Even Hour in each Month | (273) | | Table XLI. Mean Temperature of the Deduced Dew-Point at every Even Hour, for Quarterly | | | Periods and for the Year | (274) | | Hours of Maxima and Minima for the different Seasons and for the Year | (274) | | Table XLII. Difference between the Mean Daily Temperature of the Air and the Mean Daily | , , | | Temperature of the Deduced Dew-Point, at every Even Hour in each Month | (274) | | Table XLIII. Mean Daily and Monthly ELASTIC FORCE OF VAPOUR (2' | | | Table XLIV. Mean Elastic Force of Vapour at every Even Hour in each Month | (275) | | Table XLV. Mean Elastic Force of Vapour at every Even Hour, for the Quarterly Periods and | (210) | | - · · · · · · · · · · · · · · · · · · · | (000) | | for the Year | (275) | | Hours at which the Maximum Force took place in Quarterly Periods and for the Year | (276) | | [Following Table LXVII. are Tables XLVI.*, &c., relating to the Calculations of | | | Humidity &c., inadvertently misplaced in printing.] | | | Abstracts of the Results of Osler's Anemometer | (276) | | Table XLVI. Sums of the Pressures of the Wind in different Directions for each Month, with the | | | Number of Hours of each Direction | (276) | | Remarks upon the preceding Table | (277) | | Account of strong Winds and Gales of Wind during the Year | | | Table XLVII. Number of Hours in each Month during which the Wind blew in each Direction, | , , , | | without recording Pressure | (278) | | Abstract of the Results of Tables XLVI. and XLVII | | | Table XLVIII. Total Pressures of the Wind for the Year, resolved in the Directions of the Four | , c) a (218) | | | (000) | | Cardinal Points | (279) | | Table XLIX. Sums of the Pressures of the Wind at every Hour, independently of Direction, | -a\ 6 :- | | and Number of Hours of its Direction in each Month | | | Remarks on Table XLIX | 30) & (2 81) | | | | PAG | |---|-----------|--------| | Table L. Number of Calm Hours in each Month, and Number of Hours during which t | | | | blew without recording Pressure, for every Hour in each Month | | & (282 | | Table LI. Sums of Pressures and Number of Hours during which the Instrument did of | | | | record Pressure, or during which there was a Calm, or the Instrument was | | | | order, between 6^h and 19^h for each Month | | (283 | | Abstract of the Results of Table LI | | (283 | | Table LII. Sums of Pressures and Number of Hours during which the Instrument did of | | | | Record Pressure, or during which there was a Calm, or the Instrument was | as out of | | | order, between 20^h and 5^h , for each Month | | (283 | | Abstract of the Results of Table LII | | (283 | | Table LIII. Sums of Pressures and Number of Hours during which the Instrument di | d or did | | | not Record Pressure, or during which there was a Calm, or the Instrument | | | | of order, at every Hour for the Year | | (284 | | Abstract of the Results of Table LIII | | (284 | | Table LIV. Mean Pressure of the Wind at every Hour in each Month, independ | lently of | | | Direction | | (284) | | Table LV. Sums of Pressures of each Wind at every Hour for the Year, and Number of | of Hours | | | during which it Recorded Pressure | | (285) | | Table LVI. Mean Pressure of the Wind at every Hour for the Year | | (286) | | Abstracts of the Results from Whewell's Anemometer | | (287 | | Table LVII. Sums of the Descents of the Pencil for different Directions in each Month | | (287) | | Sums of the Descents of the Pencil for different Directions during the Period | | (287) | | The whole Descent of the Pencil, independently of Direction, during the Period . | | (287) | | Table LVIII. Sums of the Descents of the Pencil for the Period, resolved in the Dire | | | | the Four Cardinal Points | | (288) | | Table LIX. Whole Daily Descents of the Pencil for each Month | | (288) | | Monthly Sums of all the Descents of the Pencil | | (289) | | Abstract of the Changes of the Direction of the Wind, as derived | D FROM | | | Osler's Anemometer | | , , | | Table LX. Monthly Changes of the Wind | | (290) | | Amount of Cloud during the Year | | (291) | | Table LXI. Mean Daily Amount of Cloud | | (291) | | Table LXII. Mean Amount of Cloud at every Even Hour for each Month, and Mean | for the | | | Month | | (291) | | Remarks on Table LXII | | (292) | | Table LXIII. Mean Amount of Cloud at every Even Hour, for the Quarterly Periods | | | | the Year, and the Mean for those Periods and for the Year | | (292) | | Hours at which the Greatest and Least Amounts of Cloud occurred in the Quarterly | | | | and for the Year | | (292) | | RECORDS OF THE RAIN-GAUGES | | (292) | | Table LXIV. Amount of Rain collected in each Month in the several Gauges | | (292) | | Table LXV. Quarterly Amounts of Rain collected in the several Gauges | | (293) | | Heights of the Receiving Surfaces of the several Gauges above the Ground | | (293) | | Table LXVI. Proportions of the Quantities of Rain collected in the several Gauges | | | | Quarterly Periods | | (293) | | Amounts of Rain collected in the several Gauges during the Year | | (293) | | Table LXVII.—Abstracts of the Observations
made with the Actinometer | R | (294) | (The following Tables ought to have been inserted in sequence to Table XLV.) | | PAGE | |--|---------------| | Table XLVI*. Mean Daily Values of the Weight of Vapour in a Cubic Foot of Air | (295) | | Days on which the Greatest and Least occurred during the Year | (295) | | Table XLVII*. Value of the Mean Weight of Vapour in a Cubic Foot of Air, at every Even | (-00, | | Hour of Observation for Each Month, and Means for the Months | (295 | | Table XLVIII*. Mean Weight of Vapour in a Cubic Foot of Air at every Even Hour of Obser- | (490) | | vation, for Quarterly Periods and for the Year, and Means for those Periods and for | | | · | (200 | | the Year | (296) | | Table XLIX*. Mean Daily Additional Weight of Vapour required for complete | | | SATURATION | (296) | | Table L*. Mean Additional Weight of Vapour required for Complete Saturation of a Cubic Foot | | | of Air at every Even Hour in each Month, and Means for the Months | (297) | | Table LI*. Mean Additional Weight of Vapour required for Complete Saturation of a Cubic Foot | | | of Air at every Even Hour, for the Quarterly Periods and for the Year, and Means | | | for those Periods and for the Year | (297) | | Table LII*. Mean Daily DEGREE of HUMIDITY | | | Greatest and Least Values of the Mean Daily Degree of Humidity in the Year, and the | () | | | (298) | | Table LIII*. Mean Degree of Humidity at every Even Hour in each Month, and Means for the | (200) | | · | (000) | | | (29 8) | | Table LIV*. Mean Degree of Humidity at every Even Hour, for the Quarterly Periods and for | | | | (299) | | · · · · · · · · · · · · · · · · · · · | (299) | | Greatest and Least Values of the Mean Daily Weight of a Cubic Foot of Air in the Year, | | Periods and for the Year, and Means for those Periods and for the Year Hours at which the Greatest and Least Values of the Weight of a Cubic Foot of Air occurred ______ Table LVI*. Mean Weight of a Cubic Foot of Air at every Even Hour in each Month, and Table LVII*. Mean Weight of a Cubic Foot of Air at every Even Hour, for the Quarterly Means for the Months (299) (300) (300) (300)